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Abstract
Recent work has found that few-shot sentence
classification based on pre-trained Sentence
Encoders (SEs) is efficient, robust, and effec-
tive. In this work, we investigate strategies for
domain-specialization in the context of few-
shot sentence classification with SEs. We first
establish that unsupervised Domain-Adaptive
Pre-Training (DAPT) of a base Pre-trained Lan-
guage Model (PLM) (i.e., not an SE) substan-
tially improves the accuracy of few-shot sen-
tence classification by up to 8.4 points. How-
ever, applying DAPT on SEs, on the one hand,
disrupts the effects of their (general-domain)
Sentence Embedding Pre-Training (SEPT). On
the other hand, applying general-domain SEPT
on top of a domain-adapted base PLM (i.e., af-
ter DAPT) is effective but inefficient, since the
computationally expensive SEPT needs to be
executed on top of a DAPT-ed PLM of each
domain. As a solution, we propose AdaSent,
which decouples SEPT from DAPT by training
a SEPT adapter on the base PLM. The adapter
can be inserted into DAPT-ed PLMs from any
domain. We demonstrate AdaSent’s effective-
ness in extensive experiments on 17 differ-
ent few-shot sentence classification datasets.
AdaSent matches or surpasses the performance
of full SEPT on DAPT-ed PLM, while substan-
tially reducing the training costs. The code for
AdaSent is available1.

1 Introduction

Few-shot learning aims at training an effective
model with a few labeled examples, reducing the
cost of developing models for new domains and
tasks. In recent work, SetFit (Tunstall et al., 2022)
achieves strong performance in few-shot classifica-
tion by contrastively fine-tuning (Koch et al., 2015)

1https://github.com/UKPLab/AdaSent
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Figure 1: Training diagram of AdaSent. Trainable pa-
rameters are marked in green. After Domain-Adaptive
Pre-training (DAPT) on the Pre-Trained Language
Model (PLM) and Sentence-Embedding Pre-Training
(SEPT) with an adapter, the two parts are assembled
together to perform SetFit for few-shot classification.

pre-trained sentence embeddings. Being prompt-
free and effective on relative small models, Set-
Fit is much more efficient than popular prompt-
based methods including In-Context Learning (ICL,
Brown et al., 2020) and Pattern Exploit Training
(PET, Schick and Schütze, 2021), which require
careful prompt engineering and large model size.

Despite its success, SetFit fine-tunes a sentence
encoder with only a few labeled samples without
leveraging unlabeled data from the target-task do-
main, which are easy to obtain. It is well-known
that Domain-Adaptive Pre-Training (DAPT)2 on
a vanilla PLM with unlabeled in-domain data
can significantly improve its downstream perfor-
mance (Han and Eisenstein, 2019; Gururangan
et al., 2020). However, it is ineffective to apply

2By DAPT we refer to the TAPT (Task-Adaptive Pre-
Training) in Gururangan et al. (2020). We do not strictly
differentiate between domain and task in the present work.

https://github.com/UKPLab/AdaSent


DAPT on sentence encoders, i.e. vanilla PLMs that
have undergone Sentence Embedding Pre-Training
(SEPT, Reimers and Gurevych, 2019) in general
domain, as DAPT messes up the effects of SEPT
and disrupts the model’s ability to semantically ac-
curately embed sentences. Though DAPT before
SEPT is effective in contrast (Wang et al., 2021),
it is computationally inefficient as the general-
domain SEPT has to be done all over again on
every domain-adapted PLM if we have more than
one domain.

To create a domain-specialized sentence en-
coder for few-shot sentence classification both effi-
ciently and effectively, we propose AdaSent, which
combines DAPT and SEPT in a modular fashion.
Specifically, it stores the sentence-specialization
abilities – obtained via a single SEPT procedure in
the general domain – into an adapter. This sentence-
encoding adapter is trained once regardless of
the number of domains, and can be plugged into
domain-adapted PLMs from various domains to
make them domain-specialized sentence encoders,
on which SetFit is carried out to do downstream
classification training (Figure 1). Our experiments
show that AdaSent can match or surpass the in-
efficient "full SEPT after DAPT" approach’s per-
formance on 17 sentence classification tasks from
various domains. The contribution of AdaSent is
two-fold:

• AdaSent significantly improves SetFit, the
previous state-of-the-art few-shot classifica-
tion approach, by leveraging unlabeled task-
specific data through DAPT.

• AdaSent resolves the conflict between DAPT
and SEPT and the efficiency issue of the se-
quential execution of both training procedures,
by combining them in a modular fashion with-
out sacrificing the performance.

2 Related Work

2.1 Text Classification with Sentence
Embeddings

Transformer-based (Vaswani et al., 2017) Pre-
trained Language Models (PLMs) (Devlin et al.,
2019; Liu et al., 2019; Sanh et al., 2019) can
be fine-tuned to build sentence embedding mod-
els (Reimers and Gurevych, 2019). Since the orig-
inal goal of training sentence embeddings is to
better model the sentence similarity for applica-
tions such as dense retrieval and sentence cluster-

ing (Reimers and Gurevych, 2019), their usage is
less explored in text classification. Though frozen
sentence embeddings can directly serve as input
features in text classification (Perone et al., 2018;
Piao, 2021), the performance is limited compared
to standard full fine-tuning of PLMs (Kumar et al.,
2022). To compensate this performance loss, Patel
et al. (2021) concatenate encodings from various
Sentence Transformers to form semantically richer
sentence representations, achieving results com-
parable to standard fine-tuning, but at the cost of
slower inference. More recently, SetFit (Tunstall
et al., 2022) significantly improves the few-shot
classification by contrastively fine-tuning a pre-
trained sentence-embedding model before training
a classification head. Despite efficiently utilizing
the limited labeled samples, SetFit does not lever-
age the abundant in-domain unlabeled data that can
provide more domain knowledge for the task.

2.2 Few-Shot Text Classification
Large language models can perform few-shot clas-
sification through ICL with task-specific prompts
consisting of a few labeled examples (Brown et al.,
2020). Though it avoids any gradient update, ICL
relies on large model sizes for good performance,
which makes inference costly. Prompt-based fine-
tuning, on the other hand, can work with smaller
models (Schick and Schütze, 2021; Tam et al.,
2021; Gao et al., 2021a). Parameter Efficient Fine-
Tuning (PEFT) can further reduce the training cost
by fine-tuning a much smaller module in a frozen
PLM (Houlsby et al., 2019; Li and Liang, 2021;
Hu et al., 2022; Karimi Mahabadi et al., 2022; He
et al., 2022; Liu et al., 2022). As an alternative
way to employ task instructions, Su et al. (2023)
train domain- and task-aware text embeddings by
prepending instructions to the input text. In con-
trast to these methods, SetFit and our approach not
only require a smaller model size, but also elim-
inate the need for prompts or instructions, which
can introduce large variance and should be care-
fully designed (Perez et al., 2021).

2.3 Domain Adaptation of Language Models
One typical way for creating domain-specific lan-
guage models is pre-training through Masked Lan-
guage Modelling on in-domain corpora, either con-
tinuously (Gururangan et al., 2020) or from-scratch
(Lee et al., 2019). An alternative is adapting the
tokenizer to accommodate domain-specific vocab-
ulary (Sachidananda et al., 2021; Yao et al., 2021).



For sentence embedding models specifically, do-
main adaptation is usually done through unsuper-
vised training with novel objectives (Wang et al.,
2021; Liu and Yang, 2022) or in-domain data gener-
ation (Wang et al., 2022), mainly for the similarity
or relevance estimation tasks. However, supervised
sentence embedding training with general-domain
data (SEPT) is always required after the unsuper-
vised domain-specific training phase (DAPT) to
achieve optimal performance (Wang et al., 2021).
Our proposed method is inspired by the idea of dis-
entangling domain adaptation and the downstream
relevance estimation task via PEFT in Zhan et al.
(2022). In the present study, we show that PEFT
can also be used to decouple DAPT and SEPT for
few-shot classification tasks.

2.4 Semi-Supervised Text Classification

Unsupervised data can be incorporated in various
ways to improve few-shot classification. While
the DAPT approaches in subsection 2.3 allow the
model to learn domain-specific features in a task-
agnostic way, other semi-supervised methods typi-
cally propagate task information from labeled data
to unlabeled data through pseudo labeling. The
pseudo-labeled data are either used for self-training
(Schick and Schütze, 2021) or consistency training
(Xie et al., 2020). All these approaches can also be
combined to enable more efficient use of unlabeled
data (Li et al., 2021b; Chen et al., 2021; Zhao and
Yao, 2022). In our experiments, we found that sim-
ple self-training using the same data for DAPT can
further improve the performance of AdaSent.

3 Background

3.1 SetFit

SetFit (Tunstall et al., 2022) is a two-step train-
ing procedure based on pre-trained sentence-
embedding Transformer models for few-shot sen-
tence classification. In the sentence-embedding
fine-tuning step, positive and negative sentence
pairs are generated from few-shot labeled sentences
as follows: Pairs consisting of sentences from the
same class are labeled positively with a score of
1 and pairs of sentences from different classes are
assigned a negative score of 0. These generated
pairs are used to fine-tune the sentence-embedding
model with the Cosine Similarity Loss:

Lcosine = ∥y − cos_sim(u, v)∥2 ,

where u, v ∈ RD are the D-dimensional sen-
tence embeddings of two sentences respectively
and y ∈ {0, 1} is the pair label. This aims to push
instances of the same classes closer together in
the representation space and those from different
classes further apart, thereby clustering sentences
according to their class labels to provide a clearer
decision boundary for the classifier training later.
In the second step, the Transformer is frozen to
embed the original few-shot sentences. These sen-
tence embeddings are used as input features to train
a simple Logistic Regression (Cox, 1958) classifi-
cation head.

3.2 Sentence Embedding Pre-Training (SEPT)
As will be shown in subsection 6.2, the success
of SetFit heavily relies on SEPT. This is because
the averaged word representations or the [CLS]
representation from a PLM cannot capture the sen-
tence semantics well without further training with
sentence-level objectives (Reimers and Gurevych,
2019). The purpose of sentence-embedding pre-
training is to train universal semantic representa-
tions that can be fine-tuned for different down-
stream tasks, e.g. in SetFit. Unlike SetFit, sen-
tences with similar meaning are brought closer to-
gether in SEPT, while those with dissimilar mean-
ings are pushed apart. Sentence pairs for this
kind of contrastive training are typically obtained
from Natural Language Inference (NLI, Bowman
et al., 2015; Williams et al., 2018) or paraphrase
datasets in the general domain. Sentence pairs
labeled as "entailment" or "paraphrase" in the origi-
nal datasets are used as positive pairs, i.e. sentences
with similar meaning, in SEPT. The Multiple-
Negative Ranking Loss (MNRL, Henderson et al.,
2017) with in-batch negatives is usually applied for
training:

LMNRL = − 1

K

K∑
i=1

log
ecos_sim(xi,yi)∑K
j=1 e

cos_sim(xi,yj)
,

where {(xi, yi)}Ki=1 are a batch of K positive sen-
tence pairs.

3.3 Domain-Adapted Sentence Embeddings
The definition of sentence similarity varies from
domain to domain, but labeled data for SEPT are
usually expensive to obtain in specialized domains.
Wang et al. (2021) found that domain-adapted sen-
tence embedding models can be trained following
a two-stage recipe: first doing unsupervised DAPT
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Figure 2: Five ways to combine Domain-Adaptive Pre-Training (DAPT) and Sentence Embedding Pre-Training
(SEPT). An arrow pointing from a Transformer to an adapter means the adapter is trained on that Transformer. A
dashed line means simple module assembly without any parameter tuning. ¹ marks trained parameters that are
reusable and shared across downstream tasks. In contrast, all SEPT training starting from a DAPT Transformer (red
arrows) must be repeated on every downstream task.

(e.g. MLM) on the domain-specific corpus, then
applying supervised SEPT in the general domain
(Figure 2 (1)). With this training order, if we want
to train models for various domains, the same sec-
ond stage has to be repeated for every domain, al-
though it does not involve any domain-specific data.
Such computational overhead cannot be avoided
by simply reversing the order of the two training
stages (Figure 2 (4)), since it has been shown in
previous work that DAPT after the generic sentence
embedding training has a negative impact on the
downstream performance (Wang et al., 2021).

4 Method

As illustrated in Figure 1, our method for few-shot
classification with domain-adapted sentence em-
beddings consists of three parts of training: (1)
DAPT on the base PLM with task-specific unla-
beled data, (2) SEPT on an adapter module with
labeled sentence pairs from the general domain and
(3) SetFit on the whole architecture (i.e. both the
PLM and the adapter) with few-shot labeled data.

In the first part, specifically, we continue to train
a base PLM like DistilRoBERTa on unlabeled tar-
get task data with the MLM loss to learn domain-
specific language knowledge. In another separate
procedure, SEPT is done by tuning an adapter
on a frozen base Transformer (the same PLM as
in DAPT) without any domain adaptation. Once
the domain-independent sentence encoding adapter
is trained, it can be easily inserted into different
DAPT models, ready for the few-shot classification
task learning via SetFit in the third part.

Compared to the previous approach described in
subsection 3.3, AdaSent is more efficient for three

Data All Paraphrase NLI+SC+SE NLI
Data Size 1B 86M 0.6M 0.3M
Accuracy 68.6 70.0 70.0 68.8

Table 1: SetFit accuracy on the MTEB classification
tasks (see subsection 5.3) of sentence embedding mod-
els trained on different SEPT datasets without do-
main adaption. All and Paraphrase stand for the all-
distilroberta-v13 and the paraphrase-distilroberta-base-
v24, respectively.

reasons. Most significantly, our SEPT adapter is
trained only once and shared across various down-
stream classification tasks, avoiding the overhead
of repeating SEPT on new DAPT-ed models. More-
over, AdaSent allows for the independent execu-
tion of DAPT and SEPT, eliminating the need for
sequential training. Therefore, they can be run con-
currently in parallel to save training time. Lastly,
training an adapter instead of the full model in
SEPT reduces the number of trainable parameters.

Given the extensive number of experiments in
this study, we use a mixture of three datasets
for SEPT, dubbed NLI+SC+SE, consisting SNLI
(Bowman et al., 2015) + MultiNLI (Williams et al.,
2018), Sentence Compression (Filippova and Al-
tun, 2013) and StackExchange duplicate questions,
for the sake of simplicity. This is a much smaller
subset of the 1 billion sentence pairs on which the
popular off-the-shelf sentence embedding models5

are pre-trained. We found that these three SEPT
datasets transfer the best for the downstream clas-

3https://huggingface.co/sentence-transformers/
all-distilroberta-v1

4https://huggingface.co/sentence-transformers/
paraphrase-distilroberta-base-v2

5https://huggingface.co/sentence-transformers

https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2
https://huggingface.co/sentence-transformers


sification tasks6, and are adequate to train a model
that performs on par with or even better than off-
the-shelf models as shown in Table 1.

5 Experimental Setup

5.1 Models

We experiment with three baselines and five types
of domain-adapted sentence embedding models.
All of these models serve as the sentence encoder
in the SetFit for the few-shot classification tasks.
The baselines are: (1) Base, the base PLM without
any DAPT or SEPT; (2) SEPT, with only SEPT
on the base PLM, which is also the default en-
coder in the original SetFit work; (3) DAPT, a
domain-adapted PLM, i.e. the Base model continu-
ously pre-trained on the in-domain corpus with-
out SEPT. We also experiment with five varia-
tions of domain-adapted sentence embedding mod-
els, which differ in the way SEPT and DAPT
are combined (Figure 2). In detail, they are: (1)
DAPT→SEPT, created through DAPT followed
by SEPT on the full Transformer parameters with-
out adapter; (2) DAPT+SEPTada is our AdaSent
model; (3) DAPT→SEPTada differs from AdaSent
in the training of the SEPT adapter, which is
trained on the DAPT model instead of the base
PLM; (4) SEPT→DAPT reverses the training or-
der of (1), namely doing DAPT after SEPT; (5)
SEPT→DAPTada trains a DAPT adapter on a
frozen SEPT model. It requires the shortest training
time, since it avoids any update of the Transformer
parameters.

5.2 Training Details

We use DistilRoBERTa as the base PLM in our
main experiments. Additional results on Distil-
BERT are reported in the Appendix D. We set the
maximum sequence length to 512. We do not tune
the hyperparameters and keep them the same for all
downstream tasks. If not stated otherwise, the de-
fault setting in the used libraries (cf. Appendix A)
is applied. For DAPT with MLM in the main exper-
iments, we train for a fixed number of 2344 steps7

with a batch size of 256. When using PEFT meth-
ods for DAPT, we keep the same batch size and
number of steps, but with a larger learning rate of
1e− 4. For SEPT, we train with a batch size of 64
for 1 epoch; the learning rates are 2e-5 and 1e-4 for

6See Appendix B for results of individual SEPT datasets.
7This corresponds to 3 epochs on the largest training set in

our evaluation datasets.

full and parameter-efficient training, respectively.
For parameter-efficient training, a parallel adapter
(He et al., 2022) is used by default. We also provide
results of three other different PEFT methods: bot-
tleneck adapter (Houlsby et al., 2019; Pfeiffer et al.,
2020), LoRA (Hu et al., 2022) and prefix-tuning
(Li and Liang, 2021).

In a separate experiment (subsection 6.1), we
compare, on models DAPT, DAPT→SEPT and
SEPT→DAPT, three objectives for DAPT: MLM,
TSDAE (Wang et al., 2021) and SimCSE (Gao
et al., 2021b). The latter two are designed for unsu-
pervised sentence embedding learning, represent-
ing two mainstream training objectives for this task:
denoising autoencoding and contrastive learning,
respectively. For all three objectives, we train on
the unlabeled dataset for 3 epochs. The batch sizes
are 8, 8, 64 and the learning rates are 5e-5, 3e-5 and
1e-2, respectively. We only use NLI data in SEPT
here for simplicity. The same setting is applied for
the experiment in subsection 6.5.

For each downstream classification task, we do
SetFit on all the models with 8-shot labeled data
per class for 1 epoch. The default classification
head in SetFit is Logistic Regression.

5.3 Evaluation

We evaluate the models on 17 classification tasks,
an overview of which is provided in Table 2. These
include 11 datasets from the MTEB (Massive Text
Embedding Benchmark, Muennighoff et al., 2023).
For datasets that contain multilingual data, we only
use the English subset in this work. Since most of
the MTEB tasks are from the general domain, we
add another six tasks for domain-specific cases, in-
cluding Adverse Drug Events Binary Classification
(Gurulingappa et al., 2012) and PubMed RCT (Der-
noncourt and Lee, 2017) from the biomedical do-
main, LEDGAR (Tuggener et al., 2020; Chalkidis
et al., 2022) from the legal domain, as well as Fi-
nancial PhraseBank (Malo et al., 2014), Twitter
Financial News Sentiment8 and Twitter Financial
News Topic9 from the financial domain.

For each task, we sample 8 shots per class from
the training set as the labeled data for SetFit and
treat the whole original training set as the unla-
beled data for DAPT. We run SetFit five times with
different random seeds, which correspond to five

8https://huggingface.co/datasets/zeroshot/
twitter-financial-news-sentiment

9https://huggingface.co/datasets/zeroshot/
twitter-financial-news-topic

https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
https://huggingface.co/datasets/zeroshot/twitter-financial-news-topic
https://huggingface.co/datasets/zeroshot/twitter-financial-news-topic


Dataset Abbr. # Train # Class Seq. len.
(words) Description

MTEB classification
Amazon Counterfactual AC 4018 2 20 Amazon customer reviews labeled as counterfactual or not.
Banking77 BANK 10003 77 11 Banking querys with corresponding intents.
Amazon Massive Intent AMI 11514 60 6 Amazon Alexa utterances with associated intent.
Amazon Massive Scenario AMS 11514 18 6 Amazon Alexa utterances with theme.
MTOP Intent MI 15667 113 7 Task-oriented dialog utterances with intent.
MTOP Domain MD 15667 11 7 Task-oriented dialog utterances with domain.
Emotion EMO 16000 6 19 Twitter messages with basic emotion type.
IMDb IMDB 25000 2 233 Movie reviews as positive or negative.
Twitter Sentiment Extraction TSE 27481 3 12 Tweet sentiment classification as neutral, positive or negative.
Toxic Conversation TC 50000 2 51 Comments from the Civil Comments platform as toxic or not.
Amazon Reviews Multi ARM 200000 5 38 Amazon reviews with 1-5 stars.

Domain-specific tasks
Financial PhraseBank FPB 3876 3 23 Financial news headlines with the view of a retail investor.
Twitter Financial News Sentiment TFNS 8588 3 12 Finance-related tweets with their sentiment.
Twitter Financial News Topic TFNT 15291 20 18 Finance-related tweets with their topic.
Adverse Drug Events ADE 18812 2 19 Classify if a sentence is ADE-related or not.
PubMed RCT RCT 176642 5 27 PubMed abstract sentences with their role in the abstract.
LEDGAR LED 60000 100 114 Contract provisions with their main topic.

Table 2: Overview of the evaluation datasets. All tasks are multi-class classification. From the training set, only 8
labeled shots per class are used for SetFit. The whole training set is used in DAPT without labels. Examples from
each dataset can be found in Appendix F.
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Figure 3: Averaged accuracy on 17 datasets of different
DAPT training objectives (SimCSE, TSDAE, MLM)
and different training strategies (without, before or after
SEPT). Results on individual datasets are in Table 11.

different sets of few-shot samples. We report the
average accuracy on the test set of each dataset over
the five runs.

6 Results

6.1 Training Order and DAPT Objectives

In our first experiment, we compare two training or-
ders: SEPT→DAPT and DAPT→SEPT, and three
DAPT objectives: MLM, TSDAE and SimCSE.
The results are shown in Figure 3.

Regarding the training order, DAPT→SEPT out-
performs SEPT→DAPT for all three DAPT objec-
tives. DAPT can enhance the SEPT baseline only
when it is performed prior to SEPT, but this setting
has the efficiency issue described in subsection 3.3.
On the other hand, DAPT has a negative impact on
an already pre-trained sentence encoder, because

it may distort the sentence representation space
shaped by SEPT. These findings on our classifica-
tion tasks are consistent with those on the retrieval
tasks in Wang et al. (2021).

With the DAPT→SEPT order, MLM achieves
the best result among three DAPT objectives, im-
proving the SEPT baseline by around 3 points on
average. Although TSDAE has been shown to have
a clear advantage in tasks like re-ranking and para-
phrase identification (Wang et al., 2021), it turns
out to be suboptimal for sentence classification. On
the contrary, MLM performs worse than TSDAE
and SimCSE when there is no SEPT. We suppose
that sentence classification with SetFit requires a
good representation of both token- and sentence-
level semantics, which are learned through MLM
and SEPT respectively in the DAPTMLM→SEPT
setting. In other settings, either supervised sen-
tence embedding training is absent (only DAPT),
or token representation learning is missing (both
TSDAE and SimCSE are for sentence representa-
tion learning).

6.2 Combination of DAPT and SEPT

In this subsection, we present the results of our
main experiments on various combination strate-
gies for DAPT and SEPT. The results on the MTEB
datasets are reported in Table 3, and those for the
domain-specific datasets are in Table 4. AdaSent
achieves the best result on 10 out of 17 tasks, out-
performing the not domain-adapted SEPT model



Row
No. Model AC BANK AMI AMS MI MD EMO IMDB TSE TC ARM Avg.

No SEPT
R1 Base 65.9 75.7 62.0 71.0 72.8 89.4 40.2 67.7 50.9 55.2 37.3 62.6
R2 DAPT 69.4 80.4 70.0 79.4 80.6 94.7 37.3 74.9 55.1 48.2 41.9 66.5

Full SEPT
R3 SEPT (prev. SOTA) 76.1 77.0 66.8 73.3 78.4 90.6 52.2 84.8 63.2 63.6 44.2 70.0
R4 DAPT→SEPT 73.8 80.9 73.5 79.2 83.7 94.5 54.0 86.2 63.7 63.6 46.9 72.7

SEPT on Adapter
R5 SEPTada 76.0 76.9 66.0 73.6 79.4 91.4 55.3 84.6 63.1 65.4 43.8 70.5
R6 DAPT→SEPTada 77.9 80.7 73.8 79.3 82.9 94.7 54.7 85.6 65.0 65.5 47.0 73.4
R7 AdaSent 77.9 80.6† 73.7† 80.5† 82.7† 95.4† 54.1 86.7 65.2 63.0 48.1† 73.4

DAPT on Adapter
R8 SEPT→DAPTada 72.8 79.5 69.8 78.0 81.0 93.7 48.3 84.4 59.2 59.4 44.9 70.1

Table 3: Classification accuracy on the MTEB classification tasks. Full SEPT means tuning all the PLM parameters
in the sentence embedding pre-training. Best results on each dataset are in bold. † marks the cases where AdaSent
outperforms SEPT (R5) with a statistical significance level of 0.05.

Row
No. Model FPB TFNS TFNT ADE RCT LED Avg.

No SEPT
R1 Base 49.2 51.1 57.7 60.7 49.6 64.2 55.4
R2 DAPT 50.3 56.3 64.8 67.8 57.8 66.7 60.6

Full SEPT
R3 SEPT 63.0 65.0 62.2 62.3 61.5 65.6 63.3
R4 DAPT→SEPT 65.6 69.4 68.4 67.4 66.5 68.1 67.6

SEPT on Adapter
R5 SEPTada 64.2 66.1 61.4 62.8 58.7 65.9 63.2
R6 DAPT→SEPTada 66.1 69.9 68.5 65.8 67.4 68.0 67.6
R7 AdaSent 66.4 69.8 68.6† 67.8 67.5 67.8† 68.0

DAPT on Adapter
R8 SEPT→DAPTada 62.7 62.0 65.2 66.7 64.0 66.8 64.6

Table 4: Classification accuracy on the domain-specific
datasets. Best results on each dataset are in bold. †
marks the cases where AdaSent outperforms SEPT (R5)
with a statistical significance level of 0.05.

by 3.9 on average on the MTEB datasets, and more
prominently, by 4.7 on the datasets in Table 4 with
a larger domain shift from the pre-training data.
The improvement is statistically significant on 8
datasets, with a significance level of 0.05. Our fol-
lowing analysis will focus on Table 3, while similar
trends can be observed in Table 4.

SEPT is crucial to the final accuracy of classi-
fication methods based on sentence embeddings
like SetFit, though this is not explicitly mentioned
in the original SetFit paper (Tunstall et al., 2022).
SEPT improves both the Base model (R3 vs. R1)
and the DAPT model (R4 vs. R2) by 7.3 and 6.2
points on average, respectively.

By adding a DAPT stage before SEPT, the classi-
fication accuracy can be significantly increased by
up to 6.7 points (on AMI) and 2.7 points on average
(R4 vs. R3). However, as we discussed in subsec-
tion 3.3, executing the same SEPT procedure on
every DAPT model results in computational ineffi-
ciency. As a more efficient alternative, our AdaSent
avoids repeating SEPT by sharing a SEPT adapter

DAPT + SEPTPEFT
(AdaSent)

SEPT DAPTPEFT
58

60

62

64

66

68
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72

Ac
cu
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cy
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Bottleneck adapter
Parallel adapter
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Prefix-tuning

Figure 4: Averaged accuracy of different PEFT methods.
SEPTPEFT stands for SEPT on a PEFT module. More
detailed results are available in Table 13.

across different downstream tasks, while obtain-
ing comparable results without statistically signif-
icant difference (R7 vs. R4), except for the AMS
dataset, where Adasent is even significantly better
than DAPT→SEPT. The comparable performance
of DAPT→SEPTada and AdaSent (R6 vs. R7)
proves the viability of decoupling DAPT and SEPT:
The SEPT adapter does not have to be trained on
a specific DAPT model. Instead of doing SEPT
on adapter, we also tried with DAPT on adapter
(SEPT→DAPTada), which should be the most effi-
cient method as explained in subsection 5.1. Disap-
pointingly, it can barely improve over SEPT (R8 vs.
R3) and is much worse than AdaSent (R8 vs. R7).
The reason could be that this setting suffers from
the same problem as SEPT→DAPT, as the DAPT
phase, despite on an adapter, is still conducted after
SEPT.

6.3 Comparison of PEFT Methods

We experimented with four different PEFT meth-
ods for both SEPT and DAPT (Figure 4). When
applied to SEPT in AdaSent, parallel adapter
works best on the majority of the datasets (Ta-



Tunable
Parameters

None
(0%)

Adapter
(4%)

Transformer
(96%)

All
(100%)

Accuracy 65.0 69.0 71.2 71.5

Table 5: Results of tuning subsets of model parameters
(marked with relative sizes) in the final SetFit stage of
AdaSent. None means only training the logistic regres-
sion head.

MLM TSDAE
DAPT+SEPTada (AdaSent) 69.7 67.3
DAPT→SEPT 69.7 69.1

Table 6: Averaged accuracy of different DAPT objec-
tives in AdaSent and DAPT→SEPT.

ble 13) and on average. Prefix-tuning is signifi-
cantly worse than the other three methods. This
might be due to the fact that the data in our SEPT
dataset NLI+SC+SE come from three different
tasks, whose properties cannot be compressed
into a single prefix. When applied to DAPT in
the SEPT→DAPTPEFT setting, their performance
exhibits variability across different datasets (Ta-
ble 13), but none of the four PEFT methods in this
setting can beat the AdaSent variants due to the
critical drawback of the setting as discussed at the
end of subsection 6.2.

6.4 Tunable Parameters in SetFit

We tune various subsets of parameters in the SetFit
stage of AdaSent and compare the results in Ta-
ble 5. We found that only updating the adapter
parameters is not sufficient. However, tuning only
the Transformer backbone leads to almost the same
results as tuning all parameters (i.e. Transformer
+ adapter). This indicates that with only few-shot
labeled data, SetFit must at least update the Trans-
former parameters to achieve good performance,
and cannot work well on an adapter as in the case
of SEPT, where much more supervised data are
available.

6.5 Explaining the Success of AdaSent

The success of AdaSent relies on the fact that a
SEPT adapter trained on a base PLM can be un-
problematically inserted into any domain-adapted
version of the same PLM. This might be because
in both original pre-training and domain-adaptive
pre-training, the PLM parameters are consistently
tuned with the MLM objective. This implies that
the adapter can generalize to work together with
PLM parameters trained on different types of data,
from general-language data (e.g. BookCorpus, Zhu

Self-training No Yes
SEPT 67.6 68.6 (+1.0)
DAPT+SEPTada (AdaSent) 71.5 72.4 (+0.9)

Table 7: Averaged accuracy of AdaSent and SEPT, w/
or w/o self-training.

Method DAPT
Steps

Cost (hour) Acc.SEPT DAPT Total

DAPT→SEPT

0

15 × 0.27

0.00 4.05 67.6
100 0.44 4.49 69.8
500 2.21 6.26 70.7
1000 4.42 8.47 71.1
2000 8.83 12.88 71.5

AdaSent

0

1 × 0.17

0.00 0.17 67.9
100 0.44 0.61 69.5
500 2.21 2.38 70.7
1000 4.42 4.59 71.2
2000 8.83 9.00 71.4

Table 8: Total training cost on 15 tasks with Distil-
RoBERTa as base PLM on a Tesla V100 GPU.

et al., 2015) to domain-specific data, as long as
the same MLM objective is used. To verify this
idea, we replace the MLM objective with TSDAE
in both AdaSent and DAPT→SEPT. As shown
in Table 6, using TSDAE instead of MLM in the
DAPT stage of AdaSent leads to a substantial de-
crease of 2.4 points in the classification accuracy,
while the performance drop in DAPT→SEPT is
relatively marginal (0.6 on average). This supports
our hypothesis that the adapter can only general-
ize to collaborate with PLM parameters that are
domain-adapted with the same objective as in the
pre-training.

6.6 Combining DAPT and Self-Training

Besides DAPT, another major way to utilize the un-
labeled data is self-training, which has been shown
to be complementary to DAPT (Li et al., 2021b).
To integrate self-training into SetFit, we first en-
code the unlabeled data with the sentence encoder
(in our case a DAPT Transformer + SEPT adapter)
trained with few-shot labeled data in the contrastive
fine-tuning phase. When training the classification
head, we iteratively pseudo-label the encoded un-
labeled sentences and train with both the pseudo-
labeled and the gold-labeled data10. In Table 7,
we show that self-training can further improve both
SEPT and AdaSent’s accuracy by 1.0 and 0.9 on av-
erage, respectively. These two close improvements
reveal that the benefit of self-training is orthogonal
to that of AdaSent/DAPT. We leave more complex

10The training details are available in Appendix G.



approaches of combining AdaSent and self-training
for future work.

7 Training Cost

Table 8 gives an overview of the training cost for
DAPT→SEPT and AdaSent in our experiments.
We use a Tesla V100 GPU for training. We leave
out IMDB and LED as they have too long se-
quences (cf. Table 2), thus cannot represent the
majority of our tasks.

With AdaSent, SEPT is trained once for 0.17h
and the SEPT adapter can be shared across tasks.
In contrast, DAPT→SEPT costs 0.27 hours addi-
tionally for every task due to its repeated SEPT. In
our experiments, we use relatively small-sized data
for SEPT. However, the SEPT cost can increase dra-
matically if much larger training data are used. For
example, SEPT on the combination of all datasets
in Table 10 for 1 epoch can take 4 hours, resulting
in 15 × 4 hours for DAPT→SEPT for 15 tasks.
For DAPT, we can see that 1000 steps are already
sufficient for a substantial improvement in accu-
racy. In this case, AdaSent takes 4.59 hours for the
training on 15 tasks in total, while DAPT→SEPT
takes 8.47 hours (×1.85).

8 Conclusion

We introduce an efficient method to obtain domain-
adapted sentence embeddings for few-shot clas-
sification. We found that SetFit, the previous
state-of-the-art approach, can be significantly im-
proved by introducing a simple Domain-Adaptive
Pre-Training (DAPT) stage before its Sentence-
Embedding Pre-Training (SEPT). However, this
DAPT→SEPT approach requires the same SEPT
procedure to be done on each DAPT-ed PLM for ev-
ery domain, resulting in computational inefficiency.
We propose a novel approach, AdaSent, to address
this issue by storing the SEPT knowledge in an
adapter that is trained on an unadapted PLM and in-
sertable into any DAPT-ed PLM. AdaSent matches
or surpasses the performance of DAPT→SEPT,
while significantly reducing the training cost of
SEPT. We attribute the success of AdaSent to the
generalization ability of the SEPT adapter to work
with PLM parameters trained on data from different
domains with a consistent MLM objective.

Limitations

Since our method is based on SetFit, it inherits
some of its limitations. It is, for example, not appli-

cable for sentence pair classification like NLI. In
addition, the advantage of SetFit is not significant
in classification tasks with too many classes. More-
over, as our method is based on sentence embed-
dings, its application is limited to sentence classifi-
cation, unlike other few-shot classification methods
that can also handle token-level classification tasks
like NER and POS tagging.

Another limitation is associated with the fact
that the SEPT adapter in our method can only be in-
serted into domain-adapted language models with
the same unmodified tokenizer and vocabulary as
the original base PLM. For DAPT-ed models with
a domain-specific tokenizer or vocabulary, we sup-
pose the adapter trained on the original PLM will
not be compatible anymore.
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current work.
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A Implementation

See Table 9 for the implementation of methods
used in this work.

B Experiment with SEPT Datasets

We experiment with different SEPT datasets11 to
check their transferability to downstream tasks Ta-
ble 10. On average, AllNLI, SentenceCompression
and StackexchangeDuplicateQuestions are the top
three datasets. The similarity between the SEPT
data and the downstream data seems to have an
influence on the performance. For example, QA-
related data (YahooAnswersTitleAnswer, Stack-
exchangeDuplicateQuestions and YahooAnswer-
sQuestionAnswer) are especially beneficial for the
classification tasks involving user utterances in dia-
logues (BANK, AMI, AMS, MI, MD). Given this
observation, one might want to search for the opti-
mal SEPT datasets depending on certain types of
classification tasks. Our adapter-based method en-
ables efficient SEPT, which helps to ease the data
selection.

C DAPT Objectives and Training Order

Results on individual datasets are listed in Table 11.

D Results on DistilBERT

We report the results on DistilBERT in Table 12.
Similar to DistilRoBERTa, DAPT with MLM

11See https://www.sbert.net/examples/training/
paraphrases/README.html for information of the datasets.

Method Used Implementation
PEFT https://github.com/adapter-hub/

adapter-transformers
TSDAE https://github.com/UKPLab/

sentence-transformers
SEPT https://github.com/UKPLab/

sentence-transformers
SimCSE https://github.com/princeton-nlp/

SimCSE
MLM https://github.com/huggingface/

transformers/blob/main/examples/
pytorch/language-modeling/run_mlm_
no_trainer.py

SetFit https://github.com/huggingface/
setfit

Table 9: Implementation used in this work.

(DAPT→SEPT and DAPT+SEPTada) improves the
performance of SEPT by around 3 points on av-
erage. Replacing full SEPT with SEPT adapter
causes a slight drop of around 0.5 in the classi-
fication accuracy. Interestingly, without any su-
pervised sentence embedding pre-training, DAPT
itself can outperform SEPT on some datasets (AC,
ADE, LED).

E PEFT results

Results on individual datasets when using differ-
ent PEFT methods as discussed in subsection 6.3
in our AdaSent method (DAPT+SEPTPEFT) and
SEPT→DAPTPEFT are shown in Table 13.

F Evaluation Datasets

Table 14 provides examples from each evaluation
dataset.

G Self-Training Setting

In the SetFit phase, we contrastively fine-tune the
sentence embedding model with the few-shot data
as before (subsection 3.1), but replace the normal
Logistic Regression fitting with self-training on
both labeled and unlabeled data. For this, we use
the SelfTrainingClassifier from scikit-learn12

with 10 iterations and a threshold of 0.9. At each
iteration, the classifier predicts the label of the un-
labeled data. The pseudo-labeled data with a confi-
dence score higher than the threshold are used to
augment the training data in the next iteration.

12https://scikit-learn.org/stable/
modules/generated/sklearn.semi_supervised.
SelfTrainingClassifier.html
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SEPT Data AC BANK AMI AMS MI MD EMO IMDB TSE TC ARM Avg.
AllNLI 65.5 75.5 63.5 72.1 74.2 90.2 48.8 84.9 62.7 64.8 43.5 67.8
SentenceCompression 74.0 74.9 61.5 72.9 74.9 90.6 52.4 83.8 60.3 58.7 42.2 67.9
SimpleWiki 65.4 74.3 59.4 71.1 70.8 89.3 45.3 83.5 59.7 63.8 41.9 65.9
Altlex 68.4 74.5 59.6 71.1 72.0 89.2 45.6 81.8 57.7 62.6 41.6 65.8
QuoraDuplicatesTriplets 73.6 75.3 60.9 71.1 75.0 89.5 44.6 81.0 58.0 61.8 42.0 66.6
CocoCaptions 58.4 74.3 58.7 71.2 71.6 89.6 45.5 60.3 51.2 58.4 37.7 61.5
Flickr30kCaptions 58.0 74.1 59.5 71.2 73.8 89.4 45.1 60.0 52.3 66.4 36.8 62.4
YahooAnswersTitleQuestion 69.0 75.2 60.5 72.4 75.5 90.6 46.3 83.4 55.1 58.6 41.6 66.2
YahooAnswersTitleAnswer 71.5 75.1 61.2 73.7 75.5 90.9 44.9 80.9 55.6 52.1 41.5 65.7
StackexchangeDuplicateQuestions 72.0 75.1 64.0 73.6 77.9 90.2 46.1 77.2 58.2 60.6 43.1 67.1
YahooAnswersQuestionAnswer 67.3 75.0 61.2 73.4 75.4 90.8 45.3 81.5 52.3 62.7 41.2 66.0

Table 10: Results on MTEB tasks of SEPT model trained on different datasets. The best scores are marked in bold
and second best with underline. We sample 100K instances from each SEPT dataset and train for 1 epoch.

Model AC BANK AMI AMS MI MD EMO IMDB TSE TC ARM FPB TFNS TFNT ADE RCT LED Avg.
TSDAE

DAPT 74.1 77.6 64.4 76.0 77.4 93.0 46.3 78.4 53.7 49.6 44.8 51.1 55.7 61.6 62.5 58.8 67.8 64.3
SEPT→DAPT 79.5 77.5 66.8 76.4 79.9 93.2 46.1 79.5 50.6 47.6 47.3 58.4 53.2 63.0 60.0 57.6 68.3 65.0
DAPT→SEPT 72.9 77.3 67.9 76.3 79.8 93.4 52.0 85.6 63.6 62.1 48.9 66.6 63.9 66.2 65.3 65.4 68.1 69.1

SimCSE
DAPT 71.2 75.3 61.9 73.0 75.6 89.9 46.8 78.5 59.2 57.2 44.5 58.8 57.3 60.5 61.3 63.6 64.3 64.6
SEPT→DAPT 66.2 75.4 63.3 74.0 78.8 89.8 44.4 66.9 59.1 69.9 44.7 64.9 61.7 60.2 58.3 68.2 65.5 65.4
DAPT→SEPT 71.4 76.0 65.4 73.9 78.8 91.9 48.4 84.7 64.1 66.4 46.9 66.9 62.5 62.3 62.7 66.1 66.0 67.9

MLM
DAPT 61.8 76.6 61.8 75.7 77.0 93.2 38.0 64.8 52.7 60.3 44.2 53.2 58.3 63.9 63.9 46.4 67.3 62.3
SEPT→DAPT 73.2 76.4 65.0 75.6 79.0 92.8 49.1 79.3 58.3 51.3 48.8 55.9 61.5 65.9 64.7 59.2 67.9 66.1
DAPT→SEPT 72.7 78.0 67.4 77.0 82.4 93.7 49.9 85.5 63.9 65.3 50.9 66.6 63.8 66.8 66.5 66.9 67.7 69.7

Baselines
SEPT 70.2 75.5 64.5 73.6 77.4 90.6 51.8 84.2 63.3 61.8 43.3 65.5 60.8 61.8 64.0 64.3 64.6 66.9
Base 65.9 75.2 60.6 71.0 73.9 89.4 40.3 68.0 50.9 55.6 37.6 48.5 50.8 57.8 60.9 49.2 64.2 60.0

Table 11: Comparison of different DAPT objectives and training order of DAPT and SEFT. The best scores are
marked in bold and second best with underline. Note that the training settings of DAPT here is different from that
in Table 3 and Table 4: We do DAPT for 3 epochs instead of a fixed-number of steps.

Model AC BANK AMI AMS MI MD EMO IMDB TSE TC ARM FPB TFNS TFNT ADE RCT LED Avg.
No SEPT

Base 74.1 73.4 61.9 70.6 75.6 88.2 35.3 64.5 49.2 58.0 37.9 49.6 43.4 52.6 64.7 53.2 64.3 59.8
DAPT 82.1 79.6 70.2 79.2 82.9 95.1 40.1 78.3 56.1 50.6 45.2 53.8 53.2 65.6 72.4 65.3 67.3 66.9

Full SEPT
SEPT 72.6 75.7 67.5 74.3 79.7 91.9 48.4 80.7 63.8 63.9 42.8 61.1 62.1 58.2 63.9 58.6 65.6 66.5
DAPT→SEPT 75.6 79.7 73.9 80.4 83.9 94.9 50.9 83.4 63.8 64.4 46.1 62.2 64.6 66.3 65.9 64.0 67.3 69.8

SEPT on Adapter
SEPTada 75.5 75.2 66.3 73.7 78.5 91.4 50.0 78.9 63.5 58.2 42.1 63.4 61.8 55.9 62.3 58.2 65.3 65.9
AdaSent 80.6 79.8 72.1 80.3 82.4 95.7 51.6 82.2 62.8 56.6 47.1 60.4 66.2 63.4 64.9 65.8 67.3 69.4

Table 12: Results on DistilBERT. Best scores are in bold.

PEFT method AC BANK AMI AMS MI MD EMO IMDB TSE TC ARM FPB TFNS TFNT ADE RCT LED Avg.
DAPT+SEPTPEFT (AdaSent)

Bottleneck adapter 76.3 80.7 73.0 80.2 82.2 95.3 51.5 87.4 64.2 58.6 48.0 65.0 66.7 68.6 65.2 68.7 68.2 70.6
Parallel adapter 77.9 80.6 73.7 80.5 82.7 95.4 54.1 86.7 65.2 63.0 48.1 66.4 69.8 68.6 67.8 67.5 67.8 71.5
LoRA 79.0 80.7 72.9 79.6 82.0 94.6 52.9 85.1 63.1 60.1 46.3 63.5 64.7 66.9 67.1 65.7 67.5 70.1
Prefix-tuning 53.1 80.1 69.8 78.5 80.3 94.1 41.8 62.9 49.0 46.7 36.0 41.8 47.9 65.3 58.8 47.6 67.3 60.0

SEPT→DAPTPEFT
Bottleneck Adapter 76.4 77.5 67.0 74.6 79.6 91.5 50.3 82.9 61.4 58.0 43.5 60.7 63.7 63.6 64.6 65.1 65.8 67.4
Parallel Adapter 72.8 79.5 69.8 78.0 81.0 93.7 48.3 84.4 59.2 59.4 44.9 62.7 62.0 65.2 66.7 64.0 66.8 68.1
LoRA 77.5 77.3 66.7 73.6 78.5 91.2 51.0 83.8 63.2 58.9 43.6 61.1 60.3 63.6 63.3 64.2 65.5 67.3
Prefix-tuning 78.9 77.3 66.0 72.6 78.6 90.5 52.9 84.7 62.6 63.7 44.2 64.5 67.7 62.7 63.8 63.0 65.8 68.2

Table 13: Results on individual datasets of different PEFT methods for DAPT+SEPTPEFT (AdaSent) and
SEPT→DAPTPEFT. Best scores are in bold for both models.



Dataset Abbr. Text Label
MTEB classification

Amazon
Counterfactual
(O’Neill et al., 2021)

AC In person it looks as though it would have cost a lot more. counterfactual

Banking77
(Casanueva et al., 2020) BANK I am still waiting on my card? card_arrival
Amazon
Massive Intent
(FitzGerald et al., 2023)

AMI wake me up at nine am on friday alarm_set

Amazon
Massive Scenario
(FitzGerald et al., 2023)

AMS wake me up at nine am on friday alarm

MTOP Intent
(Li et al., 2021a) MI Has Angelika Kratzer video messaged me? GET_MESSAGE
MTOP Domain
(Li et al., 2021a) MD Has Angelika Kratzer video messaged me? messaging
Emotion
(Saravia et al., 2018) EMO ive been feeling a little burdened lately wasnt sure why

that was
sadness

Imdb
(Maas et al., 2011) IMDB I rented I AM CURIOUS-YELLOW from my video store

because of all the controversy that surrounded it when it
was first released in 1967. I also heard that at first it was
seized by U.S. customs if it ever tried to enter this country,
therefore being a fan of films considered "controversial" I
really had to see this for myself.<br /><br />The plot is
centered around a young Swedish drama student named
Lena who wants to learn everything she can about life.
[...] I AM CURIOUS-YELLOW is a good film for anyone
wanting to study the meat and potatoes (no pun intended)
of Swedish cinema. But really, this film doesn’t have
much of a plot.

negative

Twitter
Sentiment
Extraction

TSE I`d have responded, if I were going neutral

Toxic
Conversation TC theres not enough going on around here for air service

none want to waste there time on this town
not toxic

Amazon
Reviews Multi
(McAuley and Leskovec, 2013)

ARM I received my first order of this product and it was broke
so I ordered it again. The second one was broke in more
places than the first. I can’t blame the shipping process as
it’s shrink wrapped and boxed.

0

Domain-specific tasks
Financial
PhraseBank FPB With the new production plant the company would in-

crease its capacity to meet the expected increase in de-
mand and would improve the use of raw materials and
therefore increase the production profitability .

Positive

Twitter
Financial
News
Sentiment

TFNS Grubhub gains a bear on margin view Bearish

Twitter
Financial
News Topic

TFNT Analysts reveal the top stocks with ’significant upside
potential’ heading into earnings https://t.co/lfaLK3nwAz

Analyst Update

Adverse
Drug
Events

ADE Intravenous azithromycin-induced ototoxicity. Related

PubMed
RCT RCT Outcome measures included pain reduction and improve-

ment in function scores and systemic inflammation mark-
ers .

Methods

LEDGAR LED Except as otherwise set forth in this Debenture, the Com-
pany, for itself and its legal representatives, successors
and assigns, expressly waives presentment, protest, de-
mand, notice of dishonor, notice of nonpayment, notice of
maturity, notice of protest, presentment for the purpose of
accelerating maturity, and diligence in collection.

Waivers

Table 14: Examples from evaluation datasets.


