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ABSTRACT

Varying annotation costs among data points and budget constraints can hinder the
adoption of active learning strategies in real-world applications. This work in-
troduces two Bayesian active learning strategies for batch acquisition under con-
straints (ConBatch-BAL), one based on dynamic thresholding and one following
greedy acquisition. Both select samples using uncertainty metrics computed via
Bayesian neural networks. The dynamic thresholding strategy redistributes the
budget across the batch, while the greedy one selects the top-ranked sample at
each step, limited by the remaining budget. Focusing on scenarios with costly
data annotation and geospatial constraints, we also release two new real-world
datasets containing geolocated aerial images of buildings, annotated with energy
efficiency or typology classes. The ConBatch-BAL strategies are benchmarked
against a random acquisition baseline on these datasets under various budget and
cost scenarios. The results show that the developed ConBatch-BAL strategies can
reduce active learning iterations and data acquisition costs in real-world settings,
and even outperform the unconstrained baseline solutions.

1 INTRODUCTION

Bayesian active learning (BAL) is a method suitable for scenarios where data annotation is costly
or time-consuming (Budd et al., 2021; Desai & Ghose, 2022; Moustapha et al., 2022). Guided
by uncertainty metrics computed from a pool of candidate samples, BAL aims to improve model
accuracy with fewer samples by iteratively selecting data points for annotation (Gal et al., 2017).
Supported by key developments in Bayesian neural networks (MacKay, 1995; Neal, 2012), BAL
has proven successful in practical scenarios, from medical applications (Kadota et al., 2024) and
remote sensing (Haut et al., 2018) to natural language processing (Siddhant & Lipton, 2018).

Although Bayesian neural networks (BNNs) are based on solid mathematical principles (Neal,
2012), performing exact Bayesian inference on model parameters given the training data becomes a
challenge in practical applications because the posterior distribution is usually complex and does not
typically have a closed-form solution. To overcome this issue, approximate inference methods for
BNNs have been proposed in the literature, from sampling approaches such as Monte Carlo Markov
Chain (MCMC) (Papamarkou et al., 2022) and stochastic gradient MCMC variants (Ma et al., 2015)
to variational methods like Bayes by backpropagation (MacKay, 1991) and Monte Carlo dropout
(Gal & Ghahramani, 2016). While MCMC methods can infer more representative and accurate
posterior distributions, variational inference methods, particularly Monte Carlo dropout, are more
efficient and scalable at the expense of lower-precision uncertainty estimates. In practice, the choice
of an approximate BNN is case-specific (Mohamadi & Amindavar, 2020; Wang & Yeung, 2020;
Abdar et al., 2021), and depends on available computational resources and the required precision of
model uncertainty estimates.

In BAL, uncertainty metrics are key for selecting data points for annotation. A pool of unlabelled
candidate samples is ranked at each active learning iteration using an acquisition function. Various
acquisition functions have been proposed (Gal, 2016), typically corresponding to a model uncer-
tainty metric, such as predictive entropy (Shannon, 1948), variation ratios (Freeman, 1975), or mu-
tual information (Gal et al., 2017). The latter relies on information-theoretic principles, distilling the
model from total uncertainty by computing the mutual information of candidate sample predictions
and BNN model parameters (Gal et al., 2017).
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Dynamic thresholding ConBatch-BAL Greedy ConBatch-BAL

Figure 1: Proposed batch Bayesian active learning strategies, dynamic thresholding ConBatch-BAL
and greedy ConBatch-BAL. (Left) Dynamic thresholding ConBatch-BAL redistributes the budget
across the batch based on an adaptive threshold. (Right) Greedy ConBatch-BAL selects the top-
ranked sample at each batch step, limited by the remaining budget.

BAL methods often assume a uniform annotation cost across all candidate unlabelled samples. How-
ever, in many real-world applications, annotation costs can vary, and the total budget for a batch may
be limited. For example, annotating images with a drone in a geographical area is constrained by the
drone’s battery. To facilitate the adoption of BAL in real-world applications, we propose two active
learning strategies for batch acquisition under budget constraints. Both strategies use an acquisition
function that maximizes an uncertainty metric, e.g., mutual information of candidate sample pre-
dictions and model parameters. As depicted in Figure 1, adaptive thresholding ConBatch-BAL sets
a cost threshold at each batch step to manage the budget, while greedy ConBatch-BAL selects the
top-ranked candidate sample at each batch step, limited by the remaining budget. We also publicly
release two real-world building datasets, build6k and nieman17k, where data annotation is costly
and geospatial constraints are present. The datasets include geolocated building aerial images with
their corresponding energy efficiency or typology classes. The proposed ConBatch-BAL strategies
are tested under various budget constraints and scenarios on the building datasets and a modified
version of the MNIST dataset, where each digit is geolocated.

To summarize, our contributions are listed below:

• Dynamic thresholding ConBatch-BAL and greedy ConBatch-BAL are introduced, two
Bayesian active learning strategies for batch acquisition under budget constraints.

• Two curated real-world datasets are publicly released containing geolocated building aerial
imagery and their corresponding building energy efficiency or typology classes.

• A benchmark study is conducted, testing the developed ConBatch-BAL strategies on real-
world building datasets, and drawing insights for similar and broader practical applications.

2 RELATED WORK

Batch active learning. Batch active learning allows the annotation of multiple points simultane-
ously, reducing the number of model retraining iterations required. In Batch-BALD (Kirsch et al.,
2019), samples are acquired based on the mutual information between a batch of points and model
parameters, while its computationally efficient variant, k-BALD, computes k-wise mutual informa-
tion terms (Kirsch, 2023). Other methods like BADGE (Ash et al., 2019) and ACS-FW (Pinsler
et al., 2019) use loss metrics and loss gradient scores for batch selection. In Kirsch et al. (2021), a
stochastic strategy is proposed for adapting single-point acquisition methods to batch active learning.
Unlike our work, these methods do not consider varying data annotation costs or budget constraints.
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Cost-sensitive active learning. Algorithms for cost-sensitive multi-class classification, where mis-
classification costs vary across classes, are proposed in Krishnamurthy et al. (2019), Greiner et al.
(2002), and Krempl et al. (2015). In Li et al. (2022), a batch active learning algorithm is introduced
for multi-fidelity physics and engineering applications, where the cost of requesting a model evalua-
tion depends on the fidelity of the chosen model. In contrast to these approaches, our ConBatch-BAL
strategies are designed for practical scenarios with varying annotation costs across data points, in-
cluding cases where the acquisition cost depends on the previous set of selected points in the batch.

Real-world aerial imagery datasets. The AID dataset (Xia et al., 2017) contains Google Earth
images for scene classification annotated by remote sensing specialists. X-View (Lam et al., 2018)
and DOTA (Xia et al., 2018) are large-scale real-world datasets focused on object detection from
aerial imagery, while the dataset SPAGRI-AI (Jonak et al., 2024) applies aerial imagery for bench-
marking computer vision methods in crop and weed detection. In Mayer et al. (2023), a method is
proposed for predicting building energy efficiency using aerial, street-view, and surface temperature
data. In our work, we release two open real-world datasets containing aerial images of buildings in
Rotterdam, annotated with their geolocation, energy efficiency classes, and typologies. Our goal is
to motivate the advancement of active learning methods in scenarios where data annotation is costly.

3 PRELIMINARIES

3.1 PROBLEM SETTING

Consider a Bayesian neural network (BNN) model, M := fω(x), with input x, and model pa-
rameters ω ∼ p(ω|Dtrain), trained on a small dataset, Dtrain. The goal of a batch-BAL task is to
iteratively retrain the model,M, based on an acquired batch of n samples, {x∗

1, . . . ,x
∗
n}, from an

available pool dataset, Dpool, such that the accuracy of the model on unseen data—represented by
a separate test dataset, Dtest,— is maximized with the minimum number of iterations. The trained
model provides uncertainty information on its predictions and can be used to select informative
points {x∗

1, . . . ,x
∗
n}⊆Dpool based on a given acquisition function, a({x1, . . . ,xn}, p(ω|Dtrain)):
{x∗

1, . . . ,x
∗
n} = argmax{x1:n}⊆Dpool

a({x1, . . . ,xn}, p(ω|Dtrain)). (1)

Under a batch budget constraint, cmax, allowing up to nmax samples per batch, and considering that
the batch acquisition cost is defined as c(x1, . . . ,xn), where (x1, . . . ,xn) is an ordered sequence of
samples, the selection process becomes:

{x∗
1, . . . ,x

∗
n} = argmax

{x1:n}⊆Dpool

a({x1, . . . ,xn}, p(ω|Dtrain)) (2)

subject to: c(x1, . . . ,xn) ≤ cmax , n ≤ nmax .

3.2 BATCH-BALD: BATCH BAYESIAN LEARNING BY DISAGREEMENT

To rank a batch of candidate samples, {x1, . . . ,xn}, Batch-BALD proposes an acquisition function
that relies on the mutual information between sample predictions, {y1, . . . , yn}, and model param-
eters, p(ω | Dtrain) (Kirsch et al., 2019). In Batch-BALD, the acquisition function is defined as:

aBatchBALD({x1, . . . ,xn}, p(ω|Dtrain)) := I(y1, . . . , yn;ω | x1, . . . , xn,Dtrain). (3)

To facilitate the selection of a diverse batch of samples, Batch-BALD does not assume independence
among candidate sample predictions (Kirsch et al., 2019), and instead, the mutual information is
quantified based on joint entropy metrics as:

I(y1:n;ω | x1:n,Dtrain) := H(y1:n | x1:n,Dtrain)− Ep(ω|Dtrain)H(y1:n | x1:n,ω,Dtrain), (4)
where the term on the left corresponds to the joint predictive entropy, constituting a total uncertainty
metric, whereas the term on the right refers to the expectation of conditional entropy given the
model parameters, thereby reflecting aleatoric uncertainty. By discerning aleatoric uncertainty from
joint entropy, the mutual information of a batch of samples and the model parameters becomes an
epistemic model uncertainty metric, indicating the samples where model parameters most disagree.
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3.3 MONTE CARLO DROPOUT

While the proposed ConBatch-BAL strategies can be generally applied to other probabilistic mod-
els, we adopt Monte Carlo dropout BNNs in this work because they scale well to high-dimensional
data, are more computationally efficient than other BNN approaches, and have a straightforward
training process (Kirsch et al., 2019). As demonstrated by Gal & Ghahramani (2016), minimizing
the dropout loss is equivalent to performing approximate Bayesian inference, assuming the varia-
tional distribution is a mixture of two Gaussians, with a mean set equal to zero for one of them. At
test time, uncertainty estimates can be obtained by computing a number of forward passes, T , with
dropout activated. For instance, the output class probability vector for a classification task with input
x can be estimated as p(y | x,Dtrain) ≈ 1/T

∑T
t=1 Softmax(fωt(x)).

4 CONBATCH-BAL STRATEGIES

Building on methods that rely on Bayesian active learning (BAL) by disagreement (Gal et al.,
2017), we introduce two heuristic strategies to handle batch acquisition under budget constraints,
enabling the application of active learning methods in real-world scenarios where annotations are
costly or time-consuming. Both strategies select a batch, {x∗

1, . . . ,x
∗
n}, based on a specified

uncertainty metric, such as the mutual information between predictions and model parameters,
I(y1:n;ω | x1:n,Dtrain), but differ in how they manage the remaining budget throughout the batch.
The proposed strategies are named ConBatch-BAL because acquisition functions other than mutual
information can be defined in the selection process. Sample selection under constraints is a complex
combinatorial optimization problem because (i) selecting a diverse batch requires computing joint
uncertainty metrics, and (ii) the acquisition cost of sample xi at batch step i, may depend on the
previous set of selected points, introducing another sequential effect to the problem. Although the
definition of the cost model is case-specific, the formulation of the active learning problem under
budget constraints is general. One can define the cost model and constraints in terms of monetary
units, distance, or any other quantity of interest. While greedy selection based on mutual infor-
mation satisfies submodularity and yields a 1 − 1/e approximation guarantee (Kirsch et al., 2019),
introducing cost-dependent samples creates a knapsack constraint that is computationally NP-hard
and may cause submodularity to no longer hold.

4.1 DYNAMIC THRESHOLDING CONBATCH-BAL

To manage the budget, cmax, over a batch, dynamic thresholding initially sets a threshold cth,1 =
cmax,1/nmax, where nmax is the maximum allowed number of batch steps1 and cmax,1 = cmax. At
each subsequent batch step i, the remaining available budget is recalculated as cmax,i = cmax,i−1 −
c(x∗

i−1), based on the acquisition cost incurred by the previously selected point x∗
i−1, and the batch

threshold is adjusted as cth,i = cmax,i/(nmax − (i − 1)). Under the set budget threshold, cth,i,
a sample is selected at each batch step i based on the defined acquisition function and specified
uncertainty metric. The batch acquisition process2 is summarized in Algorithm 1 and a graphical
representation of two batch steps is shown in Figure 1 (left).

4.2 GREEDY CONBATCH-BAL

Derived from Batch-BALD (Kirsch et al., 2019), greedy ConBatch-BAL selects points based on
the specified uncertainty metric, limited only by the remaining budget, operating greedily without
considering the entire batch horizon. The only constraint is that the cost of the selected sample,
c(x∗

i ) must not exceed the remaining budget cmax. This approach encourages the acquisition of
costly but highly informative samples, even if it results in a batch with fewer points, n, than the
maximum possible, nmax. The steps for implementing this active learning strategy2 are outlined in
Algorithm 2, and the process over two batch steps is illustrated in Figure 1 (right).

1In our terminology, batch step refers to the stage at which a sample is selected, and active learning iteration
denotes each instance when the model is retrained.

2The computational complexity per batch is primarily dominated by the computation of mutual informa-
tion, O (|Dpool| · T ·K nmax), where T , K, and nmax stand for the number of forward passes, classes, and
maximum points in a batch, respectively. If the joint entropy is estimated via sampling, the complexity reduces
to O (|Dpool| · T · nsim ·K · nmax), with nsim being the number of samples used for the estimation.
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Algorithm 1: Dynamic thresholding ConBatch-BAL
Input: Maximum batch acquisition size nmax, budget cmax, model p(ω | Dtrain)
A0 = ∅
cth = cmax/nmax
for i← 1 to nmax do

if ∀x ∈ Dpool \Ai−1, c(x) > cmax then
return Acquisition batch Ai−1 = {x∗

1, . . . ,x
∗
i−1}

else
foreach x ∈ Dpool \Ai−1 | c(x) ≤ cth do sx ← a(Ai−1 ∪ {x}, p(ω | Dtrain))
x∗ ← argmaxxsx
Ai ← Ai−1 ∪ x∗

cmax ← cmax − c(x∗)
cth ← cmax/(nmax − i)

end
end
return Acquisition batch Anmax = {x∗

1, . . . ,x
∗
nmax
}

Algorithm 2: Greedy ConBatch-BAL
Input: Maximum batch acquisition size nmax, budget cmax, model p(ω | Dtrain)
A0 = ∅
for i← 1 to nmax do

if ∀x ∈ Dpool \Ai−1, c(x) > cmax then
return Acquisition batch Ai−1 = {x∗

1, . . . ,x
∗
i−1}

else
foreach x ∈ Dpool \Ai−1 | c(x) ≤ cmax do sx ← a(Ai−1 ∪ {x}, p(ω | Dtrain))
x∗ ← argmaxxsx
Ai ← Ai−1 ∪ x∗

cmax ← cmax − c(x∗)
end

end
return Acquisition batch Anmax = {x∗

1, . . . ,x
∗
nmax
}

5 BUILDING DATASETS

BAL allows the acquisition of multiple samples simultaneously within an active learning iteration.
In practical applications, this acquisition cost may vary among samples and batch selection may
be constrained by a budget. For example, a drone annotator operates under a finite battery range,
or a medical expert may need to travel between labs across various regions. Focusing on practical
applications where data annotation is typically geospatially constrained and costly, we introduce
two real-world datasets, build6k and nieman17k. These datasets consist of building aerial imagery
and their corresponding building energy labels or typologies, which are key factors for assessing
energy efficiency and intervention needs within a city. A few sample images from each dataset are
shown in Figure 2a. The build6k dataset includes approximately 6,000 aerial images of buildings in
Rotterdam, each classified as {efficient (energy labels A-E), inefficient (energy labels F-G)}. Cate-
gorizing building energy efficiency at scale supports recent energy performance directives aimed at
progressively phasing out inefficient buildings (Economidou et al., 2020).

We also release the nieman17k dataset, containing approximately 17,000 building aerial images
with their typology class: {upstairs apartment (<1945), terraced house (<1945), terraced house
(>1945), porch house (<1945), porch house (1945-1975), porch house (>1975), detached house}.
Building typologies can be used in energy performance simulations (Koezjakov et al., 2018), where
thermal properties can be inferred as a function of building typology. Besides energy performance,
typologies can also be used for architectural analyses focusing on building historical evolution.

5
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 build6k  build6k  nieman17k  nieman17k

[efficient] [inefficient] [apartment < 1945] [detached home]

(a) Sample aerial images from the build6k and nieman17k datasets with their corresponding class categories.

distance distance_return area_cost

(b) Cost configurations. (Left) The total travel distance from the first to the last point is constrained within a
batch. (Center) The constrained total travel distance includes the return to the first point in the batch. (Right)
Sample acquisition costs are discretized into areas and their sum is constrained within a batch.

Figure 2: Released building datasets and implemented cost configurations.

All buildings in both datasets are geo-referenced. Finally, we also include a modified version of
MNIST for comparative purposes, where approximately 6,000 images are randomly linked to ge-
olocations from build6k. Although we apply the proposed active learning strategies to scenarios
with geospatial constraints, we encourage the development of real-world datasets that employ other
cost models based on factors such as monetary value or time.

The aerial images in build6k and nieman17k are collected via PDOK’s web service (PDOK, 2024).
Each aerial image captures a building, delimited by its footprint, with geographical coordinates, en-
ergy labels, and typologies, all retrieved from open data in collaboration with the municipality of
Rotterdam. In addition to aerial imagery, energy efficiency classes, and typologies, the datasets3

include predefined training, test, and pool sets, as well as the feature vectors for each building, com-
puted via DINOv2 (ViT-S/14 distilled)(Oquab et al., 2023). Further details on the process followed
to curate the datasets are provided in Appendix A. Although this work focuses on energy efficiency
and typology classification, the datasets can be used for other tasks such as information retrieval or
instance segmentation (Sun et al., 2022).

Hiring auditors to inspect or classify all buildings in a city is prohibitively expensive. Carefully
selecting buildings for inspection can significantly reduce costs. To motivate our experiments, we
introduce three cost configurations, shown in Figure 2b, adaptable to other similar real-world ap-
plications. The first configuration, distance, allows free choice of the first building in a batch but
constrains the distance traveled when selecting subsequent buildings in the batch, reflecting trans-
portation costs that can be reduced by inspecting nearby buildings together. The second configura-
tion, distance return, imposes a stricter constraint by requiring the total traveled distance to include
the return trip to the first building in the batch, accounting for the extra resources needed to complete
the route. Finally, the configuration area cost assigns each building a cost based on its geographical
area in Rotterdam, with costs proportional to the number of buildings in the area, ranging from 1
to 100 cost units. Crowded areas in this configuration are more expensive than sparsely populated
ones. We benchmark the proposed ConBatch-BAL strategies on the three cost configurations, pre-
senting results for distance and area cost in the main text, with results for distance return provided
in Appendix C.1, as they show minor variations compared to the distance configuration.

3The datasets, build6k and nieman17k, are publicly released under a CC by 4.0 license. Anonymous link.
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6 EXPERIMENTS

In this section, we benchmark the proposed ConBatch-BAL strategies against a random selection
baseline. The strategies are tested on three datasets, build6k, mnist6k, and nieman17k under various
budget constraints. For each dataset, configuration, budget constraint, and strategy, 5 random seeds
are evaluated over 800 active learning iterations. We evaluate the number of active learning iterations
required to achieve a specified model accuracy on the test set, as this is equivalent to counting the
number of completed tours in the tested practical scenarios. Additionally, we showcase the results as
a function of acquired samples and cost in Appendix C.3. Note that in the limit of an infinite budget,
dynamic thresholding ConBatch-BAL, greedy ConBatch-BAL, and greedy Batch-BALD become
equivalent, as all acquire samples based on mutual information.

In all experiments, the Bayesian neural network classifier receives embedding vectors generated
from the input aerial images using the pre-trained DINOv2 foundation model (Oquab et al., 2023).
Further details are provided in Appendix B.1. A preliminary analysis showed that fine-tuning the
last two layers of DINOv2 improves accuracy only by 1-2%, agreeing with reported experiments
(Oquab et al., 2023). We thus restrict model re-training to the Bayesian neural network classifier,
which is modeled with two hidden layers, and hyperparameters listed in Table 2 in Appendix B.2.
In this setup, the specified acquisition functions correspond to the mutual information of the BNN
classifier parameters and sample output predictions.

The results4 for the distance cost configuration are showcased in Figure 3. Markers represent the
number of active learning iterations a strategy requires to reach a specific classification accuracy for
each seed. In the figure, budget constraints are color-coded. Consistent with previously reported
findings (Kirsch et al., 2019), we observe that greedy Batch-BALD outperforms random selection
under an infinite budget, requiring significantly fewer samples to achieve a high classification accu-
racy.

build6k distance - 0.76 accuracy mnist6k distance - 0.93 accuracy nieman17k distance - 0.65 accuracy

build6k distance - 0.78 accuracy mnist6k distance - 0.95 accuracy nieman17k distance - 0.68 accuracy

0 200 400 600 800

Active learning iterations

build6k distance - 0.8 accuracy

0 200 400 600 800

Active learning iterations

mnist6k distance - 0.97 accuracy

0 200 400 600 800

Active learning iterations

nieman17k distance - 0.71 accuracy

greedy random thresholding infinite budget 2 km 0.1 km

Figure 3: Benchmark results for the distance cost configuration across datasets and budget con-
straints. Markers represent the number of active learning iterations required to reach model accuracy
targets on the test set for each seed, with the mean indicated by a vertical line. Greedy ConBatch-
BAL and dynamic thresholding ConBatch-BAL outperform the random selection baseline.

4The corresponding active learning curves are shown in Figure 11 in Appendix C.2
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In the distance configuration under budget constraints, dynamic thresholding ConBatch-BAL and
greedy ConBatch-BAL achieve the highest model accuracy targets with 20–43% fewer active learn-
ing iterations on the build6k dataset, and 50–80% fewer on the nieman17k dataset, compared to the
random selection baseline. Under the 100-m batch constraint, the baseline fails to reach the target of
71% model accuracy on the nieman17k dataset within 800 active learning iterations. With fewer than
400 active iterations, both ConBatch-BAL strategies achieve an accuracy of 97% on mnist6k under
a 100-m budget constraint, while the random strategy requires over 600 active iterations to reach the
same accuracy. Naturally, more active learning iterations are needed in settings with stricter budget
constraints, as opportunities to select highly informative samples become more limited.

Among the datasets, the performance gap between the proposed ConBatch-BAL strategies and ran-
dom selection is larger in mnist6k compared to build6k and nieman17k. We attribute this result to
the fact that build6k and nieman17k are noisier, making it more difficult to distinguish model uncer-
tainty from aleatoric noise. Nevertheless, the observed trends hold across datasets, with ConBatch-
BAL strategies outperforming random selection, especially for higher classification accuracy targets.
Interestingly, the developed ConBatch-BAL strategies under the 2 km constraint outperform the un-
constrained random selection baseline on all datasets. As detailed in Appendix C.5, the effectiveness
of ConBatch-BAL strategies relative to the baseline remains consistent across varying batch sizes.

To further investigate the proposed ConBatch-BAL strategies, we conduct additional experiments in
the cost area configuration, where acquisition cost depends on the area where the sample is located.
In this case, the cost model is not sequential, as the sequence in which samples are acquired does not
influence batch acquisition cost. While adaptive thresholding balances the available budget across
the batch, highly informative yet costly samples may be overlooked in early batch steps due to the
imposed thresholds, potentially remaining unreachable throughout the entire batch selection process.
On the other hand, the greedy variant selects samples without considering specific thresholds at each
batch step. Although the remaining available budget may be depleted before reaching the maximum
number of batch steps, very informative samples can be greedily selected early on, as long as the
total available budget is not exceeded. The results5 for this configuration are shown in Figure 4. In
this case, greedy ConBatch-BAL outperforms dynamic thresholding ConBatch-BAL on the build6k
and nieman17k datasets, while the opposite is true on mnist6k.

build6k areas - 0.76 accuracy mnist6k areas - 0.93 accuracy nieman17k areas - 0.65 accuracy

build6k areas - 0.78 accuracy mnist6k areas - 0.95 accuracy nieman17k areas - 0.68 accuracy

0 200 400 600 800

Active learning iterations

build6k areas - 0.8 accuracy

0 200 400 600 800

Active learning iterations

mnist6k areas - 0.97 accuracy

0 200 400 600 800

Active learning iterations

nieman17k areas - 0.71 accuracy

greedy random thresholding infinite budget 101 cost units

Figure 4: Benchmark results for the area cost configuration across datasets and budget constraints.
Markers represent the number of active learning iterations required to reach model accuracy targets
on the test set for each seed, with the mean indicated by a vertical line. Dynamic thresholding
ConBatch-BAL underperforms greedy ConBatch-BAL, particularly on the build6k dataset.

5The corresponding active learning curves are shown in Figure 11 in Appendix C.2
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Figure 5: Normalized mutual information as a function of geographical distance for candidate sam-
ples at three distinct active learning iterations on the build6k dataset. Many informative points can
be found within 2 km (black line), while fewer buildings are available within 100 m (red line).

In the cost area configuration, many informative buildings are concentrated in a geographical area
with high acquisition costs, making it difficult for dynamic thresholding to select informative sam-
ples under the imposed threshold constraints. In contrast, mnist6k is more diverse across areas,
allowing dynamic thresholding to be competitive and even outperform greedy ConBatch-BAL.

7 DISCUSSION AND LIMITATIONS

The experiments indicate that the proposed ConBatch-BAL strategies can reduce the number of
active learning iterations needed to reach satisfactory model accuracy in real-world scenarios with
batch acquisition under budget constraints. While the average distance traveled without budget
constraints is approximately 25 km per batch, as shown in Appendix C.4, similar accuracy can be
achieved under the 2-km constraint across all datasets on the distance configuration. This finding is
important for the practical adoption of active learning methods. As shown in Figure 5, informative
samples are generally found within a 2 km distance of the reference sample, though fewer samples
are naturally available under the stricter 100-m distance constraint. While sample informativeness
depends on the data distribution and is case-specific, the effectiveness of active learning methods
should not significantly reduce as long as enough informative samples can be found within the
constrained region. To examine the samples collected by the tested strategies over active learning
iterations, Figure 6 represents the mutual information from acquired batches of samples. More
informative batches are generally collected after a few learning iterations as the training set becomes
less sparse, peaking at the point where highly informative samples start becoming less available. As
expected, constraints hinder the acquisition of informative samples, particularly under the 100-m
batch distance limit, where the number of samples per batch is significantly compromised.
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Figure 6: Mutual information for batches collected by ConBatch-BAL strategies on the build6k
dataset. Budget constraints limit the acquisition of informative samples and result in fewer points
collected per batch, especially for greedy ConBatch-BAL.
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Figure 7: Results for the area cost configuration on the build6k dataset under a budget constraint
of 101 cost units. (Left) Dynamic thresholding underperforms greedy ConBatch-BAL and random
selection strategies. (Right) Greedy ConBatch-BAL selects costly but informative buildings.

The active learning curve for the area cost under a constraint of 101 cost units is shown in Figure 7a.
The results reveal that the main drawback of dynamic thresholding ConBatch-BAL compared to the
greedy variant is its inability to acquire expensive but highly informative samples due to the imposed
thresholds. In some cases, acquiring fewer but informative samples proves very effective. Figure
7b examines in which area samples are acquired throughout the experiment, showing that dynamic
thresholding limits acquisition from the most expensive area compared to the other strategies. Since
highly informative buildings are located in this area, the performance of dynamic thresholding is
compromised. However, this effect corresponds to the extreme case where informative samples are
concentrated in a region with very high acquisition costs.

7.1 LIMITATIONS

Approximate uncertainty estimates. In this work, uncertainty metrics are computed through
Monte Carlo dropout BNNs. While these provide a framework for efficiently capturing the un-
certainty in model predictions, the resulting uncertainty estimates might not be as informative due
to the noise introduced by the MC-dropout variational approximation. Future research efforts could
apply ConBatch-BAL strategies using uncertainty metrics computed through other BNN variants,
such as stochastic gradient MCMC (Welling & Teh, 2011; Chen et al., 2014; Zhang et al., 2019).

Model re-training. While the pre-trained foundation model DINOv2 is used to compute feature
embeddings from aerial imagery, we do not fine-tune DINOv2 in our experiments and only re-train
the BNN classifier, thereby reducing computational demands. Although only marginal gains are
reported in the literature when fine-tuning the internal layers of DINOv2 (Oquab et al., 2023), this
research path could be explored further.

Aerial imagery dataset. In the introduced real-world building datasets, energy efficiency categories
and typologies are informed by building aerial imagery. Complementing the dataset with street-view
images or other informative features may lead to more accurate predictions (Mayer et al., 2023).

8 CONCLUSIONS

We introduce two batch active learning strategies for acquiring informative samples under budget
constraints and showcase their effectiveness on real-world datasets for building energy efficiency
prediction and typology classification. While solving exactly the combinatorial problem of acquir-
ing the most informative batch under budget constraints is often intractable due to system-level sta-
tistical and cost effects, heuristic strategies like dynamic thresholding or greedy selection can offer
satisfactory performance in practice. Our results show that the developed ConBatch-BAL strategies
can reduce active learning iterations and cost in real-world settings with expensive data annotation
and geospatial constraints, even surpassing the performance of the unconstrained random selection
baseline.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To facilitate the reproduction of the experiments presented in Section 6 and Appendix C, we provide
the source code as supplementary material on the submission platform. Additionally, the real-world
building datasets introduced in Section 5, along with JSON files containing the results from the
experiments, can be accessed via the following anonymous link. To comply with double-blind
review requirements, the source code and the data repository have been anonymized. Instructions
for reproducing the results and downloading the datasets can be found in the main README file
within the source code. Configuration files containing hyperparameters and random seeds are also
provided alongside the results. Minor variations in results may be expected on different machines,
even if the same random seed is set. All active learning experiments presented in the paper were
run on an Intel Xeon compute node with 4 CPUs and 10 GB of RAM. The computational time to
complete each experiment ranged from 6 to 12 hours.
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A BUILDING DATASETS CURATION PROCESS

We leverage open data sources and web services available in the Netherlands to create the released
building datasets. Specifically, we retrieve aerial images via the PDOK web service (PDOK, 2024),
building footprints and typologies from 3DBAG (BAG, 2024), and building energy performance
data from RVO (RVO, 2024), in collaboration with the municipality of Rotterdam. To integrate
building energy performance and typology data with geographical information and building foot-
prints, we utilize the unique building identifier assigned to each building in the Netherlands. 8-cm
resolution aerial images are collected via PDOK (PDOK, 2024) by defining the geographic region
with rectangular bounding boxes that enclose the building footprints, with an added buffer to capture
the surrounding context. Each aerial image is then linked to its corresponding energy efficiency or
typology class by cross-referencing tabular building data and footprint through the unique building
identifier. Since geographical information is available together with building footprints, we store
the geolocation of each building as the centroid of its bounding box. The dataset curation process is
illustrated in Figure 8.

build6k We randomly select approximately 6,000 buildings with an equal representation of energy-
efficient and energy-inefficient classes. Energy-efficient buildings have energy labels from A to E,
while energy-inefficient buildings correspond to energy labels from F to G.

nieman17k We randomly select approximately 17,000 buildings, balanced across the following ty-
pology classes: {upstairs apartment (<1945), terraced house (<1945), terraced house (>1945),
porch house (<1945), porch house (1945-1975), porch house (>1975), detached house}. These
typologies correspond to Nieman categories, commonly used for building energy performance anal-
ysis (Koezjakov et al., 2018).

mnist6k We select the same number of samples from the MNIST dataset as in the build6k dataset,
ensuring they are balanced across classes. Each digit in the mnist6k dataset is linked to the ge-
olocation of a building from the build6k dataset. In this modified version of MNIST, we assume
annotators must travel across Rotterdam to label the images with the correct digits.

Additionally, we provide (i) building embeddings computed with the foundation model DINOv2
(Oquab et al., 2023), (ii) building geolocations, and (iii) predefined training, test, and pool split for
all released datasets6, which are listed in Table 1.

footprints (building_id)

bounding box context buffer aerial image

class (building_id)

Figure 8: Datasets curation process. (Top) Building footprints and tabular data are cross-referenced
using the unique identifiers assigned to the buildings. (Bottom) 8-cm resolution aerial images are
collected from PDOK (PDOK, 2024) by defining a rectangular box that encloses each building
footprint, including an additional buffer to capture the surrounding context.

6The datasets, build6k and nieman17k, are publicly released under a CC by 4.0 license. Anonymous link.
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Table 1: Samples, classes, and predefined training, test, and pool splits for all released datasets.

DATASET CLASSES SAMPLES TRAINING SET TEST SET POOL SET
build6k 2 5999 30 1500 4469
nieman17k 7 17500 70 3500 13930
mnist6k 10 5999 30 1500 4469

Table 2: Hyperparameters set for the Bayesian neural network classifier and active learning task.

HYPERPARAMETER VALUE HYPERPARAMETER VALUE
Hidden layers 2 Layer width 256
Optimizer Adam Learning rate 0.0001
Batch size 32 Weight decay 0.0001
Epochs 200 Dropout rate 0.1
Forward passes 100 Active batch steps 5

B IMAGE EMBEDDINGS AND HYPERPARAMETERS

B.1 EMBEDDING VECTORS COMPUTED WITH DINOV2

Before running our active learning experiments, we precompute the 384-dimensional embedding
vector7 from each aerial or digit image using the vision transformer DINOv2 ViT S/14 with registers
(Oquab et al., 2023). As shown in Figure 9, the Bayesian neural network classifiers retrained in our
active learning experiments take image embeddings as input and output class probabilities, randomly
generated through Monte Carlo dropout, as detailed in Section 3.3.

B.2 HYPERPARAMETERS

The hyperparameters set for the Monte Carlo dropout Bayesian neural network (BNN) are listed in
Table 2, fine-tuned on the dataset build6k under an infinite budget. The hyperparameters remain
unmodified as the classifier is retrained at each active learning iteration. As retraining the classifier
does not involve long computations, we can afford retraining the BNN model from scratch. Note
that the input embedding vector size is 384, corresponding to the dimensionality of the features
provided by DINOv2, as described in Appendix B.1. In each experiment, we run 800 active learning
iterations, collecting batches of 5 points at each iteration. After each batch is acquired, the BNN
model is retrained.

building aerial image

[width, height, 
depth]

DINOv2 ViT-S/14 classifier target

cl
as

si
fic

at
io

n
 ta

sk...

feature 
vector

MC dropout
Bayesian net

16-layer
ViT

Figure 9: Pipeline: from aerial images and embeddings obtained by the foundation model DINOv2
to class probabilities generated by a Monte Carlo dropout Bayesian neural network.

7The generated image embeddings for all datasets are also publicly released. Anonymous link.
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C ADDITIONAL RESULTS

C.1 DISTANCE RETURN CONFIGURATION

The results across all introduced datasets for the distance return cost configuration are shown in
Figure 10, representing the number of active learning iterations required to achieve a specified model
accuracy target on the test set. The trends are similar to those reported in Figure 3 for the distance
cost configuration, with ConBatch-BAL strategies outperforming the random selection baseline in
all tested settings. The main difference is that more iterations are required in this configuration, as the
constraints are stricter due to the requirement of returning to the initial selected point. Interestingly,
the proposed ConBatch-BAL strategies under the 100-m batch constraint require fewer iterations
than the unconstrained random selection baseline to achieve a model accuracy of 97% on the mnist6k
dataset.

build6k return - 0.76 accuracy mnist6k return - 0.93 accuracy nieman17k return - 0.65 accuracy

build6k return - 0.78 accuracy mnist6k return - 0.95 accuracy nieman17k return - 0.68 accuracy

0 200 400 600 800

Active learning iterations

build6k return - 0.8 accuracy

0 200 400 600 800

Active learning iterations

mnist6k return - 0.97 accuracy

0 200 400 600 800

Active learning iterations

nieman17k return - 0.71 accuracy

greedy random thresholding infinite budget 2 km 0.1 km

Figure 10: Benchmark results for the distance return cost configuration across datasets and budget
constraints. Markers represent the number of active learning iterations required to reach a target
model accuracy on the test set for each seed, with the mean indicated by a vertical line. Greedy
ConBatch-BAL and dynamic thresholding ConBatch-BAL outperform the random selection baseline.
More active learning iterations are required to reach the model accuracy targets compared to the
results for the distance configuration, shown in Figure 3. Under the 100-meter constraint, the random
selection baseline fails to achieve the 71% model accuracy target on the nieman17k dataset within
800 active learning iterations.
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C.2 ACTIVE LEARNING CURVES
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Figure 11: Active learning curves for all tested strategies across datasets and budget constraints.
Model accuracy on the test set is shown over active learning iterations, with the mean over 5 seeds
represented by a solid line, and the shaded area indicating two standard deviations. Dashed lines
mark the accuracy targets defined in Figures 3, 4, and 10
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C.3 ACQUIRED SAMPLES AND ACQUISITION COST
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Figure 12: Benchmark results for the distance configuration, showcasing the number of acquired
samples and acquisition cost across datasets and budget constraints. Markers represent (top) the
total number of acquired samples and (bottom) the traveled distance required to reach a target model
accuracy on the test set for each seed, with the mean indicated by a vertical line.
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Figure 13: Benchmark results for the area cost configuration, showcasing the number of acquired
samples and acquisition cost across datasets and budget constraints. Markers represent (top) the
total number of acquired samples and (bottom) the cost required to reach a target model accuracy on
the test set for each seed, with the mean indicated by a vertical line.
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Figure 14: Benchmark results for the distance return configuration, showcasing the number of ac-
quired samples and acquisition cost across datasets and budget constraints. Markers represent (top)
the total number of acquired samples and (bottom) the traveled distance required to reach a target
model accuracy on the test set for each seed, with the mean indicated by a vertical line.
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C.4 ACQUISITION COST AND NUMBER OF ACQUIRED POINTS PER BATCH
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Figure 15: Batch acquisition cost (left) and acquired points (right) at each active learning iteration
for all tested cost configuration and strategies on the build6k dataset. In all subfigures, the mean
over 5 seeds is represented by a solid line with the shaded area indicating one standard deviation.
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Figure 16: Batch acquisition cost (left) and acquired points (right) at each active learning iteration
for all tested cost configurations and strategies on the mnist6k dataset. In all subfigures, the mean
over 5 seeds is represented by a solid line with the shaded area indicating one standard deviation.
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Figure 17: Batch acquisition cost (left) and acquired points (right) at each active learning iteration
for all tested cost configurations and strategies on the nieman17k dataset. In all subfigures, the mean
over 5 seeds is represented by a solid line with the shaded area indicating one standard deviation.
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C.5 BATCH SIZE

To evaluate the impact of the batch size, nmax, on the performance of the proposed strategies, we
conduct additional experiments on the build 6k dataset and the distance configuration with batch
sizes of 2 and 10. The results are presented in Figure 18, representing the required number of
active learning iterations or acquired samples to reach a model performance of 80% on the test set.
Additionally, the corresponding learning curves are shown in Figure 19.
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Figure 18: Benchmark results for the build 6k dataset under the distance configuration, with varying
budget constraints and batch sizes (2, 5, and 10). Markers represent (top) the number of active
learning iterations and (bottom) the total number of acquired samples required to reach a target
model accuracy of 80% on the test set for each seed, with the mean indicated by a vertical line.
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Figure 19: Active learning curves for the build 6k dataset under the distance configuration, with
varying budget constraints and batch sizes (2, 5, and 10). Model accuracy on the test set is shown
over active learning iterations, with the mean over 5 seeds represented by a solid line, and the shaded
area indicating two standard deviations.
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The effectiveness of ConBatch-BAL strategies relative to the baseline remains consistent across
batch sizes, outperforming random selection in all tested settings. While more active learning itera-
tions are required to reach the accuracy target for smaller batch sizes, this is naturally caused by the
fewer number of samples that can be acquired per tour. To compare the strategies across different
batch sizes, we examine the number of acquired samples required to achieve the accuracy target.
The results indicate that, in most cases, the number of acquired samples increases with higher batch
sizes. We attribute this result to the fact that the overall available budget per sample decreases for
higher batch sizes. However, dynamic thresholding ConBatch-BAL experiences less variation over
batch sizes, as it balances the budget across the batch.

24


	Introduction
	Related work
	Preliminaries
	Problem setting
	Batch-BALD: Batch Bayesian learning by disagreement
	Monte Carlo dropout

	ConBatch-BAL strategies
	Dynamic thresholding ConBatch-BAL
	Greedy ConBatch-BAL

	Building datasets
	Experiments
	Discussion and limitations
	Limitations

	Conclusions
	Building datasets curation process
	Image embeddings and hyperparameters
	Embedding vectors computed with DINOv2
	Hyperparameters

	Additional results
	Distance_return configuration
	Active learning curves
	Acquired samples and acquisition cost
	Acquisition cost and number of acquired points per batch
	Batch size


