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ABSTRACT

Differentiable physics has recently been shown as a powerful tool for solving
soft-body manipulation tasks. However, the differentiable physics solver often
gets stuck when the initial contact points of the end effectors are sub-optimal or
when performing multi-stage tasks that require contact point switching, which
often leads to local minima. To address this challenge, we propose a contact point
discovery approach (CPDeform) that guides the stand-alone differentiable physics
solver to deform various soft-body plasticines. The key idea of our approach is to
integrate optimal transport-based contact points discovery into the differentiable
physics solver to overcome the local minima from initial contact points or contact
switching. On single-stage tasks, our method can automatically find suitable initial
contact points based on transport priorities. On complex multi-stage tasks, we can
iteratively switch the contact points of end-effectors based on transport priorities.
To evaluate the effectiveness of our method, we introduce PlasticinelLab-M that
extends the existing differentiable physics benchmark PlasticineLab to seven new
challenging multi-stage soft-body manipulation tasks. Extensive experimental
results suggest that: 1) on multi-stage tasks that are infeasible for the vanilla
differentiable physics solver, our approach discovers contact points that efficiently
guide the solver to completion; 2) on tasks where the vanilla solver performs
sub-optimally or near-optimally, our contact point discovery method performs
better than or on par with the manipulation performance obtained with handcrafted
contact points. Demos are available on our project page'.

1 INTRODUCTION

Soft body manipulation has a wide application in cooking (Bollini et al., 2013), fabric manip-
ulation (Wu et al., 2020), healthcare (Mayer et al., 2008) and manufacturing of deformable ob-
jects (Sanchez et al., 2018). Differentiable physics has recently been shown as a powerful and
effective tool for solving control problems for soft-body manipulation tasks. As demonstrated
in Huang et al. (2021), given a parameterized manipulation policy, the differentiable physics solver
computes the gradients of the policy parameters, enabling gradient-based optimization much more effi-
ciently than reinforcement learning algorithms at finding optimal solutions for soft-body manipulation
tasks on a diverse collection of environments.

However, the performance of the stand-alone gradient-based solver can be heavily influenced by the
policy initialization. Especially, the end effectors’ initial contact points with objects play critical
roles in the optimization. Different contact points may lead to vast differences in manipulation
performance due to local optima. Besides, some tasks require agents to switch contact points during
the manipulation, where the local optima issue becomes a serious bottleneck for completing these
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multi-stage tasks. For example, as shown in Figure 2, an agent needs to control the capsule “pen”
to sculpt two scribbles on the surface of a yellow plasticine cube. In order to complete the second
line, the agent needs to switch contact points after drawing the first one. While the stand-alone
differentiable physics solver could possibly draw the first line, it often gets stuck and struggles to
draw the second one, due to the lack of gradients that push the pen to a new contact point to begin
the second line. How to automatically find proper contact points for soft body manipulation tasks
remains a challenge in differentiable physics.

In this paper, we propose a principled framework that integrates an optimal transport-based contact
discovery method into differentiable physics (CPDeform) to address this important challenge. CPDe-
form heuristically find contact points for end effectors by using transport priorities computed from
optimal transport to compare the current shape with the target shape, where soft-body manipulation is
treated as a particle transportation problem. After finding contact points, CPDeform can combine the
differentiable physics solver to solve soft body manipulation tasks. On single-stage tasks that do not
require contact point switching, CPDeform can find suitable initial contact points to finish the task.

On multi-stage tasks, using an example shown in Figure 1 (right) where the goal is to reshape a
plasticine cube into an airplane, CPDeform can iteratively switch the contact points of end effectors
based on transport priorities. This iterative deformation process is motivated by how humans
manipulate plasticine. As shown in Figure 1 (left), when humans manipulate a plasticine dough, they
tend to repeatedly focus on the point of interest and modify it towards the target shape. CPDeform
can mimic this process by iteratively switching contact points of interests based on transport priorities
and deforming the soft bodies into the target shape with the help of the differentiable solver. By
integrating contact points discovery into the differentiable physics solver, CPDeform can skip over
the local minima caused by contact switching and improve the performance of the stand-alone solver.

To evaluate the effectiveness of CPDeform, we introduce PlasticineLab-M that extends the existing
differentiable physics benchmark PlasticineLab (Huang et al., 2021) to seven new challenging multi-
stage soft body tasks. Extensive experimental results suggest that: on single-stage tasks where the
vanilla differentiable physics solver performs sub-optimally or near-optimally in PlasticineLab, we
find that the backbone of CPDeform, a contact point discovery method based on optimal transport,
single-handedly performs better than or on par with the manipulation performance obtained with
random-selected or human-defined contact points. On multi-stage tasks that are infeasible for the
vanilla gradient-based solver, we find that CPDeform performs reasonably well in practice and the
iterative deformation method equipped with contact point discovery could serve as an alternative
to the expensive long-horizon searching algorithm. In summary, our work makes the following
contributions:

* We perform an in-depth study of local optimum issues of differentiable physics solver for initial
contact points and switching contact points.

* We propose a principled framework, CPDeform, that integrates optimal transport-based contact
discovery into differentiable physics.

* We find that the backbone of CPDeform, the contact point discovery method, can be directly
employed by the stand-alone solver to find better initial contact points for single-stage tasks.

* On multi-stage tasks, which are infeasible for the vanilla solver, CPDeform employs a heuristic
searching approach to iteratively complete the tasks.

Human Stage 1 Stage 2 Stage 4 Stage 6 Stage 17

Figure 1: Left: the process that a human applies to transform a plasticine dough into a bowl. Right:
we use images captured in time sequence to demonstrate how our framework reshapes a plasticine
cube into a target airplane. The bottom row indicates the transport priorities found by our framework
by computing the optimal transport between the current and target shapes. The top row illustrates the
pose of the end-effectors selected by our framework based on the transport priorities.
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Figure 2: (a) Writer to manipulate a “pen*; (b) given an initial handcrafted position of the “pen®, the
differentiable physics solver can control the “pen‘ to minimize the loss; (c) the solver gets stuck and
fails to finish the second curve, due to the lack of gradient to push the “pen‘ towards the second line.
(d) shows the target shape.

2  MOTIVATION

In this section, we provide an intuitive analysis of the drawback of the differentiable physics solver
through motivating toy examples. We start with a brief review of how the differentiable physics
solver could be employed to optimize manipulation policies. We then demonstrate how initial contact
points affect the optimization performance. Finally, we take a simple but representative multi-stage
task as an example and discuss why contact switching would often lead to local minima.

We study a Writer task as shown in Figure 2(a). In this task, an agent needs to manipulate the capsule
“pen” to initiate contact with the yellow plasticine cube, and sculpt a line scribble on the plasticine
surface. The agent can move the tip of the pen along three dimensions.

To solve this task with differentiable physics, we manually initialize the end-effector ”pen” near the
suitable contact point that allow the “pen” to initiate contact with the plasticine. We then parameterize
the desired motion trajectory of the "pen” as a sequence of three-dimensional actions {a1,...,ar}
where T is the number of simulation steps. Let {s; }o<;<7 be simulation states at different time steps
which include the state of the plasticine and manipulator. The differentiable simulator starts from
the initial state sy and completes the action sequences by repeatedly executing the forward function
St+1 = @(8¢,a;+1) until the ending state sp has been reached. The objective of the optimizer
is to minimize the distance between the current and target shapes. We represent the objective as
a loss function L(sr, g) where g is the target shape. Since the simulation forward function ¢ is
fully-differentiable, we can compute gradients 9L /0a; of the loss £ with respect to action a;, and
run gradient descent steps to optimize the action sequences by a; = a; — adL/da; where « is the
learning rate. As shown in Figure 2(b), we can see that the agent succeeds at sculpting the target
scribble by moving the “pen” downwards. We refer the readers to Algorithm 2 in Appendix D for
more details on differentiable physics for controller optimization.

However, if positions of the end-effectors are not well-initialized, the
solver would get stuck in the local minima. Taking the task shown in
Figure 3 as an example, we illustrate the optimization outcomes with
different contact points by showing their corresponding resulting
shapes. Even with an arbitrarily large number of steps 71" given,
the gradient-based solver is unable to discover a policy that moves
away from the local optimum to a new contact point that allows
for task completion. Such phenomena are commonly observed
across soft body manipulation tasks using the differentiable physics Figure 3: Writer-v1 in Plas-
solver (Huang et al., 2021). When end-effectors are far away from ticineLab. The bottom-right
the region of interest, it is often unlikely that the gradient could push figure shows the target shape.
the end-effectors towards the desired region. This observation poses

the question of how to efficiently find optimal contact points to place the end-effectors.

The local minima problem caused by inappropriate contact points becomes a more serious issue in
multi-stage tasks. Taking the multi-stage writer task in Figure 2(c) as an example, the agent needs
to write an additional line on the plasticine surface by switching its contact point. Even with a



well-initialized contact point for the first line, the solver is unable to relocate to the new region of
interest for the upcoming line. We observe that, differing from the vanilla differentiable physics
solver, humans tend to employ an explicit “iterative deformation* schema to complete such a task.
Humans would decompose this task into two stages. In each stage, we tend to iteratively derive
the correspondence between the current and target shapes to arrive at useful contact points from
observations and then subsequently move the “pen” and write the lines. This motivates us to combine
contact point discovery with iterative deformation.

3 METHOD

In this section, we introduce CPDeform, a principled framework that integrates optimal transport-
based contact discovery into differentiable physics for solving challenging soft-body manipulation
tasks. We first describe our contact point discovery method in relation to the transport priorities found
by optimal transport in Section 3.1. In Section 3.2, we describe how transport priorities can be used
to place end-effectors. Finally, in Section 3.3, we show how CPDeform integrates contact points
discovery with differentiable physics and iteratively deforms the soft bodies for multi-stage tasks.

3.1 OPTIMAL TRANSPORT AND CONTACT POINT DISCOVERY

One way to consider soft-body manipulation is by treating it as a particle transportation problem.
By evaluating the cost of transporting the current state particles p to the target state particles v,
optimal transport provides a useful framework for comparing differences between any given pair of
shapes, which can guide us to discover contact points. Let all particles be weighted equally in our
simulator. Given a cost matrix M, optimal transport finds a transportation plan P in transportation
polytope U by minimizing the transportation cost minpey (P, M). Casting the problem into dual
form, we have OT(«v, B) := maxy, 4 E,[f] + E,[g] such that Vi, j, Lagrange multipliers f;, g; satisfy
fi+g9; < M;;, where o, 3 are the mass vectors for the particles in i, v respectively. We refer the
reader to Appendix B for more details on optimal transport. We focus on the Lagrange multipliers f
of the source particles, which we refer to as the dual potentials. Since it represents the supports of the
source measure, we interpret f as the transport priorities for the source particles .

Transport priorities are helpful for selecting contact points. Given a pair of current and target shapes,
we intuitively would place the end-effectors around the region of the largest difference between
the two shapes, in order to substantially modify the shapes. This observation leads us to place the
end-effectors at contact points whose corresponding optimal manipulation policies can minimize
the shape difference. However, it is computationally prohibitive to directly evaluate the optimality
of the contact point by exhaustively searching through a set of contact points. Thus, we propose
to heuristically identify contact points, based on a simple rule of selecting contact points with high
transport priorities. We observe that contact points with high transport priorities mostly correspond
with superior optimization performances.

3.2 END EFFECTOR PLACEMENT WITH TRANSPORT PRIORITIES

In this section, we describe how manipulators are placed at advantageous locations based on optimal
transport priorities. We first describe the single manipulator case, which can be extended to multiple
manipulator environments by adding a heuristic.

Direct Single Manipulator Placement. The transport priorities can be directly employed to place
the single manipulator. We identify the source particle p* corresponding to the largest potential
f*. We then find a suitable contact point around p* through grid search, where we create a 3D
grid centered at u* with each dimension evenly spaced into NN, intervals. The criterion of the grid
search is as follows: We reject points whose placements of the manipulator lead to collisions with
the particles. And we iterate over each grid point € R3, and place the manipulator at the point
with the maximal score according to the following criterion: score(x) = Nip sz;l W where
d(u;, ) computes the signed distance between the particle y; to the closest point on the manipulator
placed at grid point z. As shown in Figure 4 (top), the criterion leads us to discover contact points
that allow the manipulator to cover high potential particles while reducing subsequent changes to the
low potential particles.
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Figure 4: Visualizations of the placement strategies. We visualize the current and target shapes,
transport priorities for contact discovery, and the resulting placement of the manipulators. We show a
single manipulator case using Torus (top), and a multiple-manipulator case using Airplane (bottom)

Multiple Manipulator Placement With Heuristic. For multiple manipulator environments, we
need to consider a heuristically defined candidate pose set 7, where each pose corresponds with a
different manipulation strategy. Taking Figure 4 (bottom) as an example, it is more advantageous
to use the highlighted pose than the ones drawn with low opacity. Each pose is specified by the
orientations of the manipulators and the direction vectors for placing other manipulators in relation to
the first manipulator. For each pose, we employ the single-manipulator placement strategy for the first
manipulator. Using the first placement position as a starting point, for the remaining manipulators,
we search along their pose-specific directions to find placement positions with minimal distances
from the first manipulator that do not result in collisions with soft bodies. Since the differentiable
physics solver is able to effectively adjust manipulator orientations during optimization, in practice,
the candidate pose set does not need to be exhaustively large. In practice, we use three poses to cover
left-right, top-bottom, and front-back grasping poses.

3.3 ITERATIVE DEFORMATION FOR MULTI-STAGE SOFT BODY MANIPULATION

Continuing with the focus on multi-stage soft-body manipulation tasks, we now describe how
CPDeform combines the contact point discovery method with the use of differentiable physics
for these tasks. For every stage, we iteratively specify the contact points and perform stage-level
manipulation with the differentiable physics solver. For the multiple manipulator case, we search
over contact plans corresponding to different poses, and choose the plan that achieves the lowest loss.

We present the detailed Algorithm 1 in Appendix C. We start with the initial shape Sp. Our goal is to
reach the target shape G within a given number of stage 1,¢q4e. Each stage contains 1, simulation
steps. As described in Section 3.2, we consider a heuristically defined candidate pose set 7. In each
stage, we first compute the optimal transport between the current shape .S; and the target shape G to
derive the transport priorities. Next, we select the particle p with the largest transport priority. For
each pose, we search for the placement in relation to p that maximizes the aforementioned criterion.

4 EXPERIMENTS

We conduct multiple experiments to test the efficacy of CPDeform on soft-body manipulation tasks
to address the following questions:

* On multi-stage tasks that involve multiple contact switches, can CPDeform complete these tasks
by iteratively manipulating the soft-bodies?

* How robust is the backbone of CPDeform, the contact point discovery method, when tested on
single-stage tasks where it is only allowed to specify a single contact point in one shot?

* How is transport priority compared with other contact discovery methods?
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Figure 5: Task illustrations of PlasticineLab-M with target and initial shapes

4.1 DATASETS

To extensively evaluate our method, we introduce PlasticineLab-M, a dataset that extends the existing
differentiable physics benchmark PlasticineLab with seven new challenging multi-stage soft-body
manipulation tasks, and contains the multi-stage environment Pinch in PlasticineLab.

We show these eight multi-stage tasks in Figure 5, whose task descriptions are detailed in Appendix A.
We also use the remaining single-stage tasks in PlasticineLab to evaluate our contact point discovery
method. For multi-stage environments, we use the Wasserstein-1 distance (Solomon et al., 2015)
approximated by Sinkhorn iteration (Cuturi, 2013) between the source and target particles to quantify
the fine-grained difference between a state and the goal. For single-stage environments, we evaluate
our approach using the IoU metric for a fair and consistent comparison with PlasticineLab.

4.2 EVALUATION OF CPDEFORM ON MULTI-STAGE TASKS

We compare our approach with the following baselines: PlasticineLab: The vanilla gradient-based
solver does not come with any contact point discovery features. It corresponds with the stand-alone
differentiable physics solver described in Huang et al. (2021). Reinforcement Learning (RL):
We evaluate the performance of the existing RL algorithms on our tasks. We use three model-free
reinforcement learning algorithms: Soft Actor-Critic (SAC) (Haarnoja et al., 2017), Policy Proximal
Optimization (PPO) (Schulman et al., 2017), and TD3 (Fujimoto et al., 2018). For each stage, we
optimize for 200 episodes for differentiable physics-based approaches with a learning rate 0.1. For
each environment, we modestly choose a horizon of 10 or 20. We restrict the number of environment
steps used for optimization under 1 million. We train each RL algorithm on each environment
for 1000 episodes, with 1000 environment steps per episode, which accounts for the 1 million
environment-step limit. Our reward function is of the form R = —Rsnape — Rgrasp, Where Ranape
is the Wasserstein-1 distance between the source and target particles for measuring shape differences.
And R g4rqsp encourages the manipulators to be closer to the soft bodies. For fair comparison with
Pinch from PlasticineLab, we use the reward formulation described in Huang et al. (2021).

We show the quantitative results in Table 3 and the qualitative results in Figure 6. We find that our
approach is capable of finishing these complex tasks, and significantly outperforms the baselines. We
find that with the discovered contact points, our approach is able to iteratively build and refine the
nose, tail, and wings of the Airplane. In Chair, we find that our approach guides the solver to first
create the general seat, then refine the arm rest and back of the chair. In Bottle, our approach first
pushes down the top of the plasticine cube to create the neck, before refining the sides of the bottle.
For Move++, our approach is able to complete the transportation tasks of the three cubes by selecting
the most advantageous object to transfer at each stage. In Rope++, our approach first moves the rope
to form the general shape, before refining the ends of the rope. In Writer++, our approach is capable
to iteratively guide the solver to print the "ICLR" letters on the plasticine cube. Comparatively, we
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Figure 6: Qualitative results of CPDeform and PlasticineLab on multi-stage task environments.

Env | Airplane | Chair | Bottle | Star

SAC 0.0437 £ 0.0006 0.0319 £ 0.0003 0.0383 £ 0.0020 0.0382 £ 0.0012
PPO 0.0507 £ 0.0082 0.0329 + 0.0004 0.0394 + 0.0002 0.0352 £ 0.0003
TD3 0.0555 £ 0.0043 0.0364 £ 0.0033 0.0443 £ 0.0001 0.0403 £ 0.0047
PlasticineLab 0.0324 + 0.0023 0.0218 + 0.0002 0.0283 £ 0.0007 0.0274 £ 0.0003
CPDeform 0.0073 £ 0.0001 | 0.0072 + 0.0001 | 0.0093 + 0.0001 | 0.0198 + 0.0004
Env | Move++ | Rope++ | Writer++ | Pinch

SAC 0.1660 + 0.0185 0.0333 £ 0.0038 0.0149 + 0.0002 0.0204 + 0.0002
PPO 0.1936 + 0.0508 0.0387 £ 0.0082 0.0164 + 0.0001 0.0189 + 0.0002
TD3 0.2164 + 0.0057 0.0396 + 0.0023 0.0153 £ 0.0083 0.0202 +£ 0.0003
PlasticineLab 0.1895 + 0.0001 0.0075 £ 0.0004 0.0122 + 0.0001 0.0094 + 0.0016
CPDeform 0.0127 £+ 0.0030 | 0.0052 + 0.0004 | 0.0067 + 0.0001 | 0.0081 + 0.0001

Table 1: The averaged Wasserstein-1 distance and the standard deviations of each method.

find that the stand-alone differentiable physics solver fails completely on the multi-stage tasks, as it
lacks the necessary exploration power to overcome the local minima. Take Move++ as an example,
the vanilla solver is unable to move away from the cube it first initiates contact with after a stage.
Similar to PlasticineLab (Huang et al., 2021), we also observe that the RL approaches in general
perform worse than the vanilla gradient-based method.

4.3 EVALUATION OF CONTACT POINT DISCOVERY ON SINGLE STAGE TASKS

To further demonstrate the effectiveness of our approach, we compare the one-shot contact points
discovered by the backbone of CPDeform with the human-defined contact points on single-stage
tasks from PlasticineLab. Table 2 lists the normalized incremental IoU scores, together with the
standard deviations of all approaches.

From Table 2 we can see that on most tasks, CPDeform performs better than or on par with the
manipulation performance obtained from the human-defined initial end-effector positions from
PlasticineLab.

In Table, the agent needs to push one of the four legs of the plasticine. The initial position of the
agent in PlasticineLab does not directly establish contact between the end effectors and the plasticine.
The stand-alone differentiable physics solver from PlasticineLab with contact loss is inadequate for
guiding the agent to find the correct “leg* to push. Whereas in CPDeform, the optimal priorities is



Env | Move | Tri. Move | Torus | Rope
PlasticineLab ‘ 0.90 £ 0.12 ‘ 0.35£0.20 ‘ 0.77 = 0.39 ‘ 0.59£0.13

CPDeform 0.82+0.12 | 0.63+£0.15 | 0.99+0.01 | 0.73 +0.12
Env | RollingPin | Chopsticks | Assembly | Table

PlasticineLab | 0.93 +0.04 | 0.88 +0.08 | 0.90 +0.10 0.01 £0.01
CPDeform 0.89 £ 0.06 0.34 £0.19 0.824+0.13 | 0.74+0.23

Table 2: We compare our contact point discovery backbone with human-defined contact points from
PlasticineLab on single-stage tasks. We show the averaged normalized incremental IoU scores and
the standard deviations of each method.

capable of identifying the “leg” of interest, resulting in a suitable placement of the manipulator that
significantly improves task completion. However, we recognize that CPDeform is not a panacea.
We notice that CPDeform struggles on Chopsticks due to the limitation of transport priorities for
capturing the dramatic topological change. Specifically, we find that the transport priorities cannot
discover the transport plan that preserves the continuity of the topology, as discussed in Feydy (2020).
How to find a continuous correspondence to map a source shape to target remains to be an interesting
future direction to explore.

4.4 COMPARISON WITH OTHER CONTACT DISCOVERY METHOD

Airplane Bottle Writer++ Rope++ Move++
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Figure 7: Ablation Learning Curves

In this section, we perform an ablation study to verify if transport priorities help find accurate
solutions efficiently. We compare CPDeform with random sampling contact points on the surface of
the soft bodies, while maintaining all other settings and hyperparameters, including the number of
stages and candidate pose sets. Figure 7 shows the comparison of randomly sampled contact points
with CPDeform. We observe that our method in CPDeform outperforms the surface-point sampling
strategy by a large margin in terms of both accuracy and efficiency, proving the effectiveness of the
transport-priority-based contact point discovery backbone employed by CPDeform.

5 RELATED WORK

Soft Body Manipulation. Soft body manipulation has a long history in robotics across multiple
fields, such as fabric manipulation (Liang et al., 2019; Wu et al., 2020; Ha & Song, 2021), rope
controlling (Yan et al., 2020; Wu et al., 2020; Gan et al., 2021), and food preparation (Bollini et al.,
2013; Heiden et al., 2019). In this work, we study the elastoplastic materials in PlasticineLab (Huang
et al., 2021) due to their wider applications than the pure elastic material model, leading to more
general and realistic modeling of real-world soft bodies. The high degrees of freedom of soft
bodies (Hu et al., 2018; Essahbi et al., 2012) limit the application of motion planning methods (Kuffner
& LaValle, 2000; Kavraki et al., 1996) and most works focus on linear models like rope (Saha & Isto,
20065 2007; Wakamatsu et al., 2006) or planar models like cloth (McConachie et al., 2020). Control
methods such as Hirai & Wada (2000); Wada et al. (2001); Smolen & Patriciu (2009) bypass the
expensive global planning by approximating local models and manipulating soft bodies with local
controllers, which sacrifices the ability to plan for the multi-stage tasks that we study in this work.

Recent development of Deep RL (Mnih et al., 2013; Schulman et al., 2017; Haarnoja et al., 2017;
Fujimoto et al., 2018) methods has enabled a unified approach to learn both perception module and
manipulation policy in an end-to-end way (Lin et al., 2020; Wu et al., 2020; Nair et al., 2017; Wang
et al., 2019). However, policy learning suffers from exploration issue and usually require a huge



amount of data or additional expert demonstrations to support imitation learning (Wu et al., 2020; Lee
etal., 2015; Matas et al., 2018; Seita et al., 2019). Another popular approach is to use neural networks
to approximate soft body dynamics (Li et al., 2018; Lin et al., 2021; Hoque et al., 2021) and solve
control problems with model predictive control (Rubinstein, 1999) or gradient-based optimization.
While these methods gain the generalizability by employing a shared local dynamic model, they need
a way to use the model for planning. Similar to our iterative contact-and-deform approach, methods
like Lin et al. (2020); Seita et al. (2019); Li et al. (2018) apply a pick-and-place action space to
manipulate soft bodies like cloth and rope. While this action space enables efficient exploration and
simplifies learning tasks, it poses a restriction for the type of end effectors, making it unsuitable for
the fine-grained manipulation of soft bodies such as plasticine. Comparatively, CPDeform leverages
the differentiable physics solver to complete more sophisticated manipulation tasks.

Differentiable Physics for Trajectory Optimization. Our method uses the differentiable simulator
developed in PlasticineLab (Huang et al., 2021) for trajectory optimization. Encouraged by the
success of gradient descent in neural network learning, differentiable physics with analytic physics
models (Geilinger et al., 2020; Degrave et al., 2016; de Avila Belbute-Peres et al., 2018; Carpentier &
Mansard, 2018; Giftthaler et al., 2017; Heiden et al., 2019; 2020; 2021; Toussaint et al., 2018; Hu et al.,
2019; 2020; Qiao et al., 2020; Murthy et al., 2020; Millard et al., 2020; Werling et al., 2021; Du et al.,
2021; Ma et al., 2021) has gained increasing popularity. As mentioned in Sec. 2, applying gradient-
optimization with an inappropriate contact point would get stuck in the local minima, especially in
tasks where multiple contact switches are needed. Previous research has explored various ways to
handle contacts for rigid bodies. Contact-invariant optimization (Mordatch et al., 2012) imposes
variables as soft representation of objects’ contact relationship, and in (Posa et al., 2014; Sleiman et al.,
2019), contacts are handled implicitly within analytical models. However, due to the nonlinear and
contact-rich nature of manipulation tasks, we often have to combine search and optimization to solve
mixed-integer program (Han & Tedrake, 2020) or logic-geometric program (Toussaint et al., 2018)
problems, which are inefficient given the complexity of 3D soft bodies. We explore a complementary
direction of previous approaches. By integrating visual cues into differentiable physics, we are able
to skip many local minima and boost the performance in various soft body manipulation tasks.

Grasping and Rigid Body Manipulation. Our contact point discovery approach shares a similar
spirit with grasp pose detection in rigid body manipulation. Determining contact point or grasp pose
for different end effectors is one of the everlasting topics in rigid body manipulation (Bohg et al.,
2014; Miller & Allen, 2004; Dang & Allen, 2012; Qin et al., 2020; Mabhler et al., 2017). By analyzing
3D geometry (Sahbani et al., 2012; Hong et al., 2021), one can find antipodal grasps that satisfy
force closure (Nguyen, 1988; Chen & Burdick, 1993), and grasp objects without running simulation.
Similarly, our contact point discovery method tries to find contact points through geometrical analysis,
in an effort to extend geometric analysis for more general soft body manipulation tasks.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel framework, CPDeform, that integrates optimal transport-based
contact discovery into differentiable physics. Extensive experiments suggest that our proposed contact
point discovery method, when directly employed by the differentiable solver, performs on par with
or better than human-defined initial contact points on single-stage tasks. On multi-stage tasks that
are infeasible for the vanilla solver, CPDeform employs a heuristic searching approach to iteratively
solve the tasks. Our work demonstrates the importance of contact points in policy learning with
differentiable physics and the advantage of geometric-analysis methods as a heuristic.

Our framework requires a properly defined Wasserstein distance on the object’s representation. The
choice of material types does not affect our optimal transport heuristic because it relies on shape
information only. We assume uniform density of the object template and moderately similar topology
across initial and target shapes. Interesting avenues for future work include generalizing the discovery
of useful contact points through learning methods for a diverse set of shapes, and applying a similar
contact point discovery principle to dexterous rigid body manipulation, or combining it with other
planning approaches. We refer the readers to Appendix G for more discussions on the limitation and
future works.
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A ENVIRONMENT DETAILS

* Airplane The agent needs to manipulate a pair of "spatulas" (represented as round boxes) to sculpt
the nose, wing, and tail on the plasticine cube to match the target airplane shape.

» Chair With a pair of "spatulas,” the agent needs to build the seat, back, and armrest from the
plasticine cube to reach the target chair shape.

* Bottle With a pair of "spatulas,” the agent needs to build the neck and body from the plasticine
cube to reach the target bottle shape.

» Star The agent needs to manipulate a pair of "spatulas" to build the tips of the star from the
plasticine cube to reach the target bottle shape.

* Move++ The agent needs to use a single pair of sphere manipulators to separately transport three
plasticine cubes to fulfill the three destinations of demand.

* Rope++ The agent needs to use a single pair of sphere manipulators to reshape the plasticine rope
to reach the target polyline shape.

* Writer++ The agent manipulates a "pen" (represented using a vertical capsule) to print the letters
"ICLR" on the plasticine cube.

* Pinch In this task, the agent manipulates one rigid sphere to create dents specified by the target
shape on the plasticine box.

B MORE DETAILS ABOUT OPTIMAL TRANSPORT

Optimal transport is useful for comparing measures ;. and v in a Lagrangian framework, by accounting
for the cost of transporting one measure to another. Here, we consider the first measure p as the
soft-body particles in the source state and v as the soft-body particles in the target state that we
wish to achieve through manipulation, where both input measures are on the space RV»*3. Let
a, 3 € RNr be the mass vectors that for the particles in y, v respectively. Since all particles are
weighted equally in our simulator, « = 8 = 1. Let U(«, 3) be the polytope that contains all transport
plans, which are non-negative matrices whose rows and columns sum to «, 3 respectively. We have
Ula,B) := {P e RY”™ | P1 = o, PT1 = B}. Given a cost function C : R? x R® — [0, cc],
we create the cost matrix M € RN»* o where each element M; ; = C(u;, v;) measures the cost of
transporting the particle p; to ;. Now, the cost of mapping y to v can be quantified as (P, M). We

define the primal form of the optimal transport (OT) problem as OT(«, ) := - m%n B)<P7 M).
cU(a,

C PSEUDOCODE OF CPDEFORM

Algorithm 1 CPDeform

Input: Current shape Sy with N particles, goal shape G, number of stages 1¢q4c, Number of steps
per stage ssep, candidate pose set 7
1: for 0 < i < ngiage do

2: Compute optimal transport priorities {c; };<n between S; and goal shape G

3: Find point p with largest priorities o,

4: for pose t € T do

5: Place manipulators around point p with largest heuristic value without collisions

6: Solve trajectories with differentiable physics to generate plan p; and compute its shape
matching loss c;

7 end for

8: Execute the plan p; with the minimal loss ¢;

9: end for

D CONTROLLER OPTIMIZATION WITH DIFFERENTIABLE PHYSICS

Consider that the motion trajectory is parameterized as a sequence of three-dimensional actions
{a1,...,ar}, where T is the number of simulation steps. Let {s;}o<:<7 be simulation states at
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different time steps, which include the state of the plasticine and manipulator. The differentiable
simulator starts from the initial state so and completes the action sequences by repeatedly executing
the forward function s; 1 = ¢(s¢, a;+1) until the ending state s has been reached. The objective of
the optimizer is to minimize the distance between the final shape and the target shape. We represent
the objective as a loss function L(st, g) where ¢ is the target shape. Since the simulation forward
function ¢ is fully-differentiable, we can compute gradients 9L /0a; of the loss £ with respect to each
action a;, and run gradient descent steps to optimize the action sequences by a; = a; — a0L/0a,
where « is the learning rate. We repeat this optimization loop for [V iterations. The overall process is
reflected by Algorithm 2.

Algorithm 2 Differentiable Physics Solver for Controller Optimization

Input: Target shape g, action sequence {ay, ..., ar}, initial state sq, differentiable forward simula-
tion function ¢, number of iterations N, learning rate

1: for0 <7< N do

2 for0 <t<Tdo

3 St+1 = (8¢, A1)

4: end for

5 Compute shape difference loss using £(st, g)

6 Update the action sequence by a; = a; — adL/da;

7: end for

E ADDITIONAL BASELINES

We compare CPDeform with two additional baselines, named Multiple-Restarts (Multi-Re) and
Bayesian-Optimization (Bayes-Op).

Investigation on multiple restarts For each stage, we randomly sample a collection of 15 contact
plans. We then use the differentiable physic solver to optimize the action sequence. The execution of
the solver for each plan corresponds with a single restart or an "initial guess." We use the contact
plan that achieves the lowest loss for manipulation.

Investigation on Bayesian optimization For each stage, we use Bayesian optimization with Gaussian
process to optimize the contact plan. We employ a black box function that takes a contact plan as its
input and outputs the loss achieved by the differentiable physics solver with that contact plan. We
then perform Bayesian optimization for 15 iterations to optimize the contact plan for the given stage.

Env | Airplane | Chair | Bottle | Star | Move++ | Rope++ | Writer++ | Pinch
Multi-Re 0.0122 0.0098 0.0112 0.0221 0.1209 0.0055 0.0076 0.0094
Bayes-Op 0.0369 0.0103 0.0136 0.0212 0.1234 0.0067 0.0113 0.0092

PlasticineLab | 0.0324 0.0218 | 0.0283 | 0.0274 0.1895 0.0075 0.0122 0.0094
CPDeform 0.0073 | 0.0072 | 0.0093 | 0.0198 | 0.0127 | 0.0052 | 0.0067 | 0.0081

Table 3: The averaged Wasserstein-1 distance of each method.

In general, we observe that Multiple-Restarts and Bayesian-Optimization perform better than Plas-
ticineLab, or the standalone differentiable physics solver. CPDeform outperforms these two additional
baselines. Additionally, because both Multiple-Restarts and Bayesian-Optimization rely heavily on
trials and errors to find the suitable contact points, as illustrated in Figure 8, they are much more
computationally expensive and less efficient than CPDeform.

F RUNTIME

We show the runtime of CPDeform, PlasticineLab, Bayesian-Optimization, and Multiple-Restarts in
Figure 8. RL approaches are not drawn because they cannot complete the manipulation tasks, and
their loss curves are close to the starting loss. We draw the wall-time in seconds on the x-axis and the
corresponding Wasserstein-1 distance loss values on the y-axis. Each data point represents the lowest
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loss achieved for that method at the end of a stage. Bayesian-Optimization and Multiple-Restarts
spend more time than the CPDeform and PlasticineLab on each stage due to the number of Bayesian
optimization iterations and the number of restarts performed, respectively. We observe that CPDeform
is more efficient than other approaches.

Airplane Chair Bottle Star
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Figure 8: Runtime of each method. We draw the wall-time in seconds on the x-axis and the
corresponding Wasserstein-1 distance loss values on the y-axis. Each data point represents the lowest
loss achieved for that method at the end of a stage.

G LIMITATION AND FUTURE WORKS

In this section, we discuss several implicit assumptions we made when constructing tasks. These
limitations are not common in our tasks and could be addressed by including additional techniques;
we did not take those factors into account in this work. We believe they constitute several interesting
future directions to explore.

Density Assumption Low or non-uniform density could potentially impact the optimization steps
due to varying optimal transport mapping. For instance, the optimal transport loss might not be able
to capture areas of the target shape whose particle distributions are extremely sparse (e.g., a few
particles) and is likely unable to guide the differentiable physics solver to task completion. In such a
case, having low or non-uniform density might pose a limit on our method. As a solution, we have
uniformly sampled particles inside the target shapes. By uniformly sampling particles inside a given
3D shape of mesh representation, we create its corresponding target template that the differentiable
physics solver can use for the manipulation tasks. We think that considerations of target shapes (e.g.,
a cuboid) with varying internal configurations (e.g., non-uniform density) is an interesting future
direction.

Volume Assumption We assume that the volumes of the initial and target shapes are similar. Since
our tasks use manipulators that are tailored to compressing instead of expanding the soft materials,
the initial shape cannot be significantly smaller than the target shape. Conversely, if the initial shape
is significantly larger than the target shape, it will require a lot of effort to compress the initial shape
into the target shape. As a solution, we can meet this condition by cutting and assembling the initial
plasticines.

Topology Assumption We assume that the initial and target shapes do not have tremendous topologi-
cal differences while requiring shape transformation that involves complex motion planning. When
this condition is false, the greedy algorithm that finds the best contact points at the current stage
could be limited. For example, consider a task where the initial shape is a straight rope, and the target
shape is a rope with knots. In order to complete the task, the rope needs to be folded and wrapped,
which might lead to a temporary increment of shape-matching loss for a few stages. The greedy
approach is limited because it might be unwilling to accept the temporary increment of the loss. It
would potentially arrive at a solution whose general shape is matched with the target rope by omitting
the detailed knots. As a possible solution, if we incorporate RL-based algorithms into our approach,
the ability to plan globally could allow the differentiable physics solver to overcome the temporary
increment of the loss at an intermediate stage and act for the best completion of the task at the final
stage.
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H INVESTIGATION ON THE OPTIMALITY OF CPDEFORM

We use Writer to study the optimality of our optimal-transport-based heuristic. Holding the height
of the manipulator at a fixed value, as illustrated in the leftmost figure in Figure 9, we create a 2D
grid that covers the top surface of the plasticine cube. The grid is of size 2020, and its points are
equidistant from each other on each row or column. We then record the loss achieved by executing
the differentiable physics solver at each grid point (i.e., contact point). Having collected a grid of loss
values, we use interpolation to draw the 2D loss landscape, as illustrated in Figure 9. By exhaustively
searching through each grid point, we observe that the higher transport priorities indicated by our
heuristic tend to correlate with lower loss values, and vice versa.

Current Shape Transport Priorities Loss Landscape Target Shape

Figure 9: We demonstrate the visualizations of the transport priorities and the loss landscape using
Writer. For the loss landscape, the color of each pixel corresponds with the loss achieved by applying
the differentiable physics solver near the corresponding simulator coordinate, where the height of the
manipulator is set as a fixed value (illustrated in the current shape). Here, warmer colors indicate
smaller loss values and colder colors indicate larger loss values.
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