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Abstract

In this paper, we consider the challenging problem of multi-source zero shot
domain generalization (MDG), where labeled training data from multiple source
domains are available but with no access to data from the target domain. Many
methods have been proposed to address this problem, but surprisingly the naive
solution of pooling all source data together and training a single ERM model is
highly competitive. Constructing an ensemble of deep classifiers is a popular
approach for building models that are calibrated under challenging distribution
shifts. Hence, we propose MulDEns (Multi-Domain Deep Ensembles), a new
approach for constructing deep ensembles in multi-domain problems that does not
require to construct domain-specific models. Our empirical studies on multiple
standard benchmarks show that MulDEns significantly outperforms ERM and
existing ensembling solutions for MDG.

1 Introduction

Typical supervised machine learning models are developed with the assumption that the training and
testing data are independent and identically distributed (i.i.d.). However, even models that produce
high accuracies on the i.i.d. test set, can fail drastically when tested on a non i.i.d. test data [23]].
This severe drop in performance indicates poor generalization capabilities of the learned models, and
addressing this fundamental challenge has become an important topic of research [Sl[7}/10]. Since it is
often infeasible to know the distribution of test data ahead of time, zero-shot generalization is a more
practical formulation. Furthermore, it is common to leverage data from multiple source domains
to improve model generalization. Commonly referred to as zero-shot, multi-domain generalization
(ZS-MDGQG), this formulation assumes that labeled training data from multiple source domains is
available but with no access to the target domain.

The simplest solution to this problem is the naive empirical risk minimization (ERM) [24] approach
that minimizes an average loss computed on data pooled together from all available source domains.
The inability of this approach to exploit statistical discrepancies between different domains has
motivated the design of multi-domain learning techniques [26[]. However, recently [8] reported a
surprising finding that an appropriate model selection strategy can make ERMs highly competitive
to sophisticated ZS-MDG methods on standard benchmarks. Since then, there is renewed interest
in improving the performance of the ERM baseline. In this context, approaches that enforce ERM-
based models to be consistent under appropriate data augmentations have become popular [[18}
27|]. Despite their effectiveness, choosing the most appropriate augmentation for a given dataset
is challenging and hence can provide varying degrees of performance gains across datasets (see
Figure [I[right)). Ensembling methods [[13]] form another important class of approaches for MDG [4}
20]. Existing ensembling solutions have focused extensively on combining domain-specific models
and interestingly, we find that, these approaches do not fair competitively even when compared to
the vanilla ERM performance from the recent DomainBed framework. In this paper, we design
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Figure 1: (left) Our proposed MulDEns significantly improves upon ERM as well as state-of-the-art
ensemble construction methods in zero-shot multi-domain generalization, wherein we obtain larger
performance gains as the domain discrepancy becomes more severe; (right) When compared to recent
approaches that utilize advanced data augmentation strategies to improve generalization, MulDEns
eliminates the need for choosing the suitable augmentations and is consistently effective for all
benchmarks. Note, RA: RandAug, RC: RandConv, MBDG: model-based domain generalization.
multi-domain ensembles that can leverage both within- and across-domain discrepancies to improve
generalization. We make the following contributions and key findings in regard to ZS-MDG that
have not been reported before in the literature: (i) We propose MulDEns, a meta-optimization
approach for constructing highly effective multi-domain ensembles; (ii) A gradient-matching based
model assignment strategy that we find to be empirically superior to a variety of design choices; (iii)
We investigate two new model selection strategies for multi-domain ensembles using only source
domain validation sets similar to [8]; (iv) Using extensive empirical studies based on the DomainBed
framework [8] with standard benchmarks, we find that MulDEns significantly improves over ERM as
well as existing ensemble constructions of the same complexity (Figure Ekleft)). (v) MulDEns works
effectively on all datasets without the need to tweak the data augmentation strategy.

2 Approach

2.1 Meta Optimization for MulDEns
We denote a multi-domain ensemble by & : { fgm}%:l with parameters 6,,, where M is the en-
semble size and all models are initialized randomly. Labeled data from each observed domain Dy,
is divided into three disjoint sets - train set DI, meta-validation set Dy and held-out validation
set D,’C“’. Note, in contrast to existing ensembling methods in ZS-MDG [16], M can be differ-
ent from K in our setup. MulDEns has two main stages, both operating at the mini-batch level
- (i) a meta-train stage, where we obtain ERM-style
gradients for each constituent member of the ensemble |1 set of training domains D= (D1 i,
using the collection | & DZ from all K source domains;  [Model relevance scoring function i

.. Output: Ensemble £ := {fy,,..., fou}

(i1) a meta-test stage, where a model relevance score lnitifnlizati?n}: Parameters {91,...,Hﬂ1}‘mem-u}ain sets
. . . D] ... Dy}, meta-validation sets {DY ... D} },

(MRS) is used to determine the most appropriate model ﬁyp‘er,pmg;mﬁii,‘f,'w?"’“ sets {Df - Die

from & (fy,), to apply for each of the meta-validation  [orfierin nieer do

/Imeta-train //

{Algorithm 1: MulDEns training

sets D}, and subsequently fp, is updated only using meta- furfl;,;iffsfa,_::éfg]\,/;iﬂ | the minibatches from (D4
. v . . i 31| // pool the minibatches Tom { D}
gradients from the subset of D}’s assigned to this model. Compute empirical risk L5, w.r.t. B, using eq. (2);
. . Update 8/, = 0,, —aVy Ly (6, . (3)/h
This step enables the ensemble to capture both intra- and aradionupdatay " o (Bon) €9. ) Hinner
inter-diversity in the source domains, since the MRS is end )
L. ‘model relevance score//
computed for each mini-batch separately. Furthermore, for k fnfl---, I\} do e
. . for in fg, - fo,, do
we also explore the use of synthetic augmentations to Sample a mini-batch V. from DY
create additional meta-validation batches for better mod- L compute By using eq. (4);
eling the intra-diversity in the domains. Finally, the end
. . //meta-update//
held-out validation sets {D}} are used for model se- || tor fy mfy - foy do o
lection (following standard practice). Figure 2]lists the e e e g ioes of meta-validarion
steps involved in our algorithm. compute meta-test loss Gy, using eq. (5);

perform meta-update using eq. (6)

end

Meta-train Stage - Produce ERM style gradients. In g
every iteration, K mini-batches { B!} are randomly sam-
pled from the K training sets {D}}, which are then Figure 2: An outline of the proposed ap-
pooled to form the data batch B (B = |J, B}, C Dj) proach.

and passed as input to all M models. The empirical risk

Lo, = ﬁ > (i wien Lfo, (i), yi),Vm € (1,--+, M) (1) and the corresponding gradients for




each of the models Vg (L, ) are computed independently w.r.t. 3. MulDEns then takes one
gradient step for each of the models fp,, to obtain fg: .

Meta-test Stage - Model relevance, synthetic augmentation and meta-update. Here, we system-
atically regulate the gradient flow from the meta-validation data batches to each of the constituent
models based on a model relevance score. We denote a generic, model relevance scoring function
by h: Vi X fp,, — RT[0,1] which scores the model fy,, for a mini-batch V;, C D} from the
meta-validation dataset. We denote by Sy, the resulting score i.e.,Bkm = h(Vi, fo,,). We describe
the various design choices of h and explain in detail our proposed gradient-matching based MRS.
Intuitively, when the MRS is high, one expects that taking a gradient step for 6,,, based on B is highly
likely to improve the performance on Vj,. We compute this pair-wise relevance score between every
pair of K meta-validation mini-batches and the M/ models to obtain the matrix 3 € RX*M_ The
final step is to compute the meta-gradients for 6,,,, Vm w.r.t. to their “relevant” domains and perform a
gradient-through-gradient update. We denote the indices of meta-validation batches that are assigned
to fo,, by vm = {j € (1,--- , K)}, such that for each j, model fy  provides the largest MRS. The
meta-validation loss g(,;n of fg;n using the relevant validation batches, ~,,,, can be written as

Gor, = Z U for, (i), vi), 2)

V(-'L'i,yi)e{vj}JE"hn

where the definition of 8/, comes from meta-train update. The final meta-update of fy  using a
gradient-through-gradient optimization is

9(Le,, +nYe: )

G’m = gm - A aem

3)

MulDEns Inference. We evaluate by averaging the predictions from all M/ models in the ensemble,
to obtain labels for a sample = € D, § = & M | fy (x).

MRS Design. We have considered the following choices for h (i) Random Assignment: Here h
assigns randomly assigns each mini-batch to one of the models; (ii) All-to-All assignment: Here
every validation mini-batch Vy, is assigned to all members of members. (iii) Loss-based assignment:
Here, we directly use the empirical loss to determine the member assignment i.e., Sg;, = 1 —
ITIICI > (i iyevy Lo, (%), yi); and (iv) Gradient-matching based assignment: While empirical
loss-based assignment is a reasonable choice, we take inspiration from [2] and design MRS through
gradient-matching. [2] showed that gradient embedding-based sample selection outperforms loss-
based selection and gradient embeddings implicitly capture the model uncertainties.

Definition 2.1 (Gradient-matching based model relevance score). Sem = Y. Va,,(Ls,,)-Vo,, (G5 ).

where Ly, and Q(’}'m are the empirical risks computed using the model f,,, on the meta-train (B8) and
meta-validation (V) batches respectively. The summation is over all parameters in 6,,,, and this score
computes the dot product between parameter sensitivities of ,, w.r.t. the train and validation batches.
Model Selection Strategies A crucial component of any ZS-MDG algorithm is the specification
of a model selection criterion. We propose two different model selections (i) Overall Avg: Here,
we choose the checkpoint in which each individual model produces high accuracy on each of the
K domains, on average. (ii) Overall Ens: we choose the checkpoint in which the ensemble model
produces on average the highest accuracy for each of the K domains.

3 Experiments

Experimental Setup. We evaluate MulDEns using five standard visual MDG benchmarks (i)
PACS [[15]], (ii) VLCS [6],(iii) OfficeHome [_25] (iv) OfficeHome [25]] (v) Camelyon17-WILDS [3l[12].
Except for Camelyon17-WILDS, we run experiments by leaving out one of K domains for testing
while using the K — 1 domains for training. We use ResNet-50 [9]], pre-trained on ImageNet [[19]
as the backbone feature extractor for all experiments. For MulDEns, we use a random 80-20 split
from each of the source domains to obtain the train and validation sets, while the train set itself is
further subdivided (80-20) to construct meta-train and meta-validation data. We report the mean and
standard deviation of performance, obtained across three trials with different random seeds, for each
experiment similar to [§]. In MulDEns ,the training mini-batches are augmented using a composition
of the following augmentation choices: random horizontal flip, random color jitter and grayscaling
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Figure 3: (a) Our proposed MulDEns significantly improves upon DMG,a state-of-the-art ensemble
construction method in ZS-MDG. We obtain larger performance gains as the domain discrepancy
becomes more severe; (b) When compared against different design choices of MRS function h, we
evidence that the proposed gradient-matching based h performs best.

Table 1: Summary performance of popular ZS-MDG baselines (obtained from [8]]) on all 4 bench-
marks. MulDEns with Overall (Avg.) model selection consistently generalizes well to novel domains.
T denotes results from our implementation of baselines. We highlight the best performing method

with bold face and next best with bold italics.

‘ Methods PACS VLCS ‘ OfficeHome ‘ Terra Incognita ‘
ERM [24] 855+02 | 7754+04 | 665+03 46.1+ 1.8
IRM [1] 835+08 | 785+0.5 | 643+22 476+ 0.8
MLDG [14] 849+10 | 772404 | 66.8+0.6 477409
CORAL [22] 86.2+03 | 788+0.6 | 68.7+0.3 476+ 1.0
SagNet [17] 863+02 | 77.84+0.5 | 68.1+0.1 48.6 £ 1.0
RSC [11] 852+09 | 77.1+0.5 | 655+0.9 46.6+ 1.0
FISH [21] 8554+03 | 77.8+0.6 | 68.6+04 451+ 13
DSON [20] 86.64 - - -
DMG [4] 83.37 75957+ 0.2 | 66.67+0.8 45.87+0.3
MulDEns (Avg.) | 87.354+0.2 | 79.02+0.2 | 69.76 +0.5 48.66 + 0.8
MulDEns (Ens.) | 87.21 £0.9 | 7840+ 0.2 | 70.06 + 0.2 48.48 + 1.0

with 10% probability, which we refer to as RandAug (RA). As described earlier, we also create
additional meta-validation batches by augmenting each batch V), using subsets of augmentations used
during training. We set 7 in eq. to 1.0 and study the sensitivity of this hyper-parameter as part of
our ablation study. We report results for both the proposed model selection strategies and our rigorous
empirical study shows that the Avg. strategy provides a small margin of improvement over Ens.

Key Findings. (i) MulDEns is a significantly improved baseline over ERM. As can be seen from
Figure[I| (left) MulDEns outperforms ERM on all five widely-adopted benchmarks. Overall, across
the benchmarks, MulDEns improves over ERM by a large margin (between 1.33% and 10.1%), in
terms of average generalization performance; (ii) We perform a comparative analysis of MulDEns to
state-of-the-art multi-domain ensembling methods such as DMG [4] and DSON [20]. In Figure Eka),
the superiority of MulDEns over DMG is clearly evident across all the benchmarks,with an average
improvement of around 3.2%; (iii) As showed in Figure b) for the VLCS dataset, the proposed
gradient-matching based MRS performs the best, when compared to other design choices; (iv)
MulDEns provides non-trivial improvements over SOTA DG methods, which rely on a variety of
strategies to leverage cross-domain discrepancies. Interestingly, our approach while producing state-
of-the-art results on PACS and OfficeHome, on Camelyon17-WILDS achieves an overall accuracy of
94.6% matching the best reported performance which is 94.8% by MBDG [18].

4 Conclusion

Through MulDEns we explored the design of deep ensembles for zero-shot MDG. While our approach
builds upon ERM, in terms of avoiding the need for training domain-specific models, we leverage
the intra-diversity within a domain and inter-diversity between domains to infer the constituent
models of a deep ensemble. Using rigorous empirical studies on standard benchmarks, we find that
MulDEns consistently outperforms the highly effective ERM baseline by a significant margin.
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