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Abstract

Despite recent advances in the field of Offline Reinforcement Learning (RL), less
attention has been paid to understanding the behaviors of learned RL agents. As
a result, there remain some gaps in our understandings, i.e., why is one offline
RL agent more performant than another? In this work, we first introduce a set of
experiments to evaluate offline RL agents, focusing on three fundamental aspects:
representations, value functions and policies. Counterintuitively, we show that a
more performant offline RL agent can learn relatively low-quality representations
and inaccurate value functions. Furthermore, we demonstrate that the proposed
experiment setups can be effectively used to diagnose the bottleneck of offline RL
agents. Inspired by the evaluation results, a novel offline RL algorithm is proposed
by a simple modification of IQL and achieves SOTA performance. Finally, we
investigate when a learned dynamics model is helpful to model-free offline RL
agents, and introduce an uncertainty-based sample selection method to mitigate the
problem of model noises. Code is available at: https://github.com/fuyw/RIQL.

1 Introduction

Offline Reinforcement Learning (RL), also known as batch RL, refers to the problem of learning
effective control policies from a fixed offline dataset [39]. Due to the wide availability of logged-
data and the increasing computing power, offline RL holds the promise for successful real-world
applications [40]. For example, offline RL suits well for scenarios where collecting online data is
time-consuming, dangerous or unethical, i.e., robotics, self-driving cars and medical treatments [21].
While most off-policy RL algorithms are applicable in the offline setting, they usually suffer from
the extrapolation error [18, 35, 11] due to out-of-distribution (OOD) samples. Different solutions
have been proposed to mitigate this problem, i.e., adding constraints [18, 50], behavior cloning (BC)
[7, 571, learning a dynamics model [55, 28, 3], incorporating uncertainties [51], using ensembles [1],
or learning pessimistic value functions [36, 5, 26].

Recently, offline RL algorithms have shown to be effective to solve various challenging tasks [46, 42].
However, most of these works mainly focus on designing new algorithms and less attention has
been paid to understanding the behaviors of the learned offline RL agents. As a result, some basic
questions are still poorly understood. For example:

* Why does one offline RL agent perform better than other baseline agents in a benchmark task,
as illustrated in Fig 1?

* Does the more performant agent learn better representations or more accurate value functions?

* Which of the existing offline policy evaluation/improvement methods is more effective?

* When is a learned dynamics model helpful to a model-free offline RL agent?

* Given a learned dynamics model, how can we use the generated samples more efficiently?
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Baseline Paradigm Constraint Type  Speed Disadvantage

TD3+BC [16] Policy-regularized Actor v Fail in difficult tasks
CQL [36] Pessimism Critic X Low computation efficiency

COMBO [54] Model-based Critic X Sensitive to model noises
IQL [30] Generalized BC Both v Need to tune parameter 7

Table 1: A brief summary of four SOTA offline RL baselines from different paradigms.
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on the standard D4RL dataset [14]. form better than other baselines?

In this work, we design a comprehensive set of experiments to compare the representations, value
functions and policies of offline RL agents in order to gain a deeper understanding of the behaviors of
SOTA offline RL agents. We identify a surprising discovery that a more performant agent sometimes
has worse representations and inaccurate value functions. This motivates us to take a closer look
at the learned policies. Our empirical results show that a performant offline RL agent is usually
able to select better sub-optimal actions while avoiding bad ones. Furthermore, we demonstrate
that the proposed experiment setups can be used to evaluate the effectiveness of existing policy
evaluation/improvement methods. As a case study, we introduce a variant of IQL [30] by relaxing the
in-sample constraint for the policy improvement step, which achieves better performance. Moreover,
we investigate when a learned dynamics model can help a model-free offline RL agent, and we
propose an uncertainty-based sample selection method to mitigate the problem of model noises. Our
contributions are as follows:

* We conduct extensive experiments, focusing on representations, value functions and policies,
to compare different SOTA offline RL agents and explain some fundamental questions.

* We show the effectiveness of the proposed experiment setups in diagnosing the bottleneck of
offline RL agents with a new variant of the IQL algorithm that achieves SOTA performance.

* We investigate when a learned dynamics model helps model-free offline RL agents, and we
introduce an uncertainty-based sample selection method that is more robust to model noises.

2 Background

A Markov Decision Process (MDP) M = (S, A, R, P,~) [44] is specified by a state space S, an
action space A, a transition kernel P : S x A — A(S), a reward function R : § x A — R,
and a discount factor v € [0,1). The goal is to find a policy 7(a|s) : S — A(A), which maps
from state to distribution over actions, that maximizes the expected cumulative discounted reward
J(m) := Ex[> 4oy 7'r4]). The performance of the policy can be defined by the value functions
Q7 (s,a) == Ex [> o g7'relso = s,a0 = al and V™ (s) := Er [>,2v're]s0 = s], where E,[] is
the expected result when following the policy .

In deep RL, Q-function is parameterized with a neural network Q7 (s, a). Following prior works
[20, 34, 32, 38], we denote the penultimate layer of the neural network as the learned representation, a
d-dimensional mapping ¢(s, a) : S x.A — RY. Such that the Q-function is linear in the representation
Q7 (s,a) = 07 ¢(s,a), where § € R? is a vector of weights. If the state space S and action space A

are finite, then the representation corresponds to a feature matrix ® € RISIHAIXA \whose rows are the
vector ¢(s;,a;) € RY for the i-th state-action pair (s;, a;).
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Figure 2: An illustration of the representation probing experiment.

Inductive Bias Target Probing Function
reward r r= fp(é(s,a))
Transition Dynamics next state s’ s = fo(e(s,a))
inverse action a a= fp(¥(s),¥(s"))
optimal action a* a* = fp(¥(s)
Optimal Policy optimal Q*(s,a) Q*(s,a) = fp(¢(s,a))
optimal V" (s) V*(s) = fo(v(s))

Table 2: Different probing targets.

In this work, we study the offline RL setting [40], where we aim to learn a policy 7(a|s) purely
from a fixed offline dataset D = {(s;, a;, s}, 7;)}, generated from a behavior policy g (a|s). Most of
recent offline RL algorithms build on the Approximate Dynamics Programming (ADP) method [4]
that learn the Q)7 (s, a) by minimizing the temporal difference error:

Lrp(D,0) = E(s aprs)~p |(r+ 7y max Qg(sf7 a') —Qj (s, a))ﬂ , @)

where Qg(s, a) is the target network. A major challenge in offline RL is the issue of distributional
shift between the learned policy 7(a|s) and the behavior policy mg(als). Specifically, the OOD
actions a’ can produce erroneously over-estimated target values for Qg(s/, a') in Eq 1. Therefore,
many existing offline RL algorithms are motivated to constrain the learned policy to stay close to
the behavior policy [50, 16], or penalize large over-estimated ()-values [36, 11]. We provide more
extensive backgrounds in Appendix A.

3 Representation evaluation experiments

Inspired by the huge success achieved by representation learning in (un)supervised learning [6, 25, 45],
it is natural to ask — does a more performant offline RL agent learn better representations? To answer
this question, we first leverage the representation probing technique [2, 23, 37] to evaluate the learned
representations of each baseline agent. Then we use some latest introduced representation metrics
[34, 33, 38, 41] as proxies to evaluate the quality of the learned representations.

3.1 Representation probing experiment

For a state-action pair (s, a), we use the output of the penultimate layer of the critic network as the
critic representation ¢(s, a) € R%, as shown in Fig 2. We later train another linear model f,(-) to
predict a probing target, such as reward r, by linear regression §(s,a) = f,(¢(s,a)) = 0] ¢(s, a).
We evaluate the actor embedding 1(s) € R? in a similar way. To validate whether the learned
representations contain meaningful inductive biases [48, 53], we select two categories of probing
targets (Table 2). We first use the next state, reward, and action to detect if the representations learned
any semantics about the transition dynamics. We then directly use the optimal action and optimal
value functions to check if the representations learned any information about the optimal policy.
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Figure 3: Representation probing experiment result on the halfcheetah-medium-v2 environment. We
label the most performant agent with a (x) mark. Curves are averaged over 5 seeds.

reward nextstate inverse action optimal action optimal Q*  optimal V'
#Env 0 0 3 5 4 4

Table 3: Number of environments that the most performant agent has the least probing loss.

In the experiment, an online TD3 agent [17] is used to approximate the optimal policy 7*. We use
five checkpoints of the online agent (with different levels of performance) to collect 100K transitions
as the probing dataset Dy,.op. For each probing target, we use a 5-fold cross-validation on D,;ope
to train a linear regression model with Mean Squared Error (MSE) loss. The result of the probing
experiment on halfcheetah-medium-v2 environment is shown in Fig 3. Results on other environments
are summarized in Appendix C.1. We also list the number of environments where the most performant
offline RL agent has the least probing loss in Table 3.

We can observe that the most performant agent usually has worse probing results except for the
optimal action experiment. These results indicate that the transition dynamics-based information is
not that important for an offline RL agent to perform well in the selected benchmark tasks. Further,
many baseline agents suffer from large MSE losses on the optimal value functions Q*(s,a) and
V*(s) experiments, which highlights the difficulty to learn accurate value functions in such offline
setting due to the limited data coverage and additional policy/value constraints. In addition, as long as
the actor representation v(s) preserves the ability to learn good actions (low optimal action probing
loss), then the offline RL agent holds the potential to achieve good performance.

3.2 Representation metric experiment

We further utilize some recently proposed metrics [34, 33] as proxies to evaluate the quality of the
learned representations. We start with the following definitions and more details are in Appendix A.2.

Definition 1 (Feature dot-product). Feature dot-product ¢(s,a) " (s, a’) is the dot-product of two
critic representations [34], where s' ~ P(:|s,a) and a’ ~ 7(+|s) is the next state and next action.

Definition 2 (Effective rank). Effective rank sranks(®) = min {k : Z’ ! a,gg >1—-0}ofa
i=1091

feature matrix ® € RISHAIXE gpproximates the rank of ® [33], where {0:i(®)} are the singular

values of ® in the decreasing order (o1 > -+- > 04 > 0) and ¢ is a threshold parameter i.e., 0.01.

Definition 3 (Effective dimension). Effective dimension deg(®) = N max;=1 .. n 2 of

a feature matrix & € RISIAIXD yeasures the sparsity of the column space of ® [38], where

N = |S| - | A| and Py is the orthogonal projector onto the column space of .

For the feature dot-product metric, we also compute the cosine similarity m to decouple

the effect the representation norm. To compute the effective rank, we first compute the critic
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Figure 4: The best performing COMBO agent learns low-quality representations with large norms, in
which ¢(s, a) is very close to ¢(s’, a’). Moreover, feature space collapses significantly.

representation z; = ¢(s;, a;) for each sample in the probing dataset Dp,,pe. Then we approximate
the covariance matrix of ® by C'(®) = \7371” > (zi—2)(2;—Z), and use SVD on C(®) to compute

the singular values {o;(®)} [27]. Unlike the original implementation of the effective dimension which
used a fixed threshold to approximate the rank of ®, we instead use the effective rank srank;s(®).
More details are discussed in Appendix C.2.

Fig 4 shows the experiment results on the halfcheetah-medium-v2 environment. Results on other
environments are summarized in Appendix C.2. We also add the result for the online TD3 agent
for reference. We can observe that the most performant COMBO agent has most severe feature
co-adaptation [34] (large feature dot-product) and representation collapse [33] (small effective rank)
problems, which indicate it learned pretty “low quality” critic representations. In terms of these
metrics alone, some baselines agents such as TD3+BC and IQL seem to learn similar or better critic
representations than the near-optimal online agent. These results are consistent with our findings in
the previous probing experiments, which indicate that a performant offline RL agent sometimes does
not necessarily need high quality critic representations.

[ Observation 1. A performant offline RL agent sometimes learn low-quality representations. ]

4 Value ranking experiments

As described in the last section, a performant offline RL agent can learn low-quality representations.
We therefore turn our focus to the value functions to investigate that — does a performant offline RL
agent learn more accurate (J-functions? Since the pessimism-based offline RL algorithms adopt an
additional penalty to learn lower-bounded @)-functions [36, 54], it could be inappropriate to measure
the accuracy of @-functions using metrics like MSE. Therefore, we design the following value
ranking experiments that focus on the ability of ()-functions to rank actions. The motivation is simple
—a “good” @-function in offline RL can have large MSE loss, but it should be good at ranking actions,
such that Q7 (s, a;) > Q7 (s, a;) if Q*(s,a;) > Q*(s, a;) where Q* is the optimal Q-function.

In the experiment, we first use different behavior policies (four baseline agents and a near-optimal
online agent) to interact with the environment to collect a validation set Dygiue = {S1,-+ , SN}
At each state s;, we use each baseline agent to sample m different actions, i.e., 7(:|s;) + € where
€ is a Gaussian noise. Therefore, we have M = 4m different actions 4, = {a;1, - ,a;m}
for each state. Then we use baseline agents to rank the M actions at state s;, i.e., R™ (s;) =
sort(Q™ (s, ai1), -+ , Q™ (s, a;nr)) where Q7 is the learned QQ-function of the j-th baseline agent.
We use two metrics to evaluate the accuracy of the learned ()-functions: (1) Spearman’s rank corre-
lation coefficient (Rank IC) and (2) TopN accuracy. We approximate the optimal rank information
using the online agent. Here, the larger rank IC/topN accuracy is, the more accurate is the Q™ (s, a)
at ranking actions. More details are described in Appendix D.

Experiment results are shown in Table 4 and Table 5, where we report the mean result and standard
deviation across 5 random seeds. The most performant baseline agents in each environment are
colored brown. We can observe that many best-performing agents have near-zero rank IC and lower
TopN accuracy results. This indicates that the learned ()-functions are less capable of distinguishing
good actions from the bad ones. Interestingly, such inaccurate (-functions do not prevent the most
performant agent to select sub-optimal actions to achieve good performances. Further, we can observe



TD3+BC CQL COMBO IQL

halfcheetah-med-v2 0.13 (0.01)  -0.01 (0.01) 0.01 (0.02) 0.10 (0.02)
halfcheetah-med-rep-v2  0.05 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.02)
halfcheetah-med-exp-v2 0.07 (0.04) 0.08 (0.04) 0.09 (0.03) 0.03 (0.02)

hopper-med-v2 0.07 (0.03) 0.02 (0.01) 0.05 (0.02) 0.11 (0.03)
hopper-med-rep-v2 0.07 (0.05) 0.08 (0.03) 0.14 (0.04) 0.13 (0.02)
hopper-med-exp-v2 0.09 (0.07) 0.11 (0.03) 0.16 (0.03) 0.04 (0.05)

walker2d-med-v2 0.02 (0.03)  -0.01(0.01) -0.01(0.01)  0.08 (0.03)
walker2d-med-rep-v2 0.10 (0.02) -0.04 (0.03) -0.06 (0.05) 0.10 (0.06)
walker2d-med-exp-v2 0.10 (0.04) 0.09 (0.01) 0.05 (0.10) 0.15 (0.04)

Table 4: Rank IC measures the ability of Q-function to rank different actions

TD3+BC CQL COMBO QL

Topl Acc  Top3 Acc Topl Acc  Top3 Acc Topl Acc Top3 Acc Topl Acc  Top3 Acc
halfcheetah-med-v2 8.72 27.60 1.81 10.40 3.84 15.61 8.11 2591
halfcheetah-med-rep-v2 6.70 22.11 2.86 13.53 3.67 15.43 5.92 20.20
halfcheetah-med-exp-v2 4.60 17.17 2.62 12.19 3.86 15.28 5.84 20.59
hopper-med-v2 13.20 32.08 1.52 6.92 4.67 14.48 14.90 36.21
hopper-med-rep-v2 9.70 27.39 4.51 15.05 8.33 25.63 11.41 30.76
hopper-med-exp-v2 12.43 30.57 2.77 10.41 7.11 21.19 12.98 31.62
walker2d-med-v2 7.10 23.56 1.64 9.99 1.77 10.36 8.32 26.48
walker2d-med-rep-v2 8.93 28.07 2.51 11.13 3.35 13.47 8.24 26.19
walker2d-med-exp-v2 6.50 23.38 1.10 8.72 1.93 13.47 9.70 29.86

Table 5: TopN accuracy measures the ability of Q-function to select the best action.

that the TD3+BC agent and IQL agent usually learn more accurate value functions but achieves worse
performance. This suggests that the policy evaluation method in TD3+BC and IQL might be more
effective but the policy improvement method is limited. We provide more discussions in section 6.

[ Observation 2. A more performant offline RL sometimes learn less accurate (Q-functions. ]

5 What does a performant policy look like?

In previous sections, we show that a performant offline RL agent sometimes learn relative low-quality
representations and inaccurate value functions. In this section, we try to directly compare the learned
policies in order to get a glimpse of “what does a performant offline RL policy look like”. To this
end, we first design a policy ranking experiment to measure how well does a performant offline RL
policy work in practice. Then we check how often do the SOTA offline RL agents take OOD actions.

5.1 Policy ranking experiment

In this experiment, we first use a behavior policy to collect 30K transitions to create a test dataset
Dpolicy- At each state s;, we use four baseline agents and a behavior cloning agent to select an
action, respectively. Again, we use the online agent to approximate Q*(s, a) to rank the selected
four actions. We use following two metrics to evaluate the policy 7; of the j-th baseline agent: (1)
Average percentage of policy 7; that ranks the first/last (with largest/smallest Q* value) across states.
(2) Average MSE of the selected action w.r.t. the optimal action. More details are in Appendix E.1

Experiment results are shown in Table 6 and Table 7. We can observe that the learned policy of
COMBO [54] agent is quite extreme, which both selects the most optimal and worst actions at the
same time. In simple environments such as halfcheetah and hopper, such behavior helps to attain
higher performance. However, in the more complex walker environment, the higher percentage of
bad actions would lead to early termination and thus achieving lower scores. Moreover, as we can
observe in Table 7 that the most performant offline RL agent usually have similar or larger MSE loss
w.r.t. the optimal action a*. This indicates that a performant policy is good at selecting better actions
in different states, even though these sampled actions are still sub-optimal (with high MSE).

Observation 3. A performant offline RL policy needs to strike a balance at selecting good
actions while avoiding bad ones. Even though the selected actions are usually still sub-optimal.




TD3+BC CQL COMBO IQL BC
P, Py, P, Py, P, Py, P, Py, P, Py,

halfcheetah-med-v2 21.05 13.02 11.18 16.33 41.10  32.86 13.82 11.96 1285  25.82
halfcheetah-med-rep-v2 21.89 16.72 14.45 17.40 | 28.10  27.09 19.42  20.16 16.15 18.63

halfcheetah-med-exp-v2 | 20.59  23.55 19.65 16.07 26.57 2750 19.17 14.89 14.02 17.98
hopper-med-v2 16.84 19.98 17.23 17.63 3410  31.29 | 21.20 16.35 10.63 14.74
hopper-med-rep-v2 12.76 19.52 | 23.25 18.68 35.01 32.28 16.13 16.40 12.86 13.12
hopper-med-exp-v2 1523 20.22 15.98 20.55 3846 24.74 15.44  21.18 14.89 13.32
walker2d-med-v2 21.79 19.81 19.68 1992 | 23.60 20.98 | 22.61 18.08 1232 21.21

walker2d-med-rep-v2 20.99 16.49 1595 2080 | 26,77  32.55 | 23.05 15.24 13.24 14.92
walker2d-med-exp-v2 25.58 I5.64 | 1266 2070 | 2637 31.41 | 2374 13.09 | 11.65 19.16

Table 6: Percentage (%) of each agent that selects optimal action (P,) and worst action (P,,).

TD3+BC QL COMBO IQL BC

halfcheetah-med-v2 8.31(0.05) 8.41(0.04) 827(0.06) 830(0.03) 8.45(0.04)
halfcheetah-med-rep-v2 8.36 (0.03) 8.57 (0.03) 8.64 (0.08) 8.40 (0.04) 8.35 (0.04)
halfcheetah-med-exp-v2 ~ 6.96 (0.07)  7.03(0.08)  7.16(0.16)  6.85(0.07)  7.11(0.05)

hopper-med-v2 2.66 (0.01)  2.75(0.04) 2.77(0.02)  2.61(0.01) 2.71(0.01)
hopper-med-rep-v2 2.45(0.10)  2.65(0.10) 2.67(0.05)  2.38(0.09) 2.56(0.08)
hopper-med-exp-v2 2.22 (0.04) 2.29 (0.06) 2.20 (0.07) 2.20 (0.03) 2.20 (0.04)
walker2d-med-v2 5.39(0.02)  5.55(0.03) 550(0.02) 538(0.02) 5.48(0.02)
walker2d-med-rep-v2 6.10 (0.07)  6.61(0.06)  6.66(0.14)  6.14(0.05)  6.34 (0.06)
walker2d-med-exp-v2 4.65(0.07)  4.83(0.08) 5.32(1.06) 4.61(0.07) 4.73(0.06)

Table 7: MSE loss w.r.t. the optimal action.

5.2 OOQOD action experiment

Since existing offline RL algorithms usually attempt to minimize the negative effects caused by OOD
samples. Therefore, we try to measure how often would the baseline agents take OOD actions. In
the experiment, we utilize a learned dynamics model to predict whether a state-action pair (s, a) is
OOD or not. The learned dynamics models is a probabilistic ensemble [8] as in COMBO [54], where
each model T;(s'|s,a) = N (pg,(s,a), Xo,(s,a)) outputs a Gaussian distribution with diagonal
covariance parameterized by 6;. We train the probabilistic ensemble using the D4RL dataset. We use
the following metric to estimate how likely a state-action pair (s, a) is OOD: the uncertainty [55]

estimated by the probabilistic ensemble o(s, a) = max;—1,... n || (s,a) — 7 Zjvzl ug(s, a)||a-

In particular, we first compute o (s, a) on the original D4RL offline dataset, and then compute the
o(s,a) on a dataset collected by the baseline agent. More details are described in Appendix E.2.
We report the median of the estimated uncertainty in Table 8. As we can observe that the three
model-free offline RL baselines usually learn conservative policies which mostly take high confidence
actions with low o (s, a). On the other hand, the model-based baseline COMBO learns policies that
sometimes take more risky actions with higher o (s, a). This confirms that taking risky actions in
offline RL is a double-edged sword, which sometimes helps to learn from the OOD samples to avoid
being too conservative and sometimes incurs the extrapolation error.

Observation 4. Taking OOD actions in offline RL could be a double-edged sword that
sometimes helps to avoid being over-conservative but sometimes incurs the extrapolation error.

Offline Data TD3+BC CQL COMBO 1QL
halfcheetah-med-v2 10.09 7.96 (0.06) 8.11 (0.15) 10.25 (0.71) 7.96 (0.04)
halfcheetah-med-rep-v2 23.96 15.78 (0.66) 17.51 (0.88) 21.54 (1.18) 16.82 (0.34)
halfcheetah-med-exp-v2 11.03 10.74 (0.86) 9.17 (1.54) 23.30 (12.62) 8.50 (0.16)
hopper-med-v2 2.19 2.01 (0.02) 2.00 (0.01) 1.85 (0.08) 2.07 (0.03)
hopper-med-rep-v2 513 4.48 (1.27) 3.76 (0.34) 3.90 (0.84) 3.59(0.28)
hopper-med-exp-v2 1.46 1.29 (0.05) 1.27 (0.02) 1.52 (0.11) 1.32 (0.08)
walker2d-med-v2 14.01 9.14 (0.22) 8.08 (0.19) 8.81 (0.99) 10.73 (0.49)
walker2d-med-rep-v2 27.59 14.21 (1.35) 13.03 (1.55) 14.80 (2.04) 16.09 (0.96)
walker2d-med-exp-v2 12.87 8.86 (0.38) 8.17 (0.06) 75.93 (149.39) 9.74 (1.37)

Table 8: The median of the estimated uncertainty o (s, a) in different tasks.



Baseline Critic loss function Actor loss functions

TD3+BC [16] Lrp(D,6) AL1ps(D, d) + Cso (D, é)
CQL [36] LTD(D,9)+O¢CCQL('D,0) LSAc('D,G,dJ)
COMBO[54]  Lrp(D g, 0) +aCoqr(D g, 0) Lsac(Dgy ¢)
IQL [30] Lrr(D,0) Lawr(D, )

Table 9: Different policy evaluation/improvement objectives.

6 Case study: relaxed in-sample Q-learning (RIQL)

In this section, we conduct a case study to show that the proposed experiments can be used to
compare the effectiveness of existing policy evaluation/improvement methods. We first briefly recap
the four baseline algorithms as summarized in Table 9. Here we consider a parameterized -function
Q7 (s, a), policy 7y (a|s) and loss weight parameters «, A that we abuse in different baselines.

Policy evaluation. TD3+BC [16] uses the default fitted ()-evaluation as in Eq 1. The only difference
is that the max operator over next action a’ is replaced by the policy 7, (s):

LTD (D7 9) = E(s,a,r,s’)ND [(T + ’YQg(S/a 7T¢(S/)) - Qg(& a‘))Q] (2)
CQL [36] further adds a conservative penalty to push down large )-values for OOD actions:
CCQL (D7 0) = Esop [ log Z eXp(Qg(S, a))] - ]E(s,a)N’D [Qg(sa a)} 3)

COMBO [54] extends CQL by using an augmented dataset D = D U D,04e; for policy evaluation,
where D, 04e; 18 generated using the learned dynamics model. Unlike other three baselines, IQL [30]
uses expectile regression (ER) for policy evaluation purely from in-sample data:

LER(D, 9) = E(s a,s’,a’)~D [LE(T(& a) + ’YQ;I(Slv (L’) - Qg(sv a))] (4)

where L3 (u) = |7 — 1(u < 0)|u® and 7 € (0, 1) is a hyperparameter.

Policy improvement. TD3+BC adds a simple behavior cloning loss Cpc(¢) = E[(7(s) — a)?] to
the original TD3 [17] actor loss Lyps(¢) = —Eswp[QF (s, m4(s))]. CQL and COMBO both use
the default SAC [22] actor loss function Lgac(¢) = E(s,a)~p[Alog(my(als)) — QF (s, 74 (als))].
On the other hand, IQL uses the advantage-weighted regression (AWR) [43] to imitate high-quality
in-sample actions Law g (®) = E(s.q)~p [N exp((Q;(s,a) — Vis(s))) log mg(als)], where Vi (s) is
a value function that only depends on state s.

Given these different policy evaluation/improvement methods, there is a lack of clear comparison to
show which one is more effective in practice. Here, we try to show that the previously introduced
experiment setups can be helpful tools to answer such questions. Recall the results in the Table 4 and
Table 5, we can observe that IQL [30] usually achieves higher rank IC and larger topN accuracy, which
suggests that the expectile regression based policy evaluation method in IQL is more capable to learn
accurate value functions. However, IQL only achieves the best performance in one benchmark task.
In addition, Table 8 indicates that IQL learns conservative policy that usually takes high confidence
in-sample data. These results suggest that the AWR-based policy-improvement method is effective to
avoid taking OOD actions but sometimes it is over-conservative which limits the performance. To
validate this assumption, we introduce a simple variant of IQL, called Relaxed In-sample Q-Learning
(RIQL), that replaces the original AWR-based actor loss with:

Lriqr(¢) = Lsac(¢) — BDkL(ms,7y) = Lsac(d) — BE(s,a)~p[log Ty (als)]. %)

In short, we add a KL-divergence constraint to the original SAC actor loss, and we drop the
E(s,a)~p[logms(als)] term which is independent of actor parameter ¢. The motivation is two-
fold: (1) Unlike CQL and COMBO, the learned Q-functions in IQL are less discriminating w.r.t.
OOD samples. Thus, we need extra policy constraints to avoid taking too many OOD actions. (2) We
want to use a less conservative actor loss to enable the policy learning from OOD actions. In addition,
Eq 5 is similar to the actor loss in [11]. The difference is that we keep the entropy term which helps
to prevent the learned policy from collapsing to a single point. Experiment results of RIQL is shown
in Table 10 and more details are described in Appendix F. We can observe that RIQL outperforms
IQL in all benchmark tasks, and it achieves higher total evaluation scores than other baseline agents.
This result also validates our previous assumption that AWR-based policy improvement method is
the bottleneck for IQL in some tasks which makes it over-conservative.



TD3+BC CQL COMBO IQL RIQL
halfcheetah-med-v2 48.89 (0.15) 46.85(0.22) 54.61 (1.48) 47.43 (0.07) 55.93 (0.27)

hopper-med-v2 60.19(1.99)  61.18(1.16)  92.20(5.04)  64.64 (327)  91.58 (4.23)
walker2d-med-v2 84.37(0.55)  81.21(040)  81.93(0.66)  80.28 (2.00)  80.85 (0.96)
halfcheetah-med-rep-v2 4520 (0.30)  44.95(045)  52.18 (0.43)  44.04(0.71)  52.39 (0.45)
hopper-med-rep-v2 64.96(7.26) 8830 (421)  96.53(1.91)  91.94 (14.94)  93.13 (7.46)

walker2d-med-rep-v2 7724 (131)  77.68(1.70)  62.05(11.46)  73.53(7.28)  81.46 (4.72)
halfcheetah-med-exp-v2  89.29(5.07)  90.89 (0.44)  61.53(9.76)  88.92(1.34)  92.91(L18)

hopper-med-exp-v2 96.53 (4.97) 105.19 (2.96)  77.57 (16.57)  91.57 (27.03) 102.47 (5.49)
walker2d-med-exp-v2 110.16 (0.18) 104.61 (6.39)  84.98 (42.58) 107.68 (5.28) 108.34 (0.58)
Total 676.82 700.85 663.58 690.04 759.05

Table 10: RIQL achieves better performance than IQL in all benchmark tasks.

7 Uncertainty-based sample selection for model-based offline RL

We also try to investigate when does a learned dynamics model is helpful to a model-free offline RL
agent? In particular, we reuse the learned dynamics model in Section 5.2 to generate fake samples
to train a model-free agent. For example, we introduce an MBRL variant of IQL/TD3+BC, named
MIQL/MTD3+BC, which learns from the augmented dataset D = D U D, 0der as in MOPO [55].
We find that such a naive MBRL agent (a combination of MOPO and model-free offline RL agents)
usually performs worse than its model-free counterpart (Table 11) even though they are the same
algorithm except for the training data. This result indicates that it is nontrivial to combine a learned
dynamics model with model-free offline RL agents due to the model noises. COMBO [54] addresses
this problem by adding a conservative penalty on the model-generated samples. Here, we introduce
an Uncertainty-based Sample Selection (USS) method to filter fake samples with large model noises.

Since it is hard to measure model noises accurately, we adopt the model uncertainty o (s, a) defined
in Section 5.2 as a proxy to approximate model noise. In addition, we maintain a dynamic uncertainty
threshold 6, as follows 0, < no} ,..(s,a) + (1 —n)d,, where ol , , (s,a) is the ¢g-th quantile of
the uncertainties in the sampled fake trajectories. We only add model-generated samples with an
uncertainty lower than §,, to the model buffer which is later used to train the agent. More details are
described in Appendix G. From Table 11, we can observe that the proposed USS trick usually helps to
improve the performance of the MIQL/MTD3+BC agent. Moreover, USS is inferior to IQL/TD3+BC
in some tasks which shows that it is still challenging to completely solve the model noise problem.

IQL MIQL MIQL-USS TD3+BC MTD3+BC ~ MTD3+BC-USS
halfcheetah-med-v2 4743 (0.07)  27.52(7.69)  53.85(0.41)  48.89 (0.15) 1.18 (1.61) 52.41 (0.39)
hopper-med-v2 64.64 (3.27) 8.89(8.32) 8079 (1521)  60.19(1.99)  46.07 (7.05) 67.74 (4.95)
walker2d-med-v2 80.28 (2.00) 4344 (9.59) 7721 (4.21)  84.37(0.55  85.33(0.95) 84.80 (1.09)
halfcheetah-med-rep-v2 ~ 44.04 (0.71)  44.70 (320)  48.49(0.30) 4520 (0.30)  47.80 (0.70) 47.05 (0.41)
hopper-med-rep-v2 91.94 (1494)  1936(3.18)  87.63(6.90)  64.96(7.26)  37.78 (8.71) 69.64 (8.93)
walker2d-med-rep-v2 73.53(728)  59.41(30.75)  85.83(7.59)  77.24(131)  85.02(2.26) 87.84 (2.57)
halfcheetah-med-exp-v2  88.92 (1.34) 3247 (4.81)  82.08(4.54)  89.29 (5.07) 0.79 (1.36) 85.63 (2.77)

hopper-med-exp-v2 91.57(27.03) 1041 (3.66)  75.88(41.26)  96.53 (4.97)  74.65 (20.27) 96.81 (4.12)
walker2d-med-exp-v2  107.68 (5.28)  87.96(9.56)  108.25(327)  110.16(0.18)  110.37 (0.29) 110.38 (0.41)

Total 690.04 334.16 699.98 676.82 488.99 702.29

Table 11: USS is able to effectively mitigate the problem of model noises.

8 Conclusion

Besides the rapid development of novel offline RL algorithms, the behaviors of these offline RL agents
have not been well studied. In this work, we take a closer look at SOTA offline RL agents. Specifically,
we introduce a series of experiments to compare the learned representations, value functions and
policies of four baseline agents. Surprisingly, we find that a performant agent sometimes has relatively
low quality representations and inaccurate value functions. We also show that the proposed experiment
setups can be used to compare the effectiveness of different policy evaluation/improvement methods
by introducing a relaxed version of IQL that achieves SOTA performance. Lastly, we investigate when
a learned dynamics model can help model-free offline RL agents, and we introduce an uncertainty-
based sample selection method to mitigate the problem of model noises.
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