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Abstract
Intrinsic self-correct was a method that instructed
large language models (LLMs) to verify and cor-
rect their responses without external feedback.
Unfortunately, the study concluded that the LLMs
could not self-correct reasoning yet. We find that
a simple yet effective verification method can un-
leash inherent capabilities of the LLMs. That is to
mask a key condition in the question, add the cur-
rent response to construct a verification question,
and predict the condition to verify the response.
The condition can be an entity in an open-domain
question or a numeric value in a math question,
which requires minimal effort (via prompting)
to identify. We propose an iterative verify-then-
correct framework to progressively identify and
correct (probably) false responses, named PROCO.
We conduct experiments on three reasoning tasks.
On average, PROCO, with GPT-3.5-Turbo as the
backend LLM, yields +6.8 exact match on four
open-domain question answering datasets, +14.1
accuracy on three arithmetic reasoning datasets,
and +9.6 accuracy on a commonsense reasoning
dataset, compared to Self-Correct.

1 Introduction
Reasoning is a cognitive process that uses evidence, argu-
ments, and logic to arrive at conclusions or judgements
(Huang & Chang, 2023). People have been exploiting and
improving the reasoning ability of large language mod-
els (LLMs). Wei et al. proposed chain-of-thought (CoT)
prompting and yielded promising results on several reason-
ing tasks, such as arithmetic reasoning (Kojima et al., 2022;
Zhou et al., 2023), commonsense reasoning (Wei et al.,
2022; Zhang et al., 2023; Wang et al., 2023b), and open-
domain question answering (Wang et al., 2023a), using only
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Method NQ CSQA AQuA
CoT 40.3 72.9 51.3

Self-Correct 40.1 65.9 48.7

PROCO (Ours) 48.0 75.5 65.2

Table 1: Performance comparison of different prompting
methods using GPT-3.5-Turbo as backend LLM.

a few or no reasoning exemplars. CoT guides LLMs to
generate intermediate reasoning steps instead of generating
the final answer directly, which helps the LLMs simulate
the human-like reasoning process.

Although CoT enables LLMs to handle some complex rea-
soning examples, it remains vulnerable to the negative im-
pact of individual errors in each step. Specifically, even a
minor error in one step can alter the trajectory of the en-
tire reasoning process, ultimately leading to an incorrect
conclusion. To address this issue, Dhuliawala et al.; Kim
et al. have explored the verification and correction on the
responses. For example, as shown in Figure 1a, for a given
question and its initial LLM-generated answer, Self-Correct
(Kim et al., 2023) first instructs the LLM to criticize its
generated answer using the hint: “Review previous answer
and find mistakes”. Then, Self-Correct instructs the LLM to
refine initial answers based on the critique.

However, recent studies (Huang et al., 2024; Gou et al.,
2024) have cast doubt on the intrinsic self-correction ca-
pability of LLMs. Their research indicates that without
external feedback, such as ground truth to verify the cor-
rectness of previous responses, LLMs struggle to correct
their prior outputs. Since LLMs could not properly judge
the correctness of their prior responses, the refined response
might be even worse than the initial response.

To unleash inherent capabilities of LLMs to detect and rec-
tify incorrect responses without external feedback, we intro-
duce substitute verification. Let’s look at a specific example.
Given an open-domain question “Who plays Skylar on Lab
Rats: Elite Force?”, we first prompt an LLM to generate an
initial answer for the question, e.g., “Paris Berelc”. Next,
we identify a key condition in the question that is relevant
to the problem-solving process, such as “Skylar”. By mask-
ing the key condition in the question and adding the initial
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Question 𝑄 Answer 𝑎𝑡−1 Critique 𝑟𝑡 

Find mistakes 

in answer 𝑎𝑡−1

Correct answer 𝑎𝑡−1 to 

𝑎𝑡 based on critique 𝑟𝑡

Final answer ො𝑎𝑡 ≤ 𝑇 ?
False

True

a Kim et al. proposed Self-Correct, instructing the LLM to critique and revise its answers using the hint “Review previous answer and find
mistakes.” However, Huang et al. noted that LLMs struggle to correct mistakes without external feedback.
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b PROCO performs three steps: (1) Initialization: Use CoT method to generate an initial answer. (2) Verification: Mask the key condition
in the question and use the previous generated answer as a new condition to construct the verification question. Solve the verification
question to get the verified answer and check if the verified answer and the key condition are equivalent. If they are equivalent, the previous
generated answer is adopted as the final answer, otherwise add it to the set of potentially incorrect answers. (3) Correction: Use the set of
potentially incorrect answers as feedback to correct previous generated answer. By cycle executing step (2) and step (3), the performance of
LLMs on various complex reasoning tasks is progressively enhanced.

Figure 1: The proposed PROCO method helps LLMs identify incorrect answers and progressively correct them.

answer as a new condition, we can obtain a verification
question: “Who plays X on Lab Rats: Elite Force? Suppose
the answer is Paris Berelc. What is the value of unknown
variable X?”. We use the LLM to solve the verification
question, and we get that X is “Skylar Storm”. By verifying
whether “Skylar Storm” is equivalent to “Skylar”, we can
predict that the initial answer is likely correct.

Based on substitute verification, we propose a simple yet ef-
fective prompting method Progressive Correction (PROCO).
Figure 1 illustrates the difference between the Self-Correct
and PROCO methods. Compared with Self-Correct, our
proposed PROCO, highlighting two primary distinctions:

(1) Verification Method. To improve verification accuracy,
we propose the substitute verification method. PROCO first
identifies key conditions relevant to the problem-solving
process. It then masks one of the key conditions in the
question and takes the generated answer as a new condition
to construct the verification question. Finally, PROCO solves
the verification question and gets the verified answer. If
the verified answer and the key condition are equivalent, it
indicates that the generated answer is likely to be correct.

(2) Correction Method. PROCO employs the substitute ver-

ification method to accurately verify the correctness of the
LLM-generated answer. If an answer is deemed incorrect,
PROCO adds it to the set of potentially incorrect answers,
which then serves as feedback to guide LLMs in correcting
previous mistakes with the hint: “the answer is likely not
in {set of potentially incorrect answers}”. By iteratively
executing verification and correction, PROCO effectively
prevents the repetition of previous mistakes, thereby pro-
gressively improving the quality of responses.

We conducted evaluations of PROCO using a variety
of LLMs, including GPT-3.5-Turbo-1106, GPT-4-0125-
Preview, and the open-source Mixtral-8x7B. These eval-
uations spanned three distinct tasks: arithmetic reasoning,
commonsense reasoning, and open-domain question answer-
ing. The experimental results reveal that PROCO consis-
tently outperforms existing methods. As shown in Table
1, PROCO achieves a 7.9 exact match (EM) improvement
on the NQ dataset, a 16.5 absolute increase on the AQuA
dataset, and a 9.6 absolute improvement on the CSQA
dataset compared to the Self-Correct method.

In summary, our main contribution include:

• Based on our research, we have determined that LLMs
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are capable of intrinsic self-correction, provided that
the prompt design is carefully structured within a
framework focused on verification and correctness.

• We introduce a novel prompting method, PROCO,
which utilizes an iterative verify-then-correct frame-
work. PROCO progressively refines responses by iden-
tifying key conditions and formulating verified ques-
tions specific to these conditions.

• We conduct extensive experiments across three dif-
ferent complex reasoning tasks and demonstrate that
PROCO achieves significant improvements in both
black-box and open-source LLMs.

2 Related Work
Self-Correct (Kim et al., 2023) methods, which aim to en-
hance the quality of LLM responses by providing feed-
back on initial attempts (Kim et al., 2023; Madaan et al.,
2023; Chen et al., 2024), have demonstrated effectiveness
in various reasoning tasks. These tasks include arithmetic
reasoning (Madaan et al., 2023; Welleck et al., 2023), open-
domain question answering (Dhuliawala et al., 2023; Yu
et al., 2023b), commonsense reasoning (Kim et al., 2023),
and others (Chen et al., 2024; Le et al., 2022). Self-Correct
methods vary in the source and format of feedback, and the
process of verifying the correctness of LLM output.

Source and Format of Feedback Interscript (Tandon
et al., 2021) corrected the initial output of the LLM by
integrating natural language feedback from humans. Due to
the high cost of human feedback, various approaches have
employed scalar reward functions as an alternative. For in-
stance, Rainer (Liu et al., 2022) used reinforcement learning
to generate contextual relevant knowledge in response to
queries. Self-Correction (Welleck et al., 2023) trained a cor-
rector to iteratively correct imperfect outputs. Other sources,
such as compilers (Chen et al., 2024) or search engines (Yu
et al., 2023b) can provide domain-specific feedback.

Recent research used LLMs to generate feedback. Self-
Correct (Kim et al., 2023) and Self-Refine (Madaan et al.,
2023) utilized LLMs to verify and refine their initial out-
puts. However, Huang et al. questioned the intrinsic self-
correcting capability of LLMs, indicating that without ex-
ternal feedback, LLMs struggle to correct their previous
responses. To unleash inherent capabilities of LLMs to
detect and rectify incorrect responses without external feed-
back, we introduce substitute verification. By providing
natural language feedback based on verification results, we
can steer LLMs away from incorrect answers, thus enhanc-
ing their performance in various reasoning tasks.

Verify Correctness of LLM Output Several studies
trained or fine-tuned language models to check the correct-

Numeric Value

Keith has 20 books. Jason has 21 books. How many 
books do they have together?

Arithmetic Question

Entity

When is the last time the minnesota vikings have 
been in the playoffs?

Open-domain Question

Concept

What could happen to a paper if you leave it outside 
even if it does not move?

Commonsense Question

Figure 2: Key conditions in complex reasoning tasks play
a crucial role in the problem-solving process. These condi-
tions can take various forms: a numeric value in arithmetic
questions, an entity in open-domain questions, or a concept
in commonsense questions.

ness of answers. Cobbe et al. fine-tuned GPT-3 as a verifier
to judge the correctness of solutions. Li et al. fine-tuned
DeBERTa-v3-large (He et al., 2021) to predict the proba-
bility that the generated reasoning path leads to a correct
answer. Lightman et al. constructed a large dataset with
step-wise correctness labels from human annotators, and
fine-tuned a GPT-4 model on it. These methods require sig-
nificant human annotations. To reduce human labor, Peng
et al. proposed using an external database to identify incor-
rect knowledge in LLM outputs. Chern et al. used tools for
fact-checking. Miao et al. used the LLM to verify the cor-
rectness of each step in the arithmetic reasoning path based
on preceding steps. Dhuliawala et al. used manually crafted
demonstrations as context to prompt the LLM to check the
correctness of its output. All of these methods solely ver-
ify the correctness of LLM outputs and select the verified
answer as the final answer. In contrast, our method iterates
a verify-then-correct process to progressively identify and
rectify incorrect answers.

3 Preliminaries
Given a question Q, consisting of m context sentences
{sj}mj=1 and one query sentence q. The query q ends with
a question mark and is usually the last sentence of Q. We
can express Q = (⊕jsj) ⊕ q, where ⊕ denotes text con-
catenation function. We extract conditions {ci}ni=1 that
are numerical values (arithmetic reasoning), entities (open-
domain question answering), and concepts (commonsense
reasoning), as shown in Figure 2. It is worth noting that usu-
ally n ≥ m, if the question has one or multiple conditions.
We denote J(i) ∈ {1, . . . ,m} as the index of the context
sentence containing the condition ci. Among these condi-
tions, the key condition ck is crucial for problem-solving
and is used in the substitute verification process, where k is
the index of the key condition within {ci}ni=1. We introduce
two innovative approaches for identifying the key condition.

3



Large Language Models Can Self-Correct with Minimal Effort

Similarity-based Key Condition Identification Numeri-
cal values are crucial in arithmetic reasoning tasks, so we se-
lect those relevant to solving the problem as key conditions.
Key conditions are found in context sentences {sj}mj=1 with
high semantic relevance to the query sentence q. We use
SimCSE (Gao et al., 2021) to encode the context and the
query sentences, represented as {sj}mj=1 and q, respectively.
Semantic relevance is calculated using cosine similarity be-
tween {sj}mj=1 and q. The most relevant context sentence
index ℓ is determined by:

ℓ = argmaxj∈{1,...,m} cos(sj ,q). (1)

We use regular expressions to extract the numerical value
in context sentence sℓ as the key condition ck. If multiple
numerical values are present, one is randomly selected as
the key condition.

Zero-shot Key Condition Identification Identifying key
conditions in open-domain question answering (Entity) and
commonsense reasoning (Concept) is not possible through
regular expressions, unlike in arithmetic reasoning (Numer-
ical Value). Instead, we directly instruct LLMs to identify
these relevant entities or concepts as key conditions. For
instance, given an open-domain question Q, we construct
a key condition identification prompt: “Given the question
below, the task is to identify a set of entities within the ques-
tion and then select the one that is most relevant to the
problem-solving process. Q”. We then input this prompt
into an LLM to obtain the key condition ck.

4 Proposed Approach

4.1 Overview

In this section, we present the overall pipeline of the pro-
posed Progressive Correction (PROCO) prompting method
which consists of three steps. Figure 1b illustrates the
PROCO method. Initially, PROCO prompts the LLM to gen-
erate an answer in response to a given question (Sec. 4.2).
Subsequently, to enhance the preliminary answer, PROCO
identifies a key condition and generates a corresponding
verification question-answer pair based on that condition
(Sec. 4.3). The final answer is refined by verifying the
question-answer pair, ensuring the answer’s consistency and
accuracy (Sec. 4.4). The full prompts used in the experi-
ments can be found in Appendix A.2.

4.2 Generate Initial Answer

Given a question Q, we use one of the existing prompting
methods, such as CoT (Kojima et al., 2022), RAG (Khattab
et al., 2023), or GenRead (Yu et al., 2023a), to generate an
initial answer a0. By default, we use the CoT (Kojima et al.,
2022) prompting method to generate an initial answer.

4.3 Iterative Verify-then-Correct Process

We propose a novel iterative verify-then-correct method that
first initializes the set of potentially incorrect answers as an
empty set P0 = ∅ and identifies the key condition ck within
the question Q (Sec. 3). The method then progressively
corrects the LLM-generated answer over T iterations by
cyclically conducting verification and correction phases.
Here we use the t-th iteration as an example to illustrate the
verify-then-correct process.

Verification Phase The verification phase uses substitute
verification method to verify the correctness of the previous
generated answer at−1. It includes several substeps.

First, the key condition ck within the question Q is replaced
with a specific token “X” , resulting in a mask question:

Q(mask) =

(
⊕jsj

∣∣
sJ(k)=s

(mask)
J(k)

)
⊕ q. (2)

where sJ(k) is the context sentence containing the key con-
dition ck, s(mask)

J(k) denotes replacing ck in sJ(k) with “X”.

We then construct the t-th verification question Q
(v)
t based

on the mask question:

Q
(v)
t = Q(mask) ⊕ at−1 ⊕ q(v) (3)

where q(v) is a static question for verification, e.g., “What is
the value of the unknown variable X?” Note that through
all iterations, the key condition remains the same, and we
do not use it to construct Q(v)

t , for any t ∈ {1, . . . , T}. The
LLM is instructed to solve the verification question Q

(v)
t and

produce the corresponding answer a(v)t . Finally, different
strategies are proposed to verify the correctness of at−1.

Match-based Verification. For arithmetic questions, if a(v)t

is equal to ck, it indicates that the previous answer at−1 is
most likely correct.

Proposition-based Verification. For open-domain or com-
monsense questions, we propose a proposition-based veri-
fication method to verify the correctness of the previously
generated answer at−1. The intuition behind this is that
the question Q

(v)
t may have multiple valid answers, and

directly checking if a(v)t exactly matches ck could result in
misclassifying a correct answer as incorrect. Specifically,
we construct an answer verification prompt: “Determine the
correctness of the proposition: If the answer to question
Q

(v)
t is ck, then X could also be a(v)t ”. We input this prompt

into an LLM and receive a judgment about the proposition’s
correctness. If the proposition is verified as correct, it in-
dicates that the previously generated answer at−1 is likely
correct, and we select at−1 as the final answer â and exit
the loop. Otherwise, we add at−1 to the set of potentially
incorrect answers Pt−1 to obtain the updated set Pt.
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Correction Phase During the correction phase, we use the
set of potentially incorrect answers Pt = {a0, · · · , at−1}
as feedback to generate a corrected answer at. For a given
question Q and the set Pt, we append the phrase “the answer
is likely not in Pt” to the question. This instructs the large
language model to re-answer the question while avoiding
repeating previous mistakes.

4.4 Final Answer Determination

The process of verify-then-correct can be iterated until spe-
cific stopping conditions are met. This process terminates
under three situations: First, if the answer at−1 is verified to
be likely correct, it is selected as the final answer. Second,
if the corrected answer at matches the previously generated
answer at−1, then at is chosen as the final answer. Lastly,
if the iteration count surpasses the maximum number of
iterations T , the last LLM-generated answer aT is adopted
as the final answer.

5 Experiments

5.1 Experimental Setup

Datasets. We evaluate PROCO on three complex rea-
soning tasks: arithmetic reasoning (GSM8K (Cobbe
et al., 2021b), AQuA (Ling et al., 2017), and
MATH (Hendrycks et al., 2021)); open-domain ques-
tion answering (NQ (Kwiatkowski et al., 2019), Trivi-
aQA (Joshi et al., 2017), WebQ (Berant et al., 2013), and
HotpotQA (Yang et al., 2018)); and commonsense reason-
ing (CSQA (Talmor et al., 2019)). Detailed information
about these datasets is available in Appendix A.1.

Baselines. To verify the effectiveness of our method, we
compare PROCO with three principal baseline categories:
Using LLMs to generate problem-related documents: Gen-
Read (Yu et al., 2023a) prompts an LLM to generate M
contextual documents based on a given question and then
reads these documents to produce the final answer. Using
search engines to retrieve problem-related documents: RAG
(Khattab et al., 2023) retrieves M relevant documents from
Bing search1 based on a given question and then prompts
an LLM to read the retrieved documents to produce the
final answer. Direct question answering without external
documents: CoT (Kojima et al., 2022) appends “Let’s think
step by step” to the given question, instructing the LLM to
generate a reasoning path leading to the final answer. CoVe
(Dhuliawala et al., 2023) answers the given question, gener-
ates verification questions, answers them, and produces the
final answer based on the verification results. Self-Correct
(Kim et al., 2023) instructs an LLM to critique and refine its
initial response. We use all methods as baselines for open-

1https://www.microsoft.com/en-us/bing/apis/

domain question answering and commonsense reasoning
tasks. For arithmetic reasoning, where external documents
are unnecessary, CoT and Self-Correct serve as baselines.
These baseline methods can be integrated into PROCO. For
example, we can use the GenRead (Yu et al., 2023a) method
to generate an initial answer for a given question and use
our proposed PROCO method to progressively correct the
initial answer (i.e., GenRead + PROCO).

Evaluation Metrics. In open-domain question answering,
we use exact match (EM) score and F1 score to evaluate
model performance (Zhu et al., 2021). For the EM score, an
answer is considered correct if and only if its normalized
form (Yu et al., 2023a) has a match in the acceptable answer
list. The F1 score treats the prediction and ground truth as
bags of tokens, and computes the average overlap between
them. For other complex reasoning tasks, we use accuracy
as the evaluation metric.

Implementation. We evaluate PROCO across three LLMs
of different scales: GPT-3.5-Turbo-1106 and GPT-4-0125-
Preview, which are the most widely used LLMs with pub-
lic available APIs2. Additionally, we include Mixtral-
8x7B3 (Jiang et al., 2024), an open source LLM with 47
billion parameters. For baselines like GenRead (Yu et al.,
2023a) and RAG (Khattab et al., 2023) that use external
documents, we set the number of documents M = 5. When
incorporating these methods with PROCO, we set M = 1.
The temperature parameter is set to 0.7 in our experiments.

5.2 Experimental Results

Overall performance on open-domain question answer-
ing and commonsense reasoning tasks. Table 2 demon-
strates that PROCO significantly enhances problem-solving
performance across five benchmarks when combined with
baseline methods using external documents. This improve-
ment holds for both black-box and open-source LLM back-
ends. Specifically, for GPT-3.5-Turbo-1106, using GenRead
to generate an initial answer and then correcting it with
PROCO (GenRead + PROCO) boosts the EM score by +6.1
on NQ, +7.6 on TriviaQA, +5.4 on WebQ, +9.0 on Hot-
potQA, and improves accuracy by +9.1 on CSQA.

Without external documents, PROCO shows superior self-
correctness compared to Self-Correct and CoVe. It achieves
gains of +7.9, +7.4, +7.8, +4.0, and +9.6 on NQ, Trivi-
aQA, WebQ, HotpotQA, and CSQA, respectively, compared
to Self-Correct. Additional experimental results are shown
in Appendix A.3.

Overall performance on arithmetic reasoning tasks.
For arithmetic reasoning tasks, we compare PROCO only

2https://platform.openai.com/docs/models
3https://github.com/mistralai/mistral-src
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Method
Open-domain Question Answering

Commonsense
Reasoning

NQ TriviaQA WebQ HotpotQA CSQA
EM F1 EM F1 EM F1 EM F1 Accuracy

*Using LLMs to generate problem-related documents

GenRead 42.2 / 46.7 49.4 / 52.0 70.8 / 69.0 74.8 / 72.4 41.3 / 51.1 48.5 / 56.5 38.0 / 36.0 43.2 / 39.7 67.3 / 64.3
GenRead + PROCO 48.3 / 48.5 55.6 / 53.7 78.4 / 72.3 82.4 / 75.8 46.7 / 52.0 53.9 / 57.5 47.0 / 38.0 51.0 / 42.3 76.4 / 70.4

*Using search engines to retrieve problem-related documents

RAG 45.3 / 48.8 52.4 / 54.6 72.7 / 75.3 76.4 / 78.5 40.1 / 46.3 46.9 / 52.1 37.0 / 37.0 41.1 / 40.2 65.9 / 66.3
RAG + PROCO 48.5 / 51.6 56.0 / 57.1 78.4 / 79.6 82.1 / 83.0 45.2 / 50.3 52.5 / 56.3 39.0 / 41.0 44.2 / 43.7 74.2 / 71.8

*Direct question answering without external documents

CoT 40.3 / 42.6 46.4 / 48.2 69.2 / 66.7 72.2 / 70.3 38.2 / 46.6 44.6 / 51.9 28.0 / 29.0 31.2 / 34.4 72.9 / 68.4
Self-Correct 40.1 / 44.8 47.1 / 50.5 71.3 / 71.3 74.1 / 74.8 39.2 / 47.5 45.7 / 51.9 29.0 / 32.0 32.4 / 36.2 65.9 / 49.8
CoVe 43.4 / 47.6 48.9 / 53.0 76.4 / 73.2 79.4 / 76.4 43.1 / 53.4 49.0 / 58.2 31.0 / 33.0 35.2 / 36.9 73.1 / 70.8
PROCO 48.0 / 50.7 54.8 / 53.6 78.7 / 74.5 82.1 / 76.6 47.0 / 55.1 57.0 / 59.2 33.0 / 35.0 36.2 / 41.3 75.5 / 72.7

Table 2: Performance on NQ, TriviaQA, WebQ, HotpotQA, and CSQA benchmarks using GPT-3.5-Turbo-1106 (black-box
LLM) and Mixtral-8x7B (open-source LLM). Each cell shows GPT-3.5-Turbo-1106 / Mixtral-8x7B performance. The best
performance for each dataset is highlighted in bold. PROCO improves baseline methods with external documents across all
benchmarks and outperforms those without external documents.

Method
Arithmetic Reasoning

GSM8K AQuA MATH

CoT 78.6 / 74.4 51.3 / 49.2 37.9 / 28.4
Self-Correct 75.1 / 72.5 48.7 / 44.4 27.6 / 21.5
PROCO 87.1 / 78.7 65.2 / 54.3 41.5 / 30.2

Table 3: Accuracy on arithmetic reasoning tasks. Each cell
shows GPT-3.5-Turbo-1106 / Mixtral-8x7B performance.

Method
GSM8K CSQA HotpotQA
Accuracy Accuracy EM

CoT 95.5 82.0 49.0
Self-Correct 91.5 79.5 49.0
CoVe - 83.5 57.0
PROCO 97.6 86.7 61.0

Table 4: Performance comparison of baseline methods using
GPT-4-0125-Preview on three types of reasoning tasks: ac-
curacy in GSM8K and CSQA, and EM score in HotpotQA.

with CoT and Self-Correct, as baselines with external doc-
uments and CoVe are unsuitable. As shown in Table 3,
PROCO demonstrates superior self-correctness over all base-
line methods across benchmarks on both black-box and
open-source LLMs. Specifically, when applied to GPT-3.5-
Turbo-1106, PROCO improves accuracy by an average of
14.1 compared to the Self-Correct.

PROCO with GPT-4 as backbone model. We compare
PROCO with baseline methods using the GPT-4-0125-
Preview model to test its effectiveness. Due to the high

Method
NQ TriviaQA WebQ

EM Tokens EM Tokens EM Tokens

GenRead 42.2 1023.3 70.8 924.2 41.3 963.3
GenRead + PROCO 48.3 469.1 78.4 465.0 46.7 416.8
∆ 14.5% ↑ 54.2% ↓ 10.7% ↑ 49.7% ↓ 13.1% ↑ 56.7% ↓

RAG 45.3 1971.5 72.7 1937.5 40.1 2067.8
RAG + PROCO 48.5 916.4 78.4 968.2 45.2 875.5
∆ 7.1% ↑ 53.5% ↓ 7.8% ↑ 50.0% ↓ 12.7% ↑ 57.7% ↓

Table 5: Comparison of PROCO with baselines including
external documents: Efficiency and Effectiveness. PROCO
consistently outperforms baselines on all benchmarks using
significantly fewer tokens.

cost of GPT-4-0125-Preview, we select GSM8K for arith-
metic reasoning, HotpotQA for open-domain question an-
swering, and CSQA for commonsense reasoning. Only
baseline methods without external documents are included.
As shown in Table 4, PROCO outperforms the baselines
across all benchmarks with the GPT-4 model.

Retrieve External Documents vs. PROCO. Since both
retrieve external documents (RAG / GenRead) and verify-
and-correct (PROCO) can enhance the performance on com-
plex reasoning via adding the token cost for each question,
we discuss the trade-off between efficiency and effective-
ness to apply them to real-world reasoning task. Table 5
shows PROCO outperforms GenRead/RAG in EM scores
across three open-domain question-answering benchmarks,
using just one external document compared to five. PROCO
achieves an average 12.8% higher EM score than GenRead
and 9.2% higher than RAG, while using half the tokens.
Further analysis shows that multiple external documents
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tions. Across all benchmarks, a minimum of three iterations
ensures PROCO has ample opportunity to verify and correct
answers generated by LLMs.

often contain excessive irrelevant or redundant information,
leading to incorrect answers and unnecessary token costs.

5.3 Analysis in PROCO

Analysis of Self-Correctness in PROCO Figure 3 shows
the impact of PROCO after three correction rounds using
GPT-3.5-Turbo-1106. PROCO is more accurate than Self-
Correct in identifying errors in LLM-generated answers,
with an 6.9% improvement in GSM8K and a 21.5% improve-
ment in CSQA. Furthermore, PROCO is more effective at
correcting errors without introducing new ones, enhancing
LLM performance in complex reasoning tasks. For GSM8K,
PROCO incorrectly alters correct answers 2.5% of the time
and corrects incorrect answers 8.2% of the time, compared
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Figure 5: Performance comparison of CoT, PROCO, and
CoT with self-consistency (i.e., CoT + SC). Compared to
CoT + SC, PROCO not only exhibits higher accuracy, but
also consumes fewer tokens.

to Self-Correct, which makes correct answers incorrect 9.1%
of the time and fixes incorrect answers 7.6% of the time.

Impact of Iteration Count. Figure 4 (a) shows that the
EM score of PROCO improves with more iterations in both
WebQ and TriviaQA. In contrast, Self-Correct shows min-
imal improvement in WebQ and even a 1.0 EM score de-
crease in TriviaQA with more iterations. Additionally, the
average iteration number for PROCO across all benchmarks
is less than 3. Considering the trade-off between efficiency
and effectiveness, we set the maximum number of iterations
to 3 per question.

Comparison between Self-consistency and PROCO
Since PROCO iteratively corrects answers for complex rea-
soning tasks, we propose that Self-consistency (SC) (Wang
et al., 2023c), which solves a problem multiple times and
uses a majority vote to determine the final answer, may
reduce errors by minimizing bias and enhancing the robust-
ness of LLM performance.

We evaluate the performance of CoT with self-consistency
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Question Where does patience is a virtue come from?
Gold Answer Psychomachia
CoT The phrase “patience is a virtue” is an old proverb that has been passed down through generations.

Its exact origin is not known, but it is believed to have originated from ancient wisdom and moral
teachings. %

Self-Correct The phrase “patience is a virtue” comes from the English poet William Langland’s work Piers
Plowman in the 14th century. %

CoVe “Patience is a virtue” is a well-known proverb that has been in use since at least the 14th century. It
is often attributed to the Latin writer Publilius Syrus. %

PROCO The phrase “patience is a virtue” can be traced back to medieval European literature. For instance,
in the Psychomachia, a 5th-century poem by Prudentius, patience is depicted as one of the virtues.!

RAG The first known recording of the expression in English is in the poem Piers Plowman by
William Langland, written around the year 1360. Langland’s poem includes the line “Pa-
tience is a high virtue”. (https://www.bookbrowse.com/expressions/detail/index.cfm/
expression number/416/patience-is-a-virtue)%

RAG + PROCO The idea behind the expression “patience is a virtue” dates back to the 5th century. It can be
found in the epic poem Psychomachia. (https://writingexplained.org/idiom-dictionary/
patience-is-a-virtue)!

Table 6: Case study of answers generated by various methods. The final answer is highlighted in yellow. PROCO shows
superior self-correction compared to baseline methods that include self-correction processes. Additionally, PROCO reduces
errors generated by methods that use external documents, ensuring correct source citation.

Method TriviaQA CSQA
Equivalent 82.4 93.7

Match 40.2 29.7

Similarity 69.2 65.9

Table 7: Accuracy of different verification methods. “Equiv-
alent” determines the correctness of an LLM-generated an-
swer by checking whether the answer to the verification
question and the key condition are equivalent. “Match” de-
termines the correctness of an LLM-generated answer by
checking whether the answer to the verification question ex-
actly matches the key condition. “Similarity” indicates that
the correctness of an LLM-generated answer is determined
by evaluating the semantic similarity between the answer to
the verification question and the key condition.

(CoT + SC) on two complex reasoning tasks (GSM8K and
CSQA) and compare it with PROCO. For a fair compar-
ison, CoT + SC generates answers three times per ques-
tion, matching ProCo’s maximum iterations. As shown
in Figure 5, we find that PROCO uses fewer tokens and
achieves better accuracy on both tasks. This is because,
unlike PROCO’s verification and correctness processes, CoT
+ SC merely solves the problem multiple times, often repeat-
ing the same mistakes.

Can we just use the exact match method during the verifi-
cation phase? In PROCO, we consider an LLM-generated

answer to be correct as the answer to the verification ques-
tion and the key condition are equivalent; we denote this
method as “Equivalent”. To evaluate our answer verification
approach, we also consider: (1) “Match”, where an LLM-
generated answer is deemed correct if it exactly matches
the key condition, and (2) “Similarity”, where an LLM-
generated answer is considered correct if it is semantically
similar to the key condition. As shown in Table 7, verifying
whether the answer to the verification question is equivalent
to the key condition can accurately assess the correctness of
LLM-generated answers.

5.4 Case Study

Table 6 shows that, except for RAG + PROCO and PROCO,
all other methods fail to provide the correct answer to the
given problem. CoT generates an incorrect answer, unable
to determine the origin of the phrase “Patience is a virtue”.
Self-Correct, CoVe, and RAG erroneously assert that the
phrase originated in the 14th century. In contrast, RAG +
PROCO and PROCO accurately identify the first appearance
of the phrase “Patience is a virtue” in the 5th century. Fur-
thermore, RAG + PROCO provides the correct source for
citation. This indicates that integrating RAG into PROCO
significantly enhances answer accuracy and reliability.

6 Conclusion
In this study, we present a novel zero-shot prompting method
for solving complex reasoning tasks. We name it progressive
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correction (PROCO), which first prompts a large language
model to generate an initial response, then iterates a verify-
then-correct process to progressively identify and correct
(probably) false responses. Extensive experiments on eight
complex reasoning datasets demonstrate the effectiveness
and efficiency of our proposed method.

Limitations
This study focused solely on complex reasoning tasks in
English, excluding non-English tasks from our training and
test data. Consequently, the method may not perform well
for non-English tasks. Future research will explore solutions
for multilingual complex reasoning tasks.
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A Appendix

A.1 Datasets

We evaluate PROCO on three complex reasoning tasks: arith-
metic reasoning (GSM8K (Cobbe et al., 2021b), AQuA
(Ling et al., 2017), and MATH (Hendrycks et al., 2021));
open-domain question answering (NQ (Kwiatkowski et al.,
2019), TriviaQA (Joshi et al., 2017), WebQ (Berant et al.,
2013), and HotpotQA (Yang et al., 2018)); and common-
sense reasoning (CSQA (Talmor et al., 2019)). All of these
datasets are accessible under the MIT License. Below, we
provide brief descriptions of the datasets used:

• GSM8K (Cobbe et al., 2021b) consists of high quality
grade school math word problems created by human
problem writers. These problems require 2 to 8 steps
to solve, and solutions primarily involve performing a
sequence of elementary calculations using basic arith-
metic operations to reach the final answer.

• AQuA (Ling et al., 2017) contains multiple-choice
math questions that cover a broad range of topics and
difficulty levels.

• MATH (Hendrycks et al., 2021) is a challenging
datasets consisting of 12k problems across seven cat-
egories, testing models’ advanced math and science
reasoning. The problems in this dataset are very hard
as they come from mathematics competitions written
in LATEX.

• NQ (Kwiatkowski et al., 2019) were collected from
real Google search queries and the answers are one
or multiple spans in Wikipedia articles identified by
human annotators.

• TriviaQA (Joshi et al., 2017) includes trivia questions
with answers originally scraped from trivia and quiz-
league websites.

• WebQ (Berant et al., 2013) consists of questions se-
lected using Google Suggest API, where the answers
are entities in Freebase.

• HotpotQA (Yang et al., 2018) contains 113k multi-
hop questions in natural language. The questions are
collected by crowdsourcing based on Wikipedia arti-
cles with human annotated supporting evidence and
answers.

• CSQA (Talmor et al., 2019) offers a collection of
multiple-choice questions testing commonsense rea-
soning. We use the development set for our evaluation.

A.2 Full Prompts in Experiments

A.2.1 ARITHMETIC REASONING

Given an arithmetic question Q, we use the CoT prompting
method to generate an initial answer. Specifically, we first
construct a reasoning generation prompt: “Q: Q. A: Let’s
think step by step.” as shown in Prompt A.1. We then
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feed the above prompt to the LLM, which subsequently
generates a reasoning path. To extract the answer from the
reasoning path, we append an answer extraction instruction,
creating the numerical answer extraction prompt: “Q: Q.
A: {reasoning path} The answer (arabic numerals) is:” as
shown in Prompt A.2.

Prompt A.1: Initial Answer Generation

Q: Q
A: Let’s think step by step.

Prompt A.2: Numerical Answer Extraction

Q: Q
A: {reasoning path} The answer (arabic numerals) is:

We use the substitute verification method to verify the cor-
rectness of the previous generated answer. Specifically, we
first identify the key condition within the question (Sec. 3).
By replacing the key condition with a specific token X,
we create a masked question. We then append the sen-
tence, “Suppose the answer is {previous generated answer}.
What is the value of unknown variable X?” to the masked
question to formulate the verification question, as shown in
Prompt A.3.

Prompt A.3: Verification Question Construction

{masked question} Suppose the answer is {previous generated
answer}. What is the value of unknown variable X?

Using Prompt A.1 and Prompt A.2, we can obtain the nu-
merical answer for the verification question. By checking if
the numerical answer for the verification question is equal
to the key condition, we can assess the correctness of the
previous generated answer. If the previous generated answer
is deemed incorrect, we add it to the set of potentially incor-
rect answers; otherwise, we select it as the final answer. For
incorrect answers, we use the Prompt A.4 to correct them.

Prompt A.4: Incorrect Answers Correction

Q: Q (the answer is likely not in {set of potentially incorrect
answers})
A: Let’s think step by step.

A.2.2 OPEN-DOMAIN QUESTION ANSWERING

Given an open-domain question Q, we use the Prompt A.2
to instruct the LLM to generate a reasoning path. To extract
the answer from this reasoning path, we add an answer ex-
traction instruction, resulting in the following entity answer
extraction prompt: “Answer the following question with just
one entity. Q: Q. A: {reasoning path} The answer is:” as
shown in Prompt A.5.

Prompt A.5: Initial Answer Generation

Answer the following question with just one entity.
Q: Q
A: {reasoning path} The answer is:

We use the substitute verification method to verify the cor-
rectness of the previous generated answer. Specifically, we
first use the Prompt A.6 to identify the key condition within
the question. By replacing the key condition with a specific
token X, we create a masked question. We then append
the sentence, “Suppose the answer is {previous generated
answer}. What is the value of unknown variable X?” to the
masked question to formulate the verification question, as
shown in Prompt A.3.

Prompt A.6: Key Condition Identification

Given the question below, the task is to identify a set of entities
within the question and then select the one that is most relevant
to the problem-solving process.
Q

Using Prompt A.1 and Prompt A.5, we can obtain the an-
swer for the verification question. By checking if the answer
for the verification question and the key condition are equiva-
lent, we can assess the correctness of the previous generated
answer.

Prompt A.7: Equivalence Check

Determine the correctness of the proposition: If the answer
to question {verification question} is {key condition}, then X
could also be {answer for the verification question}

If the previous generated answer is deemed incorrect, we
add it to the set of potentially incorrect answers; otherwise,
we select it as the final answer. For incorrect answers, we
can use the Prompt A.4 to correct them.

A.3 Additional Experimental Results

Can we just use the exact match method during the veri-
fication phase? Since verification questions can have mul-
tiple valid answers, directly checking if the LLM-generated
response exactly matches the key condition might misclas-
sify correct answers as incorrect. Consider the following
example: Given an open-domain question “Who wrote the
treasure of the sierra madre?”, we first prompt an LLM to
generate an initial answer, e.g., “B. Traven”. Next, we iden-
tify a key condition in the question relevant to the problem-
solving process, such as “the treasure of the sierra madre”.
By masking the key condition, we create a verification ques-
tion: “Who wrote X? Suppose the answer is B. Traven. What
is the value of unknown variable X?”. Using the LLM to
solve the verification question, we receive the response “The
Death Ship”. If we directly check whether “The Death Ship”

12
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matches “the treasure of the sierra madre”, we find they do
not match, leading us to incorrectly judge the answer “B.
Traven” as wrong. However, all books written by B. Tra-
ven are correct answers to the verification question. Thus,
exact matching is insufficient for verification. Based on
this observation, we propose proposition-based verification.
Specifically, we construct an answer verification prompt:

“Determine the correctness of the proposition: If the answer
to question “Who wrote X? Suppose the answer is B. Traven.
What is the value of unknown variable X?” is “the trea-
sure of the sierra madre”, then X could also be “The Death
Ship””. We input this prompt into an LLM and receive a
judgement about the proposition’s correctness, e.g., “The
proposition is correct, since both works were written by the
same author.”. This approach allows the LLM to properly
analyze whether “The Death Ship” and “the treasure of
the sierra madre” are both correct answers for the verifica-
tion question, thus accurately determining the correctness
of LLM-generated answers.

A.4 Sample Predictions for Complex Reasoning
Datasets

In this section, we provide sample predictions generated by
the PROCO prompting method. For readability, we adjusted
line breaks in the original text. As shown in Tables 8 to 15,
PROCO accurately identifies and rectifies errors in LLM-
generated answers without external feedback. Additionally,
integrating RAG into PROCO significantly improves the
accuracy and reliability of the answers.

13
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Question Jean is two years older than Mark. Two years ago Mark was 5 years older than half Jan’s age. If Jan
is 30 how old is Jean?

Gold Answer 30−2
2 + 5 + 2 + 2 = 23

Key Condition 5

Initial Answer Two years ago, Mark was 5 years older than half of Jan’s age. Half of Jan’s age two years ago would
be 10 (30/2 - 2). Therefore, Mark’s age two years ago would be 15 (10 + 5). We know that Jean is
two years older than Mark. Therefore, Jean’s age two years ago would be 17 (15 + 2). Jean’s current
age would be 19 (17 + 2). %

Verification
Question

Jean is two years older than Mark. Two years ago Mark was X years older than half Jan’s age. If Jan
is 30 how old is Jean? Suppose the answer is 19. What is the value of unknown variable X?

Answer to the
Verification
Question

Two years ago Mark’s age = Jean’s age – 2 Half of Jan’s age = 15 Mark’s age two years ago = Jean’s
age – 2 = 15 – X Therefore, X = Jean’s age – 15 – 2 = 19 – 15 – 2 = 2. Answer: X = 2.

Verification Re-
sult

Since 2 is not equal to the key condition, the answer 19 is likely incorrect.

Question (with
Hint)

Jean is two years older than Mark. Two years ago Mark was 5 years older than half Jan’s age. If Jan
is 30 how old is Jean? (The answer is likely not 19)

Corrected
Answer Two years ago, Mark was 5 years older than half of Jan’s age. Jan was 28. Half of Jan’s age two

years ago would be 14. Mark was 5 years older than 14 two years ago, so he was 19 two years ago.
Jean is two years older than Mark, so Jean was 21 two years ago. Now, two years have passed since
then, so Jean is 23 today. !

Verification
Question

Jean is two years older than Mark. Two years ago Mark was X years older than half Jan’s age. If Jan
is 30 how old is Jean? Suppose the answer is 23. What is the value of unknown variable X?

Answer to the
Verification
Question

First, we’re given that Jean is two years older than Mark. So if Mark is M years old, Jean is M + 2
years old.
Two years ago, Mark was M − 2 years old and Jan’s age was 30− 2 = 28 years.
We’re also given that two years ago Mark was X years older than half of Jan’s age. So, M − 2 =
X + 1

2 (28).
Now, let’s solve for M using the information given.

M − 2 = X + 14

M = X + 16

Now we know Mark’s age in terms of X . Since Jean is two years older than Mark, Jean’s age is
X + 18.
If the answer is 23 for Jean’s age, then:

X + 18 = 23

X = 5

So, the value of the unknown variable X is 5.

Verification Re-
sult

Since 5 is equal to the key condition, the answer 23 is likely correct.

Final Answer 23!

Table 8: Example output obtained by PROCO on the GSM8K dataset.
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Question In a class of 50 students, 28 participate in MATHCOUNTS, 21 participate in science club, and 6
students participate in neither. How many students participate in both MATHCOUNTS and science
club?

Gold Answer 5

Key Condition 28

Initial Answer Step 1: Find the total number of students who participate in either MATHCOUNTS or science
club. Total students participating = 28 + 21 - 6 Total students participating = 43 Step 2: Calculate
the number of students who participate in both MATHCOUNTS and science club. Number of
students in both = 28 + 21 - 43 Number of students in both = 6 So, 6 students participate in both
MATHCOUNTS and science club. %

Verification
Question

First, we can calculate the number of students participating in either MATHCOUNTS or the science
club or both: 50 − 6 = 44. Next, we use the principle of inclusion and exclusion to set up our
equation. The principle of inclusion and exclusion for two sets states:

|A ∪B| = |A|+ |B| − |A ∩B|

Here, |A ∪ B| represents the total number of students participating in either MATHCOUNTS or
science club or both, which we have found to be 44. |A| represents the number of students in
MATHCOUNTS (X), |B| represents the number of students in science club (21), and |A ∩ B|
represents the number of students in both clubs (6).
Substituting these values into the equation, we get: 44 = X + 21− 6. Thus, the value of X is 29 .

Verification Re-
sult

Since 29 is not equal to the key condition, the answer 6 is likely incorrect.

Question (with
Hint)

In a class of 50 students, 28 participate in MATHCOUNTS, 21 participate in science club, and 6
students participate in neither. How many students participate in both MATHCOUNTS and science
club? (The answer is likely not 6)

Corrected
Answer - Let M represent the set of students participating in MATHCOUNTS. - Let S represent the set of

students participating in the science club. - Let n represent the total number of students in the class,
which is 50.
First, we calculate the number of students participating in either MATHCOUNTS or the science club
or both:

|M ∪ S| = n− |N | = 50− 6 = 44

Using the principle of inclusion-exclusion for the union of two sets:

|M ∪ S| = |M |+ |S| − |M ∩ S|

Substitute the known values into the equation:

44 = 28 + 21− |M ∩ S|

|M ∩ S| = 5

Thus, the number of students who participate in both MATHCOUNTS and the science club is: 5 !

Table 9: Example output obtained by PROCO on the MATH dataset.
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Question A man spends Rs. 3500 per month and saves 12 1/2% of his income. His monthly income is ?
Answer Choices: (A) Rs. 4400 (B) Rs. 4270 (C) Rs. 4000 (D) Rs. 3937.50 (E) None of these

Gold Answer C

Key Condition 3500

Initial Answer First, we need to calculate the amount saved each month. To do this, we can calculate 12 1/2% of Rs.
3500. 12 1/2% of Rs. 3500 = (12.5/100) * 3500 = 0.125 * 3500 = Rs. 437.50 So, the man saves Rs.
437.50 each month. To find his monthly income, we can use the formula: Income = Expenditure +
Savings Income = Rs. 3500 + Rs. 437.50 Income = Rs. 3937.50 Therefore, his monthly income is
Rs. 3937.50, which corresponds to answer choice (D). %

Verification
Question

A man spends Rs. X per month and saves 12 1/2% of his income. His monthly income is ? Answer
Choices: (A) Rs. 4400 (B) Rs. 4270 (C) Rs. 4000 (D) Rs. 3937.50 (E) None of these Suppose the
answer is (D) Rs. 3937.50. What is the value of unknown variable X?

Answer to the
Verification
Question

1. Convert the percentage saved into a decimal: 12.5% can be expressed as:

12.5% =
12.5

100
= 0.125

2. Determine the amount saved: Since he saves 12.5% of his income, the amount saved each month
is:

0.125× 3937.50 = 492.1875

3. Calculate the amount spent (X): The amount he spends is the remaining part of his income after
saving. Therefore, the amount spent X is:

X = Income − Amount saved = 3445.3125

The value of the unknown variable X (the amount spent per month) is: 3445.3125

Verification Re-
sult

Since 3445.3125 is not equal to the key condition, the answer (D) Rs. 3937.50 is likely incorrect.

Question (with
Hint)

A man spends Rs. 3500 per month and saves 12 1/2% of his income. His monthly income is ?
Answer Choices: (A) Rs. 4400 (B) Rs. 4270 (C) Rs. 4000 (D) Rs. 3937.50 (E) None of these (The
answer is likely not (D) Rs. 3937.50)

Corrected
Answer Let I be the man’s monthly income. Since he saves 12.5% of his income, he spends the remaining

percentage of his income. The percentage of income spent is:

100%− 12.5% = 87.5%

Income spent = 0.875× I

We know that the amount spent is Rs. 3500. Thus, we set up the equation:

0.875× I = 3500

To find I , we solve the equation for I:

I =
3500

0.875
= 4000

The man’s monthly income is Rs. 4000. The correct answer is: (C) Rs. 4000!

Table 10: Example output obtained by PROCO on the AQuA dataset.
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Question Right to property according to the constitution of india is a?

Gold Answer constitutional right

Key Condition property

Initial Answer The right to property in the Constitution of India has undergone significant changes over
the years. Prior to the 44th Amendment Act in 1978, the right to property was considered
a fundamental right under Part III of the Constitution. However, this amendment removed
the right to property from the list of Fundamental Rights and converted it into a simple le-
gal right (https://byjus.com/question-answer/consider-the-following-statements-regarding-right-to-
property-1-right-to-property-is-legal-right/)%

Verification
Question

Right to X according to the constitution of india is a? Suppose the answer is simple legal right. What
is the value of unknown variable X?

Answer to the
Verification
Question

the right to legal representation.

Verification Re-
sult

Since the right to legal representation and the property are not equivalent, the answer simple legal
right is likely incorrect.

Question (with
Hint)

Right to property according to the constitution of india is a? (The answer is likely not simple legal
right)

Corrected
Answer The right to property in the Constitution of India has evolved from being a fundamental right

to a legal and constitutional right, with provisions for legal protection and acquisition for public
welfare. (https://testbook.com/question-answer/what-is-the-position-of-the-right-to-property-in-i–
616294b1fb5e57239764c589)!

Verification
Question

Right to X according to the constitution of india is a? Suppose the answer is constitutional right.
What is the value of unknown variable X?

Answer to the
Verification
Question

In the context of the Constitution of India, the unknown variable X refers to a specific right that is
classified as a ”constitutional right.” Given this information, one possible value for X is ”property.”
To elaborate, the right to property was originally a fundamental right under Article 31 of the Indian
Constitution. However, it was later amended by the 44th Amendment Act of 1978, and the right to
property was removed from the list of fundamental rights and reclassified as a constitutional right
under Article 300A. Therefore, the value of the unknown variable X is ”property.”

Verification Re-
sult

Since the property and the property are equivalent, the answer constitutional right is likely correct.

Final Answer constitutional right!

Table 11: Example output obtained by RAG + PROCO on the NQ dataset.
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Question Who was the defending champion when Martina Navratilova first won Wimbledon singles?

Gold Answer Virginia Wade

Key Condition Martina Navratilova

Initial Answer When Martina Navratilova first won the Wimbledon singles title, the defending champion was Chris
Evert (https://en.wikipedia.org/wiki/1977 Wimbledon Championships). %

Verification
Question

Who was the defending champion when X first won Wimbledon singles? Suppose the answer is
Chris Evert. What is the value of unknown variable X?

Answer to the
Verification
Question

Given that Chris Evert is the answer, X must be the name of a person who won Wimbledon singles.
Conclusion: X refers to a person who won Wimbledon singles, but without more information, the
specific name cannot be determined.

Verification Re-
sult

Since unknown and Martina Navratilova are not equivalent, the answer Chris Evert is likely incorrect.

Question (with
Hint)

Who was the defending champion when Martina Navratilova first won Wimbledon singles? (The
answer is likely not Chris Evert)

Corrected
Answer The defending champion when Martina Navratilova first won the Wimbledon singles title in 1978 was

Virginia Wade (https://en.wikipedia.org/wiki/1978 Wimbledon Championships – Women’s singles).
!

Verification
Question

Who was the defending champion when X first won Wimbledon singles? Suppose the answer is
Virginia Wade. What is the value of unknown variable X?

Answer to the
Verification
Question

Martina Navratilova won her first Wimbledon singles title in 1978. Virginia Wade was the Wimbledon
singles champion in 1977.
So, if we are to match the scenario where X first won Wimbledon when Virginia Wade was the
defending champion:
In 1978, the defending champion was Virginia Wade (from her 1977 win). Martina Navratilova won
Wimbledon singles in 1978.
Therefore, ( X ) is indeed Martina Navratilova.
Thus, the value of the unknown variable ( X ) is Martina Navratilova.

Verification Re-
sult

Since Martina Navratilova and Martina Navratilova are equivalent, the answer Virginia Wade is
likely correct.

Final Answer Virginia Wade!

Table 12: Example output obtained by RAG + PROCO on the TriviaQA dataset.
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Question What highschool did harper lee go to?

Gold Answer Monroe County High School

Key Condition highschool

Initial Answer Harper Lee attended several educational institutions during her academic journey. According to the
information available, she attended Huntingdon College from 1944 to 1945. After that, she studied
law at the University of Alabama from 1945 to 1949. Additionally, she spent a year at Oxford Univer-
sity (https://www.tokillamockingbird.com/harper-lee). Based on the available information,
it can be concluded that Harper Lee did not attend high school. She pursued higher education after
completing her grade school education. Conclusion Harper Lee did not attend high school. %

Verification
Question

What X did harper lee go to? Suppose the answer is Harper Lee did not attend high school. What is
the value of unknown variable X?

Answer to the
Verification
Question

If the statement ”Harper Lee did not attend high school” is true, then the value of the unknown
variable X, representing the high school she attended, would be ”none.” This means Harper Lee did
not go to any high school.

Verification Re-
sult

Since none and highschool are not equivalent, the answer Harper Lee did not attend high school is
likely incorrect.

Question (with
Hint)

What highschool did harper lee go to? (The answer is likely not Harper Lee did not attend high
school)

Corrected
Answer Nelle Harper Lee, the acclaimed author of ”To Kill a Mockingbird,” attended monroe county high

school in her hometown of Monroeville, Alabama. She was born on April 28, 1926, and grew up in
a rural southern Alabama town, where she attended both elementary school and high school. Her
father, Amasa Coleman Lee, was an attorney who served in the state legislature in Alabama, and her
childhood experiences were similar to those of her young narrator in ”To Kill a Mockingbird,” Scout
Finch (https://www.chipublib.org/harper-lee-biography/)!

Verification
Question

What X did harper lee go to? Suppose the answer is monroe county high school. What is the value
of unknown variable X?

Answer to the
Verification
Question

If the answer is ”Monroe County High School,” the value of the unknown variable X is ”high
school.”

Verification Re-
sult

Since high school and highschool are equivalent, the answer monroe county high school is likely
correct.

Final Answer monroe county high school!

Table 13: Example output obtained by RAG + PROCO on the WebQ dataset.
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Question What could go on top of wood? Answer Choices: (A) lumberyard, (B) synagogue, (C) floor, (D)
carpet, (E) hardware store

Gold Answer D

Key Condition wood

Initial Answer To determine what could go on top of wood, let’s analyze the answer choices provided: (A)
Lumberyard: A lumberyard is a facility where wood and lumber are stored and sold. It is not
something that goes on top of wood. (B) Synagogue: A synagogue is a place of worship for Jewish
people. It is not something that goes on top of wood. (C) Floor: Yes, a floor can go on top of
wood. Wood is commonly used as a material for flooring, providing a natural and warm aesthetic.
Hardwood floors, for example, are made of solid wood and are installed on top of a subfloor. (D)
Carpet: Yes, carpet can go on top of wood. Carpet is often installed on top of a wooden subfloor,
providing a soft and comfortable surface. (E) Hardware store: A hardware store is a retail store that
sells tools, building materials, and other hardware items. It is not something that goes on top of
wood. Therefore, the correct answer is (C) floor. %

Verification
Question

What could go on top of X? Suppose the answer is floor. What is the value of unknown variable X?

Answer to the
Verification
Question

The question asks what could go on top of X, and the answer is ”floor.” Based on this, we can infer
that X refers to a ”ceiling.” The ceiling is the upper surface of a room and is what goes on top of the
floor. Therefore, X refers to ceiling.

Verification Re-
sult

Since wood and ceiling are not equivalent, the answer (C) floor is likely incorrect.

Question (with
Hint)

What could go on top of wood? Answer Choices: (A) lumberyard, (B) synagogue, (C) floor, (D)
carpet, (E) hardware store (The answer is likely not (C) floor)

Corrected
Answer The answer is likely not in [’C’]. Based on the provided search results, the item that could go on top

of wood is (D) carpet. !

Verification
Question

What could go on top of X? Suppose the answer is carpet. What is the value of unknown variable X?

Answer to the
Verification
Question

If the answer to ”What could go on top of X?” is ”carpet,” then X is likely the floor or flooring.
Therefore, the value of the unknown variable X is floor.

Verification Re-
sult

Yes, the proposition is correct. If the answer to the question ”What could go on top of X? Suppose
the answer is carpet” is ”wood”, then X could also be ”floor”.
Here’s the reasoning: 1. The question asks what could go on top of X, and the given answer is
”carpet”. 2. This implies that ”carpet” can be placed on top of X. 3. The follow-up statement tells us
that the answer to this is ”wood”. Therefore, wood is X. 4. Carpet is typically placed on top of a
floor surface. 5. Wood is a common type of flooring.
Thus, if wood is the answer to X, and considering the context of flooring, X being ”floor” is a
reasonable interpretation because a carpet is often placed on a wood floor.
Therefore, the unknown variable X, which in this context is the surface on which carpet can be
placed, could be ”floor”.
Since floor and wood are equivalent, the answer (D) carpet is likely correct.

Final Answer D!

Table 14: Example output obtained by PROCO on the CSQA dataset.
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Question The trophy given to the winner of the college football game between University of Idaho Vandals
and University of Montana Grizzlies is derived from which European culture?

Gold Answer German

Key Condition European culture

Initial Answer The University of Idaho Vandals and the University of Montana Grizzlies are both located in the
United States. However, the trophy’s origin may be derived from a European culture due to the
historical influence of European traditions on American sports and collegiate traditions. %

Verification
Question

The trophy given to the winner of the college football game between University of Idaho Vandals
and University of Montana Grizzlies is derived from which X ? Suppose the answer is European
culture. What is the value of unknown variable X?

Answer to the
Verification
Question

Determine which aspect of European culture matches the question about the trophy. Given that the
trophy is derived from European culture, X must be a specific aspect or tradition within European
culture. X is ”Medieval armor and weaponry”.

Verification Re-
sult

Since Medieval armor and weaponry and European culture are not equivalent, the answer European
culture is likely incorrect.

Question (with
Hint)

The trophy given to the winner of the college football game between University of Idaho Vandals
and University of Montana Grizzlies is derived from which European culture? (The answer is likely
not European culture)

Corrected
Answer First, it’s important to note that the University of Idaho Vandals and the University of Montana

Grizzlies are both located in the United States, so the trophy is likely derived from American culture
rather than European culture. The trophy for this game is called the Little Brown Stein, and it is a
tradition that dates back to 1938. The name ”Stein” suggests a German influence, as ”stein” is a
German word for ”stone” or ”mug.” Therefore, the trophy is likely derived from German culture. !

Verification
Question

The trophy given to the winner of the college football game between University of Idaho Vandals and
University of Montana Grizzlies is derived from which X ? Suppose the answer is German culture.
What is the value of unknown variable X?

Answer to the
Verification
Question

If the trophy given to the winner of the college football game between the University of Idaho
Vandals and the University of Montana Grizzlies is derived from German culture, the unknown
variable X could be ”German traditions.”

Verification Re-
sult

Given the information provided, if the answer to the question is indeed ”European culture”, then
X could indeed be ”German traditions”. This is because German traditions could fall under the
umbrella of European culture. German traditions are a subset of European culture, so if the answer is
broadened from ”European culture” to a more specific subset like ”German traditions”, it would still
be consistent with the broader category. Therefore, the proposition appears to be correct.
Since European culture and German traditions are equivalent, the answer German culture is likely
correct.

Final Answer German culture!

Table 15: Example output obtained by PROCO on the HotpotQA dataset.
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