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Abstract

In federated learning (FL), a global model is learned by aggregating model updates
computed from a set of client nodes, each having their own data. A key challenge
in FL is the heterogeneity of data across clients whose data distributions differ
from one another. Standard FL algorithms perform multiple gradient steps before
synchronizing the model, which can lead to clients overly minimizing their local
objective and diverging from other client solutions. We demonstrate that in such a
setting individual client models experience “catastrophic forgetting" with respect
to other client data. We propose a simple yet efficient approach that modifies the
cross-entropy objective on a per-client basis such that classes outside a client’s label
set are shielded from abrupt representation change. Through empirical evaluations,
we demonstrate our approach can alleviate this problem, especially under the most
challenging FL settings with high heterogeneity, low client participation.

1 Introduction

federated learning (FL) is a distributed machine learning paradigm in which a shared global model
is learned from a decentralized set of data located at a number of independent client nodes [1} 2]].
Due to communication constraints, FL algorithms typically perform many local gradient update steps
before synchronizing with the global model. FL was conceptualized as a learning technique to train a
shared model without sharing user sensitive data but allowing users to benefit from data stored at
other nodes, such as phones and tablets of decentralized users. Under realistic settings, client data
will often have non-iid distributions and for the case of supervised multi-class classification, users
may frequently be missing data from an entire class or multiple classes. The data inhomogeneity
across clients frequently induces client drift, a phenomenon in which clients progress too far towards
optimizing their own local objective, leading to a solution that has severely "drifted" from an optimal
global solution [3]. Continual learning (CL) [4] is another emerging paradigm in which a learner is
presented with a sequence of tasks to be learned in succession. Similar to how FL clients may have
non-iid data, different tasks in CL also typically contain data drawn from different distributions. In
CL the problem of catastrophic forgetting is a focus of study since it is desirable for a model to retain
its knowledge of previous tasks after learning a new one. We consider one round of FL in which C
random clients are selected and sent a copy of the current global model and each client performs a
number of local update steps to optimize the objective using their local data. The round ends with
an update to the global model achieved by the aggregating the updates from each client. As local
training proceeds for a typical round, the client model becomes increasingly biased towards that
clients dataset and will experience a catastrophic forgetting with respect to the data from other clients.
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In this way we can draw a connection between the catastrophic forgetting problem of CL and client
drift problem of FL. We denote this problem as local client forgetting.

Reducing client forgetting would moderate an individual clients increase in loss with respect to other
clients data, improving the loss of the client model over the combined data. Therefore we conclude
that tackling local client forgetting can reduce client drift. Many methods to control catastrophic
forgetting have been proposed in the CL literature [SH9]] but they are largely impractical for FL.
Experience Replay methods [7] require access to other clients data violating FL's data communication
constraints. Many regularization methods such as EWC require communicating additional information
and moreover typically require many steps to converge [[L0] due to additional conflicting objectives.
For the supervised CL setting [[11} [12]] propose a modification of the standard cross entropy (CE)
objective function that truncates the softmax denominator, removing terms corresponding to classes
from old tasks thereby by reducing the bias on the model to avoid predicting old classes. In FL,
as local client optimization proceeds, optimizing the terms in the CE corresponding to classes not
present in that client’s data distribution will encourage absent classes to be forgotten by the local
model. Furthermore, as discussed in [13]], it can cause spurious features to emerge. Inspired by
these observations and the parallels between FL and CL we adapt the solution of [11} [12] to FL.
by correcting each clients loss function based on its class distribution. We show this approach can
greatly reduce client level forgetting in the heterogeneous setting and lead to substantially improved
overall global model convergence. It also yield optimization more robust to hyper-parameters and
normalization layers.

2 Background and Methods

In FL [2]] training data is distributed and optimization occurs over K clients with each client k& €
1, ..., K having data X}, drawn from distribution Dj. We define ny = |Xy| and n = Zle ny, for
n samples. The data X, at each node may be drawn from different distributions and/or may be
unbalanced with some clients possessing more training samples than others. The typical objective
function for federated optimization is given by

K
min S £ 2 (w, Xp), (1)
weRd n
k=1

with £(w, X}, ) measuring client &’s local objective, and w representing the global model parameters.
In this work we will restrict ourselves to the common case where L is the CE loss. There are many
possible variations of FL algorithms. In general, they follow the same structure as FedAvg [1]]: (a)
client selection: for a set of K clients, K «C are selected at each round {¢; }l 1,-where0 < C' < 1is
a pre-determined fraction. (b) client updates: At the beginning of round, client models are initialized
with the current weights of the server model. Each client selected for the round performs E local
iterations of SGD. (c) server update: The weights of the individual client models are aggregated to
form an update to the shared global model.

Truncated Cross Entropy Consider a neural network f : RP — R where C is the total number
of classes. The standard CE is given by equation 2]

£CE(Xk>Yk; Zl €xp fw( ) x)) )

xeX cec exp(fw(x)c)’

Here y(x) is the label of x and C is the set of all classes available to the clients. We now consider the
truncated cross entropy (TCE) characterized by equation 3] where the denominator is a function of the
labels for the client data Y.

exp fw( ) x))
Zcec(Yk)eXp(fW( x)c)’

Lrop(Xe, Y, w) == log 3)

xeX

In our work we consider C(Y}) to be the set unique labels for the client. Aggressively optimizing
Lor (X, Yi) through multiple gradient steps during a client round can lead to a drastic increase in
Ezy~D;, [lce(x,y)] where D; are the distribution of clients other than client k. The TCE approach,
modifies the original local objective function to avoid excessive pressure that drives up the loss of
other client data so that classes not present at the current client are ignored by the local optimization.
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Figure 1: Prior to a local training round, each client model is an identical copy of the server model, after local
training, local models have diverged according to their own objectives. We show each local model evaluated on
each dataset of the clients selected for the round in question, the z, y axes contain the indices of the clients. The
difference heat maps indicate Fjy, the forgetting of the model of the k'” client evaluated on the ‘" client’s data.
The final column gives F}, the average forgetting over all clients. The post update heat maps show the accuracy
of each client’s model on the other client’s data. We see that TCE (First two heat maps) significantly reduces
forgetting across clients.
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Figure 2: We show the performance over rounds in a highly heterogenous setting with FedAvg, FedAvg+TCE.
We observe that TCE consistently gives the best performance.

This forces each client to learn by adapting the model’s internal representation of the classes present
in its training data, rather than abruptly shifting representations of classes outside its training set [11]].
In what follows we will empirically demonstrate this leads to a reduction in the notion of forgetting
defined below.

Local client forgetting We formalize the notion of local client forgetting discussed in Sec|[T]for a
classification problem. Denoting the accuracy on a client k’s local test data Accy(w), with w the
model parameters. We can consider the local client forgetting Fy; = Accy,(wi) — Accy(wy_1). Here
w refers to the model of client i at round ¢ (before the aggregation step) and w;_; the global model
at the end of round ¢ — 1. Furthermore, we can define an average forgetting for a client k£’s model
F, = ﬁ Do 21 Fri- In the sequel we will study these quantities for a standard FL setting.

3 Experiments

In this section, we present the empirical results for the TCE framework. We analyze the notion of
forgetting in the context of FedAvg and then show how the application of the TCE to the FedAvg
objective can help resolve local client forgetting. Subsequently, we study how TCE can enhance
standard FL algorithms like FedAvg, improving their overall performance over a range of key
hyperparameters.

Datasets and Setting We utilize CIFAR-10, CIFAR-100 [[14] and FEMNIST [[15]] datasets in our
experiments, each of these datasets come pre-separated into training and testing sets. Our primary
evaluations consider 100 clients where each client requires their own training and validation sets
according to their own unique distribution. To facilitate this, the entire training set is separated into
equally sized non-iid partitions using the Dirichlet distribution parameterized by av = 0.1, similar
to the method of [16]. These client partitions are then further separated into training (90%) and
validation (10%) sets for each client. For example, 100 clients being trained using CIFAR-10 which
contains 50 000 training samples would each have 500 of these training samples. Of those 500
samples, 450 would be used for local model updates and 50 would be used exclusively for validation.

Validation Throughout the training process the global model is evaluated periodically on the
aggregation of client validation sets to gauge overall training progress. A model is evaluated on
the training set only once, after the completion of the entire 4000 rounds of training. This value is
the accuracy reported in the Table[T] Since we focus our analysis on the highly heterogeneous case
a = 0.1, this can lead to higher variance in the validation statistics [16]], particularly for smaller
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Figure 3: Ablations for (a) data heterogeniety (b) number of participating clients. We observe that (a) TCE
gives improvements in cases where data is highly heterogenous (b) TCE is most useful with low number of
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Figure 4: Percentages of each class label for ten randomly selected clients with o = 0.1, 0.5, 100
from left to right

datasets such as CIFAR-10 and CIFAR-100. To combat this effect, we run each training three times
to reduce variance of the final reported results.

3.1 Forgetting During a Federated Round

We study the local client forgetting at different optimization rounds of FL. In Figure[T|we show Fy;
(the heatmap) and F}, (the last column) for the set of participating clients for the respective round for
FedAvg using both TCE and CE. We observe forgetting is very high when using standard CE but
TCE is able to control local client forgetting leading to better performance of the global model post
aggregation. The results in Figure[I] are shown for round 2800 of training however, the observation
persists for other rounds as shown in the Appendix Sec[A.3] Having observed that TCE can indeed
reduce the local client forgetting we now study its effect on the aggregated models.

3.2 Evaluations on CIFAR-10,CIFAR-100 and FEMNIST

Figure 2] shows the best performing models among FedAvg and FedAvg+TCE for CIFAR-10 and
CIFAR-100. From these results, we observe FedAvg+TCE is robust to the normalization layer unlike
vanilla FL methods which typically do poorly when using BN. In general we conclude that for both
CIFAR-10 and CIFAR-100, TCE substantially improves performance for any training budget. We see
a similar performance increase when using the FEMNIST dataset (Table [T)) further supporting our
claims.

Robustness to learning rate and normalization In the Appendix Table|l|we summarize a detailed
analysis of model performance over a range of learning rates. Additionally, we vary the normalization
method between BN and GN for TCE. With regard to the normalization method, we observe
comparable performance using either BN or GN indicating TCE helps to mitigate performance
degradation typically observed when using BN in heterogeneous FL [17]]. In general, we observe that
across all client learning rates TCE provides performance improvement using either normalization
setting. We particularly notice improvements by TCE even at higher learning rates, where vanilla
FedAvg can collapse or under-perform. We also remark that not only is overall performance higher for
FedAvg+TCE but it’s performance deviates less from the case of it’s best performing hyperparameters
as various settings are changed. This analysis is further supported by Table2]in the Appendix.

3.3 Ablations

We further study the behavior of TCE in combination with FedAvg under different data distributions
and client participation settings. In Figure [3]ablations for the CIFAR-10 setting are shown where
we ablate one setting at a time. We observe particular settings under which TCE provides vast
improvement over vanilla FedAvg.



Parameter « of the Dirichlet Distribution The Dirichlet distribution is parameterized by « as
a — 0 the client distributions will become increasingly heterogeneous and as o« — oo, each client
data edges closer towards the same i.i.d distribution. In our base case we use o = 0.1 and we now
investigate how model performance is affected by changing the heterogenaity of the data partitions.
Similar to the work of [16], we investigate « = {0.01,0.1,0.2,0.5,1, 10,100} Figure 4] offers a
practical illustration of how client partitions change as a function of «. From Figure 3] we observe
TCE has a more significant effect as « decreases with the biggest margin of improvement over
vanilla FedAvg occurring when o = 0.01. As the data becomes increasingly homogeneous, the gap
between cross entropy with and without TCE shrinks until the data is iid and the two methods are
equivalent. From Figure fi] we see that by the time « = 0.5 most of the clients possess all of the
classes, albeit in very skewed proportions. This is also the point at which the performance of FedAvg
and FedAvg+TCE become very close, from this observation, we conclude TCE is most advantageous
when clients do not possess all possible class labels.

Fraction of Participating Clients For the fraction of participating clients C', we observe the largest
performance gap between FedAvg+TCE and FedAvg when the number of participating clients is
low. This result is significant since it mimics potential real world settings in which communication
constraints can impede a user’s ability to send its update to the central server. We hypothesize the
performance gap as a function of client fraction between the FedAvg and FedAvg+TCE is due to the
larger impact of local client forgetting when we limit communication capability. Unless we actively
take steps to control forgetting, non-participating clients will have their data distributions forgotten
because unlike participating clients, they will be unable to contribute their updates to the global
model. As the fraction of clients selected at each round increases, we observe the performance gap
between the two methods narrow since more clients will have the opportunity to be selected at each
round and "remind" the model of their data distributions.

4 Conclusion and Future Directions

In this paper we took a deeper look at the local client forgetting problem, we show empirically that
when a client performs local updates during FL, it risks over optimizing its local objective, which
can lead to forgetting on other subsets of data which degrades performance of the global model. We
demonstrate this phenomenon is especially severe in cases where there is a significant distribution
mismatch across clients. We proposed a client level modification of the objective function which
we call TCE, that allows us to mitigate client level forgetting. We demonstrate our method leads to
improved performance when combined with a standard FL algorithm across a range of learning rates.
particularly in the regime of highly heterogeneous client datasets and/or when a small percentage
of clients are selected at each round. We also demonstrate TCE is more robust to a wide range of
hyperparameter settings than vanilla FedAvg. In on-going and future work we are investigating soft
versions of the truncation operation, which can effectively deal with cases where classes are present
but in very low quantities.
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A Appendix

A.1 Related Work

Federated Learning The most commonly used baseline in FL is the FedAvg algorithm proposed by
[1]]. Communication efficiency in FL of upmost importance [2] and FedAvg reduces communication
costs by allowing clients to train multiple iterations successively. Convergence of FedAvg has been
widely studied for both i.i.d [18l[19] and non i.i.d settings [20]]. Under non i.i.d settings, convergence
deteriorates as a function of increasing heterogeneity [16]]. [17] studied approaches for introducing
adaptive algorithms into the server updates to accelerate FL algorithms.

Non-Heterogeneous Data Partitions and Client Drift One significant challenge of decentralized
data is client sample heterogeneity. Different local distributions create differing local objectives,
when clients progress too far towards minimizing their own objectives, local models drift apart. This
degrades performance of the shared global model and slows convergence([21}, 22| 13]]. Attempts to
alleviate client drift include approaches centered around knowledge distillation like [23]] and [24]]
who ensemble information about the global data distribution and disseminate it to clients via models
trained at the server. These methods possess the added risk of privacy attacks and while [23] take
steps to mitigate this risk, their method requires the existence of an unlabeled dataset which may
not be practical in all settings. Other approaches attempt to regularize updates at the client level, [3]]
propose SCAFFOLD, an algorithm to control client drift by use of control norms modifying client
gradients. [20] add a proximal term to the local objective limiting variation in local updates and [25]
propose a gradient masking technique that modifies server side update aggregation. Our method
on the other hand, modifies the objective functions locally, this approach is compatible with any
federated optimization method in the literature.

Continual Learning CL is a process by which tasks are learned sequentially over a period of time,
the learner retains knowledge of previous tasks and leverages that prior knowledge to learn new tasks
[26]. CL is made difficult by the fact that neural networks suffer from catastrophic forgetting, in
which learning a new task overrides weights learned from past training, degrading performance on
previously learned tasks [4]. Attempts to mitigate the catastrophic forgetting include architecture
based approaches [8] which attempt to grow or modify an architecture over time to expand knowledge,
regularization based methods which attempt to use regularization to solve the problem [5] and another
class of methods which take the approach of storing some subset of old data for "rehearsal" [27, 7} 28]
A federated CL setting in which each client continuously collects data was proposed by [29], this
differs from our work which considers the standard FL setting where each client maintains a fixed set
of data and draws connections to a notion of forgetting across clients to motivate a modification of
the loss function. [30] have used ideas from CL to propose FedCurv based on the EWC algorithm [3]]
from CL, FedCurv requires sending additional information and is not compatible with all FL. methods.
Along this line [31]] proposed an approach inspired by rehearsal methods, generating pseudo data
and adding an additional regularization term. This requires an expensive pseudo data generating
procedure that increases local training time.

Normalization in FL. Batch normalization (BN) is a commonly employed machine learning tactic
that normalizes features by the mean and variance computed across a mini batch. It has been shown
to help with generalization and stabilize optimization [32]]. A limitation of BN is that under certain
conditions, the mean and standard deviation used at test time may differ significantly from those used
in training. Scenarios including small batch sizes or non-i.i.d batch distributions such as those in
heterogeneous FL have been noted to suffer from significant performance degradation when using
BN [17]. Group normalization (GN) is not dependent on batch statistics, and is effective at mitigating
the effect of model performance degradation induced by skewed data partitions and small batch sizes
[33}34]. Recent works using FedAvg and any of its variants typically avoid using BN [35].

A.2 Evaluation of Hyperparameter Robustness

In Table[A.2] we further confirm the robustness of FedAvg+TCE to learning rate. For each dataset
used in the experiments we indicate accuracies of models trained using a different learning rate
that fall within 2%, 3% and 5% of the best accuracy obtained in training. The best learning rate is
indicated in column 2 for convenience.



Method Hyper-params Dataset

Ir norm CIFAR-10 CIFAR-100 FEMNIST
FEDAVG rou NC NC NC
FEDAVG+TCE (OURS) 0.7 group NC NC NC
FEDAVG+TCE (OURS) batch 0.805 4+ 0.039 0.350 £ 0.037 0.803
FEDAVG orou 0.777 £ 0.033 0.223 £+ 0.059 0.695
FEDAVG+TCE (OURS) 0.5 group 0.751 £+ 0.039 0.382 £ 0.036 0.700
FEDAVG+TCE (OURS) batch 0.832 £ 0.028 0.354 £+ 0.019 0.831
FEDAVG arou 0.77 £ 0.022 0.324 £+ 0.148 0.801
FEDAVG+TCE (OURS) 0.3 group 0.836 4+ 0.029 0.438 4+ 0.041 0.787
FEDAVG+TCE (OURS) batch 0.836 4+ 0.010 0.309 4+ 0.060 0.850
FEDAVG group 0.79 £ 0.017 0.365 £+ 0.131 0.805
FEDAVG+TCE (OURS) 0.1 0.846 £+ 0.010 0.451 £ 0.046 0.806
FEDAVG+TCE (OURS) batch 0.841 £ 0.020 0.397 £ 0.044 0.850
FEDAVG group 0.751 4+ 0.020 0.486 £ 0.036 0.805
FEDAVG+TCE (OURS) 0.07 0.832 £ 0.029 0.429 £+ 0.024 0.774
FEDAVG+TCE (OURS) batch 0.859 + 0.009 0.478 4+ 0.024 0.836
FEDAVG 0.742 4+ 0.087 0.456 4+ 0.031 0.829
group
FEDAVG+TCE (OURS) 0.05 0.834 + 0.011 0.484 4+ 0.030 0.791
FEDAVG+TCE (OURS) batch 0.852 4+ 0.010 0.506 4+ 0.008 0.830
FEDAVG group 0.787 £ 0.011 0.486 £+ 0.013 0.735
FEDAVG+TCE (OURS) 0.03 0.859 + 0.004 0.520 £ 0.006 0.732
FEDAVG+TCE (OURS) batch 0.850 £ 0.018 0.513 £ 0.030 0.813
FEDAVG group 0.742 £+ 0.065 0.429 £+ 0.052 0.780
FEDAVG+TCE (OURS) 001 0.825 = 0.004 0.524 £ 0.010 0.809
FEDAVG+TCE (OURS) batch 0.845 4+ 0.015 0.479 4+ 0.015 0.791
FEDAVG aroup 0.739 4+ 0.030 0.440 4+ 0.041 0.780
FEDAVG+TCE (OURS) 0.007 0.751 £ 0.005 0.501 £+ 0.018 0.814

FEDAVG+TCE (OURS) batch 0.747 £ 0.013 0.524 + 0.010 0.782

Table 1: Performance of FedAvg with and without TCE for different settings of client learning rates
and normalization layer settings. We observe TCE consistently improves performance for many
learning rate settings as well as having the highest overall accuracy by a large margin. Note results
of FedAvg with BN are not included since this setting is known to yield poor performance [17],
howerver, TCE combined with BN based models is competitive with group norm. NC indicates cases
for which the algorithm did not converge

[ bestacc (bestIr) | Ir for acc within 2% | Ir for acc within 3% [ Ir for acc within 5%
CIFAR-10
FedAvg 0.796 (0.1) 0.1, 0.03 0.3,0.1,0.03 0.3,0.1,0.07, 0.03
FedAvg+TCE (group) 0.860 (0.03) 0.1, 0.03 0.3,0.1,0.07, 0.05, 0.03 0.3,0.1,0.07, 0.05, 0.03, 0.01
FedAvg+TCE (batch) 0.859 (0.07) 0.1, 0.07, 0.05, 0.01 0.3,0.1,0.07, 0.05, 0.01 0.3, 0.1, 0.07, 0.05, 0.01
CIFAR-100
FedAvg 0.486 (0.07) 0.07 0.07,0.03 0.07, 0.05, 0.03, 0.007
FedAvg+TCE (group) 0.524 (0.01) 0.01 0.05, 0.03, 0.01, 0.007 0.05, 0.03, 0.01, 0.007
FedAvg+TCE (batch) 0.524 (0.007) 0.05, 0.03, 0.007 0.05, 0.03, 0.007 0.07, 0.05, 0.03, 0.01, 0.007
FEMNIST
FedAvg 0.850 0.05 0.05,0.07, 0.1, 0.3 0.007, 0.01, 0.05, 0.07, 0.1, 0.3
FedAvg+TCE (group) 0.814 0.007, 0.01, 0.1 0.007, 0.01,0.05, 0.07, 0.1, 0.3 0.007, 0.01, 0.05, 0.07, 0.1, 0.3
FedAvg+TCE (batch) 0.850 0.05,0.07,0.1,0.3, 0.5 0.05,0.07,0.1,0.3,0.5 0.05, 0.07, 0.1, 0.3, 0.5, 0.7

Table 2: learning rates where accuracy is within a specified tolerance of the best accuracy. We observe
that not only does TCE provide the best accuracy, this accuracy is less sensitive to hyperparameters

A.3 Additional Forgetting studies

In Figures [5 [6} [7] we show additional results for other rounds of training for forgetting. Figure [3]is
evaluated after the first round of training, Figure [7]is evaluated after the 4000 round of training
and Figure E] is evaluated right in the middle of training, after the 2000** round. We observe in
very early rounds since performance is still very low for many client datasets, there is not as much
accuracy to destroy, however we still observe several cases where initial accuracy of the model is
substantial enough that forgetting is observably more extreme without TCE. By the middle of training
at round 2000, we see clear indications of forgetting, the bottom row of Figure[6] corresponding to
FedAvg without TCE shows substantially better performance on its own dataset (indicated along the
diagonal values). At the completion of training (Figure[/)) we see FedAvg+TCE doing much better
than FedAvg at overcoming the local client forgetting problem.
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Figure 5: After round 1: The model of each client is evaluated on its own dataset and the datasets of
each other client selected for the round both prior to training (right) and after training (center). The
difference between the post and prior accuracies is presented on the left.
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Figure 6: After round 2000: The model of each client is evaluated on its own dataset and the datasets
of each other client selected for the round both prior to training (right) and after training (center). The
difference between the post and prior accuracies is presented on the left.
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Figure 7: After round 4000: The model of each client is evaluated on its own dataset and the datasets
of each other client selected for the round both prior to training (right) and after training (center). The
difference between the post and prior accuracies is presented on the left.
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