
Fast and Scalable Inference of Dynamical Systems via
Integral Matching

Baptiste T. Rossi
MIT

Cambridge, MA
brossi@mit.edu

Dimitris J. Bertsimas
MIT

Cambridge, MA
dbertsim@mit.edu

Abstract

We present a novel approach to identifying parameters of nonlinear Ordinary Dif-
ferential Equations (ODEs). This method, which is based on collocation methods,
enables the direct identification of parameters from time series data by matching
the integral of the dynamic with an interpolation of the trajectory. This method is
distinct from existing literature in that it does not require ODE solvers or an esti-
mate of the time derivative. Furthermore, batching strategies, by time subintervals
and component of the state, are proposed to improve scalability, thus providing
a fast and highly parallel method to evaluate gradients, and a faster convergence
than adjoint methods. The effectiveness of the method is demonstrated on chaotic
systems, with speed-ups of three orders of magnitude compared to adjoint methods,
and its robustness to observational noise and data availability is assessed.

1 Introduction
This paper introduces a new approach for learning
coefficients of ordinary differential equations from
time series data. We focus on scalability and uni-
versality to learn possibly high-dimensional systems
from large datasets while making minimal assump-
tions on the equations. The resulting algorithm can
be used to infer parameters of equations derived from
scientific laws or, when no prior structure is known,
to train universal approximators such as the Neural
ODEs from Chen et al. [2018].

1.1 The problem
Let x(t) ∈ Rn be the state of a system of dimension
n at time t. We have M observations x(tm) over
a single trajectory, where tm ∈ [0, T] for all m =
1 . . .M , and are interested in the inverse problem of
inferring parameters Θ∗ and an initial condition X∗

0
that minimize the prediction error on x̂(t):

min
X0,Θ

1

M

∑
m∈[M]

∥x̂(tm)− x(tm)∥2

s.t. ˙̂x(t) = f(x̂(t),Θ), ∀t, (1a)
x̂(0) = X0. (1b)

Figure 1: On the damped oscillator from
Chen et al. [2018], our algorithm (blue) fits a
neural ODE with fewer network evaluations
and to greater accuracy than Backpropagation
through time (BPTT) (red) and Adjoint sen-
sitivity (orange). The best accuracy reached
by the adjoint sensitivity within 15 minutes on
CPU is reached after only 2.5s by the proposed
method. The number of evaluation is reduced
respectively by a factor 95 and 328 compared
to BPTT and Adjoint and computation times
are divided by a factor 50 to 450.

ẋ is Newton’s notation for the time derivative dx
dt . f and Θ parameterize the dynamic, which can

include dynamics where each component of f is a polynomial of the state, as well as Neural ODEs as

NeurIPS 2023 AI for Science Workshop.

Table 1: Efficiency comparison: Function Evaluations (Forward/Backpropagation) and memory.
Our method is more effective computationally at the cost of a controlled memory overhead. An
explicit Runge-Kutta method of order K uses N(K,T) =

(
O(ϵ−1/KT)

)
steps, our method uses

Ñ =
(
O(ϵ−1/2K−1T)

)
.

METHOD ADAPT. STIFF #NFE MEMORY ACCURACY
FWD/BWD REF

ADJOINT-RK ✓ ✗ 4KN O(n) ↑ | ↓ CHEN ET AL. [2018]
BPTT-RK ✓ ✓ 2KN O(nN) ↑ | ↑ GRUSLYS ET AL. [2016]

ACA-CVODE ✓ ✓ 4KN O(nN) ↑ | ↑ ZHUANG ET AL. [2020]
KIM ET AL. [2021]

LTC ✗ ✓ 2KN(4, T) O(nN(4, T)) ↑ | ↑ HASANI ET AL. [2020]
THIS PAPER ✗ ✓ 2KÑ O(nK) ↑ | ↑

in Chen et al. [2018]. Moreover, it is not necessary for observations to be simultaneously available
for each dimension; the loss is only computed for the dimensions where observations are present.

2 Background and related work

The inverse problem (1), has been widely studied in optimal control where it is referred to as system
identification and in scientific machine learning, with renewed interest since the Neural ODEs in
Chen et al. [2018], Rubanova et al. [2019]. The existing literature splits into direct approaches that
solve Problem (1) using numerical integration method (ODE Solvers), and surrogate methods.

Direct approaches: In this family of methods, the continuous Problem (1) is solved by alternating
between numerical integrations of the dynamic given a choice of parameters Θ and gradient-based
parameter updates. Balancing accuracy, memory, and computational complexity leads to a variety of
techniques. The continous version of the Backpropagation Through Time (BPTT) method used to
train Recurrent Neural Networks (RNNs) is obtained by differentiating through the operations of an
ODE Solver using an automatic differentiation framework such as Pytorch Paszke et al. [2019] or
JAX Bradbury et al. [2018], or through a custom ODE Solver as for Liquid Time-Constant (LTC)
networks in Hasani et al. [2020] or in Forgione and Piga [2021]. Memory usage can be decreased
compared to these methods by utilizing one additional backward numerical integration to estimate the
gradient using the Pontryagin principle in the adjoint sensitivity method, as described in Chen et al.
[2018]. To solve numerical discrepancies between the forward and backward integrations, adaptive
checkpointing (ACA) methods have been developed in Zhuang et al. [2020] to partially mitigate the
problem, while in Kim et al. [2021] the forward pass is completely stored in memory and only the
adjoint is integrated backwards. Inherently, direct methods require an estimate of the initial condition,
which can reduce the accuracy of the gradients on chaotic systems so that shooting methods can be
used to consider smaller subtrajectories, albeit reducing the ability of these methods to interpolate
between observations. We compare the memory and computational complexity of the method in
this paper to direct methods in Table 1. The initialization of parameters may impact convergence as
the optimization landscape is non convex, see Varah [1982]. Additionally, bifurcations may lead to
instability, where random weight initialization or updates can cause trajectories to diverge or require
numerous adaptive steps. See Section 4 for a comparison of wall-clock times among methods.

Surrogate methods: Gradient matching was proposed in Varah [1982] and involves smoothing the
trajectory to estimate the trajectory and its time derivative (the gradient) before adjusting parameters
Θ to match the estimated gradients along the trajectory. Different optimization algorithms are
discussed in Varah [1982], Ramsay et al. [2007], Tjoa and Biegler [1991], which involve block
descent and various update techniques. Niu et al. [2016] provides a framework for these algorithms
by using a reproducing kernel approach. The Sparse Identification of Nonlinear Dynamics (SINDy)
framework, introduced in Brunton et al. [2016] combines gradient matching with sparse regression
when f is a linear combination of nonlinear functions. Weak formulations and integral form using
trapezoidal integration for regularly sampled data are presented in Messenger and Bortz [2021],
Schaeffer and McCalla [2017]. Calderhead et al. [2008], Dondelinger et al. [2013] have explored
Bayesian approaches that combine gradient matching with sampling strategies and Bayesian updates.

2

2.1 Collocation methods
In recent decades, the use of collocation methods for computing numerical solutions to optimal
control problems has become increasingly popular (see Betts [2010], Ljung [1999]). These are
implicit integration techniques in which the values of the state and control (in our case, the parameters
Θ) at the discretization nodes are treated as decision variables. Constraints ensure that the dynamics
are satisfied at the nodes, resulting in a nonlinear optimization problem. Although, as noted in Varah
[1982], these methods justify gradient matching methods, to the best of our knowledge, their use as
numerical integration method to the learning problem is original. In this paper, we use the selection
of nodes from the Legendre-Gauss-Radau (LGR) method for its suitability to initial value problems.
This choice results in an implicit technique that is A-stable, i.e., with numerical stability guarantees
for classes of initial value problems, and symplectic, i.e., preserving the Hamiltonian of the system.
Additionally, it has an approximation error of o(h2K−1), where K is the degree of the approximating
polynomial and h, the size of the time step. see Fahroo and Ross [2008], Garg et al. [2011] for
more discussions and proofs. Other choices of collocation method are compatible with our approach,
although, as shown in Wei et al. [2016], using a Gaussian quadrature collocation method ensures
that the KKT optimality conditions on the discretized problem are a discretization of the Pontryagin
Principle, which connects our method to the adjoint sensitivity methods mentioned earlier.

2.2 Contributions
This paper presents a new surrogate approach addressing the direct problem on the trajectory by using
collocation methods to eliminate the need for estimating derivatives from (noisy) data, and to provide
accurate integral solutions without relying on ODE solvers. The method scales well with dataset size
and horizon length T , by using low-dimensional regressions on fixed length subintervals, and to large
dimensions of the state as components can be learned independently in parallel.

We evaluate our approach on synthetic experiments and also examine experimentally the limitations
of our method’s reliance on data and design principles. In particular, interpolation before learning
coefficients can lead to failure if the available data cannot recover a relevant trajectory.

3 Algorithm
The algorithm, Batched Integral Matching, whose
pseudo code is Algorithm 1, alternates between
linear regressions estimating vectors Xl of values
of the state at LGR points and gradient descents
minimizing the loss ℓ:

ℓ(Θ) =

N−1∑
i=1

n∑
l=1

∥DK
−1Fi(Xl

k,Θ)−Xk
l i∥

2

Which is a collocation based approximation of:

N−1∑
i=1

n∑
l=1

K∑
k=1

∥
∫ ti−1+hiτk

ti−1

ẋ(t)− f(x(t),Θ)dt∥2

Where hi = ti+1 − ti. The separable structure of
the loss ℓ allows for batching strategies. Section
3.1 details the steps from the continuous problem
to the problem of minimizing the introduced loss ℓ.
Section 4 presents experimental results.

Algorithm 1 Batched Integral Matching

1: Input: data (tm,x(tm))m=1...M ,
order K, subinterval length h

2: Build denoised set F = {(tf ,xf (tf)}
from (tm,x(tm))m=1,...,M

3: initialize Θ
4: repeat
5: initialize Gradient estimate∇ℓΘ = 0
6: generate a set S of subintervals [a, a+h]
7: for s in S do
8: compute Xs with n Ridge regressions

on s, using F
9: compute ∇ℓ(Θ, Xs), gradient wrt Θ

of the loss given Xs

10: accumulate: ∇ℓΘ+ = ∇ℓ(Θ, Xs)
11: end for
12: update Θ: Θ← update(step, 1

|S|∇ℓΘ)
13: until Convergence or maxIter is reached

3.1 Theoretical foundations of the algorithm
This section presents the derivation of the loss ℓ and its theoretical motivation.

We discretize the continuous problem (1) using a multistep LGR collocation: the state is approximated
by continuous piecewise polynomials of degree K on a subdivision: 0 = t1 < . . . < tN = T . Then,
subintervals are rescaled to [0, 1], and the polynomials are represented in the Lagrange polynomials
basis (lj)j=0,...,K associated with the LGR points (τj)j=0,...,K : on the ith subinterval, of length
hi = ti+1−ti, we use the change of variable: t = ti+τhi. Using the vector Xi ∈ Rn(K+1) obtained

3

by stacking the xij = x(ti + hiτj) by component, then index j, the state and its derivative are:

∀t ∈ [ti, ti+1], τ =
t− ti
hi

, x(t) =

K∑
j=0

lj(τ)xij = V(τ)Xi, ẋ(t) =
1

hi

K∑
j=0

l′j(τ)xij =
1

hi
D(τ)Xi

Using this approximation, we obtain the classical collocation based formulation, Problem (2):

min
Θ,x0

(Xi)i

1

M

N−1∑
i=1

∑
m∈[M]

tm∈[ti,ti+1]

∥V
(
tm − ti

hi

)
Xi − x(tm)∥2

s.t. V(0)X1 = x0, (2a)
V(0)Xi = V(1)Xi−1, i ∈ 2, ..., N − 1, (2b)

D(τj)xi = hif(xij ,Θ). i∈[N−1],
j∈1,...,K. (2c)

Noting that the continuity constraints (2b) do not directly link the variables Xi and Xj when i ̸= j,
their relaxation transforms the problem into a multiple subtrajectories problem with shared parameters
Θ, with a natural link to shooting methods.

As detailed in appendix D, the single subinterval problem has a special structure that is later used
to reformulate the multi-trajectories problem: on a single subinterval [a, a+ h], Problem (2) has a
block diagonal matrix of constraints D̃ = diag(D̃K , . . . , D̃K), where D̃K is invertible and F, which
consists of evaluations of f at the collocation nodes:

min
Θ,
X

1

M

∑
m∈[M]

∥V(
tm − a

h
)X− x(tm)∥2

s.t. D̃X = F(X,Θ).

(3)

The kth component of F is: F(X,Θ)k =
(
Xk(K+1), hf(x(τ1),Θ)k, . . . , hf(x(τK)),Θ)k

)T
.

Using the invertibility, we consider from now on the problem in integral form

min
Θ,
X

1

M

∑
m∈[M]

∥V(
tm − a

h
)X− x(tm)∥2

s.t. X = D̃−1F(X,Θ).

(4)

Lastly, D̃−1
K has a special structure: ∀k, D̃−1

K F(X,Θ)k = Xk(K+1) + hD−1
K F̃(X,Θ)k where

F̃(X,Θ)k = (f(x(τ1),Θ)k, . . . , f(x(τK)),Θ)k)
T and D−1

K is another matrix that can be precom-
puted. Details and proofs can be found in appendices D and E and rely on permutations of constraints
by component and the invertibility is due to the polynomial interpretation of the differentiation matrix
D. The special structure allows for a reduction in complexity of the matrix multiplication from a
K + 1 by K + 1 square matrix to a K by K square matrix.

Finally, we obtain Problem (5) from Problem (2) by relaxing continuity constraints and, using
augmented lagrangian ideas, by introducing a quadratic penalty on the integral form, weighted by
ρ > 0 discussed after:

min
Θ,

(Xi)i

1

M

N−1∑
i=1

∑
m∈[M]

tm∈[ti,ti+1]

∥V
(
tm − ti

hi

)
Xi − x(tm)∥2 + ρ

N−1∑
i=1

∥D̃−1Fi(Xi,Θ)−Xi∥2. (5)

Using the block diagonal structure of D̃ and expanding the norms, the problem becomes:

min
Θ

1

M

N−1∑
i=1

n∑
l=1

∑
m∈[M]

tm∈[ti,ti+1]

∥V
(
tm − ti

hi

)
Xil − xl(tm)∥2

︸ ︷︷ ︸
ril(Xil)least square regression

estimating the values at LGR nodes from data

+ρM∥D̃−1
K Fi(Xi,Θ)l −Xil∥2.

︸ ︷︷ ︸
si(Xi) system inversion

(6)

4

We solve this last formulation with Algorithm (1), inspired by the Alternating Direction Method of
Multipliers (ADMM) from Boyd et al. [2011]. The algorithm alternates between linear regressions
that estimate the trajectory at LGR nodes and system inversion steps that use gradient descent to fit
parameters Θ to match integrals. We set ρ = 1 as it only affects gradient estimation, not parameter
optimization. In practice, good results can be obtained by using a pool of overlapping subintervals
and going over the pool during training epochs, thus caching computations from linear regressions.
Note: using a pure ADMM approach would have brought the algorithm close to the alternating
updates of parameters of an interpolating Reproducing Kernel and the parameters of ODEs to be
infered, as studied in Niu et al. [2016]. In that latter case, and more broadly, the use collocation
methods in an integral form leads to a problem on the trajectory directly, which is generally easier to
estimate than the derivative. Such a difference may explain the enhancement in robustness to noise
on observations over gradient matching methods as observed in section 4.

The design of the loss is such that, if the estimates at Gauss-Radau nodes are accurate and the loss at
convergence is zero, then the simulation of the trained model will be an exact match to the observed
trajectory of the system, apart from the integration error due to the collocation method of order K.

Reexamining the relaxation of continuity Relaxing continuity between adjacent subintervals
controls the propagation of integration errors over the horizon, and also makes the method less vul-
nerable to inaccurate initial conditions. Those two properties are to learn chaotic systems. Ultimately,
overlapping intervals allow the continuity of state components contained in the data to be transferred
back to the estimated trajectory by data and ultimately to the solution through the loss function.

Speed-ups: Evaluating F̃ and its gradient requires the evaluation of f at each LGR node of each
subinterval. Since the values at these nodes are already known when estimating the gradient, the
evaluation of the value and the gradient is performed in the software and hardware optimized
setting of a parallel batch evaluation. Furthermore, when parameters Θ can be partitioned by state
component, such as in polynomial dynamics, problem (6) separates by component that can be learned
independently and in parallel, facilitating the learning of high-dimensional states.

Estimating the trajectory: the added value of denoising The performance of the proposed
method is dependent on the accuracy of the values estimated at the collocation nodes. The distribution
of discretization nodes over the interval [0, 1] is not uniform, with more density near the boundaries
and can lead to artifacts in noisy settings at the boundaries. To address this, we use a simple sliding
window technique inspired by Savitzky and Golay [1964]. See Appendix A for more details.

4 Experiments
For each dynamical system in the benchmark, each experiment consists in running a simulation of
the dynamic from a random initial condition and running the algorithms on observations corrupted by
with Gaussian noise. As our method is capable of handling arbitrary dynamics, we use baselines that
are suited to structure of f . We also report runtimes and compare the number of function evaluations.

We study the raw performance of the training procedure on Section 4.1, higher-dimensional problems
in Section 4.2, failure modes of the algorithm in Section 4.3 and its complexity in Section 4.4.

4.1 Raw performance on the learning of accurate models from noisy observations
We first consider the following canonical examples of chaotic systems: the Lorenz 63 attractor Lorenz
[1963], the Rossler attractor Rössler [1976], the Duffing model Duffing and Emde [1918]. Those
systems are of dimensions up to 4 and are polynomials of degree up to 3. We implemented the
algorithm in Python (PyTorch and JAX) and Julia.

Learning Polynomial dynamics: We start by fitting the coefficients of polynomial dynamics
of degree 3 that contain the original equations along with other terms and compare our method
(IMATCH) to the SINDy approach from Brunton et al. [2016], for different levels of noise. These
experiments, reported in Table 2, show that our algorithm learns meaningful models, even when the
observations are noisy. It should be noted that no regularization was used in our method for these
experiments. SINDy, on the other hand, applies thresholding to coefficients which aids its accuracy,
as the underlying model is sparse and could explain why SINDy has a slight advantage in noiseless
cases. In noisy conditions, our method, which operates on a smoothed trajectory rather than SINDy’s
finite differences, has a considerable edge.

5

Table 2: On polynomial dynamics: for T = 40, our method with subintervals of length 1 and an
integration order K = 30 outperforms the SINDy method in noisy settings

NOISE
METRIC MODEL METHOD 0% 5% 10% 20%

RMSE (%)
ẋ(%)

LORENZ63 SINDY 0.18 7.45± 5.9 10.77± 0.4 22.95± 3.4
LORENZ63 IMATCH 0.25 1.62± 1.4 4.63± 3.6 8.81± 4.3
ROSSLER SINDY 0.02 4.3± 0.5 12.15± 1.0 26.95± 2.3
ROSSLER IMATCH < 10−2 0.46± 0.1 0.92± 0.2 2.11± 0.5
DUFFING SINDY 0.01 5.64± 0.3 9.79± 0.3 13.27± 1.2
DUFFING IMATCH 0.34 2.47± 1.6 4.18± 2.2 8.9± 3.8

Table 3: We conducted a benchmark of 40 runs of each algorithm on a CPU to compare the runtime
performances of learning a spiral dynamic in Chen et al. [2018] using a neural network with one
hidden layer containing 50 neurons. Our algorithm was found to compute gradients almost two
orders of magnitude faster than the backpropagation through the solver (BPTT) and three orders
of magnitude faster than the adjoint. Computation times were measured for 2000 iterations of the
adjoint/BPTT with the default parameters from the official Neural ODE library and a stopping
criterion on the loss of 10−4 for our method. The results are given as the 1st and 9th decile intervals.

METHOD RMSE ẋ (%)

GRADIENT
ESTIMATION

TIME (S)
NFES

(106) TOTAL TIME (S)
SPEED-UP PER

GRADIENT

OURS 1.61 [1.47, 1.77] 1.8 10−5 3.1 2.08 [1.01, 3.69]
BPTT 1.78 [1.19, 3.37] 510−2 3.9 100.5 [88.9, 116.3] 2777

ADJOINT 1.83 [1.15, 2.57] 4.510−1 28.8 959.8 [909., 993.9] 25000

Learning Neural ODES We first considered the same damped oscillator as in Chen et al. [2018]
and a simple network with one hidden layer of size 50 (202 parameters) and ReLU activation, as
indicated in Table 3. On this task, our method outperformed ODE Solver-based approaches by
almost two orders of magnitude. To analyze the reasons for this improvement, we compared various
metrics: global wall clock time, time to evaluate a gradient for a batch of 20 observations, and the
number of function evaluations. In Figure 1, we present a comparison on a training trajectory with
the same data and initialization strategy. The x axis is the number of function evaluations. While
the figure represents one training trajectory, the observations and orders of magnitude are consistent
across multiple experiments. In total, our method achieves similar RMSEs on the test set with 95
to 320 times fewer function evaluations up to 99.7% reduction compared to ODE Solver methods,
and, function evaluations are faster by order of magnitudes due to batching and parallelism, up to a
25,000 speed up on gradient estimation for our instance, on CPU. We then trained a simple ResNet
architecture with 300 hidden units (90,000 parameters) and two shared residual blocks with ReLU
activations, on the Lorenz63 model and present results in Table 4. On a Tesla T4 GPU, an RMSE of
around 1% was obtained within 20 minutes with our method. See appendix B for more details.

Learning coefficients in nonlinear structures The FitzHugh–Nagumo model FitzHugh [1961]
is a common benchmark in the gradient matching literature as though this model is polynomial in
the state, the parameters to be inferred have nonlinearities contrary to the previous systems. We find
that our method yields similar errors on the coefficients as the Bayesian approach in Calderhead et al.
[2008] in only 5s, which is at least two times faster than the results from this reference.

Table 4: Learning the Lorenz63 model with Neural Networks: comparison of performance between
our method and adjoint based methods for various execution times, 5% noise added.

METHOD
RMSE ẋ (%)

3 MIN.
RMSE ẋ (%)

5 MIN.
RMSE ẋ (%)

10 MIN.

INTEGRAL MATCHING 4.31± 0.5 3.8± 0.4 3.4± 0.4
BPTT 41.51± 3.29 32.20± 2.46 21.83± 2.13

ADJOINT 91.87± 2.93 87.89± 4.37 80.73± 4.79

6

4.2 Learning chaotic systems in high dimensions
The Lorenz [1996] family of models represent chaotic
systems of arbitary dimensions. We focus on the 40
dimension model with forcing terms of 16, exhibit-
ing 9 positive eigenvalues for the linearized equation
around the equilibrium, leading to very chaotic evo-
lutions, see Sapsis and Majda [2013].
This model represents a significant jump in complex-
ity compared to the previous canonical examples. We
consider trajectories obtained from an initial equilib-
rium with a disturbance that is typically below the
numerical tolerance errors: these systems can fail
many adjoint methods from the start. To promote
sparsity, we used a simple sequential thresholding
heuristic: small values of parameters were succes-
sively projected to 0 and the model retrained. The
results presented in Figure 2 exhibit a phase transition
that we conjecture to be associated with sparsity and
the large dimension of the system.

4.3 Limitations and impact of data quality and
availability on the learned model

Taking an opposite view to observing longer trajecto-
ries, we observe a phase transition to failure when the
available signal decreases: the RMSE of the learned
model increases with the signal-to-noise ratio until a
certain point where the algorithm’s performance dete-
riorates. Denoising delays the performance collapse
and slows down error growth but when the interpo-
lation is not relevant for too many subintervals to be
averaged, convergence fails.
This hints at a limitation of the presented version,
which relies on fixed length subintervals and orders.
If the integration order K needs not be fixed (aside
from easing implementation and providing a rigid
computation graph), we can in principle use variable-
length subintervals. Another observed failure mode
on neural ODEs happens when the integrated trajec-
tory diverges from the trajectory that was fitted: con-
trary to adjoint based methods that have been trained
around the training trajectory, potentially outside of

Figure 2: For the Lorenz96 model, for various
levels of noise and observed length, we plot
(top) The RMSE of the error on the derivative,
(middle) the true positive rate of the non zero
terms identified in equations, (bottom) the
relative error on parameters

its manifold, our method is sharp around the observations, so that the structure of equations or the
variety of the observed trajectory is paramount. To solve these limitations, given its speed, our method
can be used to warm start an ODE Solver method, with a relevant prior.

4.4 Comparison of the number of backpropagations with ODE solvers methods

We complement the theoretical estimates from Table 1 by a experimental comparison on the
Lorenz63 model. While adaptive methods involve varying step numbers during descent, our analysis
provides a static estimation that hints at the significant computational gap between methods. To avoid
interference with measurement times, we only compute the state at t = T (M = 1). We present
averaged results for ODE solvers recommended for Neural ODEs in Table 5. Experiments reveal that
our method requires between 10 to 40 times fewer backpropagations on the neural network f than
standard stiff methods for Neural ODEs. On the Lorenz96 with 40 dimensions, this gap widens
further to a factor of 20 when comparing K = 30 to its closest contender BDF. Looking at Table
5 and Figure 3, a natural question is the choice of K. Increasing K improves accuracy but also
increases data requirements and computational costs due to the super-quadratic complexity of matrix
multiplication (Strassen or Fawzi et al. [2022]). A higher K might also capture more noise, putting
an emphasis on denoising. In our experiments, using K = 30 and h = 1 yielded satisfactory results
in terms of accuracy and runtime.

7

Table 5: Number of Evaluations for Different Integration Error Tolerances and T = 1. Our method
achieves at least one order of magnitude fewer evaluations than recommended methods. Note:
Dormand Prince (DoPri) results are included for reference, although it is not recommended for
learning Stiff equations. Radau and BDF are the recommended methods.

ABS. TOLERANCE
METHOD 10−3 10−6 10−8

DORMAND PRINCE 100± 11 199± 28 336± 42
RADAU 5 148± 26 678± 119 2104± 385
BDF 95± 16 274± 62 649± 113
LGR, K = 5 27 142 333
LGR, K = 8 22 72 133
LGR, K = 20 10 50 71
LGR, K = 30 6 50 59

Figure 3: Integration error (avg.) on Lorenz63 vs. step length for DoPri and various orders.

5 Conclusion
In conclusion, we have studied the utilization of collocation methods for system identification of
nonlinear dynamical systems. While collocation methods are typically computationally intensive
due to their implicit nature, we have leveraged data to simplify computations, opening up new
possibilities, particularly in applications where abundant data is available and trajectories can be
reliably estimated. Our method are more efficient as they require less backpropagation that existing
methods to evaluate gradients at each step of the descent, and offer effective batching strategies to
parallelize computations. We hope these advancements can have significant implications for the field
of dynamical system modeling and help improve our understanding of underlying dynamics.

References
John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,

Second Edition. Society for Industrial and Applied Mathematics, second edition, 2010.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends
in Machine Learning, 3:1–122, 01 2011.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016.

8

Ben Calderhead, Mark Girolami, and Neil Lawrence. Accelerating bayesian inference over nonlinear
differential equations with gaussian processes. In Advances in Neural Information Processing
Systems, volume 21. Curran Associates, Inc., 2008.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. CoRR, abs/1806.07366, 2018.

Frank Dondelinger, Dirk Husmeier, Simon Rogers, and Maurizio Filippone. Ode parameter inference
using adaptive gradient matching with gaussian processes. In Artificial intelligence and statistics,
pages 216–228. PMLR, 2013.

Georg Duffing and Fritz Emde. Erzwungene schwingungen bei veränderlicher eigenfrequenz und
ihre technische bedeutung. F. Vieweg u. Sohn, 1918.

Fariba Fahroo and I Ross. Advances in pseudospectral methods for optimal control. AIAA Guidance,
Navigation and Control Conference and Exhibit, 08 2008.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix mul-
tiplication algorithms with reinforcement learning. Nature, 610(7930):47–53, Oct 2022. ISSN
1476-4687.

Richard FitzHugh. Impulses and physiological states in theoretical models of nerve membrane.
Biophysical Journal, 1(6):445–466, 1961. ISSN 0006-3495.

Marco Forgione and Dario Piga. Continuous-time system identification with neural networks: Model
structures and fitting criteria. European Journal of Control, 59:69–81, 2021.

Divya Garg, Michael A. Patterson, Camila Francolin, Christopher L. Darby, Geoffrey T. Huntington,
William W. Hager, and Anil V. Rao. Direct trajectory optimization and costate estimation of finite-
horizon and infinite-horizon optimal control problems using a radau pseudospectral method.
Computational Optimization and Applications, 49(2):335–358, 2011. ISSN 1573-2894.

Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks, 2019.

Audrūnas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time, 2016.

Ramin M. Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid
time-constant networks. CoRR, abs/2006.04439, 2020.

Suyong Kim, Weiqi Ji, Sili Deng, Yingbo Ma, and Christopher Rackauckas. Stiff neural ordinary
differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(9):093122,
sep 2021.

L. Ljung. System Identification: Theory for the User. Prentice Hall information and system sciences
series. Prentice Hall PTR, 1999. ISBN 9780136566953.

Edward N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130 –
141, 1963.

Edward N Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability,
volume 1. Reading, 1996.

Daniel A. Messenger and David M. Bortz. Weak sindy: Galerkin-based data-driven model selectionf.
Multiscale Modeling & Simulation, 19(3):1474–1497, 2021.

Mu Niu, Simon Rogers, Maurizio Filippone, and Dirk Husmeier. Fast parameter inference in
nonlinear dynamical systems using iterative gradient matching. In Maria Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 1699–1707, New York,
New York, USA, 20–22 Jun 2016. PMLR.

9

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. 2017a.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part
ii): Data-driven discovery of nonlinear partial differential equations. 2017b.

Jim O Ramsay, Giles Hooker, David Campbell, and Jiguo Cao. Parameter estimation for differential
equations: a generalized smoothing approach. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 69(5):741–796, 2007.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

O.E. Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–398, 1976. ISSN
0375-9601.

Themistoklis P. Sapsis and Andrew J. Majda. A statistically accurate modified quasilinear gaussian
closure for uncertainty quantification in turbulent dynamical systems. Physica D: Nonlinear
Phenomena, 252:34–45, 2013. ISSN 0167-2789.

Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified least
squares procedures. Analytical Chemistry, 36(8):1627–1639, Jul 1964. ISSN 0003-2700.

Hayden Schaeffer and Scott G McCalla. Sparse model selection via integral terms. Physical review.
E, 96(2-1):023302, August 2017. ISSN 2470-0045.

Iauw Bhieng Tjoa and Lorenz T. Biegler. Simultaneous solution and optimization strategies for pa-
rameter estimation of differential-algebraic equation systems. Industrial & Engineering Chemistry
Research, 30(2):376–385, Feb 1991. ISSN 0888-5885.

J. M. Varah. A spline least squares method for numerical parameter estimation in differential
equations. SIAM Journal on Scientific and Statistical Computing, 3(1):28–46, 1982.

Jianli Wei, Xiaojun Tang, and Jie Yan. Costate estimation for a multiple-interval pseudospectral
method using collocation at the flipped legendre-gauss-radau points. IEEE/CAA Journal of
Automatica Sinica, pages 1–15, 2016.

Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and James
Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ode, 2020.

10

A Denoising
To denoise observations, we select a window length and degree K, and then perform polynomial
regression to obtain denoised values in the center of the window, and, using a sliding window
mechanism, constitute a set of denoised values which is then used to estimate the trajectory at LGR
nodes.

The experimental results, in Figure 4, consistently show that, without filtering, the RMSE of the
estimation error at the LGR nodes is higher than the error in the observations. However, filtering
significantly reduces the noise in the estimates, by approximately half to one-third compared to the
original observations.

Figure 4: Denoising Performance:
without filtering is worse than data. Fil-
tering provides better estimate.

Figure 5: Observations corrupted by 40% noise. Without
filtering, Estimates (blue) are irrelevant at boundaries due to
uneven distribution of abscissae in the LGR nodes (red dots).

B Training Neural ODEs using Integral Matching
Contrary to library approaches such as in Brunton et al. [2016], Neural Networks bring less prior
structure to the latent dynamic. As such, the true complexity of the manifold to learn and its translation
as a data requirement especially the required length of observation to visit in different areas of the
manifold is of utmost importance. Such characteristics are obviously problem specific, but there
are connections with many areas studied in the physical context of finding either architectures that
preserve physical quantities Raissi et al. [2017a,b] or promoting this through terms in the objective
function. Promoting structure and respect of invariants brings structure to the parameters and reduces
the complexity of the learning. All in all, our approach is perfectly compatible with such techniques,
promoting invariants, and the loss function promotes the conservation of the Hamiltonian, though not
enforcing it using projections as in Greydanus et al. [2019].

Similarly as for polynomial dynamics in section C, ie problems with more prior structure, a phase
transition is observed and is linked to the architecture of the Network. Given a network with enough
representative power to capture the dynamic, the phase transition is observed with regards to the
availability of available data. There are several regimes, aside from terminal convergence to a relevant
model that is observed in the following section where the algorithm is used to recover parameters of
a dynamic within a class that contains the ground truth dynamic. We observed namely insufficient
representative power and insufficient data to train the given architecture.

C Focus of the Lorenz 96
Contrary to the experiments in the core paper that contained no method to promote sparsity, aside
from the implicit regularization of gradient descent and a small ℓ1 penalty that helped convergence,
we used in these section a simple sequential thresholding heuristic: the problem was solved, then
small values projected to 0, then retrained on the subset of nonzero values, then thresholded again.
Results are presented by Figure 6 for forcing terms F = 8, F = 16 and F = 32. We also provide a
specific focus on F = 8 in Figure 7.

Better methods have been developed to recover sparse equations than the simple sequential heuristic,
in a a sparse regression setting close to ours, but the fact that such a simple methods works well
illustrates the interest of the loss and overall procedure. It should be noted, lastly, that such a

11

Figure 6: Phase transition: our algorithm converges to the ground truth model when given enough
signal, consistently across different noise regimes. Columns: For increasing values of the forcing
term F , corresponding to increasing chaoticity and difficulty, longer trajectories are required to
recover the true dynamic. The first row indicates th RMSE of the time derivative, the second row, the
true positive rate of nonzero terms recovered, the last row indicates the error on coefficients. The
phase transition happens on the three metric, highlighting that past an amount of signal, our algorithm
learnt the ground truth model. For F = 8, there is a phase transition, around T = 80 in the noiseless
regime (blue) where the model is perfectly recovered. The greater the amount of noise, the later
the phase transition. Interestingly, we observe that asymptotically on T , our model converges to a
relevant solution for various noise levels, ie the red curve with the noise of 20% converge to an error
that keeps on decreasing with additional data. This is clearer in the second and third columns where
the problem is more complex and the learning longer. After a phase transition, happening around
T = 100, even T = 130 for 20% noise, the performance keeps on improving. On F = 32, another
surprising phenomenon appeared: on chaotic systems, mild levels of noise appear to be beneficial to
help convergence. This is possibly linked to the sparisifying heuristic being suboptimal.

computationally cheap sparsifying method is scalable to large dimensions. However, on large
dimensions, for instance, N = 200, the number of monomials grows to more than 20,000 terms for a
polynomial of degree 2, so that the method of postulating a library is doomed in higher dimensions.
In such dimensions, the regression step to estimate the value at LGR nodes and the denoising process
are no longer cheap, though easily treated in parallel.

However, using our method can provide an interesting option as the sequential thresholding can be
used to filter and select a lower dimension set of features, so that the method speeds up as it converges
to a sparser model. This points towards future work at the intersection of interpretability and sparsity
on Neural ODEs.

12

Figure 7: On the problem with F = 8, we present a more global view of the first column. The oscil-
lations observed for the various metrics are likely explained by the suboptimality of the sparsifying
heuristic and thresholding effects.

D Reformulation of the single subinterval problem
The single subinterval problem has the following form:

min
Θ,X

1

M

∑
m∈[M]

∥V
(
tm − a

h

)
X− x(tm)∥2

s.t. x0 = x0, (7a)
D(τj)x = hf(xj ,Θ) j ∈ 1...K. (7b)

We reorder the constraints by components of the state first then time. By design of the collocation
method, each dimension is interpolated separately. As such, grouping terms of each dimension
separately, constraints naturally separate by dimension: introducing a (K + 1) × (K + 1) matrix
DK , the constraints on the kth component of the state are:

1 0 ... 0

l̇0(τ1) l̇1(τ1) ... l̇K(τ1)
...

...
. . .

...
l̇0(τK) l̇1(τK) ... l̇K(τK)

︸ ︷︷ ︸

DK

.

Xk(K+1)

Xk(K+1)+1

...
Xk(K+1)

︸ ︷︷ ︸

X[kK:k(K+1)]

=

Xk(K+1)

hf(x1,Θ)k
...

hf(xK ,Θ)k

︸ ︷︷ ︸

F (X,Θ)k

Where X[k(K+1) : (k+1)(K+1)] is the projection of X on the span of {ek(K+1), . . . e(k+1)(K+1)}.
As the collocation is of the same order for each dimension, the matrix DK which only depends on
the collocation order is the same for each dimension, so that, stacking back every component, the
matrix of constraints is block diagonal:

13

DK

DK

. . .
DK

︸ ︷︷ ︸

D̃

. X =

F (X,Θ)1
F (X,Θ)2

...
F (X,Θ)n

︸ ︷︷ ︸

F (X,Θ)

One final observation (proof in the following section) is that the structure of the first row of DK and
the collocation structure imply that the first column of the inverse of DK is only composed of 1s.
Namely, we have:

D−1
K =

 1 0 ... 0
... D̂
1

This enables to compute the loss by multiplying by a K ×K submatrix of D−1

K rather than by a
(K + 1) × (K + 1) matrix. For K = 30, this simple observations enables to reduce the number
of operations to evaluate the product by 9% using Strassen (O(K2.8)). In the end, compared
to a naive implementation that would consider a product with matrix of constraint of dimension
n(K +1)× n(K +1), we have transformed the problem into n products with matrices of dimension
K ×K. As the matrix is fixed, it seems from experiments that the compilation performed in JAX is
able to the product for further speedups.

E Proof of the invertibility of matrices DK and D̃

Any element of the kernel of DK can be interpreted a polynomial P of degree K represented in
the LGR Lagrange basis. The last K rows of DK imply that P is constant: the derivative of P is a
polynomial of degree K − 1 null at K distinct points, hence null everywhere. The first row of the
matrix DK implies that this constant is null, ie P = 0. Subsequently, D is also invertible from its
block diagonal structure of matrices DK . □.

The first column v of matrix D−1
K is a vector of ones: v = 1. The first component is trivial.

For the other ones, we use the adjoint matrix, algebraic manipulations and the interpretation as a
differentiation matrix. Namely, have that

det(DK) = det

1 0 ... 0

l̇0(τ1) l̇1(τ1) ... l̇K(τ1)
...

...
. . .

...
l̇0(τK) l̇1(τK) ... l̇K(τK)

for any k ̸= 0

det(DK) = det

 l̇1(τ1) ... l̇k(τ1) ... l̇K(τ1)
...

...
...

...
...

l̇1(τK) ... l̇k(τK) ... l̇K(τK)

Using the adjoint matrix formula for the inverse of DK), to prove that v = 1, we need to show that
the first row of the adjoint matrix, ie the cofactors are each equal to the the determinant of det(DK).
Namely, we need to show that, for any k ̸= 0,det(Ak) = det(DK) where:

det(Ak) = (−1)k det

 l̇0(τ1) ... l̇k−1(τ1) l̇k+1(τ1) ... l̇K(τ1)
...

...
...

...
...

...
l̇0(τK) ... l̇k−1(τK) l̇k+1(τK) ... l̇K(τK)

We form the difference ∆k = det(DK) − det(Ak) and expand the determinant of DK along the
kth column, expand the determinant of Ak along the first column. The expansion exhibits the same

14

minors obtained by removing the 0th and kth columns. We denote µik the determinant of the minor
obtained by removing the first and ith row of DK and the first column and kth column of DK :

∆k = det(DK)− det(Ak) =

K∑
i=1

(−1)i+k l̇k(τi)µik −
K∑
i=1

(−1)k(−1)i+1 l̇0(τi)µik

=

K∑
i=1

(−1)i+k(l̇k(τi) + l̇0(τi))µik

That is the difference is the determinant of a matrix Bk

∆k = det(Bk) = det

1 0 ... 0 ... 0

l̇0(τ1) l̇1(τ1) ... l̇k(τ1) + l̇0(τ1) ... l̇K(τ1)
...

...
...

l̇0(τK) l̇1(τK) ... l̇k(τ1) + l̇0(τ1) ... l̇K(τK)

Subtracting the first column from the kth column does not change the determinant but gives a new
matrix B̃k which is the same as the original matrix DK except for the term on the first row and
the kth column which equals −1. This matrix is not invertible: using the same interpretation as
polynomials used earlier in this section, we deduce that constant polynomials ie vectors of RK+1

that are collinear to v are in the kernel of this matrix.

The last K rows of B̃kv imply that the derivative of a constant polynomial is 0. The first row also
evaluates to 0 so that v ̸= 0 ∈ ker B̃k.

Thus, ∀k,∆k = det(Bk) = 0. □.

15

	Introduction
	The problem

	Background and related work
	Collocation methods
	Contributions

	Algorithm
	Theoretical foundations of the algorithm

	Experiments
	Raw performance on the learning of accurate models from noisy observations
	Learning chaotic systems in high dimensions
	Limitations and impact of data quality and availability on the learned model
	Comparison of the number of backpropagations with ODE solvers methods

	Conclusion
	Denoising
	Training Neural ODEs using Integral Matching
	Focus of the Lorenz 96
	Reformulation of the single subinterval problem
	Proof of the invertibility of matrices DK and

