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Abstract

Recent major milestones have successfully re-
constructed natural language from non-invasive
brain signals (e.g. functional Magnetic Reso-
nance Imaging (fMRI) and Electroencephalo-
gram (EEG)) across subjects. However, we
find current dataset splitting strategies for
cross-subject brain-to-text decoding are wrong.
Specifically, we first demonstrate that all cur-
rent splitting methods suffer from data leakage
problem, which refers to the leakage of vali-
dation and test data into training set, resulting
in significant overfitting and overestimation of
decoding models. In this study, we develop a
right cross-subject data splitting criterion with-
out data leakage for decoding fMRI and EEG
signal to text. Some SOTA brain-to-text decod-
ing models are re-evaluated correctly with the
proposed criterion for further research.

1 Introduction

Brain-to-text decoding aims to recover natural lan-
guage from brain signals stimulated by correspond-
ing speech. Recent studies (Makin et al., 2020;
Wang and Ji, 2022; Xi et al., 2023; Tang et al.,
2023; Duan et al., 2024) have successfully de-
coded non-invasive brain signals (e.g. fMRI, EEG)
to text by applying deep neural networks. Most
of these works perform within-subject data split-
ting for training and evaluating decoding models.
This subject-specific splitting method causes two
main problems. First, it only uses data from one
subject of the whole dataset for training and test-
ing. Since brain signal collection is costly and
time-consuming, such splitting method results in
a significant waste of data resources. Second, it
leads to poor model generalization. As every brain
has unique functional and anatomical structures,
subject-specific models may exhibit considerable
variability across individuals and fail to generalize
to other subjects (Liu et al., 2024). Moreover, de-
coding models trained from scratch on limited data
are prone to facing the overfitting problem.

Human brain responds similarly to the same
stimuli, despite the individual discrepancy (Hasson
et al., 2004; Pereira et al., 2018). Therefore, some
studies (Wang and Ji, 2022; Xi et al., 2023; Duan
et al., 2024) begin to shed light on cross-subject
brain-to-text decoding, which performs data split-
ting based on all the subjects, trains and evaluates
decoding model once. Cross-subject data split-
ting effectively compensates for the shortcomings
of subject-specific splitting, and has been widely
applied in brain-to-image decoding (Wang et al.,
2024; Liu et al., 2024). However, unlike datasets
for brain-to-image decoding (Allen et al., 2022;
Chang et al., 2019) where subjects are guided to
see different and unrepeated pictures, different sub-
jects will be stimulated by the same story in com-
mon naturalistic language comprehension dataset,
which challenges cross-subject data splitting.

Based on our observations, current cross-subject
data splitting methods for brain-to-text decoding
are wrong because data for validation and test leaks
into the training set, rendering the evaluation of
the decoding process meaningless. Specifically, we
find two types of data leakage: brain signal leakage
and text stimuli leakage. Brain signal leakage refers
to test subject’s brain signal appears in training set.
Text stimuli leakage refers to text in test set appears
in the training set. Modern brain-to-text decoding
models follow an encoder-decoder manner. We
pick two representative models: EEG2Text (Wang
and Ji, 2022) and UniCoRN (Xi et al., 2023) to
reveal data leakage and its damage. Experiments
support that data leakage affects model training on
both encoder and decoder side. For the encoder, it
will become overfitting and fail to well represent
brain signals if brain signal leakage exists. For
the decoder, the situation gets worse if text stimuli
leakage happens. Any data leakage would cause
the auto-regressive decoder to memorize previously
seen paragraphs during training stage, resulting in
poor generalization to unseen text.



To avoid data leakage and fairly evaluate the per-
formance of cross-subject brain-to-text decoding
models, we propose a right data splitting method.
We focus on fMRI and EEG signals in this study,
although the proposed criterion could be applied
to any datasets satisfying the prescribed format. In
the proposed method, we follow two basic rules:
(1) Brain signals collected from specific subject in
validation set and test set will not appear in train-
ing set, which means the trained encoder cannot
get access to any brain information belonging to
subjects in test set. (2) Text stimuli in validation
set and test set will not appear in training set. The
decoder learns to reconstruct language with brain
signals instead of memorizing seen text.

Our contributions can be summarized as follows:

* To the best of our knowledge, we are the first

to identify the issue of data leakage in current
cross-subject data splitting methods for brain-
to-text decoding.

* We define the splitting criterion for cross-

subject brain-to-text decoding, and propose

a right dataset splitting method.
* Some SOTA brain-to-text decoding models

are re-evaluated using the proposed cross-
subject data splitting method to ensure a fair
assessment of their performance.

2 Preliminary

2.1 Dataset Description

A naturalistic language comprehension dataset D
contains brain signals of /N subjects when they
passively listen to K spoken stories. Suppose that
not all subjects are stimulated by all stories, and
different subjects may hear the same story.

Formally, S1, Ss, ..., Sy denotes to the N sub-
jects and My, My, ..., Mg denotes to the K sto-
ries in dataset. The k-th story M}, consists of I
text segments T, Tk, . . . , Tk, . If the i-th subject
S; hears the j-th text segment 7}, then his brain
signal is denoted as Fj;y.

2.2 Use Graph to Describe Dataset

We use multigraph and k-partite graph (detailed
in D.1 & D.2) to describe the intricate structure of
naturalistic language comprehension dataset.

Definition 2.1. A naturalistic language compre-
hension dataset D can be represented via a directed
4-partite multigraph Gp.

How to build the directed 4-partite multigraph
Gp step by step is shown in Figure 1. Graph 1 is a 2-
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Figure 1: Illustration of how to build graph to describe
dataset step by step.

partite graph indicating subject S; listening to story
Mj,. Subject S; and story M, are viewed as ver-
tices, and edges connecting them indicate certain
type of relationship (e.g. .S; “listen to” M, in this
case). Graph 2 illustrates that story M} consists
of text segments Tj;. Graph 3 shows the brain sig-
nals Fjj;j of subject S; stimulated by text segment
T};. Graph 4 is an example of combining the three
2-partite graphs Graph 1-3: FYo9, Fyoo, 399, Fyoo
are brain signals of S7,S55,.53,.5, stimulated by
text segment 75 from story Ms. In this exam-
ple, four edges between My and 152 correspond
to the different responses of four subjects to the
same text segment. There are three edges between
So and My because Ms contains three text seg-
ments. Edges of the same color indicate one sam-
ple in dataset. Graph 5 shows the complete di-
rected 4-partite multigraph Gp for representing
whole dataset. Every sample in dataset can be rep-
resented through ordered subject-story-text-brain
(Si, My, Tk, Fi;1) pair. We introduce the formal
notation of Gp:

Notation 2.2. Gp = (V,&, f), where V = S U
MUTUF,S={SHN . M={MJIE ,T=
{Tkj}fji 0 F = {Fiji} f\;l,’;:i denote subject set,
story set, text segment set, and brain signal set.
f € — V® Vis an incidence function that maps

each edge to a pair of vertices.
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Figure 2: Different splitting methods for cross-subject brain-to-text decoding. (Color printing is preferred.)

2.3 Brain-to-Text Decoding Task

The brain-to-text decoding task seeks to build a
decoding model that reconstructs natural language
text from brain signals, with the goal of accurately
decoding what the subject hears. Take fMRI and
EEG signal for example. fMRI captures brain re-
sponses at second level whereas EEG samples brain
activity at millisecond level. So the pre-processing
for fMRI and EEG input varies. Previous practice
in fMRI-to-text decoding (Tang et al., 2023; Xi
et al., 2023) concatenated L future fMRI frames
with text segments to form one sample:

Ty ; = concat(Ty j, Tk j1, - - - Tk jrr), (1)

k
F’i,j,k = COTLCCLt(FZ‘,j’k, Fi,jJrl,k, ceey Fi,jJrL,k)-

2

In this case, one (S;, My, Ty, Fiji;) pair in graph
Gp only represents the start point of one sample,
while (S;, My, T}; i Fi ;;) indicates the whole sam-
ple. In EEG-to-text decoding, previous methods
sampled continuous EEG signal Fjj; that corre-
sponds to text T};. So one (S;, My, T;, Fyji;) pair
is viewed as one sample in our definition.

3 Methodology
3.1 Cross-Subject Data Splitting Criterion

Consistent with cross-subject brain-to-image de-
coding (Wang et al., 2024; Liu et al., 2024), the

dataset splitting should obey two basic principles:
(1) If brain signal F;;;, appears in test set, then any
brain signal F;,; belonging to this subject ¢ should
not appear in training set. (2) If text segment 7}
appears in test set, then it should not appear in train-
ing set. Consistent with the definitions in Section
2, graph Gp is applied to describe data splitting.
Since the validation samples are split in the same
manner as the test samples, we focus solely on the
test set. Therefore, we have Gp = Girain U Grest-

3.2 Analysis of Current Splitting Methods

Edges with different colors are used to repre-
sent their classification as either part of the train-
ing set or the test set. As shown in Figure 2,
(Si, My, Tyj, Fiji;) pairs with green edges indicate
training samples, and those with orange edges are
test samples. Current cross-subject data splitting
methods (Wang and Ji, 2022; Xi et al., 2023) can
be summarized as five categories:

* Method (a): Split subjects S randomly with

given ratio.

Gtrain = {(Si, Mk, Tkj, Fiji)| 3)
V(Sz{> Mllc’ TI::j’ ’L/jk) € gtesta S@' 75 Sz/}
* Method (b): Split stories M randomly with
given ratio.
Girain = {(Si; My, Tij, Fiji.)|
w%wﬂﬁ@mﬁ%m¢w%



fMRI/ EEG Method(a) Method(b) Method(c) Method(d) Method(e)

Brain Signal Leakage XX ViV ViV ViV v/ NA
Text Stimuli Leakage VIV XX VIV viv v/INA

Table 1: Data leakage in five different splitting methods
applied to fMRI and EEG to text decoding separately.

* Method (c): Split all the brain signals F ran-
domly with given ratio.

gtrain - {(527 Mk‘a Tk’]a Ejk’)‘
\V/(SZ/, M]:;, T];j, z,]k) € gtesta Fijk 7é Fjlljk‘}
4)
¢ Method (d): Different from Method (c), it
splits brain signals under each story randomly
with given ratio, and union them to form the
whole training and test set.

e Method (e): Different from Method (d), it
splits continuous brain signals under each
story with given ratio, and union them to form
the whole training and test set.

To facilitate a thorough analysis of data leakage,
we introduce the concept of brain signal leakage
and text stimuli leakage. Brain signal leakage refers
to test subject’s brain signal appears in training set.
Text stimuli leakage refers to text segment in test
set appears in the training set. Formal definitions
of two types of data leakage are given.

Definition 3.1. Brain signal leakage happens when

V(Si, My, Tij, Fiji) € Girains

6
H(ngM]/caT]éijz/]k) c gtestysz{ = Sz ( )

Definition 3.2. Text stimuli leakage happens when

V(Su Mk7 Tk]7 E]k) € gtrainv

%)
H(Sz{lelmT];jv zljk) € gtestaT]gj = Tkj~

Data leakage can be directly identified in graph
Gp. As shown in Figure 2, if edges connected to S;
are of different colors, it indicates that brain signals
of S; appears in both training set and test set, which
leads to brain signal leakage. Similarly, if edges
connected to Tj; are of different colors, it suggests
that text segment T}; appears in both training set
and test set, which leads to text stimuli leakage.

As aresult, in the scenario of EEG signals where
(S, My, Ty, Fyji,) is viewed as a sample: Method
(a) suffers from text stimuli leakage. Method (b)
faces brain signal leakage. Method (c) is affected
by leakage of both text stimuli and brain signals.
Method (d) and (e) do not show any differences
compared to method (c) in EEG-to-text decoding.
In fMRI-to-text decoding, continuous fMRI frames

Data Leakage Data Leakage
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— | Encoder — Decoder —— .
the table with us ...
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Signal Reconstruction
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—_—
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Data Leakage

Data Leakage

Decoder
(b)

Figure 3: General frameworks of current brain-to-text
decoding models and how data leakage affect them.

and text stimuli are concatenated to form one sam-
ple. (Si, My, Tyj, Fiji) indicates the start point
of one sample instead of the whole sample (recall
Section 2.3). In this case, method (d) and (e) are
different. Similar to method (c), method (d) and (e)
face both brain signal leakage and text stimuli leak-
age. But for method (e) the text stimuli is slight.
It only happens in the overlapping part between
training samples and test samples. The situations
of data leakage in different splitting methods are
detailed in Table 1.

3.3 Frameworks of Current Decoding Models
and How Data Leakage Affect Them

Current brain-to-text decoding models adopt an
encoder-decoder framework, where the encoder is
responsible for converting brain signals into low-
dimensional representations and the decoder (usu-
ally Transformer-based) learns to map these rep-
resentations to natural language. Two representa-
tive models EEG2Text (Wang and Ji, 2022) and
UniCoRN (Xi et al., 2023) are selected for investi-
gating the affection of data leakage. As shown in
Figure 3(a), EEG2Text applies an end-to-end train-
ing manner. EEG feature sequence is first extracted
by a multi-layer Transformer encoder and then con-
verted to natural language with a pretrained BART
(Lewis et al., 2020). UniCoRN provides a unified
framework for EEG and fMRI to text decoding. It
follows a two-stage training manner as shown in
Figure 3(b). Take fMRI-to-text decoding for ex-
ample, the encoder is first pre-trained with a brain
signal reconstruction task to capture spatial and
temporal feature via a 3D-CNN and multi-layer
Transformer encoder module. Then BART (Lewis
et al., 2020) is fine-tuned to translate fMRI repre-
sentation into natural language.
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Figure 4: The detailed steps of our proposed cross-subject data splitting method. (Color printing is preferred.)

Figure 3 illustrates how brain signal leakage and
text stimuli leakage affect current encoder-decoder
based brain-to-text decoding framework. For the
encoder component, if subjects’ brain signals in
test set are mixed into training set, the encoder
will become overfitted and fail to well represent
unseen subjects’ brain signals. For the decoder
component, since it generates token by token in an
auto-regressive manner, data leakage will cause the
decoder to memorize seen text during the teacher-
forcing training stage. The decoder will predict
next token regardless of encoded brain signals.

3.4 A Right Cross-Subject Splitting Method

A right cross-subject splitting method is proposed
to eliminate both brain signal leakage and text stim-
uli leakage.

Gtrain = {(Sis Mk, Tij, Fji) [V (S, My,

Trjs Fiji) € Grests Si # i, Ty # Tij -
Given the differences of EEG and fMRI dataset, we
address them separately and propose two data split-
ting methods. In EEG dataset, (.S;, My, Ti;, Fijk)
forms one sample. As shown in Figure 4, our pro-
posed splitting method consists of three steps:

 Step 1: Select Zé{:l I, samples from Gp and

form a new graph G, that satisfies

V(S/ Mk)?Tk)]’ ) (Sz(/?M” Tk]? Z]k)
S gDaTkj 7é
)

* Step 2: Split G}, to Gj,. ..., and G; ., with a
given ratio. The splitting should follow

Girain = {(Si, My, Ty, Fiji.)|

V(S;’Ml,legj? z]k) € gtest?‘s’ 7& Sl}
(10)

®)

zgk

Grest = 1(Sis Mk, Tij, Fiji)|
V(Sév MI;’TI;jv ’L]k‘) € gtrazm S 7é S,}

1)
e Step 3: Expand Gj,., and G with

/ i
gtrain_exp and gtest,e:vp separately.
/ / /
gﬁ’ain A gt'r‘ain U gtrain,emp

(12)
géest <~ géest U géest_ezp

/ /
where gtrainiexp and gtest_exp are

= {(Si, My, Tij, Fiji) € Gpl
S; € Sz{rainv Tkj € ﬁ;am}v

/
gtramiemp

(13)

géest_exp - {(Sla My, Tkja Fijk) € gD|
/ !/
S; € 8test? Tkj € ,Eest}'
(14)
Shrains Torain» Stest> Trest indicate subject set, text

segment set in Gy, . and subject set, text segment
set in G, respectively.

Some samples are discarded in our proposed
splitting method, i.e. Gp # G 4in U Greer- In
Appendix D, we demonstrate that it is unavoidable
for some samples to be discarded in order to satisfy
the cross-subject data splitting criterion.

To fMRI dataset, continuous text segments and
brain signals are concatenated to form one sample
(Sis My, Ty, F5y.). 1f we follow the same split-
ting method as to EEG dataset, text stimuli leakage
will happen in the overlapping part of two samples,
when one sample is assigned to training set and
the other is assigned to validation or test set. We
propose a simple solution that achieves the balance
between discarding as little data as possible while
ensuring zero data leakage: Step 1 and Step 3 re-
main the same as splitting method for EEG dataset.
In Step 2, G, ;,, and Gj,, should follow

gérain = {(Su My, Tk]? Uk)‘v( Mk? (15)
Téj’ Z]k) € gtest? Si 7& Mk 7& Mk}7
Grest = {(Si, My, Tij, z’jk)W( Si, My, 16)

Tléj? zjk) € gtra'm? Si # 8 Mk # Mk}
4 Experimental Settings

4.1 Implementation Detail

We test two SOTA cross-subject brain-to-text de-
coding models UniCoRN (Xi et al., 2023) and
EEG2Text (Wang and Ji, 2022) on fMRI dataset
Narratives (Nastase et al., 2021) and EEG dataset
ZuCo (Hollenstein et al., 2018). Because the num-
ber of stories in ZuCo dataset is too small, and



method (e) makes no difference to EEG as method
(d), we only consider splitting method (a), (c), (d)
for EEG. We follow the same settings of UniCoRN
and EEG2Text, except all the datasets are split to
the ratio of 8:1:1 for fair comparison. Details are
shown in Appendix B.

4.2 Evaluation Metrics

Data Leakage Metrics We design two novel
evaluation metrics Brain Signal Leakage Rate
(BSLR) and Text Stimuli Leakage Rate (TSLR)
to quantify two types of data leakage. Note that the
situation for validation set is the same as test set,
so we only consider test set in experiments. BSLR
indicates the average percentage of each subject’s
brain signals in test set appearing in training set,
which could be formulated as

Z mi (1 |{F1]k|FZJk € (gtest N gtr‘ain)}|
’ ‘{Ejk’FZ]k S gtrain}|
a7
where N.s; stands for the total number of subjects
in test set. | - | stands for the cardinality of a set.
Function min(+, -) is applied to make sure for each
subject the data leakage rate is less than one.

The definition of TSLR is different for EEG sig-
nal and fMRI signal. Since (.S;, My, T}, Fiji) in-
dicates one sample in EEG dataset, definition of
TSLR for EEG dataset is similar to BSLR, which
measures the average percentage of certain text in
test set appearing in training set.

Miest To T Groat O Cirai
Z min(l, |{ k]| kj € ( test tram)}|)

|{Tkj‘Tkj S gtrainH

(18)

where M;.s: stands for the total number of text
segments in test set. To fMRI dataset, continuous
fMRI frames with corresponding text segments are
concatenated as one sample. As a result, TSLR for
fMRI signal is considered as the average percent-
age of the same text segments in test set appearing
in training set, which is

1
Mtest

1 Mtest

Mtest 1
Jf

{Tkj|Tkj € (Gtest N Gtrain) }
‘gtest‘ X L

(19)
where 7 = 0 if {T};|Tk; € Grest N Girain} = 0
else

|{Tk]’T]€j S gtrain}‘
’{Tkj|Tk] S (gtest N gtrain})|

)
(20)

7 = min(1,

Type Method Narratives ZuCo
(a) 0.001000  0.0040.00
(b) 9.6714.80 /
(C) 12~50i0.04 12.5010,03

BSLR(Z) () 12801001 12592000
(e) 12.2740.01 /
() 0.001000  0.0040.00
(a) 100-00i0.00 22~50i1.31
(b) 0.00-0.00 /
(C) IO0.00i0.00 13-07:t0.11

TSLR(%) (@) 99.82:017 12884001
(e) 9.2910.06 /
() 0.001000  0.0040.00

Table 2: Results of Brain Signal Leakage Rate (BSLR)
and Text Stimuli Leakage Rate (TSLR). Lower is better.

Decoding Performance Metrics BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004) are ap-
plied to measure the decoding performance. BLEU
measures the n-gram overlap between decoded con-
tent and ground truth. ROUGE-N comparing the
consistency of N-grams between the decoded con-
tent and the ground truth.

5 Experiments and Analysis

We first quantify the data leakage condition of
different methods with BSLR and TSLR metrics.
Then we demonstrate the damage of data leakage
on encoder side and decoder side. For model en-
coder, we analyze its validation loss under different
splitting methods. For model decoder, three ex-
periment settings are applied: (1) An additional
test set that ensures zero data leakage is left out as
comparison to original test set. (2) The input brain
signals are randomly shuffled. (3) Training original
models with more epochs and smaller learning rate.

5.1 Verification for Data Leakage

Experiments on BSLR and TSLR are conducted
four times with different seeds. The results in Ta-
ble 2 are consistent with theoretical analysis. A
value of zero in BSLR and TSLR demonstrate no
brain signal leakage and text stimuli leakage, while
higher values suggest more significant data leakage
issues. Notably, only our method (f) prevents both
brain signal leakage and text stimuli leakage.

5.2 Damage of Data Leakage to Encoder

Evaluating the encoder independently can be chal-
lenging in an end-to-end training scenario. There-
fore, we primarily focus on a pre-trained encoder.
Validation loss is applied to measure data leakage,



Original Test Set / Additional Test Set

Dataset Model Method
BLEU-1 BLEU-2 BLEU-3 ROUGEI1-F
(a) 49.56 /1843 3049/1.25 21.07/0.00 40.65/16.38
(b) 26.37/23.31 7.50/579 248/1.44 19.62/18.74
Narratives  UniCoRN (c) 50.24 /1696 30.83/0.09 21.23/0.00 41.01/15.12
(d) 49.63/17.20 30.29/1.15 20.85/0.00 41.03/15.83
(e) 2894/21.79 939/462 407/1.19 19.49/18.78
® 22.83/21.64 5.69/4.97 1.43/1.28 19.04/18.45
(a) 58.09/18.54 49.23/1.31 43.23/0.00 67.50/15.39
UniCoRN () 52.30/18.38 42.89/1.03 36.80/0.00 67.29/15.25
(d) 50.02/19.84 43.53/1.20 32.71/0.03 67.33/15.12
Z7uCo ® 23.32/2289 7.778/746 3.01/2.75 1792/17.63
(a) 51.22/17.41 33.83/1.04 22.99/0.00 46.58/15.92
EEG2Text (c) 53.83/17.38 38.99/0.84 29.57/0.00 53.56/16.07
(d) 53.92/16.86 41.06/1.32 23.12/0.00 49.38/15.83
® 24.49/2371 749/742 228/2.33 25.74/23.30

Table 3: Performance of brain-to-text decoding models under different splitting methods on original test set and an
additional test set. The green mark and red mark denotes a method without and with text stimuli leakage.
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Figure 5: Validation loss of encoder under different
dataset splitting methods in two datasets.

as a proper evaluation index of encoder’s repre-
sentation ability is missing. The validation loss of
encoder under different data splitting methods is
shown in Figure 5. For fMRI data, the presence of
brain signal leakage causes the validation loss of
methods (b), (c), (d), and (e) to continuously de-
crease even over extended training epochs, which
indicates the encoder is actually overfitting and
its representation ability is degrading. In contrast,
with methods (a) and (f) that are not affected by
brain signal leakage, the validation loss quickly
increases after reaching its minimum within a few
epochs. For EEG, we find validation loss keeps
dropping for all methods even with very long train-
ing epochs, regardless of brain signal leakage or
not. We think the poor spatial resolution of EEG
signal might lead to this phenomenon.

5.3 Damage of Data Leakage to Decoder

Evaluation on Additional Test Set An addi-
tional test set that ensures zero data leakage is left

out to evaluate the actual performance of brain-to-
text decoding models. If the original test set is cor-
rectly split, its decoding result should be similar to
that of the additional test set. From Table 3, we ob-
serve that the decoding model tends to overfit when
text stimuli leakage occurs, as seen in methods (a),
(c), (d), and (e) in Narratives, and methods (a) and
(c) in ZuCo. The BLEU and ROUGE score is sig-
nificantly lower in the additional test set. While
in our proposed splitting method (f), the decoding
performance of original and additional test set are
similar. We also notice that methods with a high
Text Stimuli Leakage Rate (TSLR), such as method
(a) in Narratives, exhibit more overfitting compared
to methods with a low TSLR, like method (e).

Shuffle Input Brain Signals We conduct a
chance-level experiment to investigate whether de-
coding models learn language reconstruction from
brain signals. Specifically, the input brain signals
are randomly shuffled. Decoding performance in
test set is expected to be very poor if text stimuli
leakage does not happen, as the shuffled input is
considered as noise. However, if text stimuli in test
set leaks into training set, the model will simply
memorize seen text and the decoding performance
is not supposed to be affected.

Results are presented in Table 4. For fMRI, we
find the decoding performance of models under
splitting method (a), (c), and (d) remain the same
no matter the input is ordered or shuffled. Simi-
lar phenomenon is also observed in EEG dataset



Ordered Input / Shuffled Input

Dataset Model Method
BLEU-1 BLEU-2 BLEU-3 ROUGEI1-F
(a) 49.56/47.39 30.49/2895 21.07/18.40 40.65/35.12
(b) 26.37/20.18 7.50/3.52 2.48/0.51 19.62 / 15.58
Narratives  UniCoRN (©) 50.24/48.48 30.83/30.21 21.23/19.39 41.01/38.43
(d) 49.63/50.21 30.29/32.18 20.85/21.46 41.03/41.69
(e) 28.94/24.84 9.39/6.56 4.07/2.04 19.49/17.90
® 22.83/18.21 5.69/2.47 1.43/0.22 19.04/16.83
(a) 58.09/59.23 49.23/51.35 43.23/44.27 67.50/68.93
UniCoRN (c) 52.30/50.24 42.89/37.96 36.80/30.21 67.29/63.43
(d) 50.02/51.12 43.53/40.85 32.71/28.24 67.33/64.88
ZuCo ® 23.32/19.38  7.78/2.51 3.01/0.00 17.92/15.21
(a) 51.22/50.63 33.83/32.19 2299/20.63 46.58/44.70
EEG2Text (c) 53.83/50.33 38.99/33.42 29.57/23.19 53.56/48.78
(d) 53.92/51.46 41.06/35.87 23.12/24.75 49.38/47.42
® 24.49/18.72 7.49/2.01 2.28/0.00 25.74/15.36

Table 4: Performance of brain-to-text decoding models under different splitting methods with ordered brain signals
and randomly shuffled brain signals as model input respectively. The green mark and red mark denotes a method

without and with text stimuli leakage correspondingly.

BLEU-N (%) ROUGE-1 (%)
N=1 N=2 N=3 N=4 R P F
2283 569 143 048 1555 24.80 19.04

23.32 7.78 3.01 1.09 1847 20.00 17.92
24.49 7.49 228 0.62 2398 2395 2574

Dataset Model

Narratives  UniCoRN

UniCoRN
EEG2Text

ZuCo

Table 5: A fair benchmark for evaluating the perfor-
mance of cross-subject brain-to-text decoding models.

when it comes to splitting method (a), (c), (d). But
in splitting method without text stimuli leakage,
model performance with shuffled input drops sig-
nificantly. This experiment demonstrates that the
brain-to-text decoding task become meaningless
when text stimuli leakage exists, as the Transformer
block is capable of generating text that was previ-
ously encountered during the training phase.

Longer Training Epochs with Smaller Learning
Rate According to fundamental machine learn-
ing principle, model performance in test set will
first increase and then drop as the training pro-
ceeds. In this experiment, we try training models
under different splitting methods with longer train-
ing epochs and smaller learning rate. If text stimuli
leakage happens, the model is overfitting and its
performance is supposed to keep increasing.

Results and detailed analysis are presented in Ap-
pendix E. In conclusion, the model’s performance
on test set continues to improve when text stimuli
leakage happens, confirming that such leakage re-
sults in significant overfitting in decoding models.

5.4 A Fair Benchmark

We re-evaluate two SOTA models for brain-to-
text decoding under our cross-subject data split-
ting method and release a fair benchmark. Uni-
CoRN is tested for both fMRI and EEG decoding,
EEG2Text model is tested for EEG decoding. The
results are listed in Table 5. For EEG dataset, Uni-
CoRN achieves higher results in BLEU-2,3,4 while
EEG2Text is better in BLEU-1 and ROUGE-1.

6 Conclusion and Discussion

In this paper, we evidence that all current dataset
splitting methods for cross-subject brain-to-text de-
coding have data leakage problem through theoret-
ical analysis and experiments. Such data leakage
leads to model overfitting and largely exaggerates
model performance, rendering model evaluation
meaningless. To fix this issue, we propose a right
cross-subject data splitting method. Current SOTA
models are re-evaluated for further researches.

It’s essential to realize the false promise of
current SOTA methods. This inspires future re-
searches to design more general and accurate mod-
els for brain-to-text decoding, under the right cross-
subject dataset splitting method. It should be noted
that we don’t seek to propose any modifications to
improve current models in the scope of this paper.
We mainly focus on revealing the false dataset split-
ting method and its detrimental impact on cross-
subject brain-to-text decoding research.



Limitations

The limitations of this work include three aspects:
(1) Although our splitting method can be applied
to any natural language comprehension cognitive
dataset, we only analyze cross-subject data split-
ting methods in fMRI and EEG dataset. We leave
the investigation of other cognitive signals (e.g.
ECoG, MEG, etc.) to future work. (2) Our pro-
posed dataset splitting method meets the above re-
quirements at the expense of discarding some data
in the dataset. We recommend future datasets in
this domain follow these guidelines. The division
of the training set, validation set, and test set should
be provided when the dataset is released. Besides,
we suggest hiring new subjects with unique stimuli
for the validation set and test set, which is good for
testing the generalization ability of models without
loss of data. (3) During experiments we find exist-
ing models rely more on a strong auto-regressive
decoder to achieve good generation quality. The
encoder is of limited use in all SOTA models. And
we also notice in experiments that the encoder of
EEG2Text keeps overfitting whether with or with-
out brain signal leakage. We leave it as future
research.

Ethics Statement

In this paper, we introduce a new dataset splitting
method to avoid data leakage for decoding brain
signals to text task. Experiments are conducted
on the publicly accessible cognitive datasets “Nar-
ratives” and ZuCo1.0 with the authorization from
their respective maintainers. Both datasets have
been de-identified by dataset providers and used
for researches only.
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A Related Work

Brain Signal Brain signals can be classified into
three categories: invasive, partially invasive, and
non-invasive according to how close electrodes get
to brain tissue. In this paper, we mainly focus on
non-invasive signals EEG and fMRI. EEG signal
is electrogram of the spontaneous electrical activ-
ity of the brain, with frequencies ranging from 1
Hz to 30 Hz. EEG is of high temporal resolution
and relatively tolerant of subject movement, but its
spatial resolution is low and it can’t display active
areas of the brain directly. fMRI measures brain
activity by detecting changes of blood flow. Blood
flow of a specific region increases when this brain
area is in use. The spatial resolution of fMRI is
measured by the size of voxel, which is a three-
dimensional rectangular cuboid ranging from 3mm
to Smm (Vouloumanos et al., 2001; Noppeney and
Price, 2004). Unlike EEG which samples brain sig-
nals continuously, fMRI samples based on a fixed
time interval named TR, usually at second level.

Brain-to-text Decoding Previous research on
brain-to-text decoding (Herff et al., 2015; Anu-
manchipalli et al., 2019; Zou et al., 2021; Moses
et al., 2021; Défossez et al., 2023) mainly focused
on word-level decoding in a restricted vocabulary
with hundreds of words (Panachakel and Ramakr-
ishnan, 2021). These models typically apply re-
current neural network or long short-term memory
(Hochreiter and Schmidhuber, 1997) network to
build mapping between brain signals and words
in vocabulary. Despite relatively good accuracy,
these methods fail to generalize to unseen words.
Some progress (Sun et al., 2019) has been made
by expanding word-level decoding to sentence-
level through encoder-decoder framework or using
less noisy ECoG data (Burle et al., 2015; Anu-
manchipalli et al., 2019). However, these models
struggle to generate accurate and fluent sentences
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limited by decoder ability. Wang and Ji (2022)
introduced the first open vocabulary EEG-to-text
decoding model by leveraging the power of pre-
trained language models. Xi et al. (2023) improved
the model design and proposed a unified framework
for decoding both fMRI and EEG signals.

B Implementation Details

We apply the “Narratives™ (Nastase et al., 2021)
dataset for fMRI-to-text decoding and the ZuCo
(Hollenstein et al., 2018) dataset for EEG-to-text
decoding in experiments. The “Narratives” dataset
contains fMRI data from 345 subjects listening to
27 diverse stories. Since the data collection pro-
cess involves different machines, we only consider
fMRI data with 64 x 64 x 27 voxels. The ZuCo
dataset includes 12 healthy adult native English
speakers reading English text for 4 to 6 hours. It
contains simultaneous EEG and Eye-tracking data.
The reading tasks include Normal Reading (NR)
and Task-specific Reading (TSR) extracted from
movie views and Wikipedia. Both datasets are split
into training, validation, and test set with a ratio of
80%, 10%, 10% in all experiments.

We perform the same filtering steps to “Nar-
ratives” dataset as UniCoRN paper (Xi et al.,
2023) and the same filtering steps to ZuCol.0 as
EEG2Text paper (Wang and Ji, 2022). In BSLR
and TSLR calculation, the number of four differ-
ent seeds are set as 1, 2, 3, 4 respectively. In signal
reconstruction task for encoder of UniCoRN, the
batch size of EEG and fMRI data is 512 and 320
respectively. The learning rate is set as le-4 and
le-3 separately as the author claimed in the original
paper. In the fair benchmark, for fMRI data, en-
coder of UniCoRN is trained through le-4 learning
rate and decaying to le-6 finally for 30 training
epochs. Decoder is trained through le-4 learning
rate and decaying to le-6 finally for 10 training
epochs with 90 batch size. Sample length L is set
as 10 for all experiments related to fMRI. For EEG
data, EEG2Text model is trained with 1e-6 learning
rate for 80 epochs. UniCoRN model is trained with
the same settings as fMRI data.

C Cross-Subject Data Splitting in
Practice

We present the pseudo-code of two dataset split-
ting methods for EEG and fMRI signal. We only
consider a bipartite graph G; = (U, V, £) instead
of a 4-partite graph in real practice. For EEG sig-
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nal, U = {S;};L), V = {T;}}L,. While for fMRI
signal, U = {S;}V,, V = {M}E . & is the
edge between node in ¢/ and node in V. N, M, K
indicate the total number of subjects, text segments
and stories. We assert M > N for EEG dataset
and K < N for fMRI dataset, so e = (u,v) € £
exists for every v € V), as each text segment or
story is listened by at least one subject. As shown
in step 1 of Figure 4, first we pick one edge for
each node v € V and build a new bipartite graph
Go = (U, V,E"). Then following step 2, we split
graph G5 by subject I/ with the given splitting ratio
and form three disjoint graphs Girain, Gual, Grest-
In step 3, we extend each graph Gi,qin, Goals Grest
by adding edges without data leakage.

The main difference of splitting methods for
EEG and fMRI lies in how G5 is generated. We al-
ways choose the side with fewer nodes in bipartite
graph G; to generate Gy. Specifically, in Algorithm
1 where we assert |/| < |V|, the adjacency matrix
is initialized as M x N. In Algorithm 2 where
|V| < |U|, the adjacency matrix is initialized as
N x K. All assertions are based on real cognitive
datasets. One more thing to notice is that in Line 14
of both pseudo-code, the loop indicates extending
training set, validation set, and test set respectively.
So the names of variable should be alternated in the
repeat loop and the displayed part in pseudo-code
is a case example of extending training set. We
write it in this way for simplicity of expression.

D Supplementary Proof

Definition D.1. An directed multigraph G is a type
of graph which is permitted to have multiple edges
between two vertices. When the edges own identity,
G can be writtenas G = (V, &, f), where f : £ —
VY x V is an incidence function that maps each edge
to a pair of vertices.

Definition D.2. A k-partite graph G is a type
of graph that can be divided into £ distinct in-
dependent sets such that no two vertices in the
same set are connected. G = (V,&), where
V=VUVoU---UVgand Vi # j,V;NV; = 0.

Notation D.3. ® is a Cartesian product-like op-
erator. X @ Y = {(z,y)lx € X,y €Y, there
exists relationship between x and y in dataset}.
It’s designed to describe the connectivity among
S, M, T,F. For example, edges in S ® M in-
dicates certain subjects are stimulated by certain
stories as described in dataset.



Definition D.4. The training set for cross-subject
brain-to-text decoding should be formatted in
gtrain Strain ® M X ﬁrain b2y -Ftraina where
St'rain {SZ|VS£ S Stestysi 7é Sé}’ ]:tram =
{Firli € I}, I = {i|V)j,Vk, Fijr & Frest}s
Ttrain = {TkJIVT[éJ € ﬁestaTkj 7& T]éj}

Why a method without brain signal leakage and
text stimuli leakage must satisfy cross-subject
brain-to-text decoding criterion Training set
Girain Without brain signal leakage and text stimuli
leakage is formatted in

Gtrain = {(Si, Mk, Tkj, Fiji)|
V(Sz,7 Mllchlgjv zljk) € gtesta

2D
Si # Si, Trj # Ty;}
= Strain @ M ® Train @ F
where  Sirain {SilVS] €  Stest: Si #

Sz{}a’nrain = {TijT]gj € 7;6StaTk‘j 7& T]éj}'

Since Fj;, € F indicates brain signal of subject
S; stimulated by text segment T}, and given the
definition of operator ®, F is determined when S
and 7T are specified, which is

F={Fyrli € I,kj e J},
I = {Z’Sz S Strain}y
J = {k]‘Tk] c ﬁrain}-

(22)

F can also be written as F = {Fjs|i € I},
I = {i|Vj,Vk,Fiji ¢ Fiest}, which is equal to
Definition D 4.

Why the proposed splitting method satisfy zero
data leakage Take the splitting method for EEG
signal as example, the training set and test set after
step 1 and step 2 already satisfy

/ /

gtra'm - {(Su Mka Tkja Fljk)|v(sz> Mk’

(23)
T]éj, Z/jk’) S gtesta S’L 7& Sz{7T]€j 7& TI::]}
est — Si7M7T‘7F‘Z“ VS/'aMla
Grest = {( ks Thgs Figie) [V (S5, M, (24)

T]éja -Fz‘/jk;) € gtraina S’L 7& Sz{kaj 7& TIQ]}
So we only need to prove expanded graph

gé?“ain_exp and Gj.o ..y satisfy zero data leakage,
which is obvious from Equation 13 and 14.

Why we must discard samples to ensure
no data leakage If Girgin U Giest Gp,
suppose V(Su Mka Tkj7 E]kz) € gtrain7
(S5 My, Ty, Fiiy) € Grests Si # 53, Thej # T
For f(£) (Mg, Tj), f(E') (M, Ty;).
Tkj 75 T];ji
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* If M}, = Mj, then there must exist a subject
S; = S! such that he is stimulated by the
whole stories.

o If M}, # M, then there must exist a subject
S; = S! such that he is stimulated by two
different stories.

As a result, if Gigin U Grest Gp,
then H(SZ', M., Tkj, Fijk;) S Grain
(S}, M}, T}, Fl) € Grests st Si = S) or

Ty = T,;j. Some samples must be discarded to
ensure no data leakage.

E Supplementary Experiment

The influence of teacher-forcing Jo et al. (2024)
pointed out that previous methods applied teacher-
forcing during generation, which has the tendency
to cause overfitting problems. Therefore, we
conduct experiments on models without teacher-
forcing to ensure that the affection of data leak-
age is not influenced by teacher-forcing. Results
are shown in Table 6. Without the influence of
teacher-forcing decoding, splitting methods with
data leakage will still lead to overestimation of
model performance.

Experiments on longer training epochs with
smaller learning rate If evaluation indicators
keep improving as training epochs increase, we
believe part of the test set is leaked into training
set and the model is overfitting. For fMRI signal,
we test five current dataset splitting methods under
different training settings. As shown in Table 7, we
test two kinds of UniCoRN models. One is Uni-
CoRN with hyper-parameters claimed in the orig-
inal paper, and the other is UniCoRN* whose en-
coder is randomly initialized. Besides, UniCoRN*
is trained with longer epochs and smaller learning
rate. In method (a), (c), (d), due to text stimuli
leakage, if we reduce the learning rate and extend
training epochs, UniCoRN* performs much bet-
ter than UniCoRN and its performance keeps ris-
ing with longer training epochs. As to method
(b) and (e) with no text stimuli leakage, changing
training epochs or learning rates makes no obvi-
ous difference to model performance. For EEG
signal, the conclusion is similar as shown in Table
8. For method (a) and (c) with text stimuli leakage,
model performance keeps rising with longer train-
ing epochs. For method (d) without text stimuli
leakage, both models reach optimal performance
after the first few rounds of training epochs.



Algorithm 1: Dataset splitting method for EEG signal

1 Initialize: Bipartite graph G = (U, V,E), Go = (U, V,E') where U = {S;} | and V = {Tj}fil,

Adjacency matrix A; of G; where A;[i][j] = 1 if node 7 and node j is connected else A;[i][j] = 0,
Adjacency matrix Ag of Go where As[i][j] = 0, Array C where len(C') = len(U) and C[i] = 0;

2 for u < Uj to Uy do

3 Ceopy < C;

4 | forv <« Ai[u][0] to A;[u][M] do

5 if v = 0 then

6 ‘ Ceopylv-index] < oo;

7 Minimum = min(Ceopy );

8 Az [u][Minimum.index] < 1;

9 C[Minimum.indezx| < C[Minimum.indez| + 1; // Make degree of nodes balanced

10 Split by subjects I/ according to default ratio;
11 Go = Girain U Guar U Giest, Utrain N Upar N Usest = @, Virain 0 Val N Viest = 0;

12 repeat // To three sets respectively, below is for training set
13 for v in U/ do

14 for vin) do

15 L ife=(u,v) e Eande = (u,v) ¢ & ., and u ¢ Uyq UUscs then

16 ‘ gL{rain A Igrain U {6};

17 until Gyrqin, Gual, Grest are all extended;
18 return gtrainv gvala gtest;

Algorithm 2: Dataset splitting method for fMRI signal

1 Initialize: Bipartite graph G; = (U, V, &), Go = (U, V,E') where U = {S;}¥ 1,V = {M}E_|,
Adjacency matrix A; of G; where A;[i][j] = 1 if node 7 and node j is connected else A;[i][j] = 0,
Adjacency matrix Ay of Ga where As[i][j] = 0, Array C where len(C') = len(V) and C[i] = 0;

20 for v < V; to Vi do

21 Ceopy < C;

2 | foru < A;[v][0] to A;[v][K] do

23 if v = 0 then

L ‘ Creopy|u-index] < oo;

25 Minimum = min(Ceopy);
2 As[v][Minimum.indez| < 1,
27 CMinimum.index) < C[Minimum.indezx] + 1, // Make degree of nodes balanced

28 Split by tasks V according to default ratio;
29 Gy = gtrain U gval U gtest7 Usrain N Upar N Usest = @, Virain N Voal N Viest = Q);

30 repeat // To three sets respectively, below is for training set
31 for vin) do

k%) for v in I/ do

33 L ife=(u,v) e Eande = (u,v) ¢ &, and v & Vg U Vs then

34 ‘ gzgrain A L{Tain U {6};

35 until Grin, Goals Giest are all extended;
36 return G qin, Gual, Gtests
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With Teacher-Forcing / Without Teacher-Forcing

Dataset Model Method
BLEU-1 BLEU-2 BLEU-3 ROUGEI-F
(a) 49.56/33.82 3049/944 21.07/4.89 40.65/21.87
(b) 26.37/19.68 7.50/550 248/1.76 19.62/16.86
Narratives  UniCoRN (c) 50.24 /29.87 30.83/8.35 21.23/3.21 41.01/19.03
(d) 49.63/30.20 30.29/8.78 20.85/3.65 41.03/19.42
(e) 2894/2146 939/624 4.07/1.83 19.49/17.39
®) 22.83/16.85 5.69/4.24 1.43/0.65 19.04/15.34
(a) 58.09/19.47 49.23/7.69 43.23/297 67.50/17.25
UniCoRN (c) 52.30/19.70 42.89/7.54 36.80/2.93 67.29/17.37
(d) 50.02/22.02 43.53/828 32.71/3.15 67.33/18.33
ZuCo ®) 23.32/14.02 7.78/2.57 3.01/0.82 17.92/11.95
(a) 51.22/2199 33.83/742 2299/294 46.58/17.78
BEG2Text () 53.83/20.41 38.99/7.25 29.57/248 53.56/17.32
(d) 53.92/19.80 41.06/7.46 23.12/3.06 49.38/17.29
) 2449 /1352 7.49/2.86 2.28/0.78 25.74/11.20

Table 6: Performance of brain-to-text decoding models under different splitting methods with teacher-forcing and
without teacher-forcing. The green mark and red mark denotes a method without and with text stimuli leakage
correspondingly.

Model  Epoch+lr+Method BLEU-N (%) ROUGE-1 (%)
N=1 N=2 N=3 N=4 F P R
10+1e-3+(a) 4956 3049 21.07 1549 44.83 5041 40.65
10+1e-3+(b) 2637 750 248 099 2228 2599 19.62
UniCoRN 10+1e-3+(c) 5024 3083 2123 15.60 44.68 4944 41.01
10+1e-3+(d) 4963 3029 2085 1532 4506 5047 41.03
10+1e-3+(e) 2894 939 407 153 2168 2464 19.49
20+1e-4+(a) 50.19 3425 2598 21.00 4659 5036 43.62
30+1e-4+(a) 5546 4099 3285 2756 52.08 55.02 49.68
20+1e-4-+(b) 2591 880 384  1.66 2065 2774 1657
30+ 1e-4+(b) 2591 880 384  1.66 2065 2774 16.57
UniCoRN* 20+1e-4+(c) 7244 6084 5335 4788 7052 7410 67.53
30+1e-4+(c) 7282 6142 5395 4844 7124 7441 68.57
20+1e-4+(d) 6531 5102 4254 3672 6276 67.09 59.29
30+ 1e-4+(d) 66.56 53.00 4475 39.02 63.89 6751 60.95
20+1e-4+(e) 3215 1234 557 245 2428 3043 2035
30+1e-4+(e) 3215 1234 557 245 2428 3043 2035

Table 7: Generation quality of UniCoRN model for fMRI under different training settings. Here UniCoRN*
indicates the encoder of UniCoRN is randomly initialized instead of pre-trained through signal reconstruction task.
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BLEU-N (%)

ROUGE-1 (%)

Model Epoch+lr+Method
N=1 N=2 N=3 N=4 F P R
50+1e-4+(a) 58.09 4923 4323 3843 63.88 61.12 67.50
80+1e-4+(a) 60.88  50.52 4342 37.84 65.17 61.16 70.72
UniCoRN 50+1e-4+(c) 5230 4289 36.80 3217 57.39 51.09 67.29
80+1e-4+(c) 60.78 5592 53.18 51.10 84.64 63.16 71.50
50+1e-4+(d) 22.90 7.36 271 095 17.73 1990 17.33
80+1e-4+(d) 22.90 7.36 271 095 17.73 1990 17.33
50+1e-4+(a) 5122 3383 2299 16.05 4640 46.85 46.58
80+1e-4+(a) 63.32 5252 45119 3950 6596 64.74 68.01
EEG2Text 50+1e-4+(c) 53.83 3899 2957 23.01 53.64 54.19 53.56
80+1e-4+(c) 6542 5756 5256 48.60 73.00 69.99 77.01
50+1e-4+(d) 23.92 8.16 3.21 1.20  20.78 19.96 23.89
80+1e-4+(d) 23.92 8.16 3.21 1.20  20.78 19.96 23.89

Table 8: Generation quality of UniCoRN and EEG2Text model for EEG under different training settings.
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