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ABSTRACT

LLM-generated datasets have been recently leveraged as training data to mitigate
data scarcity in specific domains. However, these LLM-generated datasets ex-
hibit limitations on training models due to a lack of diversity, which underscores
the need for effective diversity evaluation. Despite the growing demand, the di-
versity evaluation of LLM-generated datasets remains under-explored. To this
end, we propose a diversity evaluation method for LLM-generated datasets from
a classification perspective, namely, DCScore. Specifically, DCScore treats the
diversity evaluation as a sample classification task, considering mutual relation-
ships among samples. We further provide theoretical verification of the diversity-
related axioms satisfied by DCScore, demonstrating it as a principled diversity
evaluation method. Additionally, we show that existing methods can be incor-
porated into our proposed method in a unified manner. Meanwhile, DCScore
enjoys much lower computational costs compared to existing methods. Finally,
we conduct experiments on LLM-generated datasets to validate the effectiveness
of DCScore. The experimental results indicate that DCScore correlates bet-
ter with various diversity pseudo-truths of evaluated datasets, thereby verifying
its effectiveness. Our code is available via: https://anonymous.4open.
science/r/DCScore-ICLR/.

1 INTRODUCTION

Large language models (LLMs) have shown exceptional performance across a range of fields, such
as chatbots (Achiam et al., 2023), computer programming (Gu, 2023), and reasoning (Yuan et al.,
2024). Inspired by their remarkable capacities, some research (Ye et al., 2022; Abdullin et al., 2024;
Ding et al., 2024) employs LLMs as dataset generators to mitigate the shortage of training data.
Although generated data facilitates model optimization, recent studies (Yu et al., 2024; Lee et al.,
2023) suggest that a lack of diversity within the dataset—measured by the variation between sam-
ples (Long et al., 2024)—may lead to performance degradation in some scenarios. To ensure a highly
diverse LLM-generated dataset, previous studies have focused on improving the diversity of LLM-
generated datasets through prompt design (Yu et al., 2024) and multiple topics (Wang et al., 2022).
However, these studies neglect a critical aspect, i.e., evaluating the diversity of LLM-generated
datasets in a reasonable manner. A principled diversity evaluation metric can provide feedback to
LLM generators and guide them to generate data with higher diversity. Beyond evaluating the di-
versity of LLM-generated datasets, these methods can also be used for data selection (Cao et al.,
2023), quantifying augmentation performance (Yang et al., 2024b; Gontijo-Lopes et al., 2020), and
assessing mode collapse (Dan Friedman & Dieng, 2023). In summary, a diversity evaluation method
for LLM-generated datasets is becoming increasingly crucial.

Since the diversity evaluation of LLM-generated datasets remains under-explored, a natural solution
is to directly employ diversity evaluation methods from the fields of natural language processing
(NLP) (Khurana et al., 2023) and machine learning (ML) (Jordan & Mitchell, 2015). Specifically,
efforts to measure diversity within these domains can be summarized into three categories: N-gram-
based method (Zhu et al., 2018; Mishra et al., 2020), Reference-based method (Heusel et al., 2017;
Cı́fka et al., 2018), and Transformation-based method (Du & Black, 2019; Zhang et al., 2024).
The n-gram-based method evaluates diversity through n-gram statistics, e.g., the distinct n-grams
metric (Li et al., 2015) calculates the proportion of unique n-grams out of the total number of n-
grams. This approach primarily focuses on the form difference of evaluated texts, often overlooking
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semantic aspects and offering limited flexibility for evaluators. To align the diversity criteria with
human judgment, the reference-based method has emerged as a promising alternative. This approach
employs a reference distribution or data as an approximation of human judgment and calculates the
similarity between the evaluated data and the reference data (Holtzman et al., 2019). However, the
process of collecting reference data can be both time-consuming and potentially bias-inducing.

Drawing inspiration from deep representation learning (Butepage et al., 2017; Zhang et al., 2021),
the transformation-based method evaluates diversity by first mapping the data into the representation
space and then performing diversity summarization (Tevet & Berant, 2020). This summarization of-
ten employs high-complexity algorithms, such as eigenvalue computation. Here, various embedding
functions can be employed to facilitate the transformation. A popular way is to leverage a sentence
transformer, e.g., Sentence-Bert (Reimers, 2019) and SimCSE (Gao et al., 2021), to generate rep-
resentations of the evaluated data and subsequently calculate the average similarity between these
representations. Owing to the versatility of embedding functions, transformation-based methods can
simultaneously consider extensive aspects, such as semantics, form, and style, to encode data repre-
sentations, thereby providing a more comprehensive evaluation of diversity. However, this type of
method struggles to offer a holistic evaluation of a dataset due to its reliance on complex diversity
summarization.

In a nutshell, existing diversity evaluation methods in NLP and ML suffer from inherent limitations
in the LLM-generated dataset evaluation scenario. To effectively evaluate the diversity of LLM-
generated datasets, the following challenges must be tackled: (1) Holistic Analysis. The diversity
evaluation of LLM-generated datasets is a holistic analysis task, necessitating consideration of the
impact of each sample on the final evaluation results. If a new sample is added, the diversity evalu-
ation of the newly augmented dataset should completely account for the relationship between each
original sample and the new one. (2) Axiomatic Requirements. Prior research has suggested sev-
eral axioms that diversity metrics should ideally satisfy. To align with these intuitive principles, a
well-established diversity evaluation should exhibit properties corresponding to these axioms.

To sum up, the essence of diversity is associated with the identification of differences between
samples, and the ability to distinguish these differences is a key element in the classification pro-
cess (Quine, 1969). Motivated by this, we propose an LLM-generated dataset diversity evaluation
method from a classification perspective, namely, DCScore. On the one hand, DCScore treats the
evaluation of each sample in the LLM-generated dataset as a distinct classification task, effectively
addressing the need for a holistic analysis. On the other hand, we provide theoretical verification
that DCScore satisfies four axioms outlined in Leinster & Cobbold (2012), including effective
number, identical samples, symmetry, and monotonicity. Meanwhile, we also observe that existing
methods can be reformulated from the view of DCScore by leveraging different embedding and
classification functions.

Our contributions can be summarized as follows:

• We propose DCScore, a classification-based diversity evaluation method for LLM-
generated datasets. The core idea behind DCScore is to treat diversity evaluation as a
sample classification task, enabling the capture of mutual relationships among samples.

• We theoretically validate that DCScore adheres to several intuitive axioms suggested
by Leinster & Cobbold (2012), evidencing the superiority of DCScore. Additionally,
we integrate existing methods into the DCScore framework in a unified manner.

• Extensive experiments show that DCScore exhibits a stronger correlation with diversity
parameters and human judgment compared to baseline metrics. We also perform a compu-
tational cost experiment to confirm the lower computational expense of DCScore.

2 RELATED WORK

We give a brief literature review of diversity evaluation methods. Moreover, limited by the space,
further related works on LLM dataset generators can be found in Appendix A.
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2.1 DIVERSITY EVALUATION METHODS

N-gram-based Methods. With the development of LLMs as dataset generators, the diversity eval-
uation of LLM-generated datasets has become a challenging task and remains under-explored in
recent evaluation studies (Liang et al., 2022; tatsu lab, 2023). The most comparable diversity evalu-
ation research can be traced back to studies in NLP and ML, which can be summarized into the
n-gram-based method (Mishra et al., 2020), reference-based method (Heusel et al., 2017), and
transformation-based method (Lai et al., 2020). The n-gram-based method is the most popular
lexical diversity evaluation method, leveraging n-grams to capture differences in sentence form (Yu
et al., 2024). Commonly used n-gram-based diversity metrics include distinct n-grams (distinct-
n) (Song et al., 2024), self-BLEU (Shu et al., 2019), and ROUGE-L (Wang et al., 2022; Padmaku-
mar & He, 2023). However, this method has limitations, as it overlooks differences in other aspects
such as semantics and style.

Reference-based Methods. Diversity evaluation is inherently subjective, leading to a reliance on
human judgment. Consequently, the reference-based method evaluates diversity by comparing the
distribution of the evaluated data to that of a reference dataset (Heusel et al., 2017). MAUVE (Pil-
lutla et al., 2021) exemplifies this idea by employing a divergence-based metric to capture corre-
lations with human judgment. Regarding the natural language inference (NLI) training set as the
reference dataset, (Stasaski & Hearst, 2022) first trains an NLI model to infer the relationship be-
tween pairs of generated texts and then calculates diversity based on these inference results. Due
to the challenges in collecting reference datasets, a recent study (Le Bronnec et al., 2024) proposes
evaluating diversity through precision and recall. Despite these advancements, the reference-based
method remains significantly constrained because of the need for reference datasets.

Transformation-based Methods. The transformation-based (Lee et al., 2023) method leverages
well-designed models to generate representations of the evaluated data. Then, the diversity of these
representations is summarized using techniques such as eigenvalue computation (Dan Friedman &
Dieng, 2023) and clustering (Du & Black, 2019). Owing to the superior performance of representa-
tion learning, this method considers various aspects of the evaluated data, including semantics, form,
and style, offering greater flexibility compared to the other two methods. However, its dependence
on high-complexity summarization techniques, such as eigenvalue computation, limits its scalability
for comprehensive evaluation tasks, such as evaluating the diversity of LLM-generated datasets.

In summary, existing methods primarily focus on NLP and ML fields and are challenging to apply
directly to overall dataset diversity evaluation. Different from the above-mentioned studies, our
work is dedicated to the holistic diversity evaluation of LLM-generated datasets. Additionally, to
ensure flexible evaluation, our work aims to evaluate diversity-sensitive components that impact the
performance of trained models in terms of diversity.

3 PRELINIMARIES

3.1 LLMS AS A DATASET GENERATOR

Since the exceptional performance of LLMs, previous works (Dai et al., 2023; Yoo et al., 2021)
employ LLMs as a dataset generator or for data augmentation purposes. LLMs significantly reduce
the cost of label annotation and data collection (Tan et al., 2024), and in several tasks, even outper-
form human annotators (Gilardi et al., 2023). While some studies attempt to use LLMs to generate
datasets from scratch, it is a challenging task for LLMs. In most cases, a pre-trained LLM, denoted
as M, takes the data Dsup to be augmented and the generation task T as input, and outputs the
augmented dataset D. Formally, this process can be formulated as follows:

D ←M(T,Dsup) (1)

where T can be texts describing the generation task, such as annotation. Dsup, which comprises a
small number of seed samples or unlabeled inputs, serves as supplementary materials to facilitate
data augmentation. For example, we want LLMs to perform an annotation task for sentiment la-
beling, such as determining whether the sentiment is positive or negative. If we assume Dsup to
be “It’s a boring movie.”, the description of T could be “The sentiment of the movie review is”.
D = {Ti}ni=1 = {(xi, yi)}ni=1 is the generated dataset with n samples, where Ti = (xi, yi), xi, and
yi are the input-output sample, the input text, and the output text, respectively. Let TD denote the
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Table 1: Categories of Dsup. In the column of “Examples”, texts belonging to Dsup are highlighted
in gray , while texts associated with T are marked using an underline.

Generations Dsup Examples

{xi} → {yi} {xi}
Question: It’s a boring movie. The sentiment of the movie
review is
Answer: Negative.

{yi} → {xi} {yi}
Question: The movie review in positive sentiment is
Answer: Good film!

{Tseed} → {Ti} {Tseed}

Question: Following are examples of movie review and their
sentiment labels. Generate samples according to these examples.
Example 1: A boring movie. (Negative);
Example 2: Oh, wonderful movie! (Positive).

Answer: A meaningful movie. (Positive)

downstream task of D, when TD is the question-answering task, xi and yi represent the question
and answer, respectively.

It is worth noting that not all components in D are generated byM, which is related to the category
of Dsup. As shown in Table 1, Dsup can be divided into three categories, namely input text, output
text, and seed samples. In Table 1, “→” and Tseed represent the direction of generation and seed
samples, respectively. For example, “xi → yi” signifies that, given input text xi denoted as Dsup,
M processes Dsup and T , generating the output text yi.

3.2 PROBLEM FORMULATION

The diversity evaluation of the dataset is a sample richness evaluation problem. Based on the gener-
ation scenarios presented in Table 1, we find that in certain downstream tasks, the diversity of some
components in the LLM-generated dataset does not influence the performance of the trained models.
Conversely, the diversity of other components significantly impacts model performance. We refer to
these components, whose diversity influences performance, as diversity-sensitive components, de-
noted as Ti. For example, the input text xi in sentiment classification tasks is the diversity-sensitive
component. Conversely, the output text yi, which represents the sentiment label of the sample and
is typically a numerical label (e.g., 0 or 1), does not influence model performance in terms of di-
versity. Therefore, the output text cannot be considered as the diversity-sensitive component. It
should be underscored that diversity-sensitive components vary across downstream tasks. As such,
the diversity evaluation of LLM-generated datasets can be transformed into the diversity evaluation
of diversity-sensitive components.

Given an LLM-generated dataset D = {Ti}ni=1, we define {T̃i}ni=1 as a collection of diversity-
sensitive components. Hence, the problem of diversity evaluation ofD can be formulated as follows:

DiversityScore← Eval({T̃i}ni=1) (2)

where Eval is the diversity evaluation function, which takes {T̃i}ni=1 as input and outputs the diver-
sity score DiversityScore of D.

4 PRESENT WORK

In this section, we first introduce our proposed method from a classification perspective, namely,
DCScore. Then, we present the properties of DCScore followed by theoretical proofs. Finally,
we integrate existing methods into a unified framework viewed from the perspective of DCScore.
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Figure 1: Illustration of the computation of DCScore.

4.1 DCSCORE : DIVERSITY CALCULATION FROM A CLASSIFICATION PERSPECTIVE

To tackle the holistic analysis and axiomatic requirements challenges, we propose DCScore to eval-
uate diversity from a classification perspective. According to the problem formulation in section 3.2,
DCScore aims to evaluate LLM-generated datasets by evaluating the diversity of diversity-sensitive
components. As shown in Figure 1, DCScore can treat diversity evaluation as a classification task
due to the inherent sample difference measurement of diversity evaluation. The difference between
samples can be measured by a n-classification task where the evaluation of n sample datasets in-
volves n n-classification tasks, with each sample corresponding to a category.

LetD = {Ti}ni=1 = {(xi, yi)}ni=1 denote an LLM-generated dataset comprising n input-output sam-
ples, and {T̃i}ni=1 represents the diversity-sensitive components. DCScore adheres to the paradigm
of the transformation-based method to evaluate the diversity of D. Specifically, given T̃i, DCScore
first applies an embedding function Φ to extract the sample representation hi = Φ(T̃i). For all
samples in D, we obtain the sample representation matrix H ∈ Rn×d across all samples, where d
denotes the dimension of sample representations. Subsequently, DCScore utilizes a kernel func-
tion Kernel to calculate a kernel matrix K, where K ∈ Rn×n and entry K[i, j] represents similarity
between T̃i and T̃j . From a classification perspective, K[i, j] can be considered as the logit of T̃i
being classified into category cj . where cj corresponds to T̃j . Formally, the aforementioned process
can be formulated as follows:

H = Φ({T̃i}ni=1),K = Kernel(H), (3)

where Kernel(·) calculates pairwise similarity, with viable options including inner product and RBF
kernel. For Φ, a more expressive embedding function can be employed, such as one trained using a
well-designed framework like Sentence-Bert (Reimers, 2019).

Based on the kernel matrix K, DCScore leverages a classification function with K, denoted as fK,
to compute the classification probability matrix P ∈ Rn×n. There are several potential choices for
fK, among which a natural option is the Softmax function, Specifically, for T̃i, the probability that
T̃i is classified as category cj can be formulated as follows:

P (c = cj |T̃i) = P[i, j] = fK(K[i, j]) =
exp (K[i, j]/τ)∑
j exp (K[i, j]/τ)

, (4)

where τ is a temperature hyperparameter to control the classification resolution. A smaller τ ampli-
fies sample similarity differences, implying a higher classification resolution, while a larger value
yields the opposite effect.

According to equation 4, if the evaluated dataset exhibits high sample richness, indicating greater
diversity, each sample is likely to be classified into its own category. Conversely, if diversity is low,
all samples may be classified into a single category. Based on P, DCScore calculates diversity of
D as the trace of P. In summary, the definition of diversity measurement from the classification
perspective is as follows:
Definition 1 (DCScore). Let D = {Ti}ni=1 denote the LLM-generated dataset with n samples,
and let {T̃i}ni=1 represent a set of diversity-sensitive components within {Ti}ni=1. Denote Pi as the
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classification probability vector of T̃i. By conducting the classification task for all T̃i and obtaining
the probability matrix P = [P1, P2, ..., Pn], DCScore for D is defined as the trace of P:

DCScore(D) = tr(P) =
n∑

i=1

P[i, i]. (5)

4.2 PROPERTIES OF DCSCORE

We provide theoretical proof that DCScore satisfies several axioms (Leinster & Cobbold, 2012)
defined for a principled diversity metric. Specifically, DCScore meets four axioms: effective num-
ber, identical samples, symmetry, and monotonicity axioms. These guarantees ensure a reasonable
and robust diversity evaluation. The matched axioms of our proposed method are outlined below,
while their proofs can be found in Appendix B due to space constraints.

• Effective number: Diversity should be defined as the effective number of samples in a
dataset, ranging from 1 to n. DCScore meets this axiom, as evidenced by its behavior:
DCScore equals 1 when all samples in D are identical and equals n when all samples are
distinct.

• Identical samples: Given two identical datasets D1 and D2, the diversity of the synthetic
dataset D′

generated by merging these two datasets remains unchanged. The values of
DCScore are the same across D1, D2, and D′

, i.e.,

DCScore(D1) = DCScore(D2) = DCScore(D
′
). (6)

• Symmetry: Diversity remains constant regardless of the order of the samples, exhibit-
ing permutation invariance. Let π denote the permutation function for the sample order,
DCScore remains unchanged for any sample permutation of D, i.e.,

DCScore(D) = DCScore(π(D)). (7)

• Monotonicity: The diversity of a dataset decreases as the similarity between its samples
increases. Given two datasets D1 and D2, and a new sample Tn+1, where the samples in
D1 and D2 are entirely different, and DCScore(D1) = DCScore(D2) = n. If Tn+1 is
more similar to the samples in D2 than to those in D1 and is added to both datasets, then
for the merged datasets D′

1 and D′

2, DCScore satisfies the following equation.

DCScore(D
′

1) > DCScore(D
′

2). (8)

4.3 A UNIFIED MODELING FOR EXISTING METHODS

To further understand DCScore, we compare it with existing methods, including Distinct-n (Li
et al., 2015), K-means inertia (Du & Black, 2019), and VendiScore (Dan Friedman & Dieng, 2023).
We find that these methods can be integrated into the DCScore framework, which consists of three
stages: Text Representation, Pairwise Similarity, and Diversity Summarization. In the text repre-
sentation stage, sample representations are extracted, which then serve as the basis for measuring
similarity between samples in the pairwise similarity stage. Finally, the diversity summarization
stage evaluates the dataset’s diversity by aggregating the pairwise similarities of all samples. Based
on equation 3-5, DCScore is structured into these three stages as follows:

Text Representation: H = Φ({T̃i}ni=1),

Pairwise Similarity: K = Kernel(H),

Diversity Summarization: P[i, j] = fK(K[i, j]),

DCScore(D) = tr(P) =
n∑

i=1

P[i, i].

(9)

In this regard, three existing methods are summarized into three stages in Table 2, with further
details provided in Appendix G. Distinct-n calculates the proportion of unique n-grams to all n-
grams within a concatenated dataset, where the concatenation, unique operation, and n-grams are

6
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Table 2: Existing methods are modeled into the framework of DCScore.

Text Representation Pairwise Similarity Diversity Summarization

Distinct-n (Li et al., 2015) n-grams(Concat(D)) Unique(n-grams(Concat(D)))
|Unique(n-grams(Concat(D)))|

| n-grams(Concat(D))|

K-means inertia (Du & Black, 2019) H = Φ({T̃i}ni=1) C = K-means(H)
∑

ck∈C,hj∈Hck
(hj − ck)2

VendiScore (Dan Friedman & Dieng, 2023) H = Φ({T̃i}ni=1) K = Kernel(H) exp (−
∑n

i=1 λi log λi)

denoted as Concat(·), Unique(·), and n-grams(·), respectively. K-means inertia and VendiScore
are transformation-based methods that perform clustering and eigenvalue computation in the repre-
sentation space. For K-means inertia, K-means(·), C, and ck ∈ C represent k-means clustering, the
cluster centroid set, and the k-th cluster centroid. For VendiScore, λi is the i-th eigenvalue of K/n.

In summary, existing methods can be incorporated into the DCScore framework, indicating that
DCScore operates as a higher-level method. DCScore also follows a transformation-based ap-
proach, resulting in similar processes in the text representation and pairwise similarity stages as
K-means inertia and VendiScore. However, DCScore generally exhibits lower complexity, as de-
tailed in Appendix F. It is worth noting that equation 9 is not the only implementation of DCScore
from a classification perspective, and other implementation methods will be explored in future work.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Diversity
Score

Evaluated
Dataset 𝒟

Diversity
Pseudo-truth

Diversity
Evaluator

𝑙 𝑙

𝑙

Correlation

Figure 2: Experimental settings of cor-
relation evaluation.

To verify the effectiveness of DCScore, we conduct a
series of correlation experiments following the setting in
Tevet & Berant (2020). As shown in Figure 2, we evalu-
ate l generated datasets to obtain l diversity scores. Sub-
sequently, we calculate the correlation between these di-
versity scores and the corresponding diversity pseudo-
truth for each dataset. Due to the unavailability of diver-
sity ground-truth of LLM-generated datasets, we employ
the softmax temperature τg of dataset generation, human
judgment, and LLM evaluation as the diversity pseudo-
truth. For τg , previous works (Caccia et al., 2018; Tevet
& Berant, 2020; Chung et al., 2023) have demonstrated a
positive correlation between τg and the diversity of gen-
erated texts, making τg as a reasonable diversity pseudo-
truth. In this regard, LLMs with lower τg generate less
diverse content, whereas higher τg values yield more diverse content. To evaluate the correlation be-
tween calculated diversity scores and diversity pseudo-truths, we employ Spearman’s ρ (Spearman,
1961), a measure of rank correlation ranging from -1 to 1, with higher absolute values indicating
stronger correlations. Due to space limitations, we present detailed experimental settings in Ap-
pendix D.

Datasets. We utilize two categories of datasets in our experiments: our generated datasets and pub-
licly available generated datasets. Our generated datasets are generated through two data generation
strategies (Li et al., 2023): zero-shot and few-shot settings. Additionally, we generate datasets for
two natural language generation tasks: text classification and story completion. We utilize three
publicly available existing datasets, including SST2 (Socher et al., 2013), Yelp (Zhang et al., 2015),
and AG News (Zhang et al., 2015), and their AttrPrompt-augmented version from Yu et al. (2024).
Detailed information about these datasets can be found in Appendix D.1.

Generation Models. To generate datasets through zero-shot and few-shot settings, we employ two
commonly used LLMs as our dataset generators, including Llama2-13B (13B) and Llama2-70B
(70B) (Touvron et al., 2023).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Correlation (Spearman’s ρ) between temperature and diversity evaluation methods on
datasets generated by different settings (Zero-shot or Few-shot). Spearman’s ρ varies between -1
and +1 with 0 implying no correlation. Best results are indicated in bold.

Methods
Zero-shot setting Few-shot setting

Text classification Story completion Text classification Story completion

13B 70B 13B 70B 13B 70B 13B 70B

Distinct-n 0.9909 0.9870 0.9766 0.9701 0.9857 0.9766 0.9779 0.9935
K-means Inertia -0.1143 0.9688 0.9454 0.8727 0.7104 0.7273 0.9662 0.9662
VendiScore 0.9961 0.9818 0.9870 0.9922 0.9909 0.9857 0.9857 0.9961
DCScore 0.9961 0.9779 0.9844 0.9792 0.9909 0.9883 0.9857 0.9974

Baseline Methods. We compare DCScore with three baseline methods shown in Section 4.3, i.e.,
Distinct-n (Li et al., 2015), K-means inertia (Du & Black, 2019), and VendiScore (Dan Friedman &
Dieng, 2023).

5.2 CORRELATION EVALUATION

In this subsection, we investigate the correlation between the diversity evaluation of DCScore and
diversity pseudo-truth, such as τg and human judgment. We compare DCScore with all baseline
methods on both our generated datasets and the publicly available generated datasets.

5.2.1 CORRELATION WITH GENERATION TEMPERATURE τg

Evaluation on our generated datasets. We evaluate the performance of DCScore on our gen-
erated datasets with varying τg , ranging from 0.2 to 1.2 at 0.05 intervals. Limited by the space,
we present more information about our generated datasets in Appendix D.1.1. Table 3 displays
the correlation results of all methods. All methods accurately capture the true diversity of gen-
erated datasets, as demonstrated by high Spearman’s ρ values. DCScore performs on par with
VendiScore while providing better scalability for larger LLM-generated datasets, as discussed in
Section 5.3. Additionally, DCScore outperforms all baseline methods under the few-shot setting
across all datasets, highlighting its effectiveness. K-means Inertia exhibits the weakest correlation
on the text classification dataset generated by the 13B model under the zero-shot setting, potentially
due to its sensitivity to the number of cluster centroids. Overall, DCScore outperforms all baselines
in most cases, and its evaluation results exhibit a strong correlation with the diversity pseudo-truth.
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Figure 3: Diversity evaluation (DCScore) w.r.t dataset gen-
erated using different temperatures (τg). DCScore’s evalu-
ation shows a strong correlation with τg , indicating its effec-
tiveness in evaluating the intrinsic diversity of the dataset.

Visualization. We further provide a
visualization of the diversity evalua-
tion results for DCScore. For each
generated dataset, we prompt LLMs
to produce 10 distinct answers cor-
responding to a single prompt, form-
ing an evaluation batch. We then as-
sess the diversity of these generated
datasets using the batch evaluation
protocol outlined in Appendix D.2.3.
Ideally, a completely diverse dataset
may yield a diversity score of 10.

As shown in Figure 3,DCScore ex-
hibits a strong positive correlation
with τg , consistent with its impact on content diversity. In most cases, when τg > 0.75, DCScore
scores a generated dataset with a diversity value of approximately 10. In the text classification task,
the 13B generation model under the few-shot setting demonstrates a distinct diversity change pattern
compared to others. This phenomenon arises from the 13B generation model’s inability to follow
more complex instructions, resulting in limited diversity improvement.
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Table 4: Pairwise correlation (Spearman’s ρ) between human, temperature (τg), and DCScore.
DCScore indicates a strong correlation with human judgment.

Story-Few Story-Zero Text-Few Text-Zero

Human-DCScore 0.9040±0.04 0.7870±0.10 0.7915±0.16 0.8798±0.10

τg-DCScore 0.9086±0.07 0.7829±0.16 0.8400±0.16 0.8971±0.07

τg-Human 0.9276±0.02 0.9194±0.06 0.9770±0.02 0.9255±0.08
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Figure 4: Diversity evaluation
on existing generated datasets.

Evaluation on existing datasets. Additionally, we present the
diversity evaluation results on three publicly available datasets in
Figure 4. By dividing each result by the maximum diversity eval-
uation value across three datasets, we normalize all results to the
range [0,1].

We observe that, compared to baselines, the evaluation results of
DCScore exhibit a similar changing trend across three datasets,
highlighting its effectiveness. Additionally, both DCScore and
VendiScore demonstrate a greater ability to discern diversity be-
tween different datasets compared to the other two methods.

5.2.2 CORRELATION WITH HUMAN JUDGMENT

Diversity evaluation is a subjective task, and an ideal method should align well with human judg-
ment. Therefore, we investigate the correlation between DCScore and human judgment. To miti-
gate evaluators’ bias, we enlist three individuals to perform pairwise diversity comparisons among
datasets with varying τg values and report the diversity ranking by averaging the win rate across eval-
uators. We conduct all evaluations five times to report average results. Moreover, we exclusively
use the 70B model for dataset generation to ensure better content creation.

Table 4 presents pairwise correlation between human judgment, τg , and DCScore. Table 4 indi-
cates a strong correlation between human judgment and τg , supporting the use of human judgment
as a diversity pseudo-truth. Based on this observation, DCScore performs better in two settings:
Story-Few (story completion task generation under the few-shot setting) and Text-Zero (text classi-
fication task generation under the zero-shot setting). This is confirmed by higher human-DCScore
correlation in these two settings. In contrast, for Story-Zero and Text-Few settings, we observe
more identical content in the initial portions of the diversity-sensitive components within an evalu-
ation batch. In these cases, human evaluators tend to disregard the identical content and base their
judgments on the latter sections. However, DCScore is affected by the identical content, resulting
in a lower pairwise correlation. Despite this, the correlation remains strong, as demonstrated by
previous studies (Akoglu, 2018).

5.3 COMPUTATIONAL COST

The computational cost is crucial in diversity evaluation methods, especially with the increasing
sample sizes of LLM-generated datasets. For a fair comparison, we only present the computa-
tion times of transformation-based methods: DCScore, K-means Inertia, and VendiScore. We
truncate the text length of three publicly available datasets to 50 tokens and record the com-
putation times of three transformation-based methods with varying sample sizes in the range of
{100, 500, 1000, 2000, 4000}.
As shown in Figure 5, we repeat the experiments five times to report the final results. DCScore
and K-means Inertia exhibit nearly identical computation times. However, DCScore significantly
outperforms K-means Inertia in correlation with τg , as evidenced in Section 5.2.1. Compared to
VendiScore, DCScore demonstrates a speed advantage of approximately 16%, or more than one
second, when processing 4000 samples. Analyzing the time complexity of these two methods, and
disregarding the selection of the kernel function, we find that for a dataset with n samples, where
n ≫ d is not satisfied, the computational complexity of DCScore in diversity summarization is
O(n2) due to the softmax computation. In contrast, VendiScore requires finding the eigenvalues of
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Figure 5: Computation times results under different sample sizes. DCScore outperforms all base-
line methods in terms of computational cost.

an n×n matrix, resulting in a computational complexity ofO(n3). Consequently, DCScore offers
significantly lower time complexity than VendiScore while sacrificing little in diversity evaluation
performance. However, as detailed in the complexity analysis shown in Appendix F, when n ≫ d
and inner products are used as the kernel function, the total complexity of VendiScore can be reduced
toO(d2n). For a fair comparison, we evaluate computational costs on larger datasets, i.e., satisfying
n≫ d. The detailed experimental results and analysis are presented in Appendix E.3.

5.4 HYPERPARAMETERS SENSITIVITY
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Figure 6: Hyperparameter sensitivity analysis w.r.t τ on our
generated datasets.

According to equation 4, the tem-
perature (τ ) in the Softmax func-
tion is a critical hyperparameter that
affects classification resolution. To
investigate this, we conduct a hy-
perparameter sensitivity analysis of
DCScore w.r.t. τ on our gener-
ated datasets used in Section 5.2.1.
We vary τ within the range of
{0.0001, 0.001, 0.1, 0.5, 1, 10}. Fig-
ure 6 presents hyperparameter sensi-
tivity results for two natural language
generation tasks: text classification
and story completion. Overall, lower τ values result in lower Spearman’s ρ, even indicating a
negative correlation, while higher τ values do the opposite. From equation 4, a higher τ reduces
pairwise similarity differences, leading to a more uniform distribution of classification probabilities
for each sample. This phenomenon can be regarded as a lower classification resolution, i.e., the
classification function fK has poorer discrimination power. Furthermore, the correlation result of
the 13B generation model under the few-shot setting for the text classification task remains stable
despite variations in τ . This phenomenon has the same explanation as in Figure 3.

6 CONCLUSION

In this work, we investigate the diversity evaluation of LLM-generated datasets, a topic systemati-
cally under-explored in existing research. To this end, we present DCScore, a diversity evaluation
method from a classification perspective. DCScore regards the holistic diversity evaluation as the
classification task at the sample level, thereby facilitating the capture of mutual relationships be-
tween samples. We provide theoretical guarantees demonstrating that DCScore meets the axiom
requirements (Leinster & Cobbold, 2012) for a principled diversity evaluation method. Further-
more, we show that existing methods can be unified within the DCScore framework. Experiments
on LLM-generated datasets reveal that DCScore exhibits better correlations with various diver-
sity pseudo-truths, such as τg and human judgment. Meanwhile, DCScore exhibits significantly
lower computational cost compared to transformation-based counterparts. Finally, we hope our
work encourages future research to pay more attention to the diversity of LLM-generated datasets
and promotes the wider application of these datasets.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yelaman Abdullin, Diego Molla-Aliod, Bahadorreza Ofoghi, John Yearwood, and Qingyang Li.
Synthetic dialogue dataset generation using llm agents. arXiv preprint arXiv:2401.17461, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Haldun Akoglu. User’s guide to correlation coefficients. Turkish journal of emergency medicine,
18(3):91–93, 2018.

Judith Butepage, Michael J Black, Danica Kragic, and Hedvig Kjellstrom. Deep representation
learning for human motion prediction and classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6158–6166, 2017.

Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent Char-
lin. Language gans falling short. arXiv preprint arXiv:1811.02549, 2018.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection
for tuning large language models. arXiv preprint arXiv:2307.06290, 2023.

Derek Chen, Celine Lee, Yunan Lu, Domenic Rosati, and Zhou Yu. Mixture of soft prompts for
controllable data generation. arXiv preprint arXiv:2303.01580, 2023.

John Joon Young Chung, Ece Kamar, and Saleema Amershi. Increasing diversity while maintain-
ing accuracy: Text data generation with large language models and human interventions. arXiv
preprint arXiv:2306.04140, 2023.
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A ADDITIONAL RELATED WORK

Limited by the space, we provide a literature review of the LLM dataset generator and application
of diversity evaluation methods as follows.

A.1 LLM DATASET GENERATOR

Prompt-guided and Dataset-guided Strategies. Recent studies (Ding et al., 2022; Chung et al.,
2023) leverage LLMs to augment existing datasets or generate a dataset from scratch, demonstrat-
ing the effectiveness in improving dataset quality and reducing data collection costs. Generally,
efforts to employ LLMs as dataset generators can be categorized into three strategies: Prompt-
guided (Li et al., 2023), Dataset-guided (Ye et al., 2022), and Instruct-guided (Samuel et al., 2023).
The prompt-guided strategy, a prominent data augmentation approach using LLMs, involves design-
ing task-specific prompts to guide LLMs to augment data in a few-shot (Yoo et al., 2021) or zero-
shot (Mahmoudi et al., 2024) manner. Due to its simplicity and effectiveness, subsequent works
extend this strategy to various scenarios, such as medical (Yuan et al., 2023), person retrieval (Li
et al., 2024b), and social media scenario (dos Santos et al., 2024). However, simple prompt engi-
neering has limitations in fully exploiting the capabilities of LLMs, leading to the development of
multi-level prompt designs (Ye et al., 2024) and targeted sample augmentation (Yang et al., 2024a).
To further harness the potential of LLMs, the dataset-guided strategy employs LLMs to generate a
training set and then trains a task-specific model to annotate unlabeled data (Sahu & Laradji, 2024).
The dataset-guided strategy aims to approximate the distribution of targeted scenarios, but it is cur-
rently only applicable to text classification tasks.

Instruct-guided Strategy. Previous studies (White et al., 2023) indicate that the design of prompts
significantly impacts the performance of LLMs, spurring research into the instruct-guided strat-
egy. Generally speaking, the instruct-guided strategy leverages LLMs to generate instructions that
guide another LLM in dataset generation (Evuru et al., 2024). These instructions typically relate
to context (Samuel et al., 2023), criteria (Huang et al., 2023), and tasks (Wang et al., 2022). To
further improve the quality of instructions, efforts have been concentrated on selecting optimal in-
structions (Li et al., 2024a), integrating soft instructions (Chen et al., 2023), and implementing
self-correction mechanisms (Gupta et al., 2023). In a nutshell, LLMs are employed to generate or
augment datasets through prompt engineering and multi-step strategies, which encompass various
application scenarios and downstream tasks. Meanwhile, the diversity of LLM-generated datasets
emerges as a critical factor in measuring data quality. In our work, we focus on the diversity evalu-
ation of LLM-generated datasets derived from any dataset generation strategies.

A.2 APPLICATION OF DIVERSITY EVALUATION METHODS

Quantifying Augmentation Performance. As data augmentation becomes an essential component
in the training of deep neural networks (Zhang, 2017; Park et al., 2019), researchers gradually ex-
plore a better quantification of the quality of data augmentation. Some studies (Cubuk et al., 2019)
suggest that the effectiveness of data augmentation arises from the increased diversity of the data.
Inspired by this observation, a series of studies have introduced diversity evaluation metrics into the
performance assessment of data augmentation strategies. Specifically, they consider diversity as one
aspect of evaluating the quality of augmented data, thereby determining the effectiveness of data
augmentation. For instance, Gontijo-Lopes et al. (2020) utilize the fundamental idea that models
find it more challenging to fit more diverse data, comparing metrics such as training loss and train-
ing time before and after augmentation to assess diversity. Similarly, Yang et al. (2024b) evaluate
diversity by examining the eigenvalues and eigenvectors of the similarity matrix of samples before
and after augmentation.

Evaluating Mode Collapse. Generative adversarial networks (GANs) (Goodfellow et al., 2020)
suffer from a well-known phenomenon called mode collapse, which can result in a lack of diversity
in the generated samples (Dieng et al., 2019). Consequently, existing studies assess mode collapse
by evaluating the diversity of the generated samples. For instance, a common approach is to train
an MNIST classifier and then count the number of unique classes predicted for the generated sam-
ples. Following this paradigm, VendiScore (Dan Friedman & Dieng, 2023) compares the generation
diversity of PresGAN (Dieng et al., 2019) and Self-conditioned GAN (Liu et al., 2020). Addition-
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ally, some studies (Yu et al., 2017; Zhu et al., 2018; Caccia et al., 2018) employ different metrics to
evaluate the diversity of generated samples from GANs.

Other Applications. In addition to the aforementioned applications, diversity evaluation metrics
have valuable applications in various areas, including sample selection for datasets (Cao et al., 2023),
enhancing robustness (Lee et al., 2022), and eliminating biases within datasets (Huber et al., 2024).

B PROOF OF PROPERTIES OF DCSCORE

We theoretically confirm that DCScore satisfies several intuitive axioms pointed out by previous
studies (Leinster & Cobbold, 2012), thereby demonstrating its superiority.

• Effective number (Restated): Diversity should be defined as the effective number of sam-
ples in a dataset, ranging from 1 to n. DCScore meets this axiom, as evidenced by its
behavior: DCScore equals 1 when all samples in D are identical and equals n when all
samples are distinct.

Proof. For DCScore, if all samples in a dataset are the same, the probability of any given
sample being classified into all categories is the same, i.e., for all i, j = {1, 2, ..., n},
P[i, i] = P[i, j] = 1

n . Then, we have DCScore =
∑n

i=1
1
n = 1. If all samples in the

dataset are distinct, for all i, j = {1, 2, ..., n}, P[i, i] = 1. In other words, the classification
function confidently predicts that T̃i belongs to the i-th category. Then, we have DCScore
tending to n.

• Identical samples (Restated): Given two identical datasets D1 and D2, the diversity of
the synthetic dataset D′

generated by merging these two datasets remains unchanged. The
values of DCScore are the same across D1, D2, and D′

, i.e.,

DCScore(D1) = DCScore(D2) = DCScore(D
′
). (10)

Proof. Assuming that D1 and D2 are completely identical, and the samples within each
dataset are entirely different, i.e., DCScore(D1) = DCScore(D2) = n. Let P =

[P1, ..., Pn, ..., P2n] denote the probability matrix of the merged dataset D′
= D1 ∪ D2 =

{Ti}2ni=1. For 1 ≤ i ≤ n, Ti = T2i, where Ti ∈ D1, T2i ∈ D2. Consequently, for each
diversity-sensitive component T̃i in D′

, P[i, i] = P[i, 2i] = 1
2 . Finally, DCScore(D′

) =∑2n
i=1

1
2 = n.

However, the assumption that all samples in the dataset are completely different may be
too stringent. We further provide a proof with a more relaxed assumption. Suppose thatD1

and D2 are completely identical, with K1 and K2 denoting the kernel matrices for D1 and
D2, respectively. In this case, we have K1 = K2 as follows:

K1 = K2 =


k11,1 k11,2 · · · k11,n
k12,1 k12,2 · · · k12,n

...
...

. . .
...

k1n,1 k1n,2 · · · k1n,n

 =


k21,1 k21,2 · · · k21,n
k22,1 k22,2 · · · k22,n

...
...

. . .
...

k2n,1 k2n,2 · · · k2n,n

 . (11)

According to equation 4, for the i-th diversity-sensitive component in D1 and D2, the
probability of being classified as category ci can be computed as follows:

P1[i, i] = P2[i, i] =
k1i,i∑
j k

1
i,j

=
k2i,i∑
j k

2
i,j

. (12)

For a merged dataset D′
= D1 ∪ D2 = {Ti}2ni=1, when 1 ≤ i ≤ n, we have Ti = T2i,

where Ti ∈ D1, T2i ∈ D2. Since the newly added data samples do not affect the pairwise
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similarity, the kernel matrix K
′

for D′
can be formulated as follows:

K
′
=



k11,1 · · · k11,n k21,1 · · · k21,n
...

. . .
...

...
. . .

...
k1n,1 · · · k1n,n k2n,1 · · · k2n,n
k21,1 · · · k21,n k11,1 · · · k11,n

...
. . .

...
...

. . .
...

k2n,1 · · · k2n,n k1n,1 · · · k1n,n


. (13)

Analogous to equation 12, for 1 ≤ i ≤ n, the probability of the i-th diversity-sensitive
component in D′

being classified as category ci can be computed as follows:

P
′
[i, i] =

k1i,i∑
j k

1
i,j +

∑
j k

2
i,j

=
k1i,i

2
∑

j k
1
i,j

=
k1i,i

2
∑

j k
2
i,j

=
1

2
P1[i, i] =

1

2
P2[i, i].

(14)

For n + 1 ≤ i ≤ 2n, we obtain the same result as depicted in equation 14. Consequently,
the diversity of D′

can be computed as follows:

DCScore(D
′
) =

2n∑
i

P
′
[i, i]

=
1

2

n∑
i

P1[i, i] +
1

2

n∑
i

P2[i, i]

=

n∑
i

P1[i, i] =

n∑
i

P2[i, i]

= DCScore(D1) = DCScore(D2).

(15)

• Symmetry (Restated): Diversity remains constant regardless of the order of the samples,
exhibiting permutation invariance. Let π denote the permutation function for the sample
order, DCScore remains unchanged for any sample permutation of D, i.e.,

DCScore(D) = DCScore(π(D)). (16)

Proof. According to equation 4, the order of samples does not affect the classification task.
Thus, the diagonal elements of P remain unchanged, indicating the symmetry property of
DCScore.

• Monotonicity (Restated): The diversity of a dataset decreases as the similarity between
its samples increases. Given two datasets D1 and D2, and a new sample Tn+1, where the
samples in D1 and D2 are entirely different, and DCScore(D1) = DCScore(D2) = n. If
Tn+1 is more similar to the samples inD2 than to those inD1 and is added to both datasets,
then for the merged datasets D′

1 and D′

2, DCScore satisfies the following equation.

DCScore(D
′

1) > DCScore(D
′

2). (17)

Proof. For D′

1 = {T 1
1 , T 1

2 , ..., T 1
n , Tn+1} and D′

2 = {T 2
1 , T 2

2 , ..., T 2
n , Tn+1}, we have

S(T 1
i , Tn+1) < S(T 2

j , Tn+1) for any i, j = {1, 2, ..., n}. Here, S is the similarity func-
tion. In this regard, the classification function f exhibits lower confidence when classify-
ing datasetD′

2, resulting in a lower probability that the i-th sample is classified into the i-th
class, thereby leading to PD′

1
[i, i] > PD′

2
[i, i]. Then, the following formula is satisfied:

PD′
1
[i, i] > PD′

2
[i, i]→ DCScore(D

′

1) > DCScore(D
′

2), (18)

where PD′
1
, PD′

2
are the probability matrix of D′

1, D′

2, respectively.
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C ALGORITHM

We further provide the PyTorch style pseudocode for implementing DCScore, as shown in algo-
rithm 1. Our proposed method includes three stages: text representation, pairwise similarity, and
diversity summarization. It is worth noting that the Softmax operation can be replaced with other
Softmax like additive margin Softmax (Wang et al., 2018).

Algorithm 1 PyTorch style pseudocode for DCScore.

# t: diversity-sensitive components within the evaluated dataset
# H: embeddings of t
# K: kernel matrix
# P: probability matrix

# text representation
H = embedder(t)

# pairwise similarity
K = kernel(H)

# diversity summarization
P = softmax(K)
DCScore = Trace(P)

D EXPERIMENTAL SETTINGS

D.1 DATASETS

Two types of generated datasets, including our generated datasets and publicly available generated
datasets, are employed in our experiments. We provide detailed information on these datasets below.

D.1.1 OUR GENERATED DATASETS

We utilize two different our generated datasets in three subsections: Section 5.2.1, Section 5.2.2,
and Section 5.4. It is worth noting that Section 5.2.1 and Section 5.4 share the same experimental
datasets. We employ two commonly used LLMs as our dataset generator, including Llama2-13B
(13B) and Llama2-70B (70B) (Touvron et al., 2023). To prompt LLMs to generate datasets, we
design two prompts corresponding to Zero-shot and Few-shot generation settings, respectively. Ad-
ditionally, our generated datasets involve two natural language generation (NLG) tasks: text classi-
fication and story completion. We set the maximum number of generated tokens to 100 and 30 for
text classification and story completion tasks, respectively. The detailed generation information is
offered as follows.

Generation Settings. We use different generation settings for generated datasets used in Sec-
tion 5.2.1, Section 5.2.2, and Section 5.4.

• Datasets on Section 5.2.1, Section 5.4, Appendix E.4, and Appendix E.5. We generate
21 sub-datasets corresponding to different τg by varying τg from 0.2 to 1.2 with 0.05 inter-
vals. For each sub-dataset, we employ LLMs (13B or 70B) to generate sets of 10 responses
per context. Specifically, each sub-dataset consists of 100 samples.

• Datasets on Section 5.2.2. We employ the 70B model to generate 6 sub-datasets corre-
sponding to different τg by varying τg from 0.2 to 1.2 with 0.2 intervals. Each sub-dataset
includes 5 samples corresponding to a context. To repeat experiments five times, we use
five different contexts to prompt the 70B model to generate 5 sub-datasets for each τg .

• Datasets on Appendix E.2. In zero-shot or few-shot settings, we utilize the 70B model
to generate three sub-datasets for the text classification task, corresponding to τg =
{0.2, 0.7, 1.2}, respectively. Unlike other settings that provide only one example, in this ex-
periment, we adopt a few-shot setting where four examples and their corresponding labels
are given, including two positive examples and two negative examples. Each sub-dataset
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Table 5: Prompt settings for zero-shot and few-shot settings. Contents that need to be replaced are
highlighted in gray .

NLG Tasks Zero-shot Few-shot
Text Classifi-
cation

Now you are a movie
critic. You are given a
movie genre/style and a
length requirement. You
must come up with a
movie that corresponds
to the genre/style and
write a review that meets
the length requirement.
Write a film review for a
{style} movie to express

{pos or neg} feedback.
Each review should have
{num of words} words.

Be sure to express your per-
sonal insights and feelings.
Please be creative and write
unique movie reviews.

Now you are a movie critic. You
are given a movie genre/style and a
length requirement. You must come
up with a movie that corresponds
to the genre/style and write a re-
view that meets the length require-
ment. Write a film review accord-
ing to the given example. Make
sure your review expresses the same
sentiment (positive or negative) as
the example. Each review should
have {num of words} words. Be
sure to express your personal in-
sights and feelings. Please be cre-
ative and write unique movie re-
views. The following is the exam-
ple:
#An example from IMDB (Maas

et al., 2011)#

Story Com-
pletion

Question: {story q}
Answer:

Complete the story according to the
given example.
Example:
#An example from ROC Stories (Mostafazadeh

et al., 2016)#
Question: {story q}
Answer:

contains 3,000 samples, and a context is employed to prompt the 70B model to generate
five samples. To train text classification models on each sub-dataset, we randomly split
2,100 samples to the training set for each sub-dataset and gather the remaining 900 sam-
ples into the testing set across all three sub-datasets. Consequently, we construct a test set
comprising 1,800 samples.

Prompt Settings. Following the setting of Li et al. (2023), we design different prompts for zero-shot
and few-shot settings, respectively. For the text classification task under the zero-shot setting, we
require LLMs to generate movie reviews with Sci-fi/Action/Drama/Comedy/Romance topics. Each
movie review contains a single sentiment of either positive or negative, which is regarded as the text
label. For the story completion task, we require LLMs to complete the story according to the given
context. The detailed prompt setting is provided in Table 5.

In Table 5, “{style}” will be replaced with one topic within {Sci-fi, Action, Drama, Com-
edy, Romance} and “{pos or neg}” will be replaced with one label within {Positive, Negative}.
“{num of words}” will be replaced with “50”. “{story q}” will be replaced by the first three sen-
tences of each sample in the ROC Stories dataset.

D.1.2 PUBLICLY AVAILABLE GENERATED DATASETS

We use SST2 (Socher et al., 2013), Yelp (Zhang et al., 2015), and AG News (Zhang et al., 2015),
and their augmented version based on AttrPrompt (Yu et al., 2024). For three original datasets,
we randomly sample data from training sets and apply this to the computational cost analysis in
Appendix E.3. For three augmented datasets, each dataset has 6000 samples. We sample different
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sub-datasets based on these three datasets, applied to Section 5.2.1 and Section 5.3, respectively.
The details are as follows.

• Datasets on Section 5.2.1. We randomly sample 1000 samples from each of the three
datasets.

• Datasets on Section 5.3. We remove samples with text token lengths less than 50 in the
three datasets and then truncate each sample to a length of 50 tokens. Based on the above,
we set up sub-datasets with randomly sampled samples of 100, 500, 1000, 2000, and 4000
according to experimental settings.

D.2 IMPLEMENTATION DETAILS

For three transformation-based methods, including DCScore, VendiScore, and K-means Inertia, we
employ unsup-simcse-bert-base-uncased (princeton nlp, 2021) as the embedding function. For all
dataset generation language models, we set the top-p and top-k parameters to 1 and -1, respectively.
Additionally, we limit the maximum number of newly generated tokens to 100 for the text classi-
fication task and 30 for the story completion task. All experiments are conducted on 8× NVIDIA
Tesla V100 GPU with 32GB memory.

D.2.1 HYPERPARAMETER SETTINGS OF DIVERSITY EVALUATION

For DCScore, VendiScore, and K-means Inertia, we fix the batch size of generating sample rep-
resentation at 128 across all experiments. Given the varying hyperparameters for each diversity
evaluation method, we provide the detailed settings for each method below:

• DCScore. We employ the cosine similarity as Kernel(·), and Softmax as fK(·). Except
for hyperparameter sensitivity experiments, we set τ in equation 4 to 1 for all other experi-
ments.

• Distinct-n. We use 5-grams to calculate distinct-n.
• K-means Inertia. We set the number of clusters to 10 for all experiments.
• VendiScore. We employ the cosine similarity as Kernel(·).

D.2.2 HYPERPARAMETER SETTINGS OF DOWNSTREAM TASK TRAINING

To train text classification models, we employ RoBERTa (Liu, 2019) as the encoder and utilize the
representations from the last layer of the encoder as the classifier’s input. We employ LoRA (Hu
et al., 2021) to finetune the encoder and the classifier on our generated datasets. Specifically, we fix
the LoRA scaling factor to 32 and the rank of the update matrices to 8. We use AdamW (Loshchilov,
2017) with an initial learning rate of 5e-5 and linear learning rate decay as our optimizer. Addition-
ally, we set the batch size per GPU as 32 and epochs as 120. For the number of training GPUs, we
employ 8 GPUs for zero-shot settings and 4 GPUs for few-shot settings. Therefore, the different
training steps for zero-shot and few-shot settings are shown in Figure 8.

D.2.3 EVALUATION PROTOCOL

In our experiments, we employ diversity evaluation methods to score the diversity of sub-datasets
using two evaluation protocols: overall evaluation and batch evaluation. While K-means Inertia
uses the overall evaluation protocol, all other methods utilize the batch evaluation protocol. The
detailed settings for the two evaluation protocols are as follows:

• Batch evaluation. Due to a context or prompt associated with several samples in a sub-
dataset, the batch evaluation protocol requires that evaluation methods treat samples gen-
erated from the same context as a single batch. The evaluation results are then averaged
across all batches of the entire sub-dataset.

• Overall evaluation. We consider each sample in a sub-dataset as independent, meaning
each sample is generated by a distinct context or prompt. Based on this assumption, the
overall evaluation protocol requires evaluation methods to directly measure the diversity of
the entire sub-dataset.
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Task: Use the following criteria to compare two sets of sentences and judge which set of sentences better meets the criteria. Each set of
sentences contains 5 sentences, each starting with “#”. 
Evaluation Criteria: Diversity includes richness of vocabulary, variation in sentence structure, and diversity of topics, as detailed below:
- Vocabulary richness: Whether the vocabulary used in the sentences is diverse and includes uncommon words
- Sentence Structure Variation: Whether there is variation in sentence structure and different grammar structures are used.
- Topic Diversity: Whether the sentences cover different topics or concepts.
Please compare the following two sets of sentences and analyze them based on the above criteria:
Sentence set 1: xxx
Sentence set 2: xxx
Analyze each sentence and based on the above criteria, give your judgement: Which sentence better meets the criteria? Please directly
answer with "Sentence set 1 wins" or "Sentence set 2 wins". If it is impossible to judge, then answer with "No winner".

Task 
Definition

Diversity 
Definition

General 
Prompt

Sent. Set 1

Sent. Set 2
Prompt for GPT-4 

Evaluation = + + +

Prompt Demo (The background color of the text signifies the category to which it belongs, including 
the task definition, diversity definition, general prompt, and sentence sets.)

Figure 7: Prompt settings for GPT-4 evaluations.

Table 6: Pairwise correlation (Spearman’s ρ) between GPT-4, temperature (τg), and DCScore.
DCScore indicates a strong correlation with GPT-4 evaluation results.

Story-Few Story-Zero Text-Few Text-Zero

GPT-4-DCScore 0.6057±0.30 0.9010±0.04 0.6131±0.18 0.9052±0.09

τg-DCScore 0.6757±0.30 0.8782±0.08 0.5714±0.27 0.9336±0.06

τg-GPT-4 0.9086±0.07 0.7829±0.16 0.8400±0.16 0.8971±0.07

D.2.4 PROMPT SETTINGS OF LLM EVALUATION

In Section 6, we use GPT-4 to perform pairwise diversity comparisons. To guide GPT-4 in making
these comparisons, we employ a well-designed prompt, as illustrated in Figure 7. The prompt for
GPT-4 evaluations includes the task definition, diversity definition, general prompt, and sentence
sets to be compared.

E ADDITIONAL EXPERIMENTS

E.1 CORRELATION WITH LLM EVALUATOR

To further verify the effectiveness of DCScore, we investigate the evaluation correlation between
DCScore and LLMs. Following the setting in Section 5.2.2, we employ GPT-4 to conduct pairwise
comparisons between two generated datasets with different τg . It is worth noting that these generated
datasets are identical to those used in Section 5.2.2. Based on the pairwise comparison results, we
obtain the diversity ranking outcomes. Regarding GPT-4 evaluation results as the diversity pseudo-
truth, we report the pairwise evaluation correlation between DCScore, GPT-4, and τg in Table 6.
We observe that DCScore exhibits strong correlations with GPT-4 and τg in zero-shot settings.
By comparing the results of “τg-DCScore” and “τg-GPT-4”, we find that DCScore outperforms
the GPT-4 evaluator in terms of correlation with τg in zero-shot settings. Regarding the correlation
performance in few-shot settings, we notice lower correlations of all baseline methods compared to
zero-shot settings. We guess that this phenomenon is related to the distributions of the generated
datasets. Although DCScore exhibits lower correlations (about 0.6) with GPT-4, this result can
still be considered a strong correlation according to Akoglu (2018).

E.2 CORRELATION WITH DOWNSTREAM TASK TRAINING

To investigate the correlation between DCScore and downstream task training, we train text clas-
sification models using our generated datasets under zero-shot and few-shot settings. We vary the
generation temperature τg of our generated datasets within the range of {0.2, 0.7, 1.2}. More details
of training datasets and hyperparameters are presented in Appendix D.1.1 and D.2.2, respectively.
Figure 8 shows the loss curves of these trained classification models. In the zero-shot setting, we
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Table 7: Downstream task training performance and diversity evaluation on our generated datasets
with τg = {0.2, 0.7, 1.2}.

Accuracy DCScore
τg=0.2 τg=0.7 τg=1.2 τg=0.2 τg=0.7 τg=1.2

Zero-shot 89.10 89.70 90.37 481.76 1745.42 2082.42
Few-shot 70.07 73.19 72.44 1376.43 1958.16 2047.90
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Figure 8: Loss curves of the downstream task training.

observe increasing optimal loss values as τg varied from 0.2 to 1.2, indicating that the model is more
easily fitted to datasets with limited diversity. However, as shown in Table 7, models trained on
more diverse datasets achieve better accuracy, which can be attributed to their enhanced general-
ization capabilities. From Table 7, the diversity evaluated by DCScore has a similar trend to the
accuracy performance in the zero-shot setting, further demonstrating the effectiveness of DCScore
in diversity evaluation.

In the few-shot setting, we observe a trend in optimal loss variation similar to that in the zero-shot
setting, as shown in Figure 8. However, as shown in Table 7, the performance of the model trained
on the dataset generated with τg = 1.2 is inferior to that of the model trained on the dataset generated
with τg = 0.7, which contrasts with the findings in the zero-shot setting. This phenomenon can be
attributed to the higher diversity of datasets generated at a higher τg , resulting in increased fitting
difficulty. Under the current settings, the number of training epochs for the dataset generated at a
temperature of 1.2 is insufficient, preventing the trained model from achieving optimal performance.
To validate this hypothesis, we increase the number of epochs to 240 and 360 and train models
on the dataset generated at a temperature of 1.2. The final training loss and accuracy of these
models are shown in Figure 9. We observe that as the number of epochs increases, the model’s loss
gradually decreases, and its performance improves progressively. Ultimately, the model’s accuracy
outperforms that of models trained on datasets generated at temperatures of 0.2 and 0.7. Moreover,
from Table 7, models trained on datasets from the zero-shot setting outperform those trained on
datasets from the few-shot setting. However, this discrepancy arises from the different test sets used
in the two settings, making direct performance comparisons inappropriate.

E.3 COMPUTATIONAL COST FOR LARGER DATASETS

In the case where the inner product is used as the kernel function and n≫ d, VendiScore can signif-
icantly reduce computational complexity. To ensure a fair comparison, we compare the computation
times of VendiScore and DCScore on larger datasets, as well as under different kernel functions.
Specifically, we employ SST2, Yelp, and AG News as the evaluated datasets. We randomly sam-
ple 4k, 8k, 16k, 32k, 64k samples and record the computation times for both methods across these
different sample sizes. We repeat the experiments 5 times to report the mean and standard deviation.

As shown in Tables 8-10, DCScore has a shorter computation time than VendiScore in most cases,
with VendiScore only exhibiting a computational advantage when the inner product is used and n≫
d. Furthermore, as the sample size increases, the efficiency advantage of DCScore becomes more
pronounced. When using a polynomial kernel, on the SST2 dataset, DCScore requires only one-
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Figure 9: Loss curves and accuracy of models trained on generated dataset with τg = 1.2.

Table 8: Comparison of computation time between DCScore and VendiScore on SST2.

Kernels SST2

Sample num 4k 8k 16k 32k 64k

Inner product
VendiScore 4.65±0.28 9.84±0.26 19.02±0.70 37.31±1.88 76.19±1.91

DCScore 4.58±0.29 10.03±0.17 20.42±0.39 42.91±1.59 112.47±2.43

RBF kernel
VendiScore 5.86±0.06 12.41±0.49 32.94±0.40 100.36±1.44 449.14±10.35

DCScore 5.22±0.33 9.94±0.42 21.20±0.75 46.57±1.47 117.06±1.91

Poly kernel
VendiScore 5.73±0.06 12.72±0.41 31.47±0.97 98.31±0.25 453.11±2.53

DCScore 5.09±0.28 10.27±0.12 20.12±1.02 46.25±1.82 123.51±3.40

Table 9: Comparison of computation time between DCScore and VendiScore on Yelp.

Kernels Yelp

Sample num 4k 8k 16k 32k 64k

Inner product
VendiScore 57.96±0.35 114.64±1.63 227.76±7.04 451.49±19.73 912.60±25.69

DCScore 57.95±0.31 115.35±1.16 232.49±1.34 448.98±23.94 961.29±2.86

RBF kernel
VendiScore 59.31±0.06 118.15±0.91 242.06±7.60 527.99±2.89 1272.93±21.15

DCScore 58.49±0.14 116.29±0.92 232.94±3.09 471.18±7.80 953.62±17.21

Poly kernel
VendiScore 59.48±0.05 118.94±0.95 234.08±11.72 522.82±3.04 1313.55±12.64

DCScore 58.73±0.08 117.02±0.90 227.72±9.51 462.45±13.91 988.53±1.10

third of the computation time of VendiScore when the sample size reaches 64k. In contrast, although
VendiScore has a computational advantage in the case of the inner product, the difference compared
to DCScore is not significant. The experimental results are consistent with our complexity analysis
presented in Appendix F. Overall, DCScore outperforms VendiScore in terms of computation time
across most kernel functions. VendiScore exhibits a computational time advantage only when the
inner product is used as the kernel function, which will limit its applicability. As shown in Chapter 4
of Seeger (2004), it is essential to employ different kernel functions to accommodate a wider range
of scenarios.

E.4 IMPACT OF EMBEDDING FUNCTIONS Φ

The paradigm of the transformation-based method enables DCScore to utilize various embedding
functions tailored to different scenarios. Consequently, we investigate the impact of embedding
functions on our generated datasets used in Section 5.2.1. As shown in Table 11, we compare the
correlation of the diversity evaluation results of DCScore across 4 different embedding functions
with diversity pseudo-truths, where the model names in parentheses within the embedding func-
tion refer to those available on Hugging Face. Our findings indicate that DCScore exhibits strong
correlations with diversity pseudo-truths across various embedding functions. Notably, DCScore
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Table 10: Comparison of computation time between DCScore and VendiScore on AG News.

Kernels AG News

Sample num 4k 8k 16k 32k 64k

Inner product
VendiScore 14.56±1.16 30.20±1.15 63.70±1.39 127.25±1.13 254.20±11.71

DCScore 14.61±1.15 30.61±1.77 63.57±2.68 129.70±4.17 284.76±12.30

RBF kernel
VendiScore 16.69±1.54 33.69±1.47 80.09±2.34 185.79±6.44 617.06±12.51

DCScore 16.01±1.53 31.06±0.96 69.15±1.32 129.36±5.56 297.29±3.67

Poly kernel
VendiScore 17.60±0.62 36.16±1.27 79.34±1.57 190.96±2.75 632.69±10.14

DCScore 16.88±0.59 33.78±1.28 68.18±1.66 138.18±3.82 303.06±11.40

Table 11: Correlation (Spearman’s ρ) results of DCScore with various embedding models. Spear-
man’s ρ varies between -1 and +1 with 0 implying no correlation. Best results are indicated in bold.

Embedding models
Zero-shot setting Few-shot setting

Text classification Story completion Text classification Story completion

13B 70B 13B 70B 13B 70B 13B 70B

SimCSE (unsup-simcse-bert-base-uncased) 0.9961 0.9779 0.9844 0.9792 0.9909 0.9883 0.9857 0.9974
SimCSE (sup-simcse-roberta-large) 0.9909 0.9753 0.9883 0.9883 0.9792 0.9935 0.9779 0.9623
Sentence BERT (all-mpnet-base-v2) 0.9896 0.9740 0.9870 0.9909 0.9766 0.9870 0.9857 0.9870
BGE (bge-large-en-v1.5) 0.9909 0.9896 0.9922 0.9948 0.9857 0.9922 0.9870 0.9922

Table 12: Correlation (Spearman’s ρ) results of DCScore with various kernel functions. Spear-
man’s ρ varies between -1 and +1 with 0 implying no correlation. Best results are indicated in bold.

Embedding models
Zero-shot setting Few-shot setting

Text classification Story completion Text classification Story completion

13B 70B 13B 70B 13B 70B 13B 70B

Inner product 0.9961 0.9779 0.9844 0.9792 0.9909 0.9883 0.9857 0.9974
laplacian kernel 0.9935 0.9831 0.9883 0.9727 0.9597 0.9649 0.9701 0.9922
RBF kernel 0.9935 0.9818 0.9896 0.9753 0.9740 0.9727 0.9792 0.9922
polynomial kernel 0.9870 0.9584 0.9714 0.9506 0.9182 0.9182 0.9857 0.9896

utilizing the BGE embedding function achieves the best results in half of the cases. Additionally, the
minimum correlation in Table 11 exceeds 0.96, which is classified as a strong correlation according
to Akoglu (2018). This result also supports the following two conclusions: (1) the embedding func-
tion used effectively captures the differences among samples in the dataset from multiple perspec-
tives, and (2) DCScore is sufficiently adaptable to different embedding functions while maintaining
stable performance.

E.5 IMPACT OF KERNEL FUNCTIONS

Similar to Appendix E.4, we investigate the impact of different kernel functions on the performance
of DCScore. Specifically, this experimental setup is identical to that in Appendix E.4. As shown in
Table 12, we find that DCScore demonstrates stable performance across various kernel functions.
However, the influence of the kernel function is slightly more pronounced than that of the embedding
function, as indicated by the greater fluctuations in correlation among the different kernel functions.
Furthermore, we observe that DCScore achieves optimal performance in the case of the inner
product. Overall, DCScore consistently maintains strong diversity evaluation performance across
different kernel functions.
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Table 13: Comparison of Complexity analysis between DCScore and VendiScore. Okernel repre-
sents the complexity of the kernel function.

General Kernels Inner Product

Pairwise Similarity Vendi Score O(n2 · Okernel)
O(d2n)

DCScore O(n2d)

Summarization Vendi Score O(n3) O(d3)
DCScore O(n2) O(n2)

Total Vendi Score O(n2 · Okernel + n3) O(d2n+ d3) = O(d2n)
DCScore O(n2 · Okernel + n2) O(n2d+ n2)

F COMPLEXITY ANALYSIS

To enhance our understanding of DCScore, we provide a brief analysis of its time complexity in
Table 13. Denoting Okernel as the complexity associated with general kernels (i.e., kernels other
than linear kernels), we analyze the complexity in the pairwise similarity and summarization stages.
In the pairwise similarity stage, the computation of pairwise similarities results in a complexity of
O(n2) for DCScore. When combined with the complexity Okernel of the general kernel computa-
tion, DCScore exhibits a total complexity of O(n2 · Okernel) in this stage. In the summarization
stage, DCScore has a complexity of O(n2) due to the softmax operation. Consequently, the overall
complexity of DCScore for general kernels is O(n2 · Okernel + n2). In contrast, VendiScore has
a total complexity of O(n2 · Okernel + n3), where the pairwise similarity stage is identical to that
of DCScore, while the summarization stage incurs a complexity of O(n3) due to the eigenvalue
computation. Thus, for general kernels, DCScore demonstrates lower complexity than VendiScore.

However, when the inner product is employed as the kernel function and n ≫ d, VendiScore can
significantly reduce the complexity by replacing the pairwise similarity XXT with XTX , where
X ∈ Rn×d. This results in complexities of O(d2n) for the pairwise similarity stage and O(d3)
for the summarization stage. In this regard, DCScore has a complexity of O(n2d + n2), which is
slightly worse than that of VendiScore. Fortunately, we can leverage efficient techniques, such as
those proposed in Shim et al. (2017) and Wen et al. (2023), to reduce the computational complexity
of DCScore. Overall, compared to VendiScore, DCScore maintains lower complexity in most
cases, as empirically validated in Section 5.3 and Appendix E.3. Although VendiScore has a lower
complexity when the inner product is used as the kernel, experiments in the Appendix E.3 show
that the computation times of VendiScore and DCScore are quite similar. Additionally, in practical
applications, different kernels can maintain low computational complexity, which is more useful
than being restricted to a single kernel.

G DETAILED MODELING OF EXISTING METHODS

We present the detailed modeling of existing methods into DCScore as follows:

Distinct-n. Distinct-n (Li et al., 2015) is a prevalent diversity metric depending on n-grams, where
n signifies the number of successive items. Distinct-n calculates the proportion of unique n-grams
to all n-grams. The n-grams operation falls under the text representation stage, while the step of
obtaining a unique set of n-grams corresponds to the pairwise similarity stage. Typically, a high
form similarity among samples in the evaluated dataset results in a smaller unique n-grams set.
Finally, ratio calculations belong to the diversity summarization stage.

Text Representation: n-grams(Concat(D)),
Pairwise Similarity: Unique(n-grams(Concat(D))),

Diversity Summarization: Distinct-n(D) = |Unique(n-grams(Concat(D)))|
|n-grams(Concat(D))|

,

(19)
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where n-grams, Unique, and Concat represent the n-grams, de-overlap process, and concatenate
operation, respectively.

K-means inertia. K-means inertia (Du & Black, 2019), a transformation-based method, performs
clustering in sample representation and then calculates inertia as diversity outcomes. Here, inertia
refers to the square summarization of the distance between samples and cluster centroids.

Text Representation: H = Φ({T̃i}ni=1),

Pairwise Similarity: C = K-means(H),

Diversity Summarization: Inertia(D) =
∑

ck∈C,hj∈Hck

(hj − ck)2,
(20)

where H is the representation of all samples and hi is the representation of the i-th sample, C denotes
the cluster centroid set, and ck ∈ C represents the k-th cluster centroid. The sample representation
associated with the k-th cluster centroid is expressed as hj ∈ Hck , while Hck denotes the sample
representations within the k-th cluster centroid.

VendiScore. VendiScore (Dan Friedman & Dieng, 2023) is a recently proposed diversity metric
that falls under the category of the transformation-based method. Based on sample representations,
VendiScore utilizes a kernel function to calculate similarity matrix K. Subsequently, VendiScore
summarizes diversity as the exponential of the Shannon entropy of the eigenvalues of K/n.

Text Representation: H = Φ({T̃i}ni=1),

Pairwise Similarity: K = Kernel(H),

Diversity Summarization: VS(D) = exp (−
n∑

i=1

λi log λi),

(21)

where Kernel(·) is the kernel function, such as the cosine similarity, λi is the i-th eigenvalue of
K/n.

H OTHER IMPLEMENTATIONS FOR A CLASSIFICATION PERSPECTIVE

Equation 9 represents one way to implement the classification perspective of DCScore. There are
other potential implementations of DCScore with lower complexity. When n≫ d, the classification
probability modeling for any sample within the evaluated dataset is primarily determined by samples
that are relatively similar to it, while the majority of other samples fall into the tail probability cate-
gory. Based on this observation, we can reduce computational cost by calculating pairwise similarity
only among similar samples. Therefore, we propose a feasible approach named DCScorecluster

below.

DCScorecluster defines similar samples as those within the same cluster. Specifically,
DCScorecluster involves obtaining cluster centers and the membership of each sample point
through clustering, followed by calculating pairwise similarities among samples within the same
cluster. By performing clustering, we identify similar samples for each sample point to facilitate
pairwise similarity calculation, thereby avoiding the computation of global pairwise similarities and
further reducing the computational complexity of the method. Based on this process, the method
can be formulated as follows:

Text Representation: H = Φ({T̃i}ni=1),

Pairwise Similarity: C = K-means(H),

K[i, j] =

{
Kernel(hi,hj), if hi,hj ∈ Ck

0, if hi ∈ Ck and hj ∈ Cl with k ̸= l

Diversity Summarization: P[i, j] =
{
fK(K[i, j]), if hi,hj ∈ Ck

0, if hi ∈ Ck and hj ∈ Cl with k ̸= l

DCScore(D) = tr(P) =
n∑

i=1

P[i, i].

(22)

where Ck,Cl ∈ C are clusters.
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