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Abstract
Recent major milestones have successfully re-001
constructed natural language from non-invasive002
brain signals (e.g. functional Magnetic Reso-003
nance Imaging (fMRI) and Electroencephalo-004
gram (EEG)) across subjects. However, we005
find current dataset splitting strategies for006
cross-subject brain-to-text decoding are wrong.007
Specifically, we first demonstrate that all cur-008
rent splitting methods suffer from data leakage009
problem, which refers to the leakage of vali-010
dation and test data into training set, resulting011
in significant overfitting and overestimation of012
decoding models. In this study, we develop a013
right cross-subject data splitting criterion with-014
out data leakage for decoding fMRI and EEG015
signal to text. Some SOTA brain-to-text decod-016
ing models are re-evaluated correctly with the017
proposed criterion for further research.018

1 Introduction019

Brain-to-text decoding aims to recover natural lan-020

guage from brain signals stimulated by correspond-021

ing speech. Recent studies (Makin et al., 2020;022

Wang and Ji, 2022; Xi et al., 2023; Tang et al.,023

2023; Duan et al., 2024) have successfully de-024

coded non-invasive brain signals (e.g. fMRI, EEG)025

to text by applying deep neural networks. Most026

of these works perform within-subject data split-027

ting for training and evaluating decoding models.028

This subject-specific splitting method causes two029

main problems. First, it only uses data from one030

subject of the whole dataset for training and test-031

ing. Since brain signal collection is costly and032

time-consuming, such splitting method results in033

a significant waste of data resources. Second, it034

leads to poor model generalization. As every brain035

has unique functional and anatomical structures,036

subject-specific models may exhibit considerable037

variability across individuals and fail to generalize038

to other subjects (Liu et al., 2024). Moreover, de-039

coding models trained from scratch on limited data040

are prone to facing the overfitting problem.041

Human brain responds similarly to the same 042

stimuli, despite the individual discrepancy (Hasson 043

et al., 2004; Pereira et al., 2018). Therefore, some 044

studies (Wang and Ji, 2022; Xi et al., 2023; Duan 045

et al., 2024) begin to shed light on cross-subject 046

brain-to-text decoding, which performs data split- 047

ting based on all the subjects, trains and evaluates 048

decoding model once. Cross-subject data split- 049

ting effectively compensates for the shortcomings 050

of subject-specific splitting, and has been widely 051

applied in brain-to-image decoding (Wang et al., 052

2024; Liu et al., 2024). However, unlike datasets 053

for brain-to-image decoding (Allen et al., 2022; 054

Chang et al., 2019) where subjects are guided to 055

see different and unrepeated pictures, different sub- 056

jects will be stimulated by the same story in com- 057

mon naturalistic language comprehension dataset, 058

which challenges cross-subject data splitting. 059

Based on our observations, current cross-subject 060

data splitting methods for brain-to-text decoding 061

are wrong because data for validation and test leaks 062

into the training set, rendering the evaluation of 063

the decoding process meaningless. Specifically, we 064

find two types of data leakage: brain signal leakage 065

and text stimuli leakage. Brain signal leakage refers 066

to test subject’s brain signal appears in training set. 067

Text stimuli leakage refers to text in test set appears 068

in the training set. Modern brain-to-text decoding 069

models follow an encoder-decoder manner. We 070

pick two representative models: EEG2Text (Wang 071

and Ji, 2022) and UniCoRN (Xi et al., 2023) to 072

reveal data leakage and its damage. Experiments 073

support that data leakage affects model training on 074

both encoder and decoder side. For the encoder, it 075

will become overfitting and fail to well represent 076

brain signals if brain signal leakage exists. For 077

the decoder, the situation gets worse if text stimuli 078

leakage happens. Any data leakage would cause 079

the auto-regressive decoder to memorize previously 080

seen paragraphs during training stage, resulting in 081

poor generalization to unseen text. 082
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To avoid data leakage and fairly evaluate the per-083

formance of cross-subject brain-to-text decoding084

models, we propose a right data splitting method.085

We focus on fMRI and EEG signals in this study,086

although the proposed criterion could be applied087

to any datasets satisfying the prescribed format. In088

the proposed method, we follow two basic rules:089

(1) Brain signals collected from specific subject in090

validation set and test set will not appear in train-091

ing set, which means the trained encoder cannot092

get access to any brain information belonging to093

subjects in test set. (2) Text stimuli in validation094

set and test set will not appear in training set. The095

decoder learns to reconstruct language with brain096

signals instead of memorizing seen text.097

Our contributions can be summarized as follows:098

• To the best of our knowledge, we are the first099

to identify the issue of data leakage in current100

cross-subject data splitting methods for brain-101

to-text decoding.102
• We define the splitting criterion for cross-103

subject brain-to-text decoding, and propose104

a right dataset splitting method.105
• Some SOTA brain-to-text decoding models106

are re-evaluated using the proposed cross-107

subject data splitting method to ensure a fair108

assessment of their performance.109

2 Preliminary110

2.1 Dataset Description111

A naturalistic language comprehension dataset D112

contains brain signals of N subjects when they113

passively listen to K spoken stories. Suppose that114

not all subjects are stimulated by all stories, and115

different subjects may hear the same story.116

Formally, S1, S2, . . . , SN denotes to the N sub-117

jects and M1,M2, . . . ,MK denotes to the K sto-118

ries in dataset. The k-th story Mk consists of lk119

text segments Tk1, Tk2, . . . , Tklk . If the i-th subject120

Si hears the j-th text segment Tkj , then his brain121

signal is denoted as Fijk.122

2.2 Use Graph to Describe Dataset123

We use multigraph and k-partite graph (detailed124

in D.1 & D.2) to describe the intricate structure of125

naturalistic language comprehension dataset.126

Definition 2.1. A naturalistic language compre-127

hension datasetD can be represented via a directed128

4-partite multigraph GD.129

How to build the directed 4-partite multigraph130

GD step by step is shown in Figure 1. Graph 1 is a 2-131

𝑖-th subject

𝑘-th task

𝑗-th text stimuli
under 𝑘-th task

𝑆𝑖:

𝑀𝑘:

𝑇𝑘𝑗:

𝐹𝑖𝑗: 𝑖-th subject’s
brain signal
stimulated by
𝑗-th text

Notation
Graph 1 Subject 𝑆 is guided to listen to

story 𝑀. For example, story 𝑀1 is
heard by subjects 𝑆1, 𝑆2, 𝑆3. Such
connections are reflected by
black lines.

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

Graph 2 Each story 𝑀 consists of text
segment 𝑇. For example, Story
𝑀1 consists of 𝑇11, 𝑇12, 𝑇13, 𝑇14. 𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑀1 𝑀2 𝑀3

Graph 3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝐹 represents subject’s brain signal
stimulated by text segment 𝑇.
Subjects respond differently to
the same stimuli. For example,
𝐹121, 𝐹221, 𝐹321 are brain signals
of 𝑆1, 𝑆2, 𝑆3 when hearing 𝑇12.

Graph 4

𝐹121𝐹221𝐹321 𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…… ……

With Graph 1-3, one sample can
be formatted in Subject-Story-Text-
Brain (𝑆𝑖 , 𝑀𝑘 , 𝑇𝑘𝑗 , 𝐹𝑖𝑗𝑘) pair, which

means the brain signal 𝐹𝑖𝑗𝑘 of 𝑖-th

subject 𝑆𝑖 stimulated by 𝑗-th text
segment 𝑇𝑘𝑗 from 𝑘-th story 𝑀𝑘.

For example, the light blue line
stands for (𝑆3, 𝑀2, 𝑇22, 𝐹32).

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21 𝑇22 𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31 𝑇32 𝑇33 𝑇34

𝐹11𝐹21 𝐹31 𝐹12𝐹22 𝐹32 𝐹42 𝐹33 𝐹43

…… ……

Graph 5
𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝐹122𝐹222𝐹322𝐹422𝐹121𝐹221𝐹321 𝐹343𝐹443

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀2

𝐹122𝐹222𝐹322𝐹422

𝑇21𝑇22𝑇23

With the above definitions, all the
samples in one dataset can be
described through symbols and
lines. The right figure shows
examples of (1) 𝑆1, 𝑆2, 𝑆3 listen to
𝑇12, (2) 𝑆1, 𝑆2, 𝑆3, 𝑆4 listen to 𝑇22,
(3) 𝑆3, 𝑆4 listen to 𝑇34. Lines
connecting symbols with the
same color indicate one sample.

…… ……

Figure 1: Illustration of how to build graph to describe
dataset step by step.

partite graph indicating subject Si listening to story 132

Mk. Subject Si and story Mk are viewed as ver- 133

tices, and edges connecting them indicate certain 134

type of relationship (e.g. Si “listen to” Mk in this 135

case). Graph 2 illustrates that story Mk consists 136

of text segments Tkj . Graph 3 shows the brain sig- 137

nals Fijk of subject Si stimulated by text segment 138

Tkj . Graph 4 is an example of combining the three 139

2-partite graphs Graph 1-3: F122, F222, F322, F422 140

are brain signals of S1, S2, S3, S4 stimulated by 141

text segment T22 from story M2. In this exam- 142

ple, four edges between M2 and T22 correspond 143

to the different responses of four subjects to the 144

same text segment. There are three edges between 145

S2 and M2 because M2 contains three text seg- 146

ments. Edges of the same color indicate one sam- 147

ple in dataset. Graph 5 shows the complete di- 148

rected 4-partite multigraph GD for representing 149

whole dataset. Every sample in dataset can be rep- 150

resented through ordered subject-story-text-brain 151

(Si,Mk, Tkj , Fijk) pair. We introduce the formal 152

notation of GD: 153

Notation 2.2. GD = (V, E , f), where V = S ∪ 154

M∪T ∪F , S = {Si}Ni=1,M = {Mk}Kk=1, T = 155

{Tkj}K,lk
k,j=1, F = {Fijk}N,lk,K

i,j,k=1 denote subject set, 156

story set, text segment set, and brain signal set. 157

f : E → V ⊗ V is an incidence function that maps 158

each edge to a pair of vertices. 159
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(a) Split by subjects (b) Split by tasks (c) Split by signals

(d) Split by signals under certain story (e) Split by consecutive signals (f) Our method (EEG example)

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝐹121𝐹221

…

𝐹321

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

Train Test Abandoned Subject Story Text segment𝑆𝑖 𝑀𝑘 𝑇𝑘𝑗 𝐹𝑖𝑗𝑘 Brain signal

𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

Figure 2: Different splitting methods for cross-subject brain-to-text decoding. (Color printing is preferred.)

2.3 Brain-to-Text Decoding Task160

The brain-to-text decoding task seeks to build a161

decoding model that reconstructs natural language162

text from brain signals, with the goal of accurately163

decoding what the subject hears. Take fMRI and164

EEG signal for example. fMRI captures brain re-165

sponses at second level whereas EEG samples brain166

activity at millisecond level. So the pre-processing167

for fMRI and EEG input varies. Previous practice168

in fMRI-to-text decoding (Tang et al., 2023; Xi169

et al., 2023) concatenated L future fMRI frames170

with text segments to form one sample:171

T ∗
k,j = concat(Tk,j , Tk,j+1, . . . , Tk,j+L), (1)172

F ∗
i,j,k = concat(Fi,j,k, Fi,j+1,k, . . . , Fi,j+L,k).

(2)
173

In this case, one (Si,Mk, Tkj , Fijk) pair in graph174

GD only represents the start point of one sample,175

while (Si,Mk, T
∗
kj , F

∗
ijk) indicates the whole sam-176

ple. In EEG-to-text decoding, previous methods177

sampled continuous EEG signal Fijk that corre-178

sponds to text Tkj . So one (Si,Mk, Tkj , Fijk) pair179

is viewed as one sample in our definition.180

3 Methodology181

3.1 Cross-Subject Data Splitting Criterion182

Consistent with cross-subject brain-to-image de-183

coding (Wang et al., 2024; Liu et al., 2024), the184

dataset splitting should obey two basic principles: 185

(1) If brain signal Fijk appears in test set, then any 186

brain signal Fi∗k belonging to this subject i should 187

not appear in training set. (2) If text segment Tkj 188

appears in test set, then it should not appear in train- 189

ing set. Consistent with the definitions in Section 190

2, graph GD is applied to describe data splitting. 191

Since the validation samples are split in the same 192

manner as the test samples, we focus solely on the 193

test set. Therefore, we have GD = Gtrain ∪ Gtest. 194

3.2 Analysis of Current Splitting Methods 195

Edges with different colors are used to repre- 196

sent their classification as either part of the train- 197

ing set or the test set. As shown in Figure 2, 198

(Si,Mk, Tkj , Fijk) pairs with green edges indicate 199

training samples, and those with orange edges are 200

test samples. Current cross-subject data splitting 201

methods (Wang and Ji, 2022; Xi et al., 2023) can 202

be summarized as five categories: 203

• Method (a): Split subjects S randomly with 204

given ratio. 205

Gtrain = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest, Si ̸= S′

i}
(3) 206

• Method (b): Split storiesM randomly with 207

given ratio. 208

Gtrain = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest,Mk ̸= M ′

k}
(4) 209

3



fMRI / EEG Method(a) Method(b) Method(c) Method(d) Method(e)

Brain Signal Leakage ✗ / ✗ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ NA
Text Stimuli Leakage ✓/ ✓ ✗ / ✗ ✓/ ✓ ✓/ ✓ ✓/ NA

Table 1: Data leakage in five different splitting methods
applied to fMRI and EEG to text decoding separately.

• Method (c): Split all the brain signals F ran-210

domly with given ratio.211

Gtrain = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest, Fijk ̸= F ′

ijk}
(5)212

• Method (d): Different from Method (c), it213

splits brain signals under each story randomly214

with given ratio, and union them to form the215

whole training and test set.216
• Method (e): Different from Method (d), it217

splits continuous brain signals under each218

story with given ratio, and union them to form219

the whole training and test set.220

To facilitate a thorough analysis of data leakage,221

we introduce the concept of brain signal leakage222

and text stimuli leakage. Brain signal leakage refers223

to test subject’s brain signal appears in training set.224

Text stimuli leakage refers to text segment in test225

set appears in the training set. Formal definitions226

of two types of data leakage are given.227

Definition 3.1. Brain signal leakage happens when228

∀(Si,Mk, Tkj , Fijk) ∈ Gtrain,
∃(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest, S′

i = Si.
(6)229

Definition 3.2. Text stimuli leakage happens when230

∀(Si,Mk, Tkj , Fijk) ∈ Gtrain,
∃(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest, T ′

kj = Tkj .
(7)231

Data leakage can be directly identified in graph232

GD. As shown in Figure 2, if edges connected to Si233

are of different colors, it indicates that brain signals234

of Si appears in both training set and test set, which235

leads to brain signal leakage. Similarly, if edges236

connected to Tkj are of different colors, it suggests237

that text segment Tkj appears in both training set238

and test set, which leads to text stimuli leakage.239

As a result, in the scenario of EEG signals where240

(Si,Mk, Tkj , Fijk) is viewed as a sample: Method241

(a) suffers from text stimuli leakage. Method (b)242

faces brain signal leakage. Method (c) is affected243

by leakage of both text stimuli and brain signals.244

Method (d) and (e) do not show any differences245

compared to method (c) in EEG-to-text decoding.246

In fMRI-to-text decoding, continuous fMRI frames247

Encoder Decoder

Encoder

Decoder

She was eating at
the table with us …

Data Leakage Data Leakage

She was eating at
the table with us …

Data Leakage

Data Leakage

(a)

(b)

Signal Reconstruction

Figure 3: General frameworks of current brain-to-text
decoding models and how data leakage affect them.

and text stimuli are concatenated to form one sam- 248

ple. (Si,Mk, Tkj , Fijk) indicates the start point 249

of one sample instead of the whole sample (recall 250

Section 2.3). In this case, method (d) and (e) are 251

different. Similar to method (c), method (d) and (e) 252

face both brain signal leakage and text stimuli leak- 253

age. But for method (e) the text stimuli is slight. 254

It only happens in the overlapping part between 255

training samples and test samples. The situations 256

of data leakage in different splitting methods are 257

detailed in Table 1. 258

3.3 Frameworks of Current Decoding Models 259

and How Data Leakage Affect Them 260

Current brain-to-text decoding models adopt an 261

encoder-decoder framework, where the encoder is 262

responsible for converting brain signals into low- 263

dimensional representations and the decoder (usu- 264

ally Transformer-based) learns to map these rep- 265

resentations to natural language. Two representa- 266

tive models EEG2Text (Wang and Ji, 2022) and 267

UniCoRN (Xi et al., 2023) are selected for investi- 268

gating the affection of data leakage. As shown in 269

Figure 3(a), EEG2Text applies an end-to-end train- 270

ing manner. EEG feature sequence is first extracted 271

by a multi-layer Transformer encoder and then con- 272

verted to natural language with a pretrained BART 273

(Lewis et al., 2020). UniCoRN provides a unified 274

framework for EEG and fMRI to text decoding. It 275

follows a two-stage training manner as shown in 276

Figure 3(b). Take fMRI-to-text decoding for ex- 277

ample, the encoder is first pre-trained with a brain 278

signal reconstruction task to capture spatial and 279

temporal feature via a 3D-CNN and multi-layer 280

Transformer encoder module. Then BART (Lewis 281

et al., 2020) is fine-tuned to translate fMRI repre- 282

sentation into natural language. 283
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Figure 4: The detailed steps of our proposed cross-subject data splitting method. (Color printing is preferred.)

Figure 3 illustrates how brain signal leakage and284

text stimuli leakage affect current encoder-decoder285

based brain-to-text decoding framework. For the286

encoder component, if subjects’ brain signals in287

test set are mixed into training set, the encoder288

will become overfitted and fail to well represent289

unseen subjects’ brain signals. For the decoder290

component, since it generates token by token in an291

auto-regressive manner, data leakage will cause the292

decoder to memorize seen text during the teacher-293

forcing training stage. The decoder will predict294

next token regardless of encoded brain signals.295

3.4 A Right Cross-Subject Splitting Method296

A right cross-subject splitting method is proposed297

to eliminate both brain signal leakage and text stim-298

uli leakage.299

Gtrain = {(Si,Mk, Tkj , Fijk)|∀(S′
i,M

′
k,

T ′
kj , F

′
ijk) ∈ Gtest, Si ̸= S′

i, Tkj ̸= T ′
kj}.

(8)300

Given the differences of EEG and fMRI dataset, we301

address them separately and propose two data split-302

ting methods. In EEG dataset, (Si,Mk, Tkj , Fijk)303

forms one sample. As shown in Figure 4, our pro-304

posed splitting method consists of three steps:305

• Step 1: Select
∑K

k=1 lk samples from GD and306

form a new graph G′D that satisfies307

∀(S′
i,M

′
k, T

′
kj , F

′
ijk), (S

′′
i ,M

′′
k , T

′′
kj , F

′′
ijk)

∈ G′D, T ′
kj ̸= T ′′

kj .
(9)308

• Step 2: Split G′D to G′train and G′test with a309

given ratio. The splitting should follow310

G′train = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ G′test, Si ̸= S′

i},
(10)311312

G′test = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ G′train, Si ̸= S′

i}.
(11)313

• Step 3: Expand G′train and G′test with314

G′train_exp and G′test_exp separately.315

G′train ← G′train ∪ G′train_exp

G′test ← G′test ∪ G′test_exp
(12)316

where G′train_exp and G′test_exp are 317

G′train_exp = {(Si,Mk, Tkj , Fijk) ∈ GD|
Si ∈ S ′train, Tkj ∈ T ′

train},
(13) 318319

G′test_exp = {(Si,Mk, Tkj , Fijk) ∈ GD|
Si ∈ S ′test, Tkj ∈ T ′

test}.
(14) 320

S ′train, T ′
train, S ′test, T ′

test indicate subject set, text 321

segment set in G′train and subject set, text segment 322

set in G′test respectively. 323

Some samples are discarded in our proposed 324

splitting method, i.e. GD ̸= G′train ∪ G′test. In 325

Appendix D, we demonstrate that it is unavoidable 326

for some samples to be discarded in order to satisfy 327

the cross-subject data splitting criterion. 328

To fMRI dataset, continuous text segments and 329

brain signals are concatenated to form one sample 330

(Si,Mk, T
∗
kj , F

∗
ijk). If we follow the same split- 331

ting method as to EEG dataset, text stimuli leakage 332

will happen in the overlapping part of two samples, 333

when one sample is assigned to training set and 334

the other is assigned to validation or test set. We 335

propose a simple solution that achieves the balance 336

between discarding as little data as possible while 337

ensuring zero data leakage: Step 1 and Step 3 re- 338

main the same as splitting method for EEG dataset. 339

In Step 2, G′train and G′test should follow 340

G′train = {(Si,Mk, Tkj , Fijk)|∀(S′
i,M

′
k,

T ′
kj , F

′
ijk) ∈ G′test, Si ̸= S′

i,Mk ̸= M ′
k},

(15) 341

342
G′test = {(Si,Mk, Tkj , Fijk)|∀(S′

i,M
′
k,

T ′
kj , F

′
ijk) ∈ G′train, Si ̸= S′

i,Mk ̸= M ′
k}.

(16) 343

4 Experimental Settings 344

4.1 Implementation Detail 345

We test two SOTA cross-subject brain-to-text de- 346

coding models UniCoRN (Xi et al., 2023) and 347

EEG2Text (Wang and Ji, 2022) on fMRI dataset 348

Narratives (Nastase et al., 2021) and EEG dataset 349

ZuCo (Hollenstein et al., 2018). Because the num- 350

ber of stories in ZuCo dataset is too small, and 351
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method (e) makes no difference to EEG as method352

(d), we only consider splitting method (a), (c), (d)353

for EEG. We follow the same settings of UniCoRN354

and EEG2Text, except all the datasets are split to355

the ratio of 8:1:1 for fair comparison. Details are356

shown in Appendix B.357

4.2 Evaluation Metrics358

Data Leakage Metrics We design two novel359

evaluation metrics Brain Signal Leakage Rate360

(BSLR) and Text Stimuli Leakage Rate (TSLR)361

to quantify two types of data leakage. Note that the362

situation for validation set is the same as test set,363

so we only consider test set in experiments. BSLR364

indicates the average percentage of each subject’s365

brain signals in test set appearing in training set,366

which could be formulated as367

1

Ntest

Ntest∑
i=1

min(1,
|{Fijk|Fijk ∈ (Gtest ∩ Gtrain)}|
|{Fijk|Fijk ∈ Gtrain}|

)

(17)368

where Ntest stands for the total number of subjects369

in test set. | · | stands for the cardinality of a set.370

Function min(·, ·) is applied to make sure for each371

subject the data leakage rate is less than one.372

The definition of TSLR is different for EEG sig-373

nal and fMRI signal. Since (Si,Mk, Tkj , Fijk) in-374

dicates one sample in EEG dataset, definition of375

TSLR for EEG dataset is similar to BSLR, which376

measures the average percentage of certain text in377

test set appearing in training set.378

1

Mtest

Mtest∑
j=1

min(1,
|{Tkj |Tkj ∈ (Gtest ∩ Gtrain)}|
|{Tkj |Tkj ∈ Gtrain}|

)

(18)379

where Mtest stands for the total number of text380

segments in test set. To fMRI dataset, continuous381

fMRI frames with corresponding text segments are382

concatenated as one sample. As a result, TSLR for383

fMRI signal is considered as the average percent-384

age of the same text segments in test set appearing385

in training set, which is386

1

Mtest

Mtest∑
j=1

τ
|{Tkj |Tkj ∈ (Gtest ∩ Gtrain)}|

|Gtest| × L

(19)387

where τ = 0 if {Tkj |Tkj ∈ Gtest ∩ Gtrain} = ∅388

else389

τ = min(1,
|{Tkj |Tkj ∈ Gtrain}|

|{Tkj |Tkj ∈ (Gtest ∩ Gtrain})|
).

(20)390

Type Method Narratives ZuCo

BSLR(%)

(a) 0.00±0.00 0.00±0.00

(b) 9.67±4.80 /
(c) 12.50±0.04 12.50±0.03

(d) 12.80±0.01 12.59±0.02

(e) 12.27±0.01 /
(f) 0.00±0.00 0.00±0.00

TSLR(%)

(a) 100.00±0.00 22.50±1.31

(b) 0.00±0.00 /
(c) 100.00±0.00 13.07±0.11

(d) 99.82±0.17 12.88±0.04

(e) 9.29±0.06 /
(f) 0.00±0.00 0.00±0.00

Table 2: Results of Brain Signal Leakage Rate (BSLR)
and Text Stimuli Leakage Rate (TSLR). Lower is better.

Decoding Performance Metrics BLEU (Pap- 391

ineni et al., 2002) and ROUGE (Lin, 2004) are ap- 392

plied to measure the decoding performance. BLEU 393

measures the n-gram overlap between decoded con- 394

tent and ground truth. ROUGE-N comparing the 395

consistency of N-grams between the decoded con- 396

tent and the ground truth. 397

5 Experiments and Analysis 398

We first quantify the data leakage condition of 399

different methods with BSLR and TSLR metrics. 400

Then we demonstrate the damage of data leakage 401

on encoder side and decoder side. For model en- 402

coder, we analyze its validation loss under different 403

splitting methods. For model decoder, three ex- 404

periment settings are applied: (1) An additional 405

test set that ensures zero data leakage is left out as 406

comparison to original test set. (2) The input brain 407

signals are randomly shuffled. (3) Training original 408

models with more epochs and smaller learning rate. 409

5.1 Verification for Data Leakage 410

Experiments on BSLR and TSLR are conducted 411

four times with different seeds. The results in Ta- 412

ble 2 are consistent with theoretical analysis. A 413

value of zero in BSLR and TSLR demonstrate no 414

brain signal leakage and text stimuli leakage, while 415

higher values suggest more significant data leakage 416

issues. Notably, only our method (f) prevents both 417

brain signal leakage and text stimuli leakage. 418

5.2 Damage of Data Leakage to Encoder 419

Evaluating the encoder independently can be chal- 420

lenging in an end-to-end training scenario. There- 421

fore, we primarily focus on a pre-trained encoder. 422

Validation loss is applied to measure data leakage, 423
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Dataset Model Method Original Test Set / Additional Test Set
BLEU-1 BLEU-2 BLEU-3 ROUGE1-F

Narratives UniCoRN

(a) 49.56 / 18.43 30.49 / 1.25 21.07 / 0.00 40.65 / 16.38
(b) 26.37 / 23.31 7.50 / 5.79 2.48 / 1.44 19.62 / 18.74
(c) 50.24 / 16.96 30.83 / 0.09 21.23 / 0.00 41.01 / 15.12
(d) 49.63 / 17.20 30.29 / 1.15 20.85 / 0.00 41.03 / 15.83
(e) 28.94 / 21.79 9.39 / 4.62 4.07 / 1.19 19.49 / 18.78
(f) 22.83 / 21.64 5.69 / 4.97 1.43 / 1.28 19.04 / 18.45

ZuCo

UniCoRN

(a) 58.09 / 18.54 49.23 / 1.31 43.23 / 0.00 67.50 / 15.39
(c) 52.30 / 18.38 42.89 / 1.03 36.80 / 0.00 67.29 / 15.25
(d) 50.02 / 19.84 43.53 / 1.20 32.71 / 0.03 67.33 / 15.12
(f) 23.32 / 22.89 7.78 / 7.46 3.01 / 2.75 17.92 / 17.63

EEG2Text

(a) 51.22 / 17.41 33.83 / 1.04 22.99 / 0.00 46.58 / 15.92
(c) 53.83 / 17.38 38.99 / 0.84 29.57 / 0.00 53.56 / 16.07
(d) 53.92/ 16.86 41.06 / 1.32 23.12 / 0.00 49.38 / 15.83
(f) 24.49 / 23.71 7.49 / 7.42 2.28 / 2.33 25.74 / 23.30

Table 3: Performance of brain-to-text decoding models under different splitting methods on original test set and an
additional test set. The green mark and red mark denotes a method without and with text stimuli leakage.
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Figure 5: Validation loss of encoder under different
dataset splitting methods in two datasets.

as a proper evaluation index of encoder’s repre-424

sentation ability is missing. The validation loss of425

encoder under different data splitting methods is426

shown in Figure 5. For fMRI data, the presence of427

brain signal leakage causes the validation loss of428

methods (b), (c), (d), and (e) to continuously de-429

crease even over extended training epochs, which430

indicates the encoder is actually overfitting and431

its representation ability is degrading. In contrast,432

with methods (a) and (f) that are not affected by433

brain signal leakage, the validation loss quickly434

increases after reaching its minimum within a few435

epochs. For EEG, we find validation loss keeps436

dropping for all methods even with very long train-437

ing epochs, regardless of brain signal leakage or438

not. We think the poor spatial resolution of EEG439

signal might lead to this phenomenon.440

5.3 Damage of Data Leakage to Decoder441

Evaluation on Additional Test Set An addi-442

tional test set that ensures zero data leakage is left443

out to evaluate the actual performance of brain-to- 444

text decoding models. If the original test set is cor- 445

rectly split, its decoding result should be similar to 446

that of the additional test set. From Table 3, we ob- 447

serve that the decoding model tends to overfit when 448

text stimuli leakage occurs, as seen in methods (a), 449

(c), (d), and (e) in Narratives, and methods (a) and 450

(c) in ZuCo. The BLEU and ROUGE score is sig- 451

nificantly lower in the additional test set. While 452

in our proposed splitting method (f), the decoding 453

performance of original and additional test set are 454

similar. We also notice that methods with a high 455

Text Stimuli Leakage Rate (TSLR), such as method 456

(a) in Narratives, exhibit more overfitting compared 457

to methods with a low TSLR, like method (e). 458

Shuffle Input Brain Signals We conduct a 459

chance-level experiment to investigate whether de- 460

coding models learn language reconstruction from 461

brain signals. Specifically, the input brain signals 462

are randomly shuffled. Decoding performance in 463

test set is expected to be very poor if text stimuli 464

leakage does not happen, as the shuffled input is 465

considered as noise. However, if text stimuli in test 466

set leaks into training set, the model will simply 467

memorize seen text and the decoding performance 468

is not supposed to be affected. 469

Results are presented in Table 4. For fMRI, we 470

find the decoding performance of models under 471

splitting method (a), (c), and (d) remain the same 472

no matter the input is ordered or shuffled. Simi- 473

lar phenomenon is also observed in EEG dataset 474
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Dataset Model Method Ordered Input / Shuffled Input
BLEU-1 BLEU-2 BLEU-3 ROUGE1-F

Narratives UniCoRN

(a) 49.56 / 47.39 30.49 / 28.95 21.07 / 18.40 40.65 / 35.12
(b) 26.37 / 20.18 7.50 / 3.52 2.48 / 0.51 19.62 / 15.58
(c) 50.24 / 48.48 30.83 / 30.21 21.23 / 19.39 41.01 / 38.43
(d) 49.63 / 50.21 30.29 / 32.18 20.85 / 21.46 41.03 / 41.69
(e) 28.94 / 24.84 9.39 / 6.56 4.07 / 2.04 19.49 / 17.90
(f) 22.83 / 18.21 5.69 / 2.47 1.43 / 0.22 19.04 / 16.83

ZuCo

UniCoRN

(a) 58.09 / 59.23 49.23 / 51.35 43.23 / 44.27 67.50 / 68.93
(c) 52.30 / 50.24 42.89 / 37.96 36.80 / 30.21 67.29 / 63.43
(d) 50.02 / 51.12 43.53 / 40.85 32.71 / 28.24 67.33 / 64.88
(f) 23.32 / 19.38 7.78 / 2.51 3.01 / 0.00 17.92 / 15.21

EEG2Text

(a) 51.22 / 50.63 33.83 / 32.19 22.99 / 20.63 46.58 / 44.70
(c) 53.83 / 50.33 38.99 / 33.42 29.57 / 23.19 53.56 / 48.78
(d) 53.92 / 51.46 41.06 / 35.87 23.12 / 24.75 49.38 / 47.42
(f) 24.49 / 18.72 7.49 / 2.01 2.28 / 0.00 25.74 / 15.36

Table 4: Performance of brain-to-text decoding models under different splitting methods with ordered brain signals
and randomly shuffled brain signals as model input respectively. The green mark and red mark denotes a method
without and with text stimuli leakage correspondingly.

Dataset Model BLEU-N (%) ROUGE-1 (%)
N = 1 N = 2 N = 3 N = 4 R P F

Narratives UniCoRN 22.83 5.69 1.43 0.48 15.55 24.80 19.04

ZuCo UniCoRN 23.32 7.78 3.01 1.09 18.47 20.00 17.92
EEG2Text 24.49 7.49 2.28 0.62 23.98 23.95 25.74

Table 5: A fair benchmark for evaluating the perfor-
mance of cross-subject brain-to-text decoding models.

when it comes to splitting method (a), (c), (d). But475

in splitting method without text stimuli leakage,476

model performance with shuffled input drops sig-477

nificantly. This experiment demonstrates that the478

brain-to-text decoding task become meaningless479

when text stimuli leakage exists, as the Transformer480

block is capable of generating text that was previ-481

ously encountered during the training phase.482

Longer Training Epochs with Smaller Learning483

Rate According to fundamental machine learn-484

ing principle, model performance in test set will485

first increase and then drop as the training pro-486

ceeds. In this experiment, we try training models487

under different splitting methods with longer train-488

ing epochs and smaller learning rate. If text stimuli489

leakage happens, the model is overfitting and its490

performance is supposed to keep increasing.491

Results and detailed analysis are presented in Ap-492

pendix E. In conclusion, the model’s performance493

on test set continues to improve when text stimuli494

leakage happens, confirming that such leakage re-495

sults in significant overfitting in decoding models.496

5.4 A Fair Benchmark 497

We re-evaluate two SOTA models for brain-to- 498

text decoding under our cross-subject data split- 499

ting method and release a fair benchmark. Uni- 500

CoRN is tested for both fMRI and EEG decoding, 501

EEG2Text model is tested for EEG decoding. The 502

results are listed in Table 5. For EEG dataset, Uni- 503

CoRN achieves higher results in BLEU-2,3,4 while 504

EEG2Text is better in BLEU-1 and ROUGE-1. 505

6 Conclusion and Discussion 506

In this paper, we evidence that all current dataset 507

splitting methods for cross-subject brain-to-text de- 508

coding have data leakage problem through theoret- 509

ical analysis and experiments. Such data leakage 510

leads to model overfitting and largely exaggerates 511

model performance, rendering model evaluation 512

meaningless. To fix this issue, we propose a right 513

cross-subject data splitting method. Current SOTA 514

models are re-evaluated for further researches. 515

It’s essential to realize the false promise of 516

current SOTA methods. This inspires future re- 517

searches to design more general and accurate mod- 518

els for brain-to-text decoding, under the right cross- 519

subject dataset splitting method. It should be noted 520

that we don’t seek to propose any modifications to 521

improve current models in the scope of this paper. 522

We mainly focus on revealing the false dataset split- 523

ting method and its detrimental impact on cross- 524

subject brain-to-text decoding research. 525
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Limitations526

The limitations of this work include three aspects:527

(1) Although our splitting method can be applied528

to any natural language comprehension cognitive529

dataset, we only analyze cross-subject data split-530

ting methods in fMRI and EEG dataset. We leave531

the investigation of other cognitive signals (e.g.532

ECoG, MEG, etc.) to future work. (2) Our pro-533

posed dataset splitting method meets the above re-534

quirements at the expense of discarding some data535

in the dataset. We recommend future datasets in536

this domain follow these guidelines. The division537

of the training set, validation set, and test set should538

be provided when the dataset is released. Besides,539

we suggest hiring new subjects with unique stimuli540

for the validation set and test set, which is good for541

testing the generalization ability of models without542

loss of data. (3) During experiments we find exist-543

ing models rely more on a strong auto-regressive544

decoder to achieve good generation quality. The545

encoder is of limited use in all SOTA models. And546

we also notice in experiments that the encoder of547

EEG2Text keeps overfitting whether with or with-548

out brain signal leakage. We leave it as future549

research.550

Ethics Statement551

In this paper, we introduce a new dataset splitting552

method to avoid data leakage for decoding brain553

signals to text task. Experiments are conducted554

on the publicly accessible cognitive datasets “Nar-555

ratives” and ZuCo1.0 with the authorization from556

their respective maintainers. Both datasets have557

been de-identified by dataset providers and used558

for researches only.559
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A Related Work 695

Brain Signal Brain signals can be classified into 696

three categories: invasive, partially invasive, and 697

non-invasive according to how close electrodes get 698

to brain tissue. In this paper, we mainly focus on 699

non-invasive signals EEG and fMRI. EEG signal 700

is electrogram of the spontaneous electrical activ- 701

ity of the brain, with frequencies ranging from 1 702

Hz to 30 Hz. EEG is of high temporal resolution 703

and relatively tolerant of subject movement, but its 704

spatial resolution is low and it can’t display active 705

areas of the brain directly. fMRI measures brain 706

activity by detecting changes of blood flow. Blood 707

flow of a specific region increases when this brain 708

area is in use. The spatial resolution of fMRI is 709

measured by the size of voxel, which is a three- 710

dimensional rectangular cuboid ranging from 3mm 711

to 5mm (Vouloumanos et al., 2001; Noppeney and 712

Price, 2004). Unlike EEG which samples brain sig- 713

nals continuously, fMRI samples based on a fixed 714

time interval named TR, usually at second level. 715

Brain-to-text Decoding Previous research on 716

brain-to-text decoding (Herff et al., 2015; Anu- 717

manchipalli et al., 2019; Zou et al., 2021; Moses 718

et al., 2021; Défossez et al., 2023) mainly focused 719

on word-level decoding in a restricted vocabulary 720

with hundreds of words (Panachakel and Ramakr- 721

ishnan, 2021). These models typically apply re- 722

current neural network or long short-term memory 723

(Hochreiter and Schmidhuber, 1997) network to 724

build mapping between brain signals and words 725

in vocabulary. Despite relatively good accuracy, 726

these methods fail to generalize to unseen words. 727

Some progress (Sun et al., 2019) has been made 728

by expanding word-level decoding to sentence- 729

level through encoder-decoder framework or using 730

less noisy ECoG data (Burle et al., 2015; Anu- 731

manchipalli et al., 2019). However, these models 732

struggle to generate accurate and fluent sentences 733
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limited by decoder ability. Wang and Ji (2022)734

introduced the first open vocabulary EEG-to-text735

decoding model by leveraging the power of pre-736

trained language models. Xi et al. (2023) improved737

the model design and proposed a unified framework738

for decoding both fMRI and EEG signals.739

B Implementation Details740

We apply the “Narratives” (Nastase et al., 2021)741

dataset for fMRI-to-text decoding and the ZuCo742

(Hollenstein et al., 2018) dataset for EEG-to-text743

decoding in experiments. The “Narratives” dataset744

contains fMRI data from 345 subjects listening to745

27 diverse stories. Since the data collection pro-746

cess involves different machines, we only consider747

fMRI data with 64 × 64 × 27 voxels. The ZuCo748

dataset includes 12 healthy adult native English749

speakers reading English text for 4 to 6 hours. It750

contains simultaneous EEG and Eye-tracking data.751

The reading tasks include Normal Reading (NR)752

and Task-specific Reading (TSR) extracted from753

movie views and Wikipedia. Both datasets are split754

into training, validation, and test set with a ratio of755

80%, 10%, 10% in all experiments.756

We perform the same filtering steps to “Nar-757

ratives” dataset as UniCoRN paper (Xi et al.,758

2023) and the same filtering steps to ZuCo1.0 as759

EEG2Text paper (Wang and Ji, 2022). In BSLR760

and TSLR calculation, the number of four differ-761

ent seeds are set as 1, 2, 3, 4 respectively. In signal762

reconstruction task for encoder of UniCoRN, the763

batch size of EEG and fMRI data is 512 and 320764

respectively. The learning rate is set as 1e-4 and765

1e-3 separately as the author claimed in the original766

paper. In the fair benchmark, for fMRI data, en-767

coder of UniCoRN is trained through 1e-4 learning768

rate and decaying to 1e-6 finally for 30 training769

epochs. Decoder is trained through 1e-4 learning770

rate and decaying to 1e-6 finally for 10 training771

epochs with 90 batch size. Sample length L is set772

as 10 for all experiments related to fMRI. For EEG773

data, EEG2Text model is trained with 1e-6 learning774

rate for 80 epochs. UniCoRN model is trained with775

the same settings as fMRI data.776

C Cross-Subject Data Splitting in777

Practice778

We present the pseudo-code of two dataset split-779

ting methods for EEG and fMRI signal. We only780

consider a bipartite graph G1 = (U ,V, E) instead781

of a 4-partite graph in real practice. For EEG sig-782

nal, U = {Si}Ni=1, V = {Tj}Mj=1. While for fMRI 783

signal, U = {Si}Ni=1, V = {Mk}Kk=1. E is the 784

edge between node in U and node in V . N,M,K 785

indicate the total number of subjects, text segments 786

and stories. We assert M > N for EEG dataset 787

and K < N for fMRI dataset, so e = (u, v) ∈ E 788

exists for every v ∈ V , as each text segment or 789

story is listened by at least one subject. As shown 790

in step 1 of Figure 4, first we pick one edge for 791

each node v ∈ V and build a new bipartite graph 792

G2 = (U ,V, E ′). Then following step 2, we split 793

graph G2 by subject U with the given splitting ratio 794

and form three disjoint graphs Gtrain,Gval,Gtest. 795

In step 3, we extend each graph Gtrain,Gval,Gtest 796

by adding edges without data leakage. 797

The main difference of splitting methods for 798

EEG and fMRI lies in how G2 is generated. We al- 799

ways choose the side with fewer nodes in bipartite 800

graph G1 to generate G2. Specifically, in Algorithm 801

1 where we assert |U| < |V|, the adjacency matrix 802

is initialized as M × N . In Algorithm 2 where 803

|V| < |U|, the adjacency matrix is initialized as 804

N ×K. All assertions are based on real cognitive 805

datasets. One more thing to notice is that in Line 14 806

of both pseudo-code, the loop indicates extending 807

training set, validation set, and test set respectively. 808

So the names of variable should be alternated in the 809

repeat loop and the displayed part in pseudo-code 810

is a case example of extending training set. We 811

write it in this way for simplicity of expression. 812

D Supplementary Proof 813

Definition D.1. An directed multigraph G is a type 814

of graph which is permitted to have multiple edges 815

between two vertices. When the edges own identity, 816

G can be written as G = (V, E , f), where f : E → 817

V ×V is an incidence function that maps each edge 818

to a pair of vertices. 819

Definition D.2. A k-partite graph G is a type 820

of graph that can be divided into k distinct in- 821

dependent sets such that no two vertices in the 822

same set are connected. G = (V, E), where 823

V = V1 ∪ V2 ∪ · · · ∪ Vk and ∀i ̸= j,Vi ∩ Vj = ∅. 824

Notation D.3. ⊗ is a Cartesian product-like op- 825

erator. X ⊗ Y = {(x, y)|x ∈ X, y ∈ Y, there 826

exists relationship between x and y in dataset}. 827

It’s designed to describe the connectivity among 828

S,M, T ,F . For example, edges in S ⊗ M in- 829

dicates certain subjects are stimulated by certain 830

stories as described in dataset. 831
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Definition D.4. The training set for cross-subject832

brain-to-text decoding should be formatted in833

Gtrain = Strain ⊗ M ⊗ Ttrain ⊗ Ftrain, where834

Strain = {Si|∀S′
i ∈ Stest, Si ̸= S′

i}; Ftrain =835

{Fijk|i ∈ I}, I = {i|∀j,∀k, Fijk /∈ Ftest};836

Ttrain = {Tkj |∀T ′
kj ∈ Ttest, Tkj ̸= T ′

kj}.837

Why a method without brain signal leakage and838

text stimuli leakage must satisfy cross-subject839

brain-to-text decoding criterion Training set840

Gtrain without brain signal leakage and text stimuli841

leakage is formatted in842

Gtrain = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest,

Si ̸= S′
i, Tkj ̸= T ′

kj}
= Strain ⊗M⊗ Ttrain ⊗F

(21)843

where Strain = {Si|∀S′
i ∈ Stest, Si ̸=844

S′
i}, Ttrain = {Tkj |∀T ′

kj ∈ Ttest, Tkj ̸= T ′
kj}.845

Since Fijk ∈ F indicates brain signal of subject846

Si stimulated by text segment Tkj , and given the847

definition of operator ⊗, F is determined when S848

and T are specified, which is849

F = {Fijk|i ∈ I, kj ∈ J},
I = {i|Si ∈ Strain},
J = {kj|Tkj ∈ Ttrain}.

(22)850

F can also be written as F = {Fijk|i ∈ I},851

I = {i|∀j,∀k, Fijk /∈ Ftest}, which is equal to852

Definition D.4.853

Why the proposed splitting method satisfy zero854

data leakage Take the splitting method for EEG855

signal as example, the training set and test set after856

step 1 and step 2 already satisfy857

Gtrain = {(Si,Mk, Tkj , Fijk)|∀(S′
i,M

′
k,

T ′
kj , F

′
ijk) ∈ Gtest, Si ̸= S′

i, Tkj ̸= T ′
kj}

(23)858

859
Gtest = {(Si,Mk, Tkj , Fijk)|∀(S′

i,M
′
k,

T ′
kj , F

′
ijk) ∈ Gtrain, Si ̸= S′

i, Tkj ̸= T ′
kj}

(24)860

So we only need to prove expanded graph861

G′train_exp and G′test_exp satisfy zero data leakage,862

which is obvious from Equation 13 and 14.863

Why we must discard samples to ensure864

no data leakage If Gtrain ∪ Gtest = GD,865

suppose ∀(Si,Mk, Tkj , Fijk) ∈ Gtrain,866

(S′
i,M

′
k, T

′
kj , F

′
ijk) ∈ Gtest, Si ̸= S′

i, Tkj ̸= T ′
kj .867

For f(E) = (Mk, Tkj), f(E ′) = (M ′
k, T

′
kj),868

Tkj ̸= T ′
kj :869

• If Mk = M ′
k, then there must exist a subject 870

Si = S′
i such that he is stimulated by the 871

whole stories. 872

• If Mk ̸= M ′
k, then there must exist a subject 873

Si = S′
i such that he is stimulated by two 874

different stories. 875

As a result, if Gtrain ∪ Gtest = GD, 876

then ∃(Si,Mk, Tkj , Fijk) ∈ Gtrain, 877

(S′
i,M

′
k, T

′
kj , F

′
ijk) ∈ Gtest, s.t. Si = S′

i or 878

Tkj = T ′
kj . Some samples must be discarded to 879

ensure no data leakage. 880

E Supplementary Experiment 881

The influence of teacher-forcing Jo et al. (2024) 882

pointed out that previous methods applied teacher- 883

forcing during generation, which has the tendency 884

to cause overfitting problems. Therefore, we 885

conduct experiments on models without teacher- 886

forcing to ensure that the affection of data leak- 887

age is not influenced by teacher-forcing. Results 888

are shown in Table 6. Without the influence of 889

teacher-forcing decoding, splitting methods with 890

data leakage will still lead to overestimation of 891

model performance. 892

Experiments on longer training epochs with 893

smaller learning rate If evaluation indicators 894

keep improving as training epochs increase, we 895

believe part of the test set is leaked into training 896

set and the model is overfitting. For fMRI signal, 897

we test five current dataset splitting methods under 898

different training settings. As shown in Table 7, we 899

test two kinds of UniCoRN models. One is Uni- 900

CoRN with hyper-parameters claimed in the orig- 901

inal paper, and the other is UniCoRN∗ whose en- 902

coder is randomly initialized. Besides, UniCoRN∗ 903

is trained with longer epochs and smaller learning 904

rate. In method (a), (c), (d), due to text stimuli 905

leakage, if we reduce the learning rate and extend 906

training epochs, UniCoRN∗ performs much bet- 907

ter than UniCoRN and its performance keeps ris- 908

ing with longer training epochs. As to method 909

(b) and (e) with no text stimuli leakage, changing 910

training epochs or learning rates makes no obvi- 911

ous difference to model performance. For EEG 912

signal, the conclusion is similar as shown in Table 913

8. For method (a) and (c) with text stimuli leakage, 914

model performance keeps rising with longer train- 915

ing epochs. For method (d) without text stimuli 916

leakage, both models reach optimal performance 917

after the first few rounds of training epochs. 918
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Algorithm 1: Dataset splitting method for EEG signal

1 Initialize: Bipartite graph G1 = (U ,V, E), G2 = (U ,V, E ′) where U = {Si}Ni=1 and V = {Tj}Mj=1,
Adjacency matrix A1 of G1 where A1[i][j] = 1 if node i and node j is connected else A1[i][j] = 0,
Adjacency matrix A2 of G2 where A2[i][j] = 0, Array C where len(C) = len(U) and C[i] = 0;

2 for u← U1 to UN do
3 Ccopy ← C;
4 for v ← A1[u][0] to A1[u][M ] do
5 if v = 0 then
6 Ccopy[v.index]←∞;

7 Minimum = min(Ccopy);
8 A2[u][Minimum.index]← 1;
9 C[Minimum.index]← C[Minimum.index] + 1; // Make degree of nodes balanced

10 Split by subjects U according to default ratio;
11 G2 = Gtrain ∪ Gval ∪ Gtest, Utrain ∩ Uval ∩ Utest = ∅, Vtrain ∩ Vval ∩ Vtest = ∅;
12 repeat // To three sets respectively, below is for training set
13 for u in U do
14 for v in V do
15 if e = (u, v) ∈ E and e = (u, v) /∈ E ′train and u /∈ Uval ∪ Utest then
16 E ′train ← E ′train ∪ {e};

17 until Gtrain,Gval,Gtest are all extended;
18 return Gtrain,Gval,Gtest;

Algorithm 2: Dataset splitting method for fMRI signal

19 Initialize: Bipartite graph G1 = (U ,V, E), G2 = (U ,V, E ′) where U = {Si}Ni=1, V = {Mk}Kk=1,
Adjacency matrix A1 of G1 where A1[i][j] = 1 if node i and node j is connected else A1[i][j] = 0,
Adjacency matrix A2 of G2 where A2[i][j] = 0, Array C where len(C) = len(V) and C[i] = 0;

20 for v ← V1 to VK do
21 Ccopy ← C;
22 for u← A1[v][0] to A1[v][K] do
23 if u = 0 then
24 Ccopy[u.index]←∞;

25 Minimum = min(Ccopy);
26 A2[v][Minimum.index]← 1;
27 C[Minimum.index]← C[Minimum.index] + 1; // Make degree of nodes balanced

28 Split by tasks V according to default ratio;
29 G2 = Gtrain ∪ Gval ∪ Gtest, Utrain ∩ Uval ∩ Utest = ∅, Vtrain ∩ Vval ∩ Vtest = ∅;
30 repeat // To three sets respectively, below is for training set
31 for v in V do
32 for u in U do
33 if e = (u, v) ∈ E and e = (u, v) /∈ E ′train and v /∈ Vval ∪ Vtest then
34 E ′train ← E ′train ∪ {e};

35 until Gtrain,Gval,Gtest are all extended;
36 return Gtrain,Gval,Gtest;
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Dataset Model Method With Teacher-Forcing / Without Teacher-Forcing
BLEU-1 BLEU-2 BLEU-3 ROUGE1-F

Narratives UniCoRN

(a) 49.56 / 33.82 30.49 / 9.44 21.07 / 4.89 40.65 / 21.87
(b) 26.37 / 19.68 7.50 / 5.50 2.48 / 1.76 19.62 / 16.86
(c) 50.24 / 29.87 30.83 / 8.35 21.23 / 3.21 41.01 / 19.03
(d) 49.63 / 30.20 30.29 / 8.78 20.85 / 3.65 41.03 / 19.42
(e) 28.94 / 21.46 9.39 / 6.24 4.07 / 1.83 19.49 / 17.39
(f) 22.83 / 16.85 5.69 / 4.24 1.43 / 0.65 19.04 / 15.34

ZuCo

UniCoRN

(a) 58.09 / 19.47 49.23 / 7.69 43.23 / 2.97 67.50 / 17.25
(c) 52.30 / 19.70 42.89 / 7.54 36.80 / 2.93 67.29 / 17.37
(d) 50.02 / 22.02 43.53 / 8.28 32.71 / 3.15 67.33 / 18.33
(f) 23.32 / 14.02 7.78 / 2.57 3.01 / 0.82 17.92 / 11.95

EEG2Text

(a) 51.22 / 21.99 33.83 / 7.42 22.99 / 2.94 46.58 / 17.78
(c) 53.83 / 20.41 38.99 / 7.25 29.57 / 2.48 53.56 / 17.32
(d) 53.92 / 19.80 41.06 / 7.46 23.12 / 3.06 49.38 / 17.29
(f) 24.49 / 13.52 7.49 / 2.86 2.28 / 0.78 25.74 / 11.20

Table 6: Performance of brain-to-text decoding models under different splitting methods with teacher-forcing and
without teacher-forcing. The green mark and red mark denotes a method without and with text stimuli leakage
correspondingly.

Model Epoch+lr+Method BLEU-N (%) ROUGE-1 (%)
N = 1 N = 2 N = 3 N = 4 F P R

UniCoRN

10+1e-3+(a) 49.56 30.49 21.07 15.49 44.83 50.41 40.65
10+1e-3+(b) 26.37 7.50 2.48 0.99 22.28 25.99 19.62
10+1e-3+(c) 50.24 30.83 21.23 15.60 44.68 49.44 41.01
10+1e-3+(d) 49.63 30.29 20.85 15.32 45.06 50.47 41.03
10+1e-3+(e) 28.94 9.39 4.07 1.53 21.68 24.64 19.49

UniCoRN∗

20+1e-4+(a) 50.19 34.25 25.98 21.00 46.59 50.36 43.62
30+1e-4+(a) 55.46 40.99 32.85 27.56 52.08 55.02 49.68

20+1e-4+(b) 25.91 8.80 3.84 1.66 20.65 27.74 16.57
30+1e-4+(b) 25.91 8.80 3.84 1.66 20.65 27.74 16.57

20+1e-4+(c) 72.44 60.84 53.35 47.88 70.52 74.10 67.53
30+1e-4+(c) 72.82 61.42 53.95 48.44 71.24 74.41 68.57

20+1e-4+(d) 65.31 51.02 42.54 36.72 62.76 67.09 59.29
30+1e-4+(d) 66.56 53.00 44.75 39.02 63.89 67.51 60.95

20+1e-4+(e) 32.15 12.34 5.57 2.45 24.28 30.43 20.35
30+1e-4+(e) 32.15 12.34 5.57 2.45 24.28 30.43 20.35

Table 7: Generation quality of UniCoRN model for fMRI under different training settings. Here UniCoRN∗

indicates the encoder of UniCoRN is randomly initialized instead of pre-trained through signal reconstruction task.
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Model Epoch+lr+Method BLEU-N (%) ROUGE-1 (%)
N = 1 N = 2 N = 3 N = 4 F P R

UniCoRN

50+1e-4+(a) 58.09 49.23 43.23 38.43 63.88 61.12 67.50
80+1e-4+(a) 60.88 50.52 43.42 37.84 65.17 61.16 70.72

50+1e-4+(c) 52.30 42.89 36.80 32.17 57.39 51.09 67.29
80+1e-4+(c) 60.78 55.92 53.18 51.10 84.64 63.16 71.50

50+1e-4+(d) 22.90 7.36 2.71 0.95 17.73 19.90 17.33
80+1e-4+(d) 22.90 7.36 2.71 0.95 17.73 19.90 17.33

EEG2Text

50+1e-4+(a) 51.22 33.83 22.99 16.05 46.40 46.85 46.58
80+1e-4+(a) 63.32 52.52 45.19 39.50 65.96 64.74 68.01

50+1e-4+(c) 53.83 38.99 29.57 23.01 53.64 54.19 53.56
80+1e-4+(c) 65.42 57.56 52.56 48.60 73.00 69.99 77.01

50+1e-4+(d) 23.92 8.16 3.21 1.20 20.78 19.96 23.89
80+1e-4+(d) 23.92 8.16 3.21 1.20 20.78 19.96 23.89

Table 8: Generation quality of UniCoRN and EEG2Text model for EEG under different training settings.
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