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Single-cell sequencing continuous to advance our understanding of cell biology, 
and critical cellular processes such as cell-differentiation. It has been natural to 
interpret the data as discrete measurements of individual cells and using k-
nearest-neighbor graphs to represent the whole population has been a successful 
computational strategy. However, growing resolution and abundance of single-
cell assays and interest to computationally decipher continuous cellular 
processes1-4 call for a likewise continuous representations of the cell populations. 
This encompasses not only the discrete observed states but instead a likelihood of 
occurrence for all possible cell states enabling even more specialize methods to 
model this continuity. To this end we have developed scDensity, an algorithm that 
leverages diffusion-map representation, nearest-neighbor distributions, and 
Gaussian processes to infer a differentiable function of the cell-state density 
representing the whole population (Fig.1). scDensity outperforms existing 
approaches for single-cell density estimations in accuracy, robustness, and 
resolution for RNA and ATAC modalities. scDensity is computationally efficient and 
scales to atlas-size single cell datasets. The resulting density function can 
comprehensibly represent entire cell populations and enable multiple novel 
downstream applications. This advancement could serve as a new paradigm of 
single-cell analysis. 
 
Algorithm details 
We define a model describing the data distribution, so we can use Bayesian 
inference on its parameters (Fig.2). The central parametrization of the model is a 
function over the entire cell-state space that describes the logarithm of the cell-
state density. To ensure differentiability of this function we employ a Gaussian 
prior with a Matern covariance function and heuristic to select a fixed length scale. This allows us to sample function 
values for each observed cell while ensuring that the resulting function is defined even for unobserved cell states, and it 
links density values between close cells involving multiple samples in the estimation of the local density, increasing its 
statistical power. A key ingredient is the connection between the density function and the data distribution: Since the cell-
state space has high dimensionality, it is intractable to integrate any function over it and to normalize our density function 
to a probability density. So, instead of treating the measured cell states as samples of the density function, we compute 
the distance to the nearest neighbor from each cell and use this as a sample from a nearest-neighbor distribution, which 
we deduced from the Poisson distribution, that connects this distance with the local density. This allows us to fit a density 
function for higher dimensionalities than previously feasible5.  
 

 

 
Fig.2 A Cells in 2-dimensional state space with colored nearest neighbor distributions. B Bayesian model used to infer the cell-state density. 

Fig.1 A Continuous cell-state density 
function over a simulated set of discrete 
cell states in two dimensions. B UMAP of T-
cell depleted bone marrow single-cell RNA-
seq sample colored by cell-state density. 



To improve the scalability of the Gaussian process, we implemented a low rank approximation of the involved covariance 
matrix. In addition to the rank reduction through k-means inducing points, we apply an improved Nyström approximation6 
to generate density estimates in an extremely efficient manner without sacrificing accuracy. Concretely, scDensity can 
estimate densities for a dataset of 250k cells in less than 15 minutes. Our implementation using jax7 allows evaluation of 
cell-state density for unobserved states, automatic differentiation of the density function, and broad user control including 
support for other covariance functions. 
 
Modeling relevance 
Using a continuous density function as inferred by scDensity overcomes multiple limitations of the traditionally discrete 
representation for single-cell datasets and cell-differentiation modelling: (i) Instead of only considering cell-state 
transitions between observed states, any cell-state change can be considered. (ii) Transition rates to different cell states 
can be informed by density gradients and the Boltzmann equation. (iii) The density quantification can be used to analyses 
changes in cell prevalence along differentiation trajectories within a dataset or between population of different 
conditions, allowing conclusions about proliferation and apoptosis rates. (iv) Measurement uncertainty is implicitly 
encoded in the representation. The smoothness of the density function, which is informed by the data, indicates positive 
probabilities for the existence of any unobserved cell state. (v) The representation’s complexity and size in memory 
depends on the complexity of the represented cell population and not the number of measured cells. Additional 
measurements increase the accuracy and reduce uncertainty without directly increasing the cost of specialized 
downstream applications. 
 
Downstream applications allow automatic detection of rare cell-types and bottlenecks or checkpoints of the cell 
differentiation process. Furthermore, the differentiable density function enables the application of calculus - We 
demonstrate this by investigating the effects of the density gradient of cellular state diffusion through the diffusion current 
that could play an essential role to understand the mechanisms of homeostasis cell populations. Other novel applications 
include the high-resolution compositional changes of cell populations under different conditions, usage of the Boltzmann 
equation to compute transition rates between “stable” cell states with high-density, and enrichment of discrete samples 
through Hamilton Monte Carlo sampling. 
 
Biological relevance 
Single-cell studies have indicated that differentiation and disease trajectories are punctuated with regions of variable cell-
state density3,8,9 (Fig.1B). Applied to diverse single-cell datasets, scDensity demonstrates that low-density regions in 
trajectories are rare intermediate cell-states with critical roles in their biological system. In human hematopoiesis, 
scDensity revealed that rare cell states are hallmarks of lineage specification and accompanied by upregulation of essential 
master transcription factors. E.g., common lymphoid progenitors (<0.5% of cells in marrow) emerge from the 
hematopoietic progenitor pool as a low-density state in the B-cell differentiation trajectory (Fig.3A,C). The emergence is 
accompanied by localized upregulation of EBF1, the B-cell master regulator (Fig.3B).  We further leverage scDensity to 
identify bottlenecks of iPS differentiation10, chart the emergence of metastatic cells from mouse models of tumors11, and 
detect stem-like populations in regeneration12, all of which are detected as rare cell states. We demonstrate how cell-
state-density enabled single-cell analysis empowers the identification and focus on rare but crucial transitory cell states 
that are often overlooked in typical single-cell analyses. 
 

 
 

Fig.3 Example data from T-cell depleted bone marrow single-cell RNA-seq experiment (s. Fig.1 B for cell-state density). A UMAP embedding of 
cell states highlighting the B-cell trajectory in color. B Cell-state density and EBF1 expression along B-cell trajectory with arrow indicating temporal 
ordering. C Fate probability for cells in B-cell trajectory along pseudotime, colored by cell-state density. 
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