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Abstract

Self-supervised learning (SSL) speech representations learned
from large amounts of diverse, mixed-quality speech data
without transcriptions are gaining ground in many speech-
technology applications. Prior work has shown that SSL is
an effective intermediate representation in two-stage text-to-
speech (TTS) for both read and spontaneous speech. How-
ever, it is still not clear which SSL and which layer from each
SSL model is most suited for spontaneous TTS. We address this
shortcoming by extending the scope of comparison for SSL in
spontaneous TTS to 6 different SSLs and 3 layers within each
SSL. Furthermore, SSL has also shown potential in predicting
the mean opinion scores (MOS) of synthesized speech, but this
has only been done in read-speech MOS prediction. We extend
an SSL-based MOS prediction framework previously developed
for scoring read speech synthesis and evaluate its performance
on synthesized spontaneous speech. All experiments are con-
ducted twice on two different spontaneous corpora in order to
find generalizable trends. Overall, we present comprehensive
experimental results on the use of SSL in spontaneous TTS and
MOS prediction to further quantify and understand how SSL
can be used in spontaneous TTS. Audios samples: https:
//www.speech.kth.se/tts-demos/sp_ssl_tts

Index Terms: spontaneous speech synthesis, text-to-speech,
self-supervised learning, mean-opinion-score prediction

1. Introduction
The availability of large amounts of data and computation has
radically enhanced the capabilities of modern machine-learning
systems. One way that these developments can benefit ordi-
nary applications with smaller amounts of data and computation
is via “foundation models” [1], publicly available pre-trained
models created using self-supervised learning (SSL) on large
amounts of unlabelled data. Models that integrate representa-
tions of speech audio learned via SSL have demonstrated im-
pressive results in areas such as speech recognition, speaker
recognition, and voice conversion [2]. Recently, these methods
have also been considered for use as acoustic features in two-
stage text-to-speech (TTS) [3, 4], showing promising results in
replacing conventional mel-spectrogram features.

However, integrating SSL-based representations into TTS
is still a novel concept, and it is not clear which representations
are preferred for use in TTS, why they are preferred, nor what
trade-offs are involved. In addition to differences between dif-
ferent models, research into other applications has found that
representations from different layers of the same SSL model
may be preferred for different applications [2, 5, 6]. Thus far, a
handful of works have considered using SSL-based represen-

tations as TTS acoustic features 1[3, 4, 7, 8], demonstrating
advantages in creating TTS systems using SSL from mixed-
quality audio. SSL models have also been shown to be an effec-
tive mean opinion scores (MOS) predictor with minimal modifi-
cation [9, 10]. We aim to investigate both TTS and MOS predic-
tion using SSL models, specifically the differences among SSLs
and their layers, an under-explored aspect of prior studies.

Another important shortcoming of prior studies on using
SSL in either TTS or MOS prediction is that they mostly only
use speech read aloud as training data. This contrasts against
the majority of in-the-wild human speech, which tends to be
spontaneous and unscripted. Such speech involves unique ver-
bal and nonverbal phenomena such as breathing [11, 12], disflu-
encies [13], and discourse markers, which are seldom included
or transcribed in conventional speech corpora, making them a
blind spot of contemporary TTS research [14].

In this paper, we compare representations derived from four
different speech SSLs. We selected these models based on their
high scores on the SUPERB benchmark [2], similar dimen-
sionalities and frame rates, and the availability of pre-trained
weights. For some models, our comparisons consider multiple
model versions, for example before and after ASR finetuning.

We study the utility of these models for two tasks in text-
to-speech from spontaneous speech audio:

1. As intermediate feature representations (“acoustic features”)
in two-stage TTS.

2. As backbone models for automatic prediction of speech qual-
ity (MOS) of synthetic speech.

We perform comprehensive experiments on two corpora pre-
viously used for spontaneous TTS. Audio examples are
available online at: https://www.speech.kth.se/
tts-demos/sp_ssl_tts

2. Background
Self-supervised representations learned from large amounts of
untranscribed speech audio have recently found a large number
of applications all across speech technology [15]. In this sec-
tion, we review the use of SSL representations in TTS and in
speech-quality (MOS) prediction. A particular focus of our sur-
vey (and, indeed, our entire paper) is spontaneous and conversa-
tional speech. Despite accounting for the lion’s share of human
speech, and being considered vital for creating more-human like
and convincing TTS for, e.g., conversational systems [16, 14],
spontaneous speech and its challenges represent an underex-
plored topic in contemporary TTS research. On the one hand,

1We use the term “acoustic features” in a broad sense to denote any
intermediate features used between stages of a two-stage or multi-stage
TTS system.
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Figure 1: Overview of this work. Two-stage TTS with SSL rep-
resentations on the right and MOS prediction on the left.

spontaneous speech exhibits increased acoustic and prosodic di-
versity [17], and many spontaneous-speech databases rely on
found or in-the-wild recordings, which may entail reduced au-
dio quality, competing speakers, etc. [11]. On the other hand,
spontaneous speech cannot easily be partitioned into clean sen-
tences, and the audio contains numerous phenomena that are
difficult to transcribe. This includes breathing [11, 12], disflu-
encies such as repetitions and filled pauses (uh/um) [13], dis-
course markers (“like”, “you know”) [18]. These phenomena
are often missing from the input text, but they need to be gen-
erated by the TTS system. It has been argued that these chal-
lenges of processing and synthesizing spontaneous speech can
be effectively addressed by SSL [8, 19].

2.1. TTS Using SSL Models

The first systems using representations from modern self-
supervised learning in TTS were likely WavThruVec [3] and
VQTTS [4]. Both proposed to replace the acoustic represen-
tations in between the acoustic model and the vocoder with
a speech feature representation from an SSL model. Com-
pared to end-to-end TTS or traditional two-stage TTS based
on mel-spectrogram features, this setup allows synthesizing
high-quality audio even if the acoustic model is trained on
mixed-quality audio material [3]. While VQTTS trained a cus-
tom, discrete acoustic representation (turning acoustic mod-
elling into a classification problem), WavThruVec used a pre-
trained wav2vec 2.0 model [20] as its intermediate acoustic
representation. There has also been work exploring the use
of speech SSL models as added linguistic features instead of
acoustic features [7], and as basis for discrete coarse semantic
tokens in two-stage discrete-token-based TTS approaches [21].

Most relevant to the current work is the comparative study
of Wang et al. [19]. They built a number of two-stage TTS sys-
tems using several publicly available speech SSL as interme-
diate representation, and contrasted these for synthesizing read

as well as spontaneous speech. They found that simply replac-
ing traditionally used mel-spec with SSL representations im-
proved both read and spontaneous TTS, but with the improve-
ment being even more pronounced in the case of spontaneous
TTS. They also found that intermediate SSL layers are better
for TTS than the final layers, however they reached this com-
clusion by only comparing two layers in one SSL so it is limited
in this respect. We focus exclusively on spontaneous speech in
this work, and systematically expand the number of SSLs to 6
and the number of layers to 3 for each SSL, bringing the total
number of TTS systems built to 36 (2 corpora × 6 SSLs × 3
layers) compared to only 4 in [19]

Another relevant work is MQTTS [8]. The model trains
multiple discrete representations on the GigaSpeech corpus
[22], which is a very large corpus of in-the-wild speech that con-
tains a lot of spontaneous speech. Through the self-supervised
learned representations, a subsequently trained TTS model is
able to generate high-quality spontaneous speech, demonstrat-
ing the advantage of SSL speech representations in synthesizing
spontaneous speech.

2.2. Quality Prediction Using SSL Models

Apart from synthesizing speech, SSL models have also been
considered for predicting quality scores (specifically MOS val-
ues) of natural and synthetic speech. This was perhaps first done
by [9] for predicting MOS values of different voice conversion
systems. By building predictors from pre-trained SSL models
and fine-tuning these end-to-end, they obtained a prediction ac-
curacy surpassing previous state-of-the-art systems. SSLs have
subsequently become a hot topic in quality prediction. The re-
cent VoiceMOS Challenge considered predicting MOS scores
of both voice conversion systems and of read-speech TTS [23],
and saw a very large portion of entries that made use of SSL
models. The main results saw pre-trained SSL models with
fine-tuning outperform approaches that used such models with-
out fine-tuning, in turn ahead of approaches that did not use SSL
representations at all [23, 10].

Another recent challenge [24] focused on predicting speech
quality in speech conferencing applications, and also saw sev-
eral submissions, e.g. [25, 26], making use of SSL represen-
tations. This task does involve spontaneous speech audio, but
focuses only on assessing quality of speech transmission in on-
line conferencing and not on asessing synthesized spontaneous
speech from a TTS model. Thus, none of the above works con-
sidered the use of SSL representations to predict the perceived
quality of spontaneous TTS.

3. Method
The goal of this paper is to analyze the effect of using different
SSL models in synthesizing and evaluating spontaneous speech;
cf. Fig. 1. In this section we describe the SSL models studied,
the data, how we build TTS systems on these data, and how we
use SSL representations for subsequent MOS score prediction.
Experimental results and discussion follow in Sec. 4.

3.1. Speech SSL Representations

Four speech SSL models were selected for our investigation.
These are summarized in Table 1. All of these representations
were investigated for spontaneous TTS, whereas only a subset
were considered for the MOS-prediction task.

Our main reason for choosing these specific models was
that they rank high on the SUPERB speech processing bench-



SSL model Training data and loss
(version/versions) Pre-training ASR fine-tuning

wav2vec 2.0 [20] LibriSpeech 960 h LibriSpeech 960 h
(base & base-asr) (contrastive+diversity)

data2vec [27] LibriSpeech 960 h LibriSpeech 960 h
(base & base-asr) (masked regression)

WavLM [28] 94k h mixed corpora N/A
(base-plus) (denoising+prediction)

Whisper [29] N/A 680k hours
(small)

Table 1: Speech SSL models tested, with info about pre-training
and ASR fine-tuning corpora used.

mark for speech SSLs [2], and have a publically available im-
plementation and weights. Importantly, all chosen SSL models2

have same dimensionality (765), number of layers (12 trans-
former layers), and frame rate (50), making them highly com-
parable. The main differences between the models are the data
and loss function/task used for training.

For each model, we considered the representations from
three different layers (6, 9, and 12 out of 12), since prior work
has shown that a middle layer of SSL models contains more
prosodic information [5, 19] that could benefit synthesis. For
some SSL models, we also found official ASR fine-tuned ver-
sions, which we include in the experiments in addition to the
self-supervised pre-training-only models. In total, we consid-
ered 18 different representations, 3 from each of 6 different SSL
models.

We did not include mel-spectrogram baseline in this com-
parison because prior study has shown that it is much worse
than SSL in two-stage spontaneous TTS [19].

3.2. Spontaneous Speech Corpora

We trained our TTS voices on two corpora previously used in
several different studies on spontaneous TTS. The first corpus
was created from the audio recordings of part 1 of the Trin-
ity Speech-Gesture Dataset (TSGD) [30], comprising 25 mono-
logues, each on average 10.6 minutes long, spoken by a male
speaker of Hiberno English in an impromptu, colloquial style.
During the recordings, the actor addresses a person seated be-
hind the cameras, who is providing visual, but no verbal feed-
back. To prepare the dataset for TTS, we segmented the corpus
into stretches of speech delineated by breath events following
[12], and combined these segments in an overlapping fashion to
form an utterance structure, with utterances no longer than 11
seconds, following [12].

The second spontaneous corpus used in this work is the
ThinkComputers Corpus (TCC) [11, 14], which is a 9-hour
long corpus created from the speech of one of the hosts of
the ThinkComputers podcast, which is available in the pub-
lic domain.3 The podcast recordings are approximately 50
min each, and consist of two male speakers of American En-
glish discussing technology-related news and reviews. The
speaking style can be described as extemporaneous, convers-

2Most models have several sizes, e.g. wav2vec2.0 base and large.
We chose the base one in those cases.

3https://archive.org/details/podcasts_
miscellaneous Creator: ThinkComputers

ing freely around a prepared outline, meaning that the speakers
use a prepared outline, but converse freely around the planned
topics. Both corpora were transcribed using ASR and subse-
quently corrected manually. All discourse markers, laughter,
and filled pauses (uh, um) were transcribed orthographically,
breath events were marked with a semi-colon, while pauses
were transcribed using a comma. Other spontaneous speech
phenomena such as tongue clicks were not part of the transcrip-
tion.

3.3. TTS System

We used a similar system and training setup as WavThruVec
[3], with the difference being that we omitted the multi-speaker
embeddings in our system. We illustrate the system in Fig. 1.

The stage-1 model is adapted from a parallel TTS model,
FastPitch [31], in which the alignment is learned automatically
[32].4 We used identical hyperparameters as in [3] to train
stage-1 models, only changing the batch size to 128. We first
trained on a read-speech corpus, namely LJ Speech5, for 200
epochs, and then on each of the two spontaneous corpus for 200
epochs. This transfer-learning method has shown to be effective
in allowing neural TTS to be trained on smaller spontaneous
corpora [14].

For the stage-2 model or the vocoder, we used HiFi-GAN
[33],6 trained with similar hyperparameters as in [3]. We used a
batch size of 160, each datum being a 0.5 second random audio
excerpt. All 36 stage-2 vocoders (for the 18 SSL representations
in 2 corpora) were trained for 80k steps. We used the original
audio sampling rate of 22 kHz. Models of both stages were
trained on 1–2 Nvidia A100 GPUs depending on batch size.

3.4. MOS-Prediction System

We followed [10] to build a simple wav2vec 2.0 based MOS
predictor. The predictor consists of a wav2vec 2.0 base model
with a mean-pooling head on top and a linear projection to a
scalar MOS value. We adapted the implementation of [10]7 and
followed their training procedure and hyperparameters. How-
ever, we tested different weight initializations and training-data
splitting configurations for this fixed architecture, to probe how
these factors affect performance of predicting MOS on sponta-
neous speech synthesis.

4. Results
This section reports and discusses our three main experimental
results, namely 1) vocoder error in copy synthesis achieved by
tested SSLs, 2) the design and results of subjective listening test,
and 3) the performance of SSL-based MOS predictors on MOS
scores collected in the subjective listening test.

4.1. Vocoder Error in Copy Synthesis

We conducted copy synthesis of the audios in the valida-
tion set. SSLs were extracted from ground-truth audios in
the validation set and then vocoded through the correspond-

4https://github.com/NVIDIA/
DeepLearningExamples/tree/master/PyTorch/
SpeechSynthesis/FastPitch. This model is called “Fast-
Pitch 1.1” in this official implementation.

5https://keithito.com/LJ-Speech-Dataset/
6https://github.com/jik876/hifi-gan
7https://github.com/nii-yamagishilab/

mos-finetune-ssl.git
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Figure 2: Subjective MOS↑ of overall TTS pipeline and vocoder error↓ of all compared systems on the two corpora. The error bars
around MOS values (red triangles) represent 95% confidence intervals.

ing vocoders/second-stage models. Mel-spectrogram L1 error
achieved by the vocoders are graphed in Fig. 2 (blue squares),
showing how these errors depend on the SSL model and layer.

There are clear trends in that, the deeper the layer, the
greater the error, presumably because deeper layers are further
removed from the original speech waveform. In the two pairs of
pre-training only and ASR fine-tuning models of data2vec and
wav2vec2.0, ASR fine-tuning consistently leads to increased
vocoding error over corresponding pre-trained models. How-
ever, we note that the lowest vocoding error overall is attained
by representations from Whisper, which is a dedicated ASR
model. In informal listening, we were impressed with the copy-
synthesis performance from the Whisper-derived representa-
tions, consistent with its lowest vocoding error numbers.

Except for WavLM, the vocoding errors are very similar
across the two corpora for the same model and layer. The two
corpora are different in many aspects, so why are the achieved
vocoding errors so close in the two corpora? This phenomenon
deserves future investigation.

4.2. Subjective Evaluation of TTS Systems

We performed two MOS listening tests according to ITU stan-
dard P.800 [34], one for each corpus, to evaluate the full two-
stage TTS pipelines built with different SSLs. Each evaluation
used a pool of 20 utterances synthesised by each of the 18 dif-
ferent systems, for a total of 320 stimuli per corpus. For each
corpus we recruited 45 self-reported native English-speaking
listeners via the Prolific crowdsourcing platform. Each listener
rated 51 randomly chosen stimuli from the pool balanced for
SSL and layer. Participants were asked to wear headphones,
and they were requested to not take the test if they had a hear-
ing impairment. Ratings were integer values given on a scale
from 1 through 5 with text labels as specified in aforementioned

ITU standard [34]. Attention checks in the form of multi-choice
speech recognition tests were included to filter out unqualified
test-takers. Test-takers who completed their tests too quickly
to have listened to all the audio were also disqualified. This
resulted 44 valid completed tests for each corpus. Participants
were rewarded with an hourly wage of approximately 12 GBP
with 15 or 20 minutes paid time 8, thus 3 or 4 GBP each.

Results of the two listening tests are visualized in Fig. 2
(red triangles). We observe several prominent trends. First, the
9th layer outperforms the 12th (last) and 6th (middle) layers
in 4 out of 6 SSL models on both corpora. Layer 9 outper-
forming layer 12 is consistent with prior study on SSL layer-
wise TTS performance [19], however layer 9 also outperforms
layer 6 is an interesting new finding. We also find that SSLs af-
ter ASR fine-tuning obtained better ratings than corresponding
SSLs prior to fine-tuning, i.e. underwent only self-supervised
pre-training. For both corpora, the best performing represen-
tation is data2vec-base-asr layer 9 (TSGD: 3.90±0.18, TCC:
3.77±0.17). It is worth noting that MOS in the range of 3.90
is at the same level as current SOTA spontaneous TTS systems
[8], however we do not claim that our best system is as good
as a SOTA system as it is difficult to make such comparison on
MOS score alone while the settings of MOS tests could be very
different. We also note that consistency of the trends in SSL
models and layers between the two corpora suggests that the
results are likely to generalize to other spontaneous corpora.

We also see that the vocoding errors do not correlate at all
with perceived TTS quality. A lower vocoding error suggests
that there is more acoustic information present in the represen-

8We used 15 minutes paid time for TCC test and 20 minutes paid
time for TSGD test. We slightly underestimated completion time when
conducting TCC test first, thus increased expected completion which is
also the paid time for TSGD test.



Zero-shot: Fine-tuned from:
wav2vec2.0-base-MOS

[10]
wav2vec2.0-base-MOS

[10]
wav2vec2.0-base wav2vec2.0-base-asr

T
SG

D

Sample MSE↓ 2.77 ± 0.28 0.35 ± 0.08 0.32 ± 0.08 0.46 ± 0.08
LC↑ 0.15 ± 0.08 0.47 ± 0.19 0.51 ± 0.17 0.30 ± 0.23

Utt. MSE↓ 3.60 ± 0.00 0.37 ± 0.02 0.34 ± 0.03 0.34 ± 0.01
LC↑ -0.02 ± 0.00 0.36 ± 0.03 0.32 ± 0.06 0.15 ± 0.09

Model MSE↓ 2.85 ± 0.00 0.40 ± 0.02 0.45 ± 0.01 0.45 ± 0.05
LC↑ 0.43 ± 0.00 0.41 ± 0.04 0.22 ± 0.06 0.17 ± 0.17

Corpus MSE↓ 3.07 0.60 0.44 0.50
LC↑ 0.23 0.12 0.12 0.04

T
C

C

Sample MSE↓ 2.14 ± 0.15 0.38 ± 0.07 0.42 ± 0.11 0.50 ± 0.07
LC↑ 0.19 ± 0.10 0.50 ± 0.10 0.58 ± 0.13 0.22 ± 0.10

Utt. MSE↓ 2.14 ± 0.00 0.40 ± 0.03 0.38 ± 0.02 0.51 ± 0.07
LC↑ 0.28 ± 0.00 0.19 ± 0.09 0.21 ± 0.18 -0.24 ± 0.18

Model MSE↓ 2.19 ± 0.00 0.31 ± 0.04 0.32 ± 0.03 0.40 ± 0.02
LC↑ 0.19 ± 0.00 0.53 ± 0.07 0.53 ± 0.03 0.04 ± 0.16

Corpus MSE↓ 3.35 0.64 0.45 0.47
LC↑ -0.08 0.06 0.10 0.01

Table 2: Results of MOS prediction experiments. The two numbers reported for each task and predictor are mean-square-error (MSE)
↓ and linear correlation (LC) ↑. The rows are hold-out method categories. All categories except for corpus are 5-fold cross-validated,
and are thus reported mean and standard deviation of the 5 runs.

tation, however, this does not lead to better overall two-stage
TTS performance as measured in subjective MOS tests. In fact,
ASR fine-tuned data2vec, the best performing SSL model in
two-stage TTS, consistently exhibited one of the highest vocod-
ing errors, whereas Whisper underperformed for TTS despite
having lowest vocoding errors. This suggests that there is a
trade-off between the amount of acoustic information in the rep-
resentation and how well can the first-stage acoustic model pre-
dict that representation from text, a phenomenon also observed
in a prior study on using SSL in two-stage TTS [19]. Notably in
that study, the authors found that mel-spec which achieves low-
est vocoding error is the worst representation in two-stage spon-
taneous TTS. Another prior study reported similar results that
regular TTS models have trouble findding alignemnt between
mel-spec and text in spontaneous speech corpus. Our results
provide further evidence to this hypothesis that there could be a
trade-off between the amount of acoustic information an inter-
mediate representation (SSL or otherwise) contains versus its
achievable prediction accuracy (from text input in a TTS set-
ting).

4.3. Evaluation of Automated MOS Prediction

Using MOS data obtained in our subjective listening tests, we
probed two sets of factors that may affect the generalization
ability of spontaneous-speech MOS prediction with SSL: 1) the
starting weights used for fine-tuning and 2) the type of unseen
data (dataset split), by specifically holding out either random
audio samples, or data from specific utterances (input texts), or
entire TTS models, or the full corpus (i.e., training on one cor-
pus and predicting the scores on the other). Except for at the
corpus level, we performed 5-fold cross-validation for each of
these experiments. In addition to fine-tuning, we also tested the
zero-shot performance of the predictor from [10].

Results from the experiments on automated MOS predic-

tion are reported in Table 2. We make a number of observations
from these results. First, the zero-shot model from [10] pre-
trained on read-speech MOS does not make meaningful predic-
tions on this data as shown by its high MSE in all categories,
however it achieves good linear correlation in some categories.
Fine-tuning improved performance, with fine-tuning on top of
[10] or wav2vec2.0-base performing similarly and fine-tuning
on top of wav2vec2.0-base-asr performing slightly worse. Fi-
nally, although prediction MSE is low, correlations are not as
strong as the numbers achieved by MOS predictors on read-
speech data [10]. Several factors may contribute to this, for ex-
ample that the range of MOS values in our data is quite narrow,
that we have less data available than for read speech MOS, and
that predicting the scores of spontaneous TTS in general may
be a more challenging task than for read speech.

5. Conclusion and Future Work

We have compared various self-supervised speech representa-
tions in spontaneous text-to-speech and in MOS prediction on
spontaneous speech synthesis, on two different corpora. We
used a total of 6 different SSLs and 3 layers from each SSL, to-
taling 18 representations, as intermediate features in two-stage
TTS. We found that representations from layer 9 of the SSL
models provided better subjective TTS quality than layer 6 or
layer 12 (the final layer), with the best spontaneous TTS qual-
ity achieved by layer 9 of data2vec with ASR fine-tuning. We
also found that TTS subjective MOS does not correlate with
the vocoding loss obtained by the SSL representation, where
the high-performing TTS representations obtained some of the
worst vocoding loss, and vice versa. Our results could be used
as reference for SSL selection in speech synthesis tasks that
utilize SSL at any capacity, and for more in-depth analysis of
inter-model and layer-wise differences of SSL models in TTS



or other synthesis tasks.
We also studied the use of SSL models in predicting MOS

of spontaneous speech synthesis using data obtained in our sub-
jective listening tests. We found that zero-shot prediction from
a read-speech pre-trained SSL MOS predictor performs poorly,
and that fine-tuning on spontaneous MOS data is crucial for a
SSL MOS predictor to have any predictive value on synthesized
spontaneous speech. Compelling future work includes studying
more SSLs on larger spontaneous corpora, as well as improving
SSL and TTS architectures for spontaneous speech.
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[32] R. Badlani, A. Łańcucki, K. J. Shih, R. Valle, W. Ping, and
B. Catanzaro, “One TTS alignment to rule them all,” in Proc.
ICASSP, 2022, pp. 6092–6096.

[33] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative adversarial
networks for efficient and high fidelity speech synthesis,” Proc.
NeurIPS, pp. 17 022–17 033, 2020.

[34] International Telecommunication Union, Telecommunication
Standardization Sector, “Methods for subjective determination of
transmission quality,” ITU Recommendation ITU-T P.800, 1996.


	 Introduction
	 Background
	 TTS Using SSL Models
	 Quality Prediction Using SSL Models

	 Method
	 Speech SSL Representations
	 Spontaneous Speech Corpora
	 TTS System
	 MOS-Prediction System

	 Results
	 Vocoder Error in Copy Synthesis
	 Subjective Evaluation of TTS Systems
	 Evaluation of Automated MOS Prediction

	 Conclusion and Future Work
	 Acknowledgements
	 References

