
Under review as a conference paper at ICLR 2024

CONTRASTIVE POST-TRAINING LARGE LANGUAGE
MODELS ON DATA CURRICULUM

Anonymous authors
Paper under double-blind review

ABSTRACT

Alignment serves as an important step to steer large language models (LLMs) to-
wards human preferences. In this paper, we explore contrastive post-training tech-
niques for alignment by automatically constructing preference pairs from multiple
models of varying strengths (e.g., InstructGPT, ChatGPT and GPT-4). We care-
fully compare the contrastive techniques of SLiC and DPO to SFT baselines and
find that DPO provides a step-function improvement even after continueing SFT
saturates. We also explore a data curriculum learning scheme for contrastive post-
training, which starts by learning from “easier” pairs and transitioning to “harder”
ones, which further improves alignment. Finally, we scale up our experiments
to train with more data and larger models like Orca. Remarkably, contrastive
post-training further improves the performance of Orca, already a state-of-the-art
instruction learning model tuned with GPT-4 outputs, to exceed that of ChatGPT.1

1 INTRODUCTION

The rapid evolution of Large Language Models (LLMs) has ushered in a new era of natural language
processing capabilities. These models, when scaled to billions of parameters and pretrained over
trillions of text tokens, demonstrate unprecedented proficiency in a wide array of tasks (Brown
et al., 2020; Chowdhery et al., 2022). Various post-training procedures like supervised instruction
tuning and Reinforcement Learning from Human Feedback (RLHF) fine-tune pretrained LLMs to
better align with human expectations and preferences (Ouyang et al., 2022; OpenAI, 2023; Touvron
et al., 2023a). This additional alignment procedure is crucial, because the pretraining objective of
essentially predicting the next token in a text sequence is known to produce LLMs whose outputs
are at times incorrect, irrelevant, or unsafe (Bai et al., 2022a).

Traditionally, these post-training techniques rely on human preference annotations to inform an
LLM which behaviors it ought to adopt in the scenario at hand. For instance, RLHF fits a reward
model on these preference pairs, against which a LLM policy is then optimized (Ziegler et al., 2019;
Bai et al., 2022a; Touvron et al., 2023b). However, such human feedback is expensive to obtain and
often noisy (Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022a).

To align an LLM without human feedback, other methods such as Reinforcement Learning from AI
Feedback (RLAIF) harvest preference signals via automatic feedback from another LLM (Lee et al.,
2023; Bai et al., 2022b). However, studies have found AI feedback has a low agreement rate with
humans (Perez et al., 2022; Casper et al., 2023b; Lee et al., 2021). Also, these methods suffer from
the same drawbacks as RLHF, such as reward hacking (Skalse et al., 2022).

Recently, certain contrastive post-training techniques such as Sequence Likelihood Calibration
(SLiC) and Direct Preference Optimization (DPO) offer enticing alternatives to RLHF (Zhao et al.,
2023b;a). For instance, DPO is proven to optimize the same objective as RLHF. But instead of opti-
mizing against a reward model, it works by increasing the LLM’s relative probability of generating
the preferred output over the unfavorable one — making it much simpler to implement (Rafailov
et al., 2023). The difference between the post-training methods is illustrated in Figure 1.

In this work, we study what we believe is a strong connection between contrastive post-training
and RLAIF: one can employ LLMs to automatically generate preference pairs which can then

1We will make the code and checkpoints publicly available upon acceptance.

1

Under review as a conference paper at ICLR 2024

LLMInput Output LLMInput

Positive

Negative

Supervised Finetuning Contrastive Post-training

e.g., GPT4

e.g., InstructGPT

LLMInput Sample

RLHF

RM
reward

Figure 1: Difference betwen SFT, RLHF, and contrastive post-training. For SFT, the model opti-
mizes the negative log-likelihood for the next token. RLHF samples an output from the LLM and
use a reward model to provide feedback for PPO to update the LLM. For contrastive post-training,
a contrastive loss is used to steer the model towards preferred outputs.

be optimized directly via contrastive objectives like DPO. However, without feedback from hu-
man annotations, LLM-feedback, or a reward model to distinguish them, the key question be-
comes how to automatically construct pairs that 1) contain meaningful directional signal on a
per-example basis and 2) in aggregate adhere to the values and principles that humans expect.

Table 1: The win rates of GPT models
against each other on the official Alpaca
Eval leaderboard motivate our automatic
pair construction.

Model vs. Win Rate

GPT-4 InstructGPT 95.3%
GPT-4 ChatGPT 83.5%

ChatGPT InstructGPT 89.4%

This paper explores a simple yet effective answer to
this question: contrast outputs from LLMs of varying
sizes and capabilities, as motivated in Table 1. We au-
tomatically construct training pairs of responses gen-
erated from InstructGPT (Ouyang et al., 2022), Chat-
GPT, and GPT-4 (OpenAI, 2023) as demonstrations
of desirable and undesirable behaviors. We believe
this choice provides a solid foundation to better under-
stand the efficacy of various contrastive training tech-
niques when it comes to “bridging the gap” between
stronger and weaker models. On a more general level,
we wish to apply our findings to improve model dis-
tillation (Hinton et al., 2015), i.e., preserve the quality of larger, more capable models in a smaller
target model which is cheaper and faster to deploy at scale, as explored in many recent works (Chi-
ang et al., 2023; Xu et al., 2023b; Geng et al., 2023).

We show through carefully crafted experiments that contrastive post-training techniques main-
tain a step-function advantage over continuous supervised fine-tuning, which holds even at larger
scales of models and training examples. For example, a key result of our study is that enhancing
Orca (Mukherjee et al., 2023) — already a state-of-the-art instruction learning model — with DPO
over pairs of GPT4-vs-InstructGPT is more beneficial than additional supervised fine-tuning on only
the GPT-4 outputs, all else being equal. In fact, the contrastive fine-tuning of Orca is preferred 55%-
45% against ChatGPT in head-to-head comparison on the Alpaca Eval benchmark.

Additionally, we structure how and when the model is exposed to various types of pairs in the style
of curriculum learning (Bengio et al., 2009; Soviany et al., 2022). We discover that reordering
the training data to start from “easy pairs” and warm up to “harder pairs” leads to considerable
performance improvements.

To summarize, our contributions are as follows:

1. We propose a new automatic setting for contrastive post-training that improves performance
of LLMs without human-, AI-, or reward model-feedback.

2. We explore several curriculums for SFT and DPO. We discover that performance of DPO
can be further improved by simply reordering the data.

3. We verify the effectiveness of our approach holds on scaled-up experiments on a state-of-
the-art instruction-following model Orca.

2

Under review as a conference paper at ICLR 2024

2 RELATED WORKS

Improving downstream performance of Large Language Models (LLMs) and aligning them with
user preference and designed intents are important to deployment and applications. This can be
achieved by fine-tuning these models on responses written by humans or generated with human-
written labels and templates. Previous works have applied supervised fine-tuning (SFT) on both
instruction data (Sanh et al., 2022; Wei et al., 2022; Chung et al., 2022; Taori et al., 2023; Peng
et al., 2023) and dialogue data (Chiang et al., 2023; Xu et al., 2023b; Geng et al., 2023). Although
SFT can successfully adapt an LLM to instruction learning or chatting, the model can be further im-
proved by post-training (Ouyang et al., 2022) to meet human preference. A straightforward solution
to optimize the human preference is to use reinforcement learning. Reinforcement Learning with
Human Feedback (RLHF, Ziegler et al., 2019) first trains a Bradley-Terry reward model (Bradley
& Terry, 1952) on human-labeled preference pairs. Then, it samples output from the model and
scores the output with the reward model. A reinforcement learning algorithm, such as Proximal
Policy Optimization (PPO, Schulman et al., 2017) is used to optimize the language model for better
rewards. RLHF has seen successful applications in downstream tasks (Kreutzer et al., 2018; Stien-
non et al., 2020). However, RLHF methods are infamous for their instability, inefficiency, reward
misgeneralization and hacking (Casper et al., 2023a; Skalse et al., 2022).

Recently, there are studies proposing methods for post-training without reinforcement learning.
These methods optimize human preference with human-labeled contrastive pairs. FeedMe (Ope-
nAI, 2022) samples model output multiple times and fine-tunes on the best response picked by
human labelers. Sequence Likelihood Calibration (SLiC, Zhao et al., 2023b;a) uses a contrastive
sequence calibration loss to steer the LM towards desired output. Rank responses to align human
feedback (RRHF, Yuan et al., 2023) adds a ranking loss to the SFT loss. The ranking loss promotes
responses based on preference ranked by humans or a reward model. Direct Preference Optimiza-
tion (DPO, Rafailov et al., 2023) optimizes language models by contrasting it against a reference
model on preference data. Rafailov et al. (2023) also provide a theoretical analysis that the DPO is
optimizing the same objective as RLHF, but in a more efficient and stable manner. In our paper, we
conduct empirical studies to compare offline post-training methods, RLHF, SLiC and DPO, in terms
of performance and efficiency.

Human preference is expensive to collect thus difficult to scale up. Recently, there have been at-
tempts to automate post-training by replacing the human preference data with model-generated
feedback. Self-distillation with feedback (SDF, Xu et al., 2023b) samples multiple outputs from
the model and prompts ChatGPT to pick the best response for fine-tuning the model. RL from AI
Feedback (RLAIF, Lee et al., 2023) uses an off-the-shelf LLM to replace human labels in the stan-
dard RLHF. Following that, reinforcement learning from contrast distillation (RLCD, Yang et al.,
2023) constructs model-generated contrastive pairs by prompting an off-the-shelf LLM to act dif-
ferently on certain properties, e.g., harmlessness and helpfulness. Different from these works, our
approach is an offline algorithm, which does not require time-consuming sampling during training.
Our approach does not require training a reward model and can be easily scaled up.

3 PRELIMINARIES

Reinforcement Learning from Human Feedback (RLHF) To optimize the human preference
with reinforcement learning, we need to first train a reward model rτ (y|x) that outputs a reward for
a given output y. When training the target model, RLHF (Ziegler et al., 2019) uses a reinforcement
learning algorithm (usually PPO, Schulman et al., 2017) to optimize the reward of a sampled output
y from the target model Pθ. To regularize the optmization and prevent model degeneration, a KL
penalty term between the sequences of distributions over tokens of the target model and a reference
model (e.g., SFT model) is added to the reward (Korbak et al., 2022). This prevents the RL policy
from deviating substantially away from the reference model, which often leads to incoherent text
output (Ziegler et al., 2019).

Sequence Likelihood Calibration (SLiC) In contrast to RLHF, SLiC can exploit pairwise human
feedback data and train offline (i.e., without sampling from the target model each time). SLiC takes
a positive example y+, a negative example y− and a reference output yref from the SFT model. In
essence, SLiC encourages the target LM to output sequences those resemble the positive sequence

3

Under review as a conference paper at ICLR 2024

and penalizes those that resemble the negative sequence, while using the reference sequence from
the SFT model for regularization. The loss function for SLiC is:

LSLiC(θ) = max(0, δ − logPθ(y
+|x) + logPθ(y

−|x))− λ logPθ(yref |x) (1)

where δ and λ are two hyperparameters, controlling the margin for the ranking loss and regulariza-
tion weight. SLiC is memory-efficient, as both its positive-negative pairs and reference sequences
are offline.

Direct Preference Optimization (DPO) Similar to SLiC, DPO is an offline preference optimiza-
tion method. DPO takes a pair of (pre-computed) positive and negative examples and optimizes the
difference between the target model and the reference model (i.e., SFT model), which increases the
likelihood of the positive example and decreases the likelihood of the negative example. The loss
function of DPO is shown below:

r+(θ) = β(logPθ(y
+|x)− logPref (y

+|x)) (2)

r−(θ) = β(logPθ(y
−|x)− logPref (y

−|x)) (3)

LDPO(θ) = − log sigmoid(r+(θ)− r−(θ)) (4)

where β is a temperature hyperparameter; r+ and r− are the two pseudo-rewards that resemble the
reward function in RLHF. Despite DPO having a similar form, there are key differences between
SLiC and DPO: at train time, SLiC requires only the sampled outputs from a reference model,
while DPO requires the logits from that (frozen) reference model for both the positive and negative
sequence. Rafailov et al. (2023) also conduct a theoretical analysis of DPO and prove that optimizing
the DPO loss is identical to the RLHF loss.

4 CONTRASTIVE POST-TRAINING OVER PAIRWISE DATA CURRICULUM

Contrastive Post-training Contrastive post-training involves the construction of positive y+ and
negative y− sequences in response to the same input x. Under the traditional settings of human-
feedback, it is often the case that for some (y1, y2) ∼ P (x) sampled from the same LLM, human
annotators provide a preference as to which is the positive. As this process is expensive, to reduce
costs, recent studies (Xu et al., 2023b; Lee et al., 2023; Yang et al., 2023) have investigated the use
of pre-aligned models as substitutes for human annotators in providing feedback for post-training
methods. However, annotating preference pairs using the largest models, such as GPT-4, on datasets
with millions of examples — like the 5M examples used by Orca (Mukherjee et al., 2023) — would
incur a cost of $150k just for calling the API, making it prohibitively expensive as well.

In our setting, we choose to sample y+ directly from a “superior” LLM, y+ ∼ Psup , and y− from
an inferior Pinf . We define one model to be superior to another Psup ≻ Pinf if in expectation
humans would prefer y+ over y− given a reasonable input x. Relying on results in tried-and-tested
benchmarks (Zheng et al., 2023; Li et al., 2023; Xu et al., 2023a) such as Alpaca Eval (shown in
Table 1), we make an informed choice that GPT4 ≻ ChatGPT ≻ InstructGPT for our chosen scenario
of general instruction tuning.

We acknowledge that there could be many reasons why humans would prefer y+, as previous stud-
ies have found that a single reward function may not be sufficient to capture the range of human
preferences (Hong et al., 2023; Skalse et al., 2023). Other studies emphasize only a certain property
in the contrastive pair, such as helpfulness or harmlessness (Bai et al., 2022a).

Data Curriculum The concept of a curriculum (Bengio et al., 2009) is analogous to the peda-
gogical approach in human learning where tasks are presented in increasing order of difficulty. By
adopting this methodology, we aim to facilitate a smoother and more effective learning trajectory
for our models.

For our curriculum, we approximate the difficulty of the learning task as being inversely propor-
tional to the gap between the Psup and Pinf , as indicated in Table 1. That is, the more clear-cut
the preference between juxtaposed y+ and y−, the easier the learning task. We define an EasyPair
as y+ ∼ GPT-4(x) and y− ∼ InstructGPT(x). On the other hand, a HardPair contrasts between

4

Under review as a conference paper at ICLR 2024

Table 2: Time for post-training LLaMA-7B on Alpaca for one epoch on 16 Nvidia V100 GPUs.

Method SFT RLHF/RLAIF (RM) RLHF/RLAIF (PPO) SLiC DPO

Training Time 4h 3h 24h 7h 12h

e.g., ChatGPT and InstructGPT because the capability gap between them is narrower than that be-
tween GPT-4 and InstructGPT. HardPairs present a more nuanced challenge, requiring the model
to discern subtler distinctions in quality and content.

We define our curriculum such that, initially, training starts with only EasyPairs to provides our
model with a foundational understanding of the contrastive differences. During training, the model
becomes adept at identifying distributional differences, so the probability of seeing an EasyPair in
a mini-batch decreases as they are replaced by HardPair.

p(EasyPair) = 1− α

p(HardPair) = α
(5)

As training progresses, α varies according to f(t). In our experiments, we allow f(t) = kt to be
a linear function of the step number, or in some cases a constant function, for comparison. For the
linear function, we choose k such that f(t) = 1 at the end of one epoch, as shown in Figure 2. The
anti-curriculum is the exact opposite – moving from HardPair to EasyPair.

We also explore an analogous curriculum regime for supervised fine-tuning, which we define as
starting from ChatGPT targets (which are easier for a smaller model to imitate), and gradually
moving towards GPT-4 targets, which are more challenging. By structuring such data curriculums,
we ensure that the model can gradually acclimatize to the task, building on its understanding and
refining its discernment capabilities. This approach not only enhances the model’s performance but
also provides insights into the incremental learning capabilities of large language models.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Training Datasets Our small-scale experiments utilize Alpaca (Taori et al., 2023), an instruction
learning dataset, which originally includes 52k instructions generated with Self-Instruct (Wang et al.,
2023), with responses from InstructGPT (text-davinci-003). We further collect ChatGPT’s re-
sponses with OpenAI API (gpt-3.5-turbo) and GPT-4’s responses from Peng et al. (2023). There-
fore, we are able to construct three contrastive pairs, namely GPT-4 vs. td003, GPT-4 vs. ChatGPT
and ChatGPT vs. td003. For large-scale experiments, we use a mixture of 550k FLAN-v2 data,
200k FLAN-v1 data (sampled according to (Mukherjee et al., 2023)), the 52k Alpaca data (Taori
et al., 2023) and 50k Vicuna data (Chiang et al., 2023).

Evaluation Datasets We evaluate performance of models with Alpaca Eval (Li et al., 2023) and
the test set of WizardLM prompts (Xu et al., 2023a). Alpaca Eval consists of 805 instructions, which
includes 252 instructions from the self-instruct evaluation set (Wang et al., 2023), 188 from Open
Assistant evaluation set, 129 from Anthropic-HH helpfulness (Bai et al., 2022a), 80 from Vicuna
evaluation (Chiang et al., 2023), and 156 from Koala evaluation (Geng et al., 2023). The metric is
a win rate of a treatment candidate against a baseline model’s responses, evaluated by GPT-4 in a
side-by-side fashion (OpenAI, 2023).

The WizardLM test set (Xu et al., 2023a) consists of 218 prompts which cover 29 distinct skills,
collected from the open-source repositories, platforms and forums. Following Xu et al. (2023a), we
report the ratio of the sum over all examples of scores of the treatment model compared to a baseline
(a.k.a. “score %”) as well as the win/tie rates. This metric is again a side-by-side comparison
evaluated by GPT-4. Whereas AlpacaEval formats comparisons as a ranking task (re-order the
candidate responses according to how a human would prefer them), for WizardLM the candidates
are individually scored. Note that such evaluation by GPT-4 might slightly favor SFT on GPT-4

5

Under review as a conference paper at ICLR 2024

Table 3: An example of reward hacking in RLAIF model trained with a “in-domain” reward model
on GPT-4 vs. td003 pairs (Skalse et al., 2022), despite its response is unreadable.

Prompt Method Response Reward

Transform this recipe for ”vegetable
fried rice” into a vegan version. 3
tablespoons vegetable oil, 2 eggs, 1 cup
diced onions, 2 garlic cloves minced, 2
cups shredded carrots, 2 cups cooked
white rice, 2 tablespoons soy sauce.

RLAIF 1/: BBCRed pepper converted to3 tbps
shred blocklijke diceda)”Rotisserie veg-
etables”

34.594

SFT Here’s a vegan version of vegetable fried
rice: Ingredients: 3 tablespoons veg-
etable oil; 1 cup diced onions.. [complete
output omitted]

22.156

outputs, as pointed by Li et al. (2023). Both datasets have a different data distribution from our
training set and thus can be a good testbed to test the zero-shot generalization capability of the
models.

Base Models For experiments on Alpaca, we use LLaMA-7B (Touvron et al., 2023a) as the base
model. For large-scale experiments, we explore the post-training enhancement setting, where we
initialize from 13B parameter state-of-the-art instruction-following model, Orca (Mukherjee et al.,
2023) and improve its performance.

Training Details For all model trained, we use the AdamW optimizer with a learning rate of 1e-5
and linear warm-up. The LLaMA models are trained on 16 Nvidia V100 32GB GPUs with the
maximum length set to 1024 and a total batch size of 512. The Orca models are trained on 32
Nvidia A100 80GB GPUs with the maximum length set to 2048 and a total batch size of 512. The
small scale experiments thus have 101 steps per epoch on Alpaca, and the large scale experiments
have roughly 1600 steps. To save VRAM, we use DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) for
model parallelism and offload. For SLiC, we set the ranking margin δ and regularization coefficient
both to 1.0, following Zhao et al. (2023a). For DPO, we use the default temperature β of 0.1,
following Rafailov et al. (2023). The training time for all methods on Alpaca is shown in Table 2.
We implement RLAIF (Lee et al., 2023) by training reward models (initialized from LLaMA) with
the same pairs for SLiC and DPO. Then, we use the trained reward models for the standard RLHF,
strictly following Hugging Face TRL2. We search the KL penalty coefficient hyperparameter over
{0.2, 0.5, 1.0}.

5.2 COMPARING CANDIDATES FOR POST-TRAINING: RLAIF, SLIC AND DPO

We compare offline contrastive post-training algorithms, SLiC and DPO, and an online RL method,
RLAIF, to SFT. Since both Alpaca Eval and WizardLM evaluations are pairwise, we choose two rea-
sonable baselines to compare all techniques: SFT on ChatGPT outputs, and SFT on GPT-4 outputs,
which is slightly harder.

Which is the best for post-training? The top of Table 4 establishes our baselines: we fine-tune
LLaMA (Touvron et al., 2023a) on both ChatGPT and GPT-4 outputs, respectively. SFT on GPT-
4 outperforms SFT on ChatGPT with a win rate of 61.2% and 72.7% on Alpaca and WizardLM
evaluation sets, respectively.

For contrastive post-training approaches, SLiC underperforms SFT by a large margin. A poten-
tial reason is the objective that SLiC optimizes includes a fixed ranking margin δ. In our setting,
the distance between the positive and negative examples fluctuates, thus may cause difficulties for
learning effectively. In contrast, DPO introduces a reference model instead of using a fixed margin
for the loss. By comparing Equation 1 to Equation 4, DPO can be roughly regarded as optimizing a
dynamic margin δ′ = logPref (y

+|x) − logPref (y
−|x) as in SLiC. This may explain why DPO is

more robust in our setting where the labels are noisy. Moreover, as shown in Table 2, DPO holds an
advantage against RLAIF in training efficiency and alleviates the need to tune the hyperparameter

2https://github.com/huggingface/trl

6

https://github.com/huggingface/trl

Under review as a conference paper at ICLR 2024

Table 4: Experimental results of offline post-training techniques. For SLiC and DPO, the training
target contrasts a positive vs. negative pair, and the reference model for these techniques is the SFT
model trained on ChatGPT responses. All baselines are compared against LLaMA models fine-
tuned with ChatGPT and GPT-4 responses on Alpaca data. SFT-3.5 is the LLaMA model trained
with SFT on ChatGPT responses. †RLAIF-trained models suffer crippling reward hacking.

Method Init. Training Target Epoch
vs. SFT on ChatGPT vs. SFT on GPT-4

Alpaca WizardLM Alpaca WizardLM

win% score% win (tie)% win% score% win (tie)%

SFT LLaMA ChatGPT outputs 1 50.0 100.0 50.0 37.4 97.4 32.4 (6.5)
SFT LLaMA GPT-4 outputs 1 61.2 125.8 72.7 (6.0) 50.0 100.0 50.0
SFT SFT-3.5 GPT-4 outputs 1 65.1 124.3 71.3 (5.1) 53.2 103.8 47.2 (6.5)

RLAIF† LLaMA RM on output pairs 1 0.0 - 0.0 (0.0) 0.0 - 0.0 (0.0)

SLiC LLaMA ChatGPT vs td003 1 33.7 95.8 40.9 (0.5) 20.5 85.9 24.5 (0.5)
SLiC LLaMA GPT4 vs ChatGPT 1 41.3 108.8 57.9 (0.5) 30.4 95.1 38.0 (0.9)
SLiC LLaMA GPT4 vs td003 1 22.9 81.4 31.0 (1.4) 13.8 75.3 17.6 (1.4)

DPO LLaMA ChatGPT vs td003 1 48.6 111.3 58.8 (0.5) 32.8 97.8 39.4 (0.5)
DPO LLaMA GPT4 vs ChatGPT 1 56.0 119.6 68.1 (0.5) 41.6 98.3 39.8 (1.9)
DPO LLaMA GPT4 vs td003 1 59.6 121.1 68.1 (2.8) 45.2 99.8 43.1 (3.7)
DPO SFT-3.5 GPT4 vs td003 1 70.4 120.4 66.2 (2.8) 58.7 105.4 51.9 (2.8)

SFT SFT-3.5 GPT4 outputs 3 72.8 119.3 64.4 (4.6) 62.1 103.4 48.1 (4.6)
DPO SFT-3.5 GPT4 vs td003 3 77.3 137.8 80.6 (1.9) 66.5 112.2 62.5 (2.3)

Table 5: Experimental results of RLHF compared with SFT and DPO. SFT-3.5 is the LLaMA model
trained with SFT on ChatGPT responses.

Method Init. Training Target
vs. SFT on ChatGPT vs. SFT on GPT-4

Alpaca WizardLM Alpaca WizardLM

win% score% win (tie)% win% score% win (tie)%

SFT SFT-3.5 GPT-4 outputs 65.1 124.3 71.3 (5.1) 53.2 103.8 47.2 (6.5)
DPO SFT-3.5 GPT4 vs td003 70.4 120.4 66.2 (2.8) 58.7 105.4 51.9 (2.8)

RLHF SFT-3.5 OASST DeBERTa RM 36.1 91.0 26.9 (7.9) 25.3 86.6 22.2 (3.7)
RLHF SFT-3.5 OASST Pythia RM 36.1 92.7 30.6 (9.7) 29.4 87.9 25.5 (2.8)

δ. When comparing head-to-head with SFT on GPT-4 responses, the best-performing DPO wins on
58.7% and 51.9% prompts on Alpaca Eval and WizardLM, respectively.

Which pair should we train DPO on? We train multiple DPO models on different contrastive
pairs. We find that the most distant pair, i.e., GPT-4 vs. InstructGPT, has the best performance. This
may be due to this pair has the least noise, as most GPT-4 responses are expected to outperform
those of InstructGPT. This provides a more reliable signal to facilitate model learning. As shown in
Table 4, the DPO model trained on GPT-4 vs. InstructGPT outperforms the other two pairs on both
Alpaca Eval and WizardLM evaluation. Also, we find that the DPO model initialized from the SFT
model can achieve better performance than initialized from the raw LLaMA checkpoint.

What if we train the model for even longer? Due to computation budget limit, our previous
experiments train the model for 1 epoch on Alpaca. However, we are curious if the advantage of
DPO holds with more epochs training. We train both SFT and DPO models with 3 epochs, which
is the same setting as in Alpaca (Taori et al., 2023) and Vicuna (Chiang et al., 2023). DPO keeps
its advantage against SFT after 3 epochs and the performance gain is even larger. This DPO model
outperforms SFT on all evaluation metrics by a large margin. This result suggests that DPO may be
suitable for scaling up, which we will demonstrate later in Section 5.4.

7

Under review as a conference paper at ICLR 2024

Table 6: Head-to-head comparison of Orca 13B models in scaled-up experiments. Orca with DPO
post-training significantly outperforms continuing training Orca with SFT (p < 0.01).

Model vs. Alpaca Eval (win%) WizardLM Eval

helpful koala oasst self-instruct vicuna overall score% win (tie)%

Orca 13B ChatGPT 55.8 53.2 47.9 41.7 73.8 50.8 94.7 42.1 (16.9)
Orca + SFT ChatGPT 46.5 55.8 48.9 41.7 77.5 50.4 97.2 51.0 (11.9)
Orca + DPO ChatGPT 58.1 57.7 52.7 47.6 73.8 55.0 97.4 51.0 (11.1)

Orca + SFT Orca 13B 43.4 51.3 51.1 52.4 47.5 49.9 105.6 55.9 (19.9)
Orca + DPO Orca + SFT 59.7 48.7 60.6 56.0 51.3 55.8 104.8 55.9 (19.9)

5.3 COMPARISON WITH RLAIF AND RLHF

For RL, we utilize three reward models: two external RLHF reward models from OpenAssistant
reported in Table 5, and one RLAIF reward model trained “in-domain” on the contrastive pairs in
the Alpaca dataset in Table 4. We strictly follow the settings and code implementation in Hugging
Face TRL3 library and use PPO to tune the SFT model on ChatGPT with 1 epoch with three different
KL penalties coefficient {0.2, 0.5, 1.0} and report the best result among the three.

We find that PPO is unfortunately very sensitive to the quality of its reward model, and is prone to
degeneration when trained on small amounts of possibly noisy “in-domain” data. An example is
shown in Table 3, where a broken response trained with PPO is preferred over a coherent response
generated by the SFT model. We believe this “reward hacking” is due to the reward model failing to
generalize (Tien et al., 2023), likely overfitting to spurious lexical differences between GPT-4 and
InstructGPT (Zhuang & Hadfield-Menell, 2020; Skalse et al., 2022).

To combat this behavior, we employ external reward models from Open Assistant (Köpf et al., 2023)
which stabilize the training in the same codebase with the same settings off-the-shelf. In particular,
we use the OpenAssistant DeBERTa-Large reward model4 and the larger Pythia 6.9B reward model5.
As Table 5 shows, while the outputs are coherent under these external reward models, they still fail
to beat the SFT baselines, as the performance degrades on the two out-of-distribution evaluation
datasets. This suggests the reward models may fail to generalize to out-of-distribution data (Tien
et al., 2023). We conclude only that RLAIF/RLHF requires substantial effort to train properly. It is
worth mentioning that DPO, as an alternative, works out-of-the-box on the same pairs that are used
to train the “in-domain” reward models that lead to RLAIF’s collapse.

5.4 ORCA+: SCALING UP CONTRASTIVE POST-TRAINING

To verify if our findings on small-scale Alpaca experiments can generalize, we test the performance
of DPO with Orca 13B (Mukherjee et al., 2023) as both the reference model and initialization. The
results are shown in Table 6. The SFT baseline is Orca trained on GPT-4 responses for the same
prompts. The DPO model is trained with GPT4-vs-td003 pairs. We compare Orca 13B, Orca+SFT
and Orca+DPO against ChatGPT responses. Orca+DPO can successfully improve the performance,
achieving 55% win rate on Alpaca Eval and 51% win rate on WizardLM Eval, respectively. We
then conduct a head-to-head comparison for SFT and DPO. Compared to the original Orca model,
Orca+SFT does not show statistically significant improvement on Alpaca Eval (p > 0.05). Com-
pared with Orca+SFT, Orca+DPO significantly improves performance on both Alpaca Eval and
WizardLM Eval (p < 0.01). We also present generated examples in Appendix A. The large-scale
experiments further verify the effectiveness of our proposed contrastive post-training approach.

3https://github.com/huggingface/trl
4https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
5https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1

8

https://github.com/huggingface/trl
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

GP
T-

4%

(2)

(1)

SFT

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

GP
T-

4
vs

. t
d0

03
 p

ai
r%

(4)

(3)

DPO
0.0

0.2

0.4

0.6

0.8

1.0

Ch
at

GP
T%

0.0

0.2

0.4

0.6

0.8

1.0

Ch
at

GP
T

vs
. t

d0
03

 p
ai

r%

Figure 2: The four candidate data curriculums for SFT and DPO. For SFT (left), the curriculum (1)
fine-tunes the model on GPT-4 responses and gradually transitions to ChatGPT and the other (2)
does the opposite. For DPO (right), the curriculum (3) starts with GPT-4 vs. td003 and ends with
ChatGPT vs. td003 while the curriculum (4) does the opposite.

Table 7: Experimental results of different curriculums for SFT and DPO. The corresponding cur-
riculums are illustrated in Figure 2. SFT-3.5 is the LLaMA model trained with SFT on ChatGPT
responses. Starting with EasyPair and warming up to HardPairs can significantly improve the
performance compared to the best DPO model trained only with EasyPair (GPT-4 vs. td003).

Curr. Method Init. Training Target
vs. SFT on ChatGPT vs. SFT on GPT-4

Alpaca WizardLM Alpaca WizardLM

win% score% win (tie)% win% score% win (tie)%

(1) SFT LLaMA GPT-4→ChatGPT 47.5 107.6 52.8 (7.9) 33.2 96.0 34.7 (2.3)
(2) SFT LLaMA ChatGPT→GPT-4 57.0 115.2 59.7 (6.0) 43.7 100.0 41.7 (4.2)

SFT SFT-3.5 GPT-4 outputs 65.1 124.3 71.3 (5.1) 53.2 103.8 47.2 (6.5)
DPO SFT-3.5 GPT4 vs td003 70.4 120.4 66.2 (2.8) 58.7 105.4 51.9 (2.8)

(3) DPO SFT-3.5 (GPT4→ChatGPT) vs td003 72.5 126.7 71.3 (2.3) 59.8 108.9 57.4 (2.3)
(4) DPO SFT-3.5 (ChatGPT→GPT4) vs td003 68.8 127.0 74.1 (3.2) 56.8 105.2 47.4 (4.2)

5.5 DATA CURRICULUMS FOR POST-TRAINING

We number different curriculums as shown in Figure 2. The experimental results for curriculums
are shown in Table 7. All experiments are trained with the same numbers of contrastive pairs and
steps. For SFT, starting with ChatGPT and transitioning to GPT-4 (Curr. 2) outperforms the opposite
(Curr. 1) by a considerable margin. Since many models, such as Vicuna (Chiang et al., 2023) and
Orca (Mukherjee et al., 2023), are fine-tuned with mixed ChatGPT and GPT-4 responses, our finding
suggests that a simple reordering of the data can lead to different performance.

For DPO, with Curr. 3, we start from EasyPair, GPT-4 vs. td003 and transition to HardPair Chat-
GPT vs. td003. This strategy achieves better performance than using only EasyPair all the time.
Meanwhile, the anti-curriculum, Curr. 4, underperforms single-pair DPO in general. Curriculum
learning further unleashes the potential of DPO for post-training. We believe further improvement
can be achieved with more thorough hyperparameter search.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a new setting for contrastive post-training large language models. We ex-
plore the best method and curriculum settings to facilitate post-training. Our large-scale experiments
with a state-of-the-art model Orca further verify the effectiveness of our approach and suggest its
potential for improving performance of LLMs at scale. For future work, we plan to explore both how
to better select meaningful contrastive pairs from fixed data regime, and subsequently to continually
learning evolving a model with pairs populated by sampling from the model itself at various points
through training.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai:
Harmlessness from ai feedback, 2022b.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, volume 382 of ACM International Conference Proceeding Series, pp. 41–48. ACM, 2009.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023a.

Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish,
exploit: Red teaming language models from scratch. arXiv preprint arXiv:2306.09442, 2023b.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90% chatgpt quality. https://vicuna.lmsys.org/,
2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

10

https://vicuna.lmsys.org/

Under review as a conference paper at ICLR 2024

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and Dawn
Song. Koala: A dialogue model for academic research. Blog post, April 2023. URL https:
//bair.berkeley.edu/blog/2023/04/03/koala/.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Joey Hong, Kush Bhatia, and Anca D. Dragan. On the sensitivity of reward inference to misspecified
human models. In ICLR. OpenReview.net, 2023.

Tomasz Korbak, Ethan Perez, and Christopher L. Buckley. RL with KL penalties is better viewed
as bayesian inference. In EMNLP (Findings), pp. 1083–1091. Association for Computational
Linguistics, 2022.

Julia Kreutzer, Joshua Uyheng, and Stefan Riezler. Reliability and learnability of human bandit
feedback for sequence-to-sequence reinforcement learning. In ACL, pp. 1777–1788. Association
for Computational Linguistics, 2018.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
Alexander Mattick. Openassistant conversations – democratizing large language model align-
ment, 2023.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca eval, 2023.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707, 2023.

OpenAI. Model index for researchers, 2022. URL https://platform.openai.com/docs/
model-index-for-researchers.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Ethan Perez, Sam Ringer, Kamilė Lukošiūtė, Karina Nguyen, Edwin Chen, Scott Heiner, Craig
Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model
behaviors with model-written evaluations. arXiv preprint arXiv:2212.09251, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations
toward training trillion parameter models. In SC, pp. 20. IEEE/ACM, 2020.

11

https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://github.com/tatsu-lab/alpaca_eval
https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers

Under review as a conference paper at ICLR 2024

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal V.
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan,
Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. In ICLR. OpenReview.net, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
characterizing reward hacking. In NeurIPS, 2022.

Joar Max Viktor Skalse, Matthew Farrugia-Roberts, Stuart Russell, Alessandro Abate, and Adam
Gleave. Invariance in policy optimisation and partial identifiability in reward learning. In ICML,
volume 202 of Proceedings of Machine Learning Research, pp. 32033–32058. PMLR, 2023.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
Int. J. Comput. Vis., 130(6):1526–1565, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F. Christiano. Learning to summarize with human feedback. In
NeurIPS, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford alpaca, 2023.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D. Dragan, and Daniel S. Brown. Causal
confusion and reward misidentification in preference-based reward learning. In ICLR. OpenRe-
view.net, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
In ACL, pp. 13484–13508. Association for Computational Linguistics, 2023.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In ICLR.
OpenReview.net, 2022.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023a.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv preprint arXiv:2304.01196, 2023b.

Kevin Yang, Dan Klein, Asli Celikyilmaz, Nanyun Peng, and Yuandong Tian. Rlcd: Rein-
forcement learning from contrast distillation for language model alignment. arXiv preprint
arXiv:2307.12950, 2023.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

12

https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2024

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023a.

Yao Zhao, Misha Khalman, Rishabh Joshi, Shashi Narayan, Mohammad Saleh, and Peter J. Liu.
Calibrating sequence likelihood improves conditional language generation. In ICLR. OpenRe-
view.net, 2023b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned AI. In NeurIPS, 2020.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

13

Under review as a conference paper at ICLR 2024

A EXAMPLES OF GENERATED RESPONSES

Instruction #1 How did US states get their names?

LLaMA SFT on
GPT-4

The official name of a state comes from the name of the state’s capital city,
followed by an additional descriptive suffix. For example, Texas is named
after the city of San Antonio, while California is named after the city of San
Diego, and New York is named after the city of New York. In some cases,
the state name is also derived from the name of a prominent natural feature
or the name of a city that no longer exists. For more information about the
history of US state names, visit the website of the US Census Bureau at
www.census.gov.

LLaMA Curricu-
lum DPO (Cur-
riculum 3)

There are many stories and myths behind the naming of US states. Here are
some popular ones:
1. Alabama: Named after the Native American tribe known as “Alabama.”
2. Alaska: Named after the Aleutian word “Alyeska” which means “great
land.”
3. Arizona: Named after the Spanish word for “arizona,” which means
“little spring.”
4. Arkansas: Named after the Sioux word “as-kah-ras-sha,” which means
“land of downriver people.”...

Orca US states have diverse origins for their names, which include indigenous
words, European languages, geographical features, historical events, and
personal names. Here’s a brief overview of how some states got their
names:
1. Alabama: Derived from the Native American tribe called the Alabama,
meaning “thicket breakers” or “cotton pickers.”
2. Alaska: Based on the Aleut word “Alaksa,” which means “great land.”
3. Arizona: Derived from the Native American word “Arivipa,” meaning
“small spring.”
4. Arkansas: Originally “Arcahaise,” meaning “land of the south wind” in
the Native American Quapaw language...

Orca with DPO The naming of U.S. states is a diverse and fascinating history that reflects
the cultural, historical, and geographical influences of the various groups of
people who settled and governed the land. Here’s a brief overview of how
some U.S. states got their names:
1. Virginia: Named after the Virgin Queen, Queen Elizabeth I of England,
who was known as the “Virgin Queen” because she never married and re-
mained a virgin. The state was founded in 1607 by the Virginia Company,
a joint-stock company chartered by King James I.
2. Massachusetts: The name comes from the Massachusett tribe, one of the
Native American tribes that inhabited the region. The name translates to
“large hill” or “place of big rocks.”
3. Pennsylvania: Named after the Pennsylvania Colony, a British colony
that was established by William Penn, an English Quaker and founder of
the City of Brotherly Love (Philadelphia). The name Pennsylvania com-
bines the name of the colony’s founder with the Latin word “Penn” (mean-
ing “hill” or “top”), which refers to the colony’s geographical location on
the Pennines, a range of hills and mountains in the Appalachian Mountains.
4. Maryland: Named after the wife of King Charles I of England, Queen
Henrietta Maria, who was known as the “Maria” in her name. The “land of
Mary” is derived from her name, and the “d” at the end is an Old English
suffix that indicates “territory of.” ...

14

Under review as a conference paper at ICLR 2024

Instruction #2 How do I wrap a present neatly?

LLaMA SFT on
GPT-4

To wrap a present neatly, you can start by choosing the right paper for the
occasion. White, kraft or black paper are common choices for wrapping
presents. Then, you can cut the paper to size, wrapping it around the present
with the paper folded in half lengthwise. You can also use tape to secure
the ends of the paper. For a more professional look, you can add a bow or
a ribbon to the top of the package, and write a message or add a tag.

LLaMA Curricu-
lum DPO (Cur-
riculum 3)

To wrap a present neatly, follow these steps:
1. Select a good-quality paper or wrapping paper that matches the color
scheme or theme of the present.
2. Lay the present on a flat, clean surface. If it’s rectangular, place it on the
left side, and if it’s cylindrical, place it on its side.
3. Fold the wrapping paper in half, at the center crease, then in half again,
making a triangular fold at the center crease.
4. Fold the right side of the triangle over the center crease, leaving about
1-inch of the right side exposed.
5. Fold the bottom of the triangle up, so that it touches the center crease,
then tuck the right side into the left side of the package.
6. Take a small piece of tape and wrap it around the right side of the pack-
age, securing it to the left side of the package. Repeat on the other side of
the package.
7. Wrap the present with the top of the package first, folding the wrapping
paper over the top, and tucking it under the box.
8. Secure the end of the wrapping paper with more tape, and wrap the rest
of the package, leaving a little space at the bottom to tuck in the ends.
9. Fold the ends of the wrapping paper over the box, and tape or secure
them with a rubber band.
10. If you want to add a bow or ribbon, place it on top of the package, and
secure it with tape or a rubber band.
By following these steps, you can wrap a present neatly and create a nice
presentation for your gift.

Orca Wrapping a present neatly involves a few simple steps:
1. Choose the right materials: Select a clean, large piece of wrapping paper
or gift bag that is proportional to the size of the gift. You may also use
tissue paper, fabric, or reusable bags for a more eco-friendly option.
2. Measure and cut the paper: Measure the dimensions of the gift (length,
width, and height) and add extra paper or bag length to allow for folding
and tucking. Cut the paper or fabric to size, leaving enough extra for folding
and tape.
3. Place the gift in the center: Lay the gift flat in the center of the paper or
fabric. If you’re using a gift bag, place the gift on top of the bag and ensure
it’s centered.
4. Fold the sides: Fold the sides of the paper or fabric over the gift, aligning
the edges with the sides of the gift. For a more polished look, fold the paper
or fabric inward by about an inch and then fold it back out for a crisp edge.
5. Fold the bottom: Fold the bottom of the paper or fabric up over the gift,
leaving enough excess for the bow or ribbon. Ensure the fold is even and
the gift is snug within the folded paper or fabric.
6. Secure the wrap with tape: On the top and bottom edges of the wrap,
apply double-sided tape or a small piece of clear packing tape for a clean
hold. If you’re using a gift bag, ensure the handles are folded over and
secured with tape.
7. Add a decorative touch: Add a ribbon, bow, or gift tag to personalize the
present. If using a gift bag, you can add a handle wrap or a fabric ribbon
for a more polished look.
8. Finish with a gift holder: Use a non-slip gift holder or shipping weight
to keep the wrapped gift stable and secure during transport.
Remember to keep the wrapping neat and tidy, with clean folds and even
tape application. This will ensure your present looks beautiful.

15

Under review as a conference paper at ICLR 2024

Orca with DPO Wrapping a present neatly can make the gift look more appealing and show
the recipient that you put effort into your gift. Here’s a step-by-step guide
to wrapping a present neatly:
1. Choose the wrapping paper: Select a wrapping paper that complements
the gift’s shape, size, and color. If the gift is rectangular, choose a paper
that is wider than the width of the gift. If it’s a cylindrical gift, choose a
paper that is tall enough to wrap around it and overlap slightly.
2. Cut the paper: Use a pair of sharp scissors to cut the wrapping paper to
the appropriate size. For a rectangular gift, cut the paper so that it’s large
enough to wrap around the gift and overlap by at least 2-3 inches (5-7.5
cm) on two opposite sides. For a cylindrical gift, cut the paper so that it’s
tall enough to wrap around the gift and overlap by at least 1-2 inches (2.5-5
cm) on two opposite sides.
3. Fold the paper: Lay the paper flat on a clean, flat surface. Fold the paper
in half lengthwise (if it’s a rectangular gift) or in half around its longest
diameter (if it’s a cylindrical gift). This will create a crease down the center
of the paper, making it easier to fold and align the edges.
4. Position the gift: Place the gift in the center of the folded paper, aligning
the edges with the crease. For a rectangular gift, the gift should be centered
horizontally within the paper, and the edges of the paper should align with
the top and bottom edges of the gift. For a cylindrical gift, the gift should
be centered vertically within the paper, and the edges of the paper should
align with the top and bottom edges of the gift.
5. Tuck and fold: Gently tuck the edges of the paper under the gift, folding
them neatly around the sides and bottom of the gift. Make sure the paper is
smooth and free of wrinkles. For a rectangular gift, tuck the top edge under
the gift as well, and then fold the bottom edge up over the gift, creating a
crisp edge. For a cylindrical gift, fold the paper around the top and bottom
edges, creating a smooth, even edge.
6. Secure the paper: If the wrapping paper is slippery, you may need to use
tape to secure the edges. Apply a small piece of tape on the inside edge
where the paper meets the gift, and gently press the paper in place. Con-
tinue applying tape to other edges, making sure the paper stays smooth and
wrinkle-free. For a more polished look, you can also use double-sided tape
or a glue stick to attach the paper.
7. Add a decorative touch: To make your present look even more festive,
consider adding a ribbon, gift tag, or a decorative element like a confetti
pocket, bows, or decorative paper. Choose colors and patterns that comple-
ment the gift and the recipient’s style.
8. Place the gift in a gift bag: If you want to keep the gift wrapped but still
use a gift bag, simply place the gift inside the wrapped present. This can be
especially helpful if the present is heavy or fragile.
9. Store the gift: Keep the wrapped present in a cool, dry place until it’s
time to give it to the recipient. Avoid storing it near direct heat sources or
sunlight, which can cause the paper to wrinkle.

16

	Introduction
	Related Works
	Preliminaries
	Contrastive Post-training over Pairwise Data Curriculum
	Experiments
	Experimental Settings
	Comparing Candidates for Post-training: RLAIF, SLiC and DPO
	Comparison with RLAIF and RLHF
	Orca+: Scaling up Contrastive Post-training
	Data Curriculums for Post-training

	Conclusion and Future Work
	Examples of Generated Responses

