
FedFwd: Federated Learning without Backpropagation

Seonghwan Park 1 Dahun Shin 1 Jinseok Chung 1 Namhoon Lee 1

Abstract

In federated learning (FL), clients with limited
resources can disrupt the training efficiency. A
potential solution to this problem is to leverage a
new learning procedure that does not rely on back-
propagation (BP). We present a novel approach to
FL called FedFwd that employs a recent BP-free
method by Hinton (2022), namely the Forward
Forward algorithm, in the local training process.
FedFwd can reduce a significant amount of com-
putations for updating parameters by performing
layer-wise local updates, and therefore, there is
no need to store all intermediate activation values
during training. We conduct various experiments
to evaluate FedFwd on standard datasets includ-
ing MNIST and CIFAR-10, and show that it works
competitively to other BP-dependent FL methods.

1. Introduction
Federated learning (FL) is a machine learning strategy that
trains a global model on multiple local devices without shar-
ing the data between them (McMahan et al., 2016). When
applied to training large neural networks, however, FL is
immediately challenged since the local clients are often re-
stricted to permit a limited amount of compute and memory
resources (Kairouz et al., 2019). This could fundamentally
restrict deploying large yet high-performing deep models.
Many studies suggest different ways to improve the effi-
ciency of FL (Alistarh et al., 2016; Stich, 2019; Reisizadeh
et al., 2019; Lin et al., 2020), and yet, they are mainly fo-
cused on reducing communication overhead rather than the
local training cost.

In this work, we approach this problem quite differently by
adopting a new learning procedure. Precisely, we propose

1POSTECH, Pohang, Republic of Korea. Correspon-
dence to: Seonghwan Park <shpark97@postech.ac.kr>,
Dahun Shin <dahunshin@postech.ac.kr>, Jinseok
Chung <jinseokchung@postech.ac.kr>, Namhoon Lee
<namhoonlee@postech.ac.kr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

to replace the backpropagation procedure (BP) (Rumelhart
et al., 1986) for computing gradients on local clients with the
forward-forward algorithm (FF) that is recently introduced
by Hinton (2022). The resulting method–FedFwd–replaces
the forward and backward passes of BP by two forward
passes to compute gradients, which can reduce the compu-
tational burden on local clients by eliminating the need to
store all intermediate activations in memory.

We evaluate FedFwd for MLP-like architectures on MNIST
and CIFAR-10 image classification datasets and compare
with the standard BP-based FL algorithm, i.e., FedAvg
(McMahan et al., 2016) in terms of the test accuracy and
training time. As a result, we achieve 96.78% test accuracy
when training a 3-layer MLP model on MNIST with an i.i.d
setting, which is on a par with FedAvg. We also show that
FedFwd can finish the training in the similar wall clock
time to FedAvg without any optimized implementation.
We demonstrate that a further modification to the objective
function can stabilize training and yield faster convergence.

2. Background
2.1. Federated Learning (FL)

As smartphones and wearable devices become increasingly
powerful and more widely used, an intriguing learning
paradigm has emerged. This paradigm sees deep learning
models trained locally on distributed devices, rather than
concentrating data within a single data center. This innova-
tive approach is termed Federated Learning (FL) (McMahan
et al., 2016), and it has sparked numerous investigations into
various issues such as privacy, robustness, and heterogene-
ity, leading to significant advancements. However, no study
has yet completely addressed the fundamental constraints of
FL, namely, the limited memory and learning time. Various
strategies have been proposed in an attempt to overcome
these issues. Some approaches, from an optimization per-
spective, have aimed to calculate and accelerate convergence
rates (Li et al., 2020b; Yuan & Ma, 2021; Li et al., 2020c;
Chen et al., 2019), while others have employed compression
strategies to personalize the model and distribute only a part
of it (Li et al., 2020a; Fallah et al., 2020; Arivazhagan et al.,
2019), or to learn a smaller model through knowledge distil-
lation (Li & Wang, 2019; Zhu et al., 2021). Although these
methods have collectively improved FL and enhanced its

1

Federated Learning without Backpropagation

practicality, none has provided an optimal solution. In this
paper, we introduce an innovative algorithm that modifies
the learning procedure itself, presenting a new fascinating
strategy to address the inherent challenges of FL.

2.2. Backpropagation Algorithm

Backpropagation (BP) (Rumelhart et al., 1986), the cor-
nerstone of training artificial neural networks, is used to
calculate the gradient of a loss function with respect to all
weights in the network, thus facilitating optimization via
gradient descent. Its versatility extends to networks with
differentiable activation functions and loss functions, fitting
various architectures. Despite its proven efficacy, BP comes
with certain computational and memory-related drawbacks.
Its sequential nature impedes parallel computation across
layers, contributing to significant computational overhead
due to step-wise gradient calculation from the output layer
back to the input layer. Furthermore, BP requires the storage
of intermediate states for all nodes in the network during the
forward pass for utilization during the backward pass. This
requirement results in memory usage that scales linearly
with the size and depth of the network. These inefficiencies,
especially in the context of larger and deeper networks, pose
critical challenges to the enhancement of network availabil-
ity and scalability.

2.3. Federated Averaging (FedAvg)

Federated Averaging (FedAvg), as initially proposed by
McMahan et al. (2016), has significantly advanced the field
by reducing overall communication costs. This approach
involves distributing a global model to each client as the
first step. These clients then undertake numerous stochastic
gradient descent (SGD) iterations during their local training,
making use of their private data. After completing this
local training, the clients send their locally trained models
back to the central server, which then aggregated to the
global learning objectives across the entire network. More
specifically, the main goal of FedAvg is to optimize the
following equation:

min
w

f(w) =
1

m

m∑
i=1

(Fi(w) := Exi∼Di
[fi(w;xi)]), (1)

where m denotes the number of clients participating in a
Federated Learning (FL) system, and Fi signifies the objec-
tive function for the i-th client ci. Given training samples
xn and corresponding labels yn, it is assumed that local
clients ci address a local empirical risk minimization prob-
lem within their distinct data distributions Di.

3. Proposed Method: FedFwd
We propose a federated learning algorithm, FedFwd, which
follows the core steps of FedAvg, encompassing three pri-
mary stages: 1) the selection of a client subset at each itera-
tion, 2) execution of local parameter updates, and 3) subse-
quent aggregation of these updates at the server. However,
FedFwd introduces key alterations to the learning proce-
dure, which conventional BP-based FL algorithms overlook,
and these modifications have the potential to lighten both
the time and device constraints for clients.

Learning Procedure. The Forward-Forward algorithm, a
greedy layer-wise learning technique, adopts an alternative
approach to the traditional backpropagation’s one forward
and one backward pass by employing two forward passes.
This algorithm uniquely trains each layer by leveraging a
measure of goodness. There are numerous potential ways to
quantify goodness, but in this paper, we use the sum of the
squared lengths of activity vectors. The goodness function
is thus defined as:

goodness =
∑
j

y2j , (2)

where yj represents the activity of hidden unit j. We assess
the goodness of positive and negative samples separately.
Each layer seeks to maximize the goodness of positive sam-
ples exceeding a threshold, θ, while minimizing the good-
ness of negative samples beneath this threshold. Given our
usage of logistic functions and a threshold, the resulting
objective functions take the form of probability functions:

{
p(positive) = σ(goodnessxpos

− θ)

p(negative) = σ(−goodnessxneg
+ θ)

(3)

Positive data xpos refers to image data wherein some initial
pixels have been replaced with the corresponding label’s
one-hot vector. In contrast, negative data xneg incorporates
one-hot vectors of incorrect labels in place of some initial
pixels. Given that the data already incorporates one-hot
vectors of labels, we employ gradient descent to maximize
or minimize the probability function on a layer-by-layer
basis.

Moreover, the FedFwd algorithm applies layer normaliza-
tion before passing the activity vector to the subsequent
hidden layer. When the activities of a previous hidden
layer are utilized as input for the next, it becomes relatively
straightforward to distinguish between positive and negative
samples by merely considering the length of the activity
vector in the preceding hidden layer. Thus, there’s no re-
quirement for learning any new features. However, the layer
normalization process eliminates all information previously

2

Federated Learning without Backpropagation

0 300 600 900 1200 1500
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

FedFwd
FedAvg

(a) Hidden Layer = 2 (i.i.d.)

0 300 600 900 1200 1500
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

(b) Hidden Layer = 3 (i.i.d.)

0 300 600 900 1200 1500
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

(c) Hidden Layer = 2 (non-i.i.d.)

0 300 600 900 1200 1500
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

(d) Hidden Layer = 3 (non-i.i.d.)

Figure 1. Comparison in performance and convergence speed between FedFwd and FedAvg under both i.i.d. and non-i.i.d.
settings. We alter the depth of the hidden layers to include both 2 and 3 layers. The results of this experiment show that the FedFwd
algorithm demonstrates a performance and convergence rate similar to FedAvg under the i.i.d. setting. However, under the non-i.i.d.
setting, FedFwd exhibits a slower convergence rate and performance compared to FedAvg.

used for the calculation of ‘goodness’, compelling the sub-
sequent hidden layer to learn new features from previously
untapped information.

4. Experiments
In this section, we compare the test accuracy of FedFwd
and FedAvg by varying the size and depth of the hidden
layers. We then evaluate the training speed of FedFwd and
FedAvg based on the size of the mini-batch. Additionally,
we conduct supplementary experiments on FedFwd with
different objective functions. Detailed descriptions of the
experimental procedures are provided in Appendix B.

4.1. Experimental Details

Setup. To ensure a fair comparison, we design FedFwd
and FedAvg models to have the same number of layers and
a similar number of parameters with a marginal parameter
difference of approximately 1%. We conduct the tests under
both i.i.d. and non-i.i.d. settings. The former refers to a
situation where the data is evenly distributed among the
clients, while the latter refers to a situation where the data
is not evenly distributed. We use the MNIST dataset, which
is distributed across 100 clients.

Hyperparameters. We set the number of selected clients
to be 100, assuming that only 10% of them participate in
updating the global model. We conduct a local epoch, E, of
3 and 1500 global epochs. Each client has a local batch size
of 10. Our learning rate is set to 0.003.

4.2. Results

We compare FedFwd with FedAvg for both i.i.d. and non-
i.i.d. data distributions on two neural networks of different
sizes. The results are presented in Table 1. Firstly, we find
that FedFwd achieves a performance level that is on a par

Layers
Learning
Procedure

Params
I.I.D.

Test Acc (%)
Non-I.I.D.

Test Acc (%)
FedAvg (BP) 0.64M 98.19 97.432
FedFwd (FF) 0.64M 96.63 92.47

FedAvg (BP) 0.89M 98.25 97.463
FedFwd (FF) 0.89M 96.78 92.57

Table 1. The comparison results between FedFwd (FF) and
FedAvg (BP) on MNIST dataset.

with FedAvg for the i.i.d. setting. Specifically, we observe
for FedFwd approximately 1.5% performance degradation
in terms of test accuracy. However, the gap increases in the
non-i.i.d. setting. For example, FedAvg achieves 97.46%
test accuracy on the 3-layer model, while FedFwd achieves
92.57% test accuracy.

This suggests that FedFwd is more sensitive to changes
in the data distribution than FedAvg. Figure 1 provides
empirical evidence to support the claim. FedFwd is a
greedy approach that optimizes an objective function for
each layer. This makes FedFwd more dependent on its data
than FedAvg. Consequently, FedFwd has slower conver-
gence and greater variation.

0 300 600 900 1200 1500
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

i.i.d.
non-i.i.d.

(a) Hidden Layer = 2

0 300 600 900 1200 1500
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

(b) Hidden Layer = 3

Figure 2. Training Stability of FedFwd.

3

Federated Learning without Backpropagation

Mini-Batch SizeDataset
(Size)

Algorithm
1 4 16 64 128 256 512 1024 2048

FedAvg (BP) 10.92 4.09 3.01 2.20 2.47 2.45 2.47 2.45 2.48CIFAR-10
(50000) FedFwd (FF) 71.85 20.92 7.33 3.77 3.15 2.88 2.73 2.24 2.64

FedAvg (BP) 9.97 3.61 2.22 1.71 1.61 1.55 1.36 1.53 1.34MNIST
(60000) FedFwd (FF) 74.80 23.11 7.45 2.64 2.38 1.74 1.83 1.77 1.72

Table 2. Comparison in training time (Wall Clock Time) between FedFwd and FedAvg.
We compare the training time of FedFwd and FedAvg under i.i.d. settings, analyzing how
this varies with different mini-batch sizes. We measure the time it takes to train one global
round. The results show that with a batch size of 1, the training time of FedFwd is roughly
seven times more than that of FedAvg. However, as the batch size increases, this difference
decreases significantly.

100 101 102 103

Mini Batch Size

101

Tr
ai

ni
ng

 T
im

e
(s

)

CIFAR-10 BP
CIFAR-10 FF

MNIST BP
MNIST FF

Figure 3. Comparison in Speed

Next, we compare the training speeds of FedFwd and
FedAvg with respect to mini-batch sizes, as shown in Table
2 and Figure 3. The results show that with a batch size of 1,
the training speed of FedFwd is roughly seven times slower
than that of FedAvg. However, as the batch size increase,
this difference decrease significantly. Since FedAvg is
library-optimized while FedFwd is not, a direct compari-
son of their wall clock times may not provide a complete
picture. Nevertheless, this result clearly demonstrates the
potential of FedFwd. It shows comparable, and in some
cases superior, training times to FedAvg as batch sizes
increase. Looking ahead, we anticipate that with further
improvements in both software and hardware optimization,
FedFwd will match or even exceed FedAvg’s learning
speeds, even with smaller mini-batches, ultimately reducing
the time burden on clients in a federated setting.

5. Conclusion
In this work, we propose FedFwd, a new federated opti-
mization algorithm that trains local models using FF be-
fore uplink communication. This approach could be more
memory- and computationally- efficient than BP-based FL
algorithms. We evaluate FedFwd on two datasets MNIST
and CIFAR-10. Our results indicate that FedFwd achieves
comparable test accuracy and training time to FedAvg, a
standard BP-based FL algorithm. Additionally, FedFwd
demonstrates potential for reducing training time and im-
proving learning stability on a new objective function. We
believe that FedFwd will be a promising new approach to
FL and inspire further research on more efficient FL algo-
rithms.

6. Acknowledgement
This work was partly supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2019-
0-01906, Artificial Intelligence Graduate School Program
(POSTECH)) and National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (RS-

2023-00210466).

References
Alistarh, D., Li, J., Tomioka, R., and Vojnovic, M. QSGD:

randomized quantization for communication-optimal
stochastic gradient descent. CoRR, abs/1610.02132, 2016.
URL http://arxiv.org/abs/1610.02132.

Arivazhagan, M. G., Aggarwal, V., Singh, A. K., and
Choudhary, S. Federated learning with personalization
layers. CoRR, abs/1912.00818, 2019. URL http:
//arxiv.org/abs/1912.00818.

Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Feder-
ated meta-learning with fast convergence and efficient
communication, 2019.

Fallah, A., Mokhtari, A., and Ozdaglar, A. E. Personalized
federated learning: A meta-learning approach. CoRR,
abs/2002.07948, 2020. URL https://arxiv.org/
abs/2002.07948.

Hinton, G. The forward-forward algorithm: Some prelimi-
nary investigations, 2022.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K. A., Charles, Z., Cor-
mode, G., Cummings, R., D’Oliveira, R. G. L., Rouay-
heb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A.,
Ghazi, B., Gibbons, P. B., Gruteser, M., Harchaoui, Z.,
He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi,
M., Javidi, T., Joshi, G., Khodak, M., Konečný, J., Ko-
rolova, A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu,
Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh, R.,
Raykova, M., Qi, H., Ramage, D., Raskar, R., Song, D.,
Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr, F.,
Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q.,
Yu, F. X., Yu, H., and Zhao, S. Advances and open prob-
lems in federated learning. CoRR, abs/1912.04977, 2019.
URL http://arxiv.org/abs/1912.04977.

4

http://arxiv.org/abs/1610.02132
http://arxiv.org/abs/1912.00818
http://arxiv.org/abs/1912.00818
https://arxiv.org/abs/2002.07948
https://arxiv.org/abs/2002.07948
http://arxiv.org/abs/1912.04977

Federated Learning without Backpropagation

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical Report 0, University
of Toronto, Toronto, Ontario, 2009.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lee, H.-C. and Song, J. Symba: Symmetric
backpropagation-free contrastive learning with forward-
forward algorithm for optimizing convergence, 2023.

Li, D. and Wang, J. Fedmd: Heterogenous federated learn-
ing via model distillation. CoRR, abs/1910.03581, 2019.
URL http://arxiv.org/abs/1910.03581.

Li, T., Hu, S., Beirami, A., and Smith, V. Federated
multi-task learning for competing constraints. CoRR,
abs/2012.04221, 2020a. URL https://arxiv.org/
abs/2012.04221.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data, 2020b.

Li, Z., Kovalev, D., Qian, X., and Richtárik, P. Accelera-
tion for compressed gradient descent in distributed and
federated optimization, 2020c.

Lin, T., Kong, L., Stich, S. U., and Jaggi, M. Ensem-
ble distillation for robust model fusion in federated
learning. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 33, pp. 2351–2363. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
18df51b97ccd68128e994804f3eccc87-Paper.
pdf.

McMahan, H. B., Moore, E., Ramage, D., and y Arcas,
B. A. Federated learning of deep networks using model
averaging. CoRR, abs/1602.05629, 2016. URL http:
//arxiv.org/abs/1602.05629.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A.,
and Pedarsani, R. Fedpaq: A communication-efficient
federated learning method with periodic averaging and
quantization. CoRR, abs/1909.13014, 2019. URL http:
//arxiv.org/abs/1909.13014.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533–536, 1986.

Stich, S. U. Local SGD converges fast and communicates
little. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/
forum?id=S1g2JnRcFX.

Yuan, H. and Ma, T. Federated accelerated stochastic gradi-
ent descent, 2021.

Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge dis-
tillation for heterogeneous federated learning. CoRR,
abs/2105.10056, 2021. URL https://arxiv.org/
abs/2105.10056.

5

http://arxiv.org/abs/1910.03581
https://arxiv.org/abs/2012.04221
https://arxiv.org/abs/2012.04221
https://proceedings.neurips.cc/paper_files/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1909.13014
http://arxiv.org/abs/1909.13014
https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=S1g2JnRcFX
https://arxiv.org/abs/2105.10056
https://arxiv.org/abs/2105.10056

Federated Learning without Backpropagation

A. Models
A.1. Models

A.1.1. HOW DOES THE MODEL TRAIN?

The FedFwd algorithm fundamentally flattens all images and creates positive and negative data. Upon entering the first
hidden layer, activity is generated within each unit for the positive and negative data. By summing up the squares of
the activity in the first hidden layer, the goodness of the corresponding layer is determined. In the corresponding layer,
the goodness of positive data is optimized to be greater than a specific threshold, θ, and the goodness of negative data is
optimized to be less than a specific threshold. To efficiently learn new features for each layer when stacking multiple layers,
the value of activity is not directly passed to the next layer; only the directional component is transmitted. In other words, all
activities are normalized before forwarding to the next layer, only conveying orientation not size. This process is repeated
for each layer, and the entire model is learned in a greedy layer-wise manner so that each layer effectively discovers new
features through goodness.

Figure 4. Model Architecture of FedFwd.

A.1.2. HOW DOES IT PREDICT?

During the prediction phase, a certain portion of the pixels in the flattened image is replaced by the one-hot vector of the
correct label, similar to the training process. However, unlike the training phase, the prediction phase involves selecting the
correct answer based on the total goodness value for each layer, rather than calculating and optimizing the goodness per
layer. Furthermore, during prediction, images corresponding to all labels are generated and fed into the FedFwd model, as
opposed to just one label during training. For example, in the MNIST dataset, the one-hot vector of all labels is inserted at
the beginning of the image, and the sum of the goodness values across all layers is compared when the resulting ten labeled
images are input into the model. The correct answer is then determined by selecting the label with the maximum goodness
value across all layers.

Figure 5. How Model Predicts in FedFwd.

6

Federated Learning without Backpropagation

B. Additional Experiments
B.1. More on Layer Depth & Layer Size & Heterogeneity in CIFAR-10 Dataset

In this study, we conducted a series of experiments applying the FedFwd algorithm in federated learning environments,
utilizing the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset to exhibit its feasible performance capabilities. We undertook
an analysis of test accuracy, fluctuating both the size and depth of hidden layers for a comprehensive overview. The
experiments spanned over 1500 epochs, and our results suggest that while performance may be slightly underwhelming,
FedFwd enables adequate learning. For better visualization and understanding of the learning graph, we represented the
y-axis based on a 50% test accuracy benchmark instead of the usual 100%.

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-10

500 i.i.d
500 non-i.i.d
1000 i.i.d
1000 non-i.i.d

(a) Hidden Layer = 2

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-10

(b) Hidden Layer = 3

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-10

(c) Hidden Layer = 4

Figure 6. Results of FedFwd varying layer depth, size, and heterogeneity using CIFAR-10. Specifically, we adjusted the depth of the
hidden layer to 2, 3, and 4, and the size to 500 and 1000, analyzing test accuracy in each case. These tests were further categorized into
i.i.d. and non-i.i.d. settings, and were all conducted over 1500 epochs. The results reveal that the FedFwd algorithm is compatible with
and can learn from the CIFAR-10 dataset.

Layers
Learning
Procedure

Params
I.I.D.

Test Acc (%)
Non-I.I.D.

Test Acc (%)
FedAvg (BP) 1.79M 58.86 50.672
FedFwd (FF) 1.78M 45.51 37.06

FedAvg (BP) 2.04M 59.91 52.003
FedFwd (FF) 2.03M 45.76 38.10

Table 3. The comparison results between FedFwd (FF) and FedAvg (BP) on CIFAR-10 dataset.

As presented in Table 3, we compared the performance of both algorithms on the CIFAR-10 dataset using models with
nearly the same number of parameters, with a difference of only 1%. Neither FedAvg (BP) nor FedFwd (FF) exhibit high
performance or demonstrate successful learning. This may be due to the simplistic approach of flattening the complex
image information of CIFAR-10 to learn features. Nonetheless, when comparing the results, the FedAvg method displays
significantly higher performance than FedFwd across all layers in both i.i.d. and non-i.i.d. settings (approximately
13-14%). This indicates that the current FedFwd approach requires further investigation and development in terms of
model architecture, objective function, and other yet-to-be-discovered performance enhancement methods. In response, we
conducted additional research on modifying the objective function, which can be found in Appendix B.2.

B.2. Additional Results on the Effect of Objectives in the FedFwd Algorithm in Federated Learning

Below, we present experiments aimed at improving the learning stability of the FedFwd algorithm. To achieve this, we
adapted the SymBa (Lee & Song, 2023) algorithm for a federated learning setting. The modified algorithm enhances
convergence speed and performance by properly balancing positive and negative losses, addressing the issue of conflicting
convergence directions for positive and negative samples in the original FF algorithm. By testing the SymBa approach in a
federated setting, particularly in non-i.i.d. settings, we were able to achieve more stable learning and faster convergence as
well as slight performance improvements. Through this, we demonstrate that if the initially proposed FedFwd algorithm is
further developed, it can not only exhibit advanced learning stability and performance but also be improved potentially in
numerous unexplored research areas. Therefore, it merits further investigation.

7

Federated Learning without Backpropagation

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 A

cc
ur

ac
y

MNIST

(a) Hidden Layer = 2

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

(b) Hidden Layer = 3

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

(c) Hidden Layer = 4

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

500 i.i.d
500 non-i.i.d
1000 i.i.d
1000 non-i.i.d

(d) Hidden Layer = 2

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

(e) Hidden Layer = 3

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MNIST

(f) Hidden Layer = 4

Figure 7. Result of combining FedFwd and SymBa on MNIST Dataset. Our illustrations, namely figures (a), (b), and (c), depict the
original FedFwd algorithm, while figures (d), (e), and (f) represent the amalgamation of the FedFwd and SymBa algorithms. This
amalgamated approach yields more stable learning results, exhibiting lower variances, and quicker convergence in comparison to the
stand-alone FedFwd algorithm.

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-10

(a) Hidden Layer = 2

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-10

(b) Hidden Layer = 3

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-10

(c) Hidden Layer = 4

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-10

500 i.i.d
500 non-i.i.d
1000 i.i.d
1000 non-i.i.d

(d) Hidden Layer = 2

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-10

(e) Hidden Layer = 3

0 200 400 600 800 1000 1200 1400
Number of Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-10

(f) Hidden Layer = 4

Figure 8. Result of combining FedFwd and SymBa on CIFAR-10 Dataset. Figures (a), (b), and (c) denote the original FedFwd
algorithm, while figures (d), (e), and (f) depict the combination of the FedFwd and SymBa algorithms. To facilitate a clearer representation
of the learning graph, we’ve calibrated the y-axis to reflect 50% test accuracy instead of 100%. In testing with the CIFAR-10 dataset, we’ve
observed slightly superior results in terms of convergence rate, performance, and learning stability, comparable to what was observed with
original FedFwd.

8

