
FTP: A Fine-grained Token Pruner for Large Language Models via Token
Routing

Anonymous ACL submission

Abstract001

The substantial computational overhead of002
large language models (LLMs) often presents003
a major challenge for their deployment in in-004
dustrial applications. Many works leverage005
traditional compression approaches to boost006
model inference, however, these methods typi-007
cally incur additional training costs to restore008
performance by updating the LLM’s weights.009
Alternatively, pruning often results in signifi-010
cant performance degradation compared to the011
original model when aiming for a specific level012
of acceleration. To address these issues, we013
propose a fine-grained token pruning approach014
for the LLMs, which presents a learnable router015
to adaptively identify the less important tokens016
and skip them across model blocks to reduce017
computational cost during inference. To con-018
struct the router efficiently, we present a search-019
based sparsity scheduler for pruning sparsity020
allocation, a trainable router combined with021
our proposed four low-dimensional factors as022
input and three proposed losses. Furthermore,023
we introduce a one-pass learnable router de-024
signed for batch inference and enhanced accel-025
eration. We have conducted extensive experi-026
ments across different benchmarks on different027
LLMs to demonstrate the superiority of our028
method. Our approach achieves state-of-the-art029
(SOTA) pruning results, surpassing other exist-030
ing pruning methods. For instance, our method031
outperforms BlockPruner and ShortGPT by ap-032
proximately 10 points on both LLaMA2-7B033
and Qwen1.5-7B in accuracy retention at com-034
parable token sparsity levels.035

1 Introduction036

Large language models (LLMs) (Zhao et al., 2023;037

Minaee et al., 2024) have recently attracted sig-038

nificant attention for their strong performance in039

various natural language processing (NLP) tasks,040

largely driven by the success of the ChatGPT series.041

Currently, the design of LLMs is typically follow-042

ing the scaling law, which increases their size and043

complexity to boost performance. However, this 044

results in high memory usage and computational 045

demands, thereby restricting its deployment in in- 046

dustrial applications. 047

Existing model compression techniques, such 048

as knowledge distillation (Huang et al., 2022; Gu 049

et al., 2024), model pruning (Gao et al., 2020; 050

Li et al., 2023a; Wang et al., 2024), quantiza- 051

tion (Dettmers et al., 2024; Yao et al., 2022), and 052

conditional computation (Schuster et al., 2022; Liu 053

et al., 2023; Akhauri et al., 2024), have proven ef- 054

fective in improving the efficiency of LLMs. Model 055

pruning is a popular technique in industrial appli- 056

cations to boost model inference, which usually 057

identifies and removes the less important weights 058

to reduce the computation overhead. Adopting tra- 059

ditional model pruning to accelerate, often requires 060

training LLM itself (e.g., APT (Zhao et al., 2024) 061

and LLM-Pruner (Ma et al., 2023)) to restore ac- 062

curacy. Retraining LLM is costly and would cause 063

deployment instability. Recently, an interesting re- 064

search named ShortGPT (Men et al., 2024) reveals 065

the significant redundancy when forwarding fea- 066

tures between blocks. They completely remove 067

some blocks based on a simple metric without 068

LLM training, encouragingly, yet the LLM still 069

maintains the better performance than previous 070

model pruning approaches despite this drastic mod- 071

ification. Additionally, further researchs (Zhong 072

et al., 2024; Liu et al., 2024) corroborates this find- 073

ing, demonstrating that pruning LLMs by reducing 074

depth holds great potential. However, while these 075

block-wise depth pruning approaches underscore 076

the impressive redundancy in LLMs, it remains un- 077

convincing to eliminate all operations within blocks 078

through such radical pruning. According to their 079

reports, pruned models exhibit noticeable deterio- 080

ration on specific benchmarks, indicating that valu- 081

able knowledge may still reside in the discarded 082

layer operations. 083

To address the above issues, we present a Fine- 084

1



grained Token Pruning framework (FTP) via to-085

ken routing, which can adaptively prune tokens086

within each block of LLMs based on the varying087

inputs during inference. FTP integrates a sparsity088

scheduler to assign a sparsity ratio to each block,089

ensuring the overall pruning rate target is met. Ad-090

ditionally, it employs a learnable router to prune091

unimportant tokens in the sequence, leveraging four092

key factors as input. We design three simple but093

effective steps to obtain the token router. First, we094

introduce a sparsity scheduler and a static router095

(one with fixed routing rule) to get an initial sparsity096

allocation on blocks. Second, we train a learnable097

router based on initial sparsity allocation. Finally,098

we refine the final sparsity allocation based on the099

frozen learnable router via sparsity scheduler. Addi-100

tionally, we implement three crucial losses in router101

training (i.e. guide, sparsity constraint, and distil-102

lation losses). These innovative implementations103

contribute to a robust and effective token LLM104

pruning method. Furthermore, we introduce a one-105

pass learnable router optimized for batch inference,106

enabling enhanced efficiency and acceleration.107

To verify the effectiveness of our method, we108

conduct extensive experiments on various LLMs in-109

cluding Qwen and LLaMA series models with our110

token pruning method. Our method significantly111

surpasses the other SOTA pruning methods by a112

large margin without retraining the LLMs, which113

fully demonstrates the superiority of our method.114

Our contributions can be mainly summarized as115

follows:116

• We propose a token pruning framework (FTP)117

consisting of three steps: 1) initial sparsity118

searching via sparsity scheduler, 2) A de-119

signed learnable router training with three120

losses, 3) final sparsity searching on the learn-121

able router.122

• We introduce a one-pass learnable router for123

an enhanced acceleration and batch inference.124

• Extensive experiments have been conducted125

on various LLMs with our proposed method,126

which indicates that our method surpasses127

other SOTA pruning methods for LLMs by128

a large margin.129

2 Related Work130

LLM Pruning. Pruning in LLMs aims to identify131

and remove redundant weights or tokens from mod-132

els. As for weight-level pruning, SparseGPT (Fran-133

tar and Alistarh, 2023) addresses the layer-wise 134

reconstruction problem for pruning by computing 135

Hessian inverses. Wanda (Sun et al., 2023) intro- 136

duces a pruning criterion that involves multiplying 137

weight magnitudes by input feature norms. More- 138

over, FLAP (An et al., 2024), LLM-Pruner (Ma 139

et al., 2023), Sheared-LLaMA (Xia et al., 2023) 140

and BlockPruner (Zhong et al., 2024) eliminate cou- 141

pled structures in the aspect of network width while 142

retaining the number of layers, while FoldGPT (Liu 143

et al., 2024) and ShortGPT (Men et al., 2024) ex- 144

ploit model depth redundancy to obtain lightweight 145

models. As for token-level pruning, selective- 146

context (Li et al., 2023b) merges tokens into units, 147

and then applies prompt pruning based on the self- 148

information indicator. STDC (Yin et al., 2023) 149

prunes the prompts based on the parse tree, which 150

iteratively removes the phrase nodes that cause the 151

smallest performance drop after pruning it. LLM- 152

Lingua (Jiang et al., 2023a) and LongLLMLin- 153

gua (Jiang et al., 2023b) perform demonstration- 154

level pruning followed by token-level pruning 155

based on perplexity. PCRL (Jung and Kim, 2024) 156

introduces a token-level pruning scheme based on 157

reinforcement learning. However, most existing 158

pruning approaches permanently remove weights 159

or tokens, which may significantly degrade accu- 160

racy for more challenging tasks. 161

Conditional Computing. Removes weights or to- 162

kens from LLMs would result in a significant drop 163

in accuracy, especially for more challenging tasks. 164

A wide variety of recent work has developed to 165

dynamically activate weights or tokens instead of 166

removing them, also named conditional computing. 167

DejaVu (Liu et al., 2023) dynamically activates 168

neurons and attention heads of each LLM’s layer 169

by building predictors to estimate sparsity patterns. 170

ShadowLLM (Akhauri et al., 2024) dynamical acti- 171

vates weights based on the context (input) itself by 172

training a predictor to predict the sparsity pattern 173

dependent on the input tokens. However, the sparse 174

activation of weights still hurts the generability of 175

models. Many works (Elbayad et al., 2020; Liu 176

et al., 2021; Schuster et al., 2022) utilize early ex- 177

iting to learn to decide when to end computation 178

on a given token, allowing the token to skip any 179

remaining transformer layers. MoD (Raposo et al., 180

2024) dynamically selects tokens via a trainable 181

router for each block which takes hidden states as 182

input and manually specifies the sparsity ratios for 183

every block, and requires training from scratch. In 184

contrast, our work proposes a global token router 185

2



Token ID

Llama2-7B Qwen1.5-7B

Token ID

Figure 1: Token similarity across transformer blocks.

that takes designed input instead of hidden states,186

combined with a sparsity scheduler using a static187

router for pruning sparsity allocation for all blocks.188

It is trained to evaluate token importance to control189

tokens’ skipping or computation for each block.190

3 Method191

In this section, we first provide a detailed analysis192

of token redundancy of LLMs, and then introduce193

the details of Fine-grained Token Pruning frame-194

work (FTP) via token routing.195

3.1 Preliminary196

3.1.1 Token Redundancy197

LLMs are mostly built upon the transformer archi-198

tecture. Here we define L is the sequence length,199

and d is the dimension of transformer. Previous200

works have shown that transformers exhibit certain201

semantic capabilities in earlier blocks (Hasan et al.,202

2021), and there is substantial block-wise redun-203

dancy throughout the model (Men et al., 2024). Fur-204

thermore, MoD (Raposo et al., 2024) demonstrates205

that selectively dropping tokens across blocks can206

still maintain performance comparable to a fully207

dense transformer. In this paper, we uncover signif-208

icant token-wise redundancy across blocks during209

the inference phase.210

We first randomly select 50 sequences from Al-211

paca dataset (Taori et al., 2023) following Short-212

GPT (Men et al., 2024), each consisting of 64 to-213

kens, and calculate the similarity between the input214

hidden state and output hidden state from each to-215

ken of all blocks on both the LLaMA2-7B-base216

and Qwen1.5-7B-base models. We illustrate the217

heatmap from above collected data in Figure 1.218

Higher similarity indicates that a block has less219

influence on the token, while greater changes in220

hidden states suggest lower token redundancy. Our221

analysis reveals the following key insights:222

First, we observe substantial token redundancy223

across both models. Specifically, 89.94% and224

93.16% of tokens in LLaMA2-7B and Qwen1.5-225

7B, respectively, exhibit a similarity score higher226

than 0.8, suggesting minimal changes and a high227

potential for pruning. Conversely, only 10.06% and 228

6.84% of tokens have similarity scores below 0.8, 229

indicating meaningful transformations. Second, 230

token redundancy varies across the blocks of the 231

transformer. Tokens in the initial and final blocks 232

show more significant changes, while tokens in the 233

middle blocks exhibit greater redundancy. Specif- 234

ically, in the first and last three blocks, 49.74% 235

and 35.42% of tokens have similarity scores be- 236

low 0.8, while in the middle blocks, 99.10% and 237

99.76% of tokens have similarity scores above 0.8 238

in LLaMA2-7B and Qwen1.5-7B, respectively. 239

3.1.2 Simultaneously Allocating Sparsity and 240

Pruning Tokens is Non-Trivial 241

As shown in Figure 1, we observe that the redun- 242

dancy levels of different blocks are inconsistent, 243

and the redundancy patterns of tokens within the 244

block are not fixed. Therefore, we need to design 245

a scheme that can simultaneously determine the 246

sparsity ratios for each block and the pruning pat- 247

terns for each block’s tokens. However, optimizing 248

both the sparsity allocation and token pruning pat- 249

terns across blocks increases the complexity of the 250

optimization. Previous methods typically relied 251

on empirical values to manually specify sparsity 252

rates for each block, which can result in suboptimal 253

performance. 254

3.2 Fine-Grained Token Pruner (FTP) 255

To address the challenge of simultaneously allocat- 256

ing sparsity and optimizing token pruning within 257

blocks, we divide the problem into several steps. 258

As shown in Figure 2, the pruning pipeline con- 259

sists of three steps: 1) initial sparsity searching via 260

sparsity scheduler, 2) learnable router training with 261

three losses, 3) final sparsity searching for the learn- 262

able router. Note that these steps can be repeated 263

more times to further enhance performance; how- 264

ever, in our approach, we only repeat them once 265

for simplicity of training. 266

3.2.1 Token Routing Paradigm 267

For each block, the input tokens are assessed by 268

a token router, which gives the decision of skip 269

3



Static

Router
LLM

Step 1: Initial Sparsity Search

Block 1

Block 2

Block N

…

R
o
u
ter

𝑠𝑟
𝑁

𝑠𝑟
2

𝑠𝑟
1

…

…

…

ℒ𝑑 + ℒ𝑔 + ℒ𝑠

…

𝑃

𝑔𝑁

𝑔2

𝑔1

𝐻1

(a) Fine-Grained Token Pruning

S
p
arsity

 S
ch

ed
u

ler

GA Search

𝐻2

𝐻𝑁

… Step 2: Learnable Router Train

Step 3: Sparsity Scheduler Finetune

(b) Training Pipeline

Eq. (1)

Eq. (4)

Eq. (5)

LLM
Sparsity 

Scheduler

LLM
Trained

Router

Learnable

Router

Tunable FrozenGA Search

Sparsity 

Scheduler

Sparsity 

Scheduler

Compute Skip

Figure 2: Overview of our method. (a) Our Fine-Grained Token Pruning uses designed input H to guide gate
prediction, skipping computation instead of discarding tokens. A GA-based scheduler optimizes sparsity per block,
and the router is trained with three proposed losses. (b) We decouple sparsity scheduling and router training into
three steps, simplifying the optimization.

and computation. A specific proportion of the270

most important tokens is then selected to undergo271

the block computation based on sparsity require-272

ments. The unselected tokens, meanwhile, skip the273

block’s computation and remain unchanged until274

next block.275

3.2.2 Sparsity Scheduler276

We implement a sparsity scheduler that aims to al-277

locate the sparsity ratio for each block while main-278

taining overall model sparsity and maximizing the279

evaluation accuracy. Here we utilize the Genetic Al-280

gorithm (Harada and Alba, 2020) as the searching281

implementation. We formulate this search objec-282

tive as Equation 1.283

S∗ = argmax
S

Accuracy(θ(R(S), X), Y )

s.t.
∑

si = P
(1)284

where the θ(R(S), X) indicates that the LLM θ285

works with a routerR assigned a sparsity ratio con-286

figuration S and is fed with input X for prediction.287

Static router is one that uses a fixed rule to se-288

lect tokens with no learnable modules. Inspired by289

the work (Xiao et al., 2023) that indicates that the290

initial token plays a key role in the window atten-291

tion of LLMs for long-text inference. Therefore,292

we construct a static router in following rule: Rank-293

ing the importance of tokens x at the i-th block as294

{xi0, xiL−1, x
i
L−2, ..., x

i
1}, and the top-k unimpor-295

tant tokens would be skipped to meet the sparsity296

requirement and passed directly to the next block.297

We have found that the first and the last few tokens298

in a sequence are typically important for model299

performance, this means that the first token and300

the last few tokens will be prioritized for compu-301

tation in static router. This static router provides302

a good preliminary pruning configuration, which303

serves as the starting point. This design is simple 304

yet effective, surpassing existing state-of-the-art 305

(SOTA) methods, as shown in Table 1 (FTP-static). 306

More results of the static router can be found in 307

Appendix A.4.1. Note that, FTP-static in Section 4 308

is employed with the sparsity searched in step 1. 309

3.2.3 Learnable Dynamic Router 310

After obtaining the sparsity allocation, we use this 311

allocation on the other lightweight learnable router 312

(a two-layer MLP) with dynamic decisions (i.e., se- 313

lect tokens at runtime) to train. Recent router-based 314

methods (Raposo et al., 2024) leverage hidden 315

states to predict pruning configurations. However, 316

we argue that this approach is not suitable for LLM 317

pruning, as hidden states are high-dimensional ab- 318

stract features that require heavy network fitting, 319

leading to increased training and inference costs, 320

and potentially degrading generalization. There- 321

fore, we leverage four factors as router input, these 322

factors are weakly correlated with token hidden 323

states but are related to token redundancy. Here we 324

formulate the input of dynamic router, we define 325

sequence of length L for the i-th block, 326

Hi = {hi
j | j ∈ N, 1 ≤ j ≤ L} =

{(pj , sja, rja, sir) | j ∈ N, 1 ≤ j ≤ L},
(2) 327

where hi
j is the hybrid input vector of the j-th 328

token in the sequence, which is a 4-dimensional 329

vector that includes the token position pj , absolute 330

attention scores sja, relative attention score rank rja, 331

and sparsity requirements sir of the i-th block. 332

Previous work (Xiao et al., 2023) has revealed 333

that tokens at different positions in a sequence are 334

of varying importance. Thus, we adopt the position 335

pj as factor. Additionally, attention scores sja rep- 336

resent the degree of association between a token 337

and other tokens, making it a crucial pruning factor. 338

4



If a token is highly associated with others, it can339

be replaced, indicating its redundancy. During the340

training stage, we maintain an attention score table341

to record the latest attention scores of all tokens342

and update the scores of the computed tokens in se-343

quences. Moreover, we introduce relative attention344

score rank rja to measure the relative importance345

of tokens. Sparsity requirements sir enables our346

dynamic router to allocate pruning configurations347

from a global perspective.348

Dynamic router produces a 2-dimensional score349

oi
j would be normalized by a softmax operation350

and represents the probability of computing the351

j-th input token of the i-th block in the forward352

process. This score is processed by the argmax353

operation and discretize it into a gate g ∈ {0, 1}.354

This gate is used to control whether to skip (g = 0)355

or compute (g = 1) the token in the block. How-356

ever, the argmax operation is non-differentiable.357

Therefore, we utilize the Straight-Through (ST) Es-358

timator (Jang et al., 2016) during the training phase359

to approximate the real gradient∇θg with the gra-360

dient of the soft prediction ∇θs
i. During training361

or inference, the proposed inputs of all tokens from362

a block are fed into the router to obtain the pre-363

dicted importance scores for all the tokens. Note364

that all blocks share the same router, enhancing365

the router’s generalization ability. Dynamic router366

training in step 2 is named "FTP" in Section 4.367

3.2.4 Router Training368

We design three crucial losses to enhance the369

learnable router’s ability to learn token selection:370

guide, sparsity constraint, and knowledge distilla-371

tion losses. Specifically, to accelerate the training372

process of the learnable router, we introduce the373

guide loss as a warm-up constraint at the begin-374

ning. The guide loss (binary cross-entropy (BCE))375

leverages the predictions from static router to guide376

the learnable router in producing reasonable pre-377

dictions during the early stages of training. The378

sparsity constraint loss is employed to align the379

predicted sparsity with the required sparsity of the380

blocks. The predicted sparsity ratio for each block381

is obtained via the summation of skipping tokens382

based on the gate g. The constraint loss imposes383

a penalty on the router only if the predicted spar-384

sity ratio is less than the assigned sparsity ratio as385

follows:386

Ls =
N∑
i

(max(sir −
1

L

L∑
j

(1− gi
j), 0)) (3)387

where N is the number of the LLM’s blocks, gi is 388

the predicted discrete state of the token sequence 389

in the i-th block of the LLM and sir is the required 390

sparsity ratio of that block. 391

Moreover, the knowledge distillation loss is uti- 392

lized to improve the accuracy of the pruned model 393

by aligning the predictions between the original and 394

pruned models using mean squared error (MSE) 395

loss. We apply the distillation loss to the hidden 396

state of the last block output. These losses are com- 397

bined to optimize the learnable router with different 398

weights, resulting in the final loss as follows: 399

L(X,Y; θ,R) = λdLd + λsLs + λgLg (4) 400

where λd, λs and λg are the loss weights of distilla- 401

tion loss Ld, sparsity constraint loss Ls and guide 402

loss Lg, respectively. θ andR denote the parame- 403

ters of the LLM and learnable router, respectively. 404

The loss weight Lg is initialized to 1 and gradually 405

decays to 0 when it progresses to halfway through 406

the total iterations. 407

3.2.5 Learnable One-Pass Router 408

The dynamic router selects tokens at runtime, 409

which somewhat impacts the actual speedup. Ad- 410

ditionally, it does not support batch inference due 411

to varying token pruning patterns across different 412

inputs. To address these issues, we propose a learn- 413

able one-pass strategy that enables batch inference 414

and significantly boosts actual speedup with mini- 415

mal runtime overhead, albeit with a slight trade-off 416

in precision. Maintaining the attention scores ta- 417

ble in the dynamic router may require complex 418

hardware modifications. Additionally, it poses a 419

real-time update bottleneck. Therefore, we discard 420

all attention score-related inputs to alleviate the 421

router’s computational burden. Instead, we intro- 422

duce a learnable position embedding PE to explore 423

suitable token selections. We reconstruct the token 424

factors like: 425

Hi = {hi
j | j ∈ N, 1 ≤ j ≤ L} =

{(pj , PE, sir) | j ∈ N, 1 ≤ j ≤ L},
(5) 426

Position embedding requires adjustment only once 427

during the training phase in step 2 and does not 428

need to be modified during runtime. Specifically, 429

router decisions are made only once per batch job. 430

Compared to dynamic routers, this approach is 431

more straightforward and supports batch inference. 432

Existing works (e.g., BlockPruner (Zhong et al., 433

2024)) have indicated that there are differences in 434

importance between attention modules (MHA) and 435

5



Model Method Ratio (%) ARC-c ARC-e HellaSwag MMLU WinoGrande Avg. Acc. Avg. Percentage (%)

LLaMA2-7B

Dense 0 46.16 74.54 75.99 45.39 69.06 62.25 100
LaCo 21.02 35.84 55.39 54.08 - 60.46 51.44 77.67
RM 21.02 22.53 34.43 29.22 - 49.25 33.86 51.19

LLMPruner 27.0 - - 60.21 23.33 - 41.77 65.32
SliceGPT 21.45 37.12 63.64 56.04 - 59.91 54.18 81.57
ShortGPT 27.0 32.68 48.61 56.15 44.51 64.33 49.25 80.22

BlockPruner 20.99 35.92 61.20 66.04 - 64.09 56.81 84.91
FTP-static 22.0 44.88 72.31 72.66 45.83 69.53 61.04 98.30

FTP-onepass 22.0 45.90 73.15 74.21 46.41 69.85 61.90 99.73
FTP 22.0 45.31 73.06 74.46 46.15 69.22 61.64 99.21

FTP-onepass 30.0 43.09 70.37 67.24 45.76 68.35 58.96 95.21
FTP 30.0 43.65 72.31 67.37 46.07 68.97 59.67 96.32

LLaMA2-13B

Dense 0 49.23 77.36 79.36 54.94 72.14 65.81 100
LaCo 24.37 34.56 54.34 60.44 - 59.27 52.15 74.69
RM 24.37 41.98 66.12 66.80 - 66.61 60.38 86.81

SliceGPT 21.52 42.41 68.52 60.71 - 65.59 59.31 85.53
ShortGPT 24.60 42.92 63.55 69.27 53.83 69.85 59.88 90.28

BlockPruner 24.31 40.53 63.55 71.93 - 70.40 61.60 88.18
FTP-static 25.0 47.95 74.58 76.65 54.51 71.19 64.98 97.66

FTP-onepass 25.0 48.38 74.75 75.99 54.47 71.67 65.53 98.63
FTP 25.0 48.98 75.55 77.49 54.56 72.22 65.76 98.84

FTP-onepass 30.0 48.55 75.93 75.29 54.28 72.06 65.22 98.04
FTP 30.0 48.38 74.75 75.99 54.47 71.67 65.05 97.83

Qwen1.5-7B

Dense 0 42.66 62.16 76.92 60.52 66.46 61.74 100
LaCo 20.97 32.85 46.89 56.35 - 58.64 48.68 78.48
RM 20.97 28.58 54.17 42.00 - 49.88 43.66 70.95

ShortGPT 21.88 33.79 48.44 63.09 49.54 60.93 51.16 82.54
BlockPruner 21.83 33.02 53.49 57.29 - 56.99 50.20 80.92
FTP-static 22.0 43.52 62.71 71.89 60.26 65.19 60.71 98.80

FTP-onepass 22.0 43.65 62.13 73.53 60.12 66.29 61.14 99.39
FTP 22.0 43.69 62.81 74.02 60.86 67.32 61.74 100.03

FTP-onepass 30.0 40.15 58.86 67.95 60.23 65.26 58.16 95.23
FTP 30.0 40.96 59.60 68.47 60.77 65.67 59.09 96.03

Table 1: Downstream tasks performance. FTP variants surpass all the competitors under comparable sparsity
constraints. MMLU uses a 5-shot evaluation, and other tasks are all 0-shot.

FFN within a block. Therefore we apply twin one-436

pass learnable routers for ATTN and FFN modules437

respectively. Note that twin routers share the same438

sparsity but do not share position embeddings. One-439

pass router training in step 2 is referred to as "FTP-440

onepass" in Section 4.441

4 Experiments442

4.1 Experimental Settings443

Models and Baselines. We apply FTP to444

LLaMA2-7B, LLaMA2-13B (Touvron et al., 2023),445

LLaMA3-8B (Dubey et al., 2024), and Qwen1.5-446

7B (Bai et al., 2023), with initialization by non-447

instruct-tuning pretrained weights. To assess the448

effectiveness of our approach, we benchmark it449

against state-of-the-art structured pruning tech-450

niques, including LLMPruner (Ma et al., 2023),451

SliceGPT (Ashkboos et al., 2024), LaCo (Yang452

et al., 2024), ShortGPT (Men et al., 2024), Rela-453

tive Magnitude (RM) (Samragh et al., 2023), and454

BlockPruner (Zhong et al., 2024). LLMPruner455

and SliceGPT primarily target pruning through re-456

ductions in embedding dimensions, whereas LaCo,457

ShortGPT, RM, and BlockPruner focus on depth458

pruning strategies.459

Datasets and Implement Details. Following pre-460

vious works, we use Alpaca (Taori et al., 2023)461

as training set, and evaluate on these well-known462

benchmarks: HellaSwag (Zellers et al., 2019),463

MMLU (Hendrycks et al., 2020), ARC-easy, ARC- 464

challenge (Clark et al., 2018), WinoGrande (Sak- 465

aguchi et al., 2021); specifically, we utilize the 466

WinoGrande to search the sparsity ratios in step 1. 467

We report the accuracies together with average ac- 468

curacy retention percentages on these benchmarks. 469

In step 2, we train the learnable routers 10,000 it- 470

erations on 7/8B, and 50,000 on 13B models, both 471

with batch size of 1. We utilize the AdamW opti- 472

mizer with learning rate of 1e-4. All experiments 473

are conducted on a single AMD MI250 GPU with 474

64GB of memory, taking approximately 1 hour for 475

the router training phase, and 2 hours for sparsity 476

searching. We provide more training and infer- 477

ence details in Appendix A.1. All blocks share 478

the same router in FTP. We provide more ablations 479

on Appendix A.3 compared with non-shared and 480

recurrent strategies. 481

4.2 Main Results 482

Compare with SOTA Methods. As shown in Ta- 483

ble 1, FTP and its variants demonstrate superior 484

performance across public benchmarks, covering 485

various tasks such as reasoning, language under- 486

standing, knowledge retention, and examination 487

capacity. Our FTP method consistently outper- 488

forms other SOTA pruning methods, such as Block- 489

Pruner and ShortGPT, across models like LLaMA2- 490

7B, LLaMA2-13B, and Qwen1.5-7B. For example, 491

at a 22% sparsity ratio, FTP achieves 99.21% on 492

6



Model Method Ratio (%) ARC-c ARC-e HellaSwag MMLU WinoGrande Avg. Acc. Avg. Percentage (%)

LLaMA2-7B

Dense 0 46.16 74.54 75.99 45.39 69.06 62.25 100
FTP-onepass 30 43.09 70.37 67.24 45.76 68.35 58.96 95.21

FTP 30 43.65 72.31 67.37 46.07 68.97 59.67 96.32
FTP-onepass 40 41.89 67.89 62.53 46.17 64.72 56.64 91.91

FTP 40 40.02 70.01 62.67 46.56 66.03 57.06 92.26

LLaMA2-13B

Dense 0 49.23 77.36 79.36 54.94 72.14 65.81 100
FTP-onepass 30 48.55 75.93 75.29 54.28 72.06 65.22 98.04

FTP 30 48.38 74.75 75.99 54.47 71.67 65.05 97.83
FTP-onepass 40 45.99 72.26 64.02 54.61 69.69 61.31 92.70

FTP 40 45.22 70.88 66.50 54.57 70.40 61.51 92.84

LLaMA3-8B

Dense 0 53.33 77.69 79.19 65.28 72.85 69.67 100
FTP-onepass 30 48.15 73.31 62.21 62.88 68.81 63.07 91.10

FTP 30 48.63 73.36 62.41 64.29 69.69 63.68 91.71
FTP-onepass 40 43.21 67.05 54.33 62.99 68.77 59.27 85.37

FTP 40 43.00 67.17 54.89 63.72 69.30 59.62 85.83

Qwen1.5-7B

Dense 0 42.66 62.16 76.92 60.52 66.46 61.74 100
FTP-onepass 30 40.15 58.86 67.95 60.23 65.26 58.16 95.23

FTP 30 40.96 59.60 68.47 60.77 65.67 59.09 96.03
FTP-onepass 40 36.09 52.88 62.61 60.03 58.87 54.10 87.77

FTP 40 36.15 53.03 62.59 60.83 59.04 54.32 88.15

Table 2: Various sparsity ratios. FTP still maintains relatively roubst performance at higher sparsity ratio (40%),
and is even better than BlockPruner, ShortGPT and other methods on LLaMA2-7B with a sparsity ratio of 22%.

Method ARC-c MMLU Avg. Percentage
Uniform 26.02 40.50 72.80
BI score based 34.81 45.29 87.60
Sparsity scheduler w.o step 3 40.96 45.67 94.68
Sparsity scheduler 43.65 46.07 98.03

Table 3: Sparsity scheduler ablations on LLaMA2-7B
with 30% sparsity.

LLaMA2-7B, compared to BlockPruner’s 84.91%.493

FTP surpasses other methods even at a higher spar-494

sity ratio (30%). On larger model (e.g., LLaMA2-495

13B), FTP achieves an average accuracy of 97.83%496

at 30% sparsity, significantly outperforming Block-497

Pruner (88.18%) and ShortGPT (90.28%). FTP-498

onepass does not depend on varying inter-layer499

features such as attention scores, thus requiring500

only onepass token selections for each layer before501

inference starts. In comparison with FTP, FTP-502

onepass enables a more significant speedup, with a503

marginally diminished performance in some mod-504

els (e.g., Llama2-13B and Qwen1.5-7B), yet it re-505

mains superior to other methods. Moreover, FTP-506

static (without learnable modules) performs well,507

owing to the effectiveness of our sparsity scheduler.508

These results highlight the remarkable ability of509

our proposal, effectively reducing inference costs510

while preserving performance across diverse tasks.511

Higher Sparsity on Different Models. In Table 2,512

we examine the impact of higher sparsity. At a 40%513

sparsity ratio, FTP maintains an impressive perfor-514

mance range of 85% to 93% across various models515

and benchmarks. Specifically, on LLaMA2-7B,516

FTP achieves 92.26% at 40% sparsity, significantly517

outperforming BlockPruner (84.91%) at 22% spar-518

sity and ShortGPT (80.22%) at 27% sparsity. This519

indicates that FTP not only manages higher spar-520

sity more effectively but also surpasses other meth-521

ods even under more conservative pruning settings.522

Even when reducing the number of tokens by 40%,523

FTP’s performance still remains strong compared 524

to other methods. Among of most cases, FTP per- 525

forms better than onepass variant, but in Llama2- 526

13B with 30% sparsity, FTP-onepass has a slight 527

advantage. Both FTP and FTP-onepass demon- 528

strate the consistent high performance across dif- 529

ferent model sizes (i.e., LLaMA2-7B and 13B). It 530

indicates that our proposal is highly scalable and 531

reliable for deployment in larger models where 532

computational efficiency is critical. 533

4.3 Ablation Study 534

Impact of Sparsity Scheduler. In Section 3.1.1, 535

we highlight the varying sensitivity of blocks at 536

different depths to token pruning and introduce a 537

GA-based sparsity scheduler to determine the opti- 538

mal sparsity ratios for all blocks in the LLM, while 539

meeting the overall pruning requirement. Table 3 540

illustrates the ablations of allocating the sparsity to 541

each layer. The uniform variant is a strategy to allo- 542

cate the average sparsity to each layer, and we can 543

observe that it is the worst. Then, we compare the 544

strategy via the BI score (Men et al., 2024), which 545

shows a performance gap of about 10% when com- 546

pared to our baseline. The 4th row shows the effec- 547

tiveness of the post-tuning (i.e., step 3 searching) 548

via the learnable router. 549

Impact of Designed Input. The core idea of our 550

method is to rank tokens based on their predicted 551

importance and skip the less significant ones within 552

a block. The input design for the dynamic router 553

plays a crucial role in determining the outcome. 554

We compare various inputs in Table 4 to illustrate 555

the effectiveness of our designed input. Previ- 556

ous work (Raposo et al., 2024) uses hidden states 557

from each block as the sole feature for the router’s 558

decision-making. Thus, we directly compare the 559

7



hidden states as input with our designed input. As560

shown in Table 4, our designed input significantly561

outperforms both the hidden states and combina-562

tions that include hidden states. Additionally, we563

conduct ablations to assess the individual elements564

of the designed input, confirming the importance565

of all components.566

50 100 200 300 400 500 750 1000 2000 3000 5000
Input token length

1.15
1.20
1.25
1.30
1.35
1.40
1.45

Sp
ee

d-
up

 fa
ct

or

FTP (SR 30%)
FTP (SR 40%)

FTP-onepass (SR 30%)
FTP-onepass (SR 40%)

Figure 3: Inference speedup of FTP and FTP-onepass
in LLaMA2-7B on different settings including different
sparsity ratios and input token lengths.

4.4 More Analysis567

4.4.1 Inference Speedup568

The forward computation of transformers con-569

stitutes a large portion of the inference time,570

whereas the computational cost of our global571

router—comprised of just a two-layer MLP—is572

only a small fraction of the overall inference time.573

We report the average relative speedup based on574

throughput (tokens processed per second), and575

further show the details of different input token576

lengths via the Alpaca dataset as input prompts577

on LLaMA2-7B, as illustrated in Figure 3. FTP-578

onepass is a variant aimed at higher speedup with579

a slight performance loss. We can observe that580

FTP-onepass accelerates better than FTP. However,581

both FTP and FTP-onepass achieve higher than582

1.2× actual speedup when the token length is larger583

than 300. Compared to LLMPruner (1.14×) (Ma584

et al., 2023) and ShortGPT (1.24×) (Men et al.,585

2024), our approach (FTP at 1.23×, FTP-onepass586

at 1.28×) outperforms in terms of average speedup.587

The computational advantage of our approach588

grows as the sequence length increases. When589

the router selects tokens to skip within a block,590

the length of the sequence involved in attention is591

reduced, thereby decreasing computational com-592

plexity at a quadratic rate. Also, the feed-forward593

network (FFN) costs are eliminated at the same594

time. With the increasing importance of ultra-long595

context, our approach gains a significant advantage596

as sequence lengths grow.597

Method ARC-c MMLU Avg. Percentage
Dense 46.16 45.39 100
Hidden states 33.87 44.78 86.02
DI w. hidden states 34.57 44.99 87.01
DI w.o. position 30.72 44.59 82.39
DI w.o. attntion score 41.21 45.43 94.68
DI w.o. attntion rank 42.13 45.15 95.37
DI w.o. sparsity 38.51 45.79 92.15
DI 43.65 46.07 98.03

Table 4: Dynamic router input ablations on LLaMA2-
7B with 30% sparsity. DI indicates our designed input.

4.4.2 Compatible with KV Cache 598

Key and value (KV) cache stores previous key- 599

value pairs for each token across blocks, enabling 600

faster computation during inference, improving ef- 601

ficiency. The primary computational cost shifts 602

to focus mainly on the last token in the sequence, 603

which includes FFN operations and attention com- 604

putations with other tokens in the sequence. FTP 605

does not impose a sparsity constraint on the last 606

token in the depth dimension and prioritizes the 607

forward computation of the last token. Thus, the 608

KV cache reduces the acceleration benefits gained 609

from token-wise pruning on the entire token se- 610

quence. Here, we design a strategy to overcome 611

this challenge. If the router’s predicted score for 612

the last token exceeds a threshold (set to 0.5 in the 613

experiment), it performs computation within the 614

block; otherwise, it is skipped. We provide more 615

details and reports in Appendix A.8. The pruning 616

results show virtually no performance loss. 617

5 Conclusion 618

In this paper, we present a fine-grained token prun- 619

ing framework for LLMs, which outperforms other 620

SOTA LLM pruning methods with low training 621

costs for learnable routers. Our proposed token- 622

wise pruning framework is structured around three 623

key steps: first, we conduct an initial sparsity 624

search utilizing a static router to determine the ap- 625

propriate sparsity allocation. Next, we train a dy- 626

namic router informed by our four proposed factors 627

and three distinct loss functions. Finally, we fine- 628

tune the sparsity scheduler using the trained router. 629

Furthermore, we introduce a one-pass learnable 630

router designed for batch inference and enhanced 631

acceleration. Comprehensive experiments under- 632

score the importance of each component in improv- 633

ing the overall effectiveness of our approach. The 634

results reveal that our method significantly outper- 635

forms other SOTA methods, further demonstrating 636

its superiority. 637

8



6 Limitations638

While FTP demonstrates strong performance on639

widely-used models, its applicability to extremely640

large models, such as those exceeding 100B param-641

eters, remains unexplored. Additionally, FTP’s ef-642

fectiveness in long-context tasks, such as retrieval-643

augmented generation (RAG) or multi-document644

QA, has yet to be fully evaluated. The robust-645

ness of pruned models against adversarial inputs646

or fairness-sensitive tasks also remains unexam-647

ined, with the potential for token-wise pruning to648

inadvertently amplify biases or reduce resilience.649

These aspects emphasize the need for further re-650

search into scalability, long-context reliability, and651

ethical implications of token-wise pruning.652

References653

Yash Akhauri, Ahmed F AbouElhamayed, Jordan654
Dotzel, Zhiru Zhang, Alexander M Rush, Safeen655
Huda, and Mohamed S Abdelfattah. 2024. Shad-656
owllm: Predictor-based contextual sparsity for large657
language models. arXiv preprint arXiv:2406.16635.658

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao659
Wang. 2024. Fluctuation-based adaptive structured660
pruning for large language models. In Proc. AAAI,661
pages 10865–10873.662

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-663
nari do Nascimento, Torsten Hoefler, and James664
Hensman. 2024. Slicegpt: Compress large language665
models by deleting rows and columns. arXiv preprint666
arXiv:2401.15024.667

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,668
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei669
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,670
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,671
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,672
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong673
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-674
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,675
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,676
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-677
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang678
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang679
Zhu. 2023. Qwen technical report. arXiv preprint680
arXiv:2309.16609.681

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and682
Christopher D. Manning. 2020. ELECTRA: Pre-683
training text encoders as discriminators rather than684
generators. In ICLR.685

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,686
Ashish Sabharwal, Carissa Schoenick, and Oyvind687
Tafjord. 2018. Think you have solved question an-688
swering? try arc, the ai2 reasoning challenge. arXiv689
preprint arXiv:1803.05457.690

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 691
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning 692
of quantized llms. Advances in Neural Information 693
Processing Systems, 36. 694

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 695
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 696
Akhil Mathur, Alan Schelten, Amy Yang, Angela 697
Fan, et al. 2024. The llama 3 herd of models. arXiv 698
preprint arXiv:2407.21783. 699

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael 700
Auli. 2020. Depth-adaptive transformer. In ICLR 701
2020-Eighth International Conference on Learning 702
Representations, pages 1–14. 703

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 704
sive language models can be accurately pruned in one- 705
shot. In Proc. ICML, pages 10323–10337. PMLR. 706

Shangqian Gao, Feihu Huang, Jian Pei, and Heng 707
Huang. 2020. Discrete model compression with re- 708
source constraint for deep neural networks. In Pro- 709
ceedings of the IEEE/CVF conference on computer 710
vision and pattern recognition, pages 1899–1908. 711

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024. 712
Minillm: Knowledge distillation of large language 713
models. In The Twelfth International Conference on 714
Learning Representations. 715

Tomohiro Harada and Enrique Alba. 2020. Parallel 716
genetic algorithms: a useful survey. ACM Computing 717
Surveys (CSUR), 53(4):1–39. 718

Tahmid Hasan, Abhik Bhattacharjee, Md Saiful Is- 719
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang, 720
M Sohel Rahman, and Rifat Shahriyar. 2021. Xl-sum: 721
Large-scale multilingual abstractive summarization 722
for 44 languages. In Findings of the Association 723
for Computational Linguistics: ACL-IJCNLP 2021, 724
pages 4693–4703. 725

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 726
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 727
2020. Measuring massive multitask language under- 728
standing. arXiv preprint arXiv:2009.03300. 729

Yukun Huang, Yanda Chen, Zhou Yu, and Kathleen 730
McKeown. 2022. In-context learning distillation: 731
Transferring few-shot learning ability of pre-trained 732
language models. arXiv preprint arXiv:2212.10670. 733

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categori- 734
cal reparameterization with gumbel-softmax. arXiv 735
preprint arXiv:1611.01144. 736

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing 737
Yang, and Lili Qiu. 2023a. Llmlingua: Compressing 738
prompts for accelerated inference of large language 739
models. arXiv preprint arXiv:2310.05736. 740

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng 741
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023b. 742
Longllmlingua: Accelerating and enhancing llms 743
in long context scenarios via prompt compression. 744
arXiv preprint arXiv:2310.06839. 745

9

https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB


Hoyoun Jung and Kyung-Joong Kim. 2024. Discrete746
prompt compression with reinforcement learning.747
IEEE Access.748

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang,749
Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023a.750
Losparse: Structured compression of large language751
models based on low-rank and sparse approximation.752
In International Conference on Machine Learning,753
pages 20336–20350. PMLR.754

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin.755
2023b. Compressing context to enhance inference756
efficiency of large language models. arXiv preprint757
arXiv:2310.06201.758

Songwei Liu, Chao Zeng, Lianqiang Li, Chenqian759
Yan, Lean Fu, Xing Mei, and Fangmin Chen.760
2024. Foldgpt: Simple and effective large lan-761
guage model compression scheme. arXiv preprint762
arXiv:2407.00928.763

Zhuang Liu, Zhiqiu Xu, Hung-Ju Wang, Trevor Dar-764
rell, and Evan Shelhamer. 2021. Anytime dense pre-765
diction with confidence adaptivity. arXiv preprint766
arXiv:2104.00749.767

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang768
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,769
Yuandong Tian, Christopher Re, et al. 2023. Deja770
vu: Contextual sparsity for efficient llms at inference771
time. In Proc. ICML, pages 22137–22176. PMLR.772

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.773
Llm-pruner: On the structural pruning of large lan-774
guage models. Advances in neural information pro-775
cessing systems, 36:21702–21720.776

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,777
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng778
Chen. 2024. Shortgpt: Layers in large language779
models are more redundant than you expect. arXiv780
preprint arXiv:2403.03853.781

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,782
Meysam Chenaghlu, Richard Socher, Xavier Am-783
atriain, and Jianfeng Gao. 2024. Large language784
models: A survey. arXiv preprint arXiv:2402.06196.785

David Raposo, Sam Ritter, Blake Richards, Timothy786
Lillicrap, Peter Conway Humphreys, and Adam San-787
toro. 2024. Mixture-of-depths: Dynamically allocat-788
ing compute in transformer-based language models.789
arXiv preprint arXiv:2404.02258.790

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-791
ula, and Yejin Choi. 2021. Winogrande: An adver-792
sarial winograd schema challenge at scale. Commu-793
nications of the ACM, 64(9):99–106.794

Mohammad Samragh, Mehrdad Farajtabar, Sachin795
Mehta, Raviteja Vemulapalli, Fartash Faghri, De-796
vang Naik, Oncel Tuzel, and Mohammad Rastegari.797
2023. Weight subcloning: direct initialization of798
transformers using larger pretrained ones. arXiv799
preprint arXiv:2312.09299.800

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, 801
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler. 802
2022. Confident adaptive language modeling. Ad- 803
vances in Neural Information Processing Systems, 804
35:17456–17472. 805

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 806
Kolter. 2023. A simple and effective pruning ap- 807
proach for large language models. arXiv preprint 808
arXiv:2306.11695. 809

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 810
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 811
and Tatsunori B Hashimoto. 2023. Stanford alpaca: 812
An instruction-following llama model. 813

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 814
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 815
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 816
Bhosale, et al. 2023. Llama 2: Open founda- 817
tion and fine-tuned chat models. arXiv preprint 818
arXiv:2307.09288. 819

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, 820
Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai, 821
and Xiaofei He. 2024. Model compression and effi- 822
cient inference for large language models: A survey. 823
arXiv preprint arXiv:2402.09748. 824

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 825
Chen. 2023. Sheared llama: Accelerating language 826
model pre-training via structured pruning. arXiv 827
preprint arXiv:2310.06694. 828

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 829
Han, and Mike Lewis. 2023. Efficient streaming 830
language models with attention sinks. arXiv preprint 831
arXiv:2309.17453. 832

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco: 833
Large language model pruning via layer collapse. 834
arXiv preprint arXiv:2402.11187. 835

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, 836
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022. 837
Zeroquant: Efficient and affordable post-training 838
quantization for large-scale transformers. Advances 839
in Neural Information Processing Systems, 35:27168– 840
27183. 841

Fan Yin, Jesse Vig, Philippe Laban, Shafiq Joty, Caim- 842
ing Xiong, and Chien-Sheng Jason Wu. 2023. Did 843
you read the instructions? rethinking the effective- 844
ness of task definitions in instruction learning. arXiv 845
preprint arXiv:2306.01150. 846

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 847
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 848
machine really finish your sentence? arXiv preprint 849
arXiv:1905.07830. 850

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. 851
2024. Apt: Adaptive pruning and tuning pretrained 852
language models for efficient training and inference. 853
arXiv preprint arXiv:2401.12200. 854

10



Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,855
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen856
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A857
survey of large language models. arXiv preprint858
arXiv:2303.18223.859

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun860
Quan, and Liangzhi Li. 2024. Blockpruner: Fine-861
grained pruning for large language models. arXiv862
preprint arXiv:2406.10594.863

A Appendix 864

A.1 Implementation Details 865

Learnable token router consists of a two-layer MLP, 866

with a hidden size of 64 and an output size of 2. 867

In all experiments, the hyperparameters of the loss 868

function (i.e., λd, λs, and λg) are all initially set to 869

1. During the sparsity optimization (i.e., in step1 870

and step3), we use a population of 50 sparsity con- 871

figurations, with 10 generations and a mutation 872

probability of 0.2. The sparsity optimization pro- 873

cess takes approximately 2 hours. All experiments 874

are employed on ROCm 6.1, Torch 2.3, and Torch- 875

tune 2.0. We utilize lm-eval to evaluate the bench- 876

marks. For consistency and fairness, float32 preci- 877

sion is uniformly used during both training and test- 878

ing. All benchmarks are evaluated using the "acc 879

norm" score by default, and the average percentage 880

reflects the average score across all benchmarks 881

(i.e., pruned/dense model performance). 882

A.2 More Introductions of Router Workflow 883

Each transformer block consists of two main com- 884

ponents: multi-head attention (MHA) and feed- 885

forward network (FFN) as depicted in Figure 4. 886

The attention mechanism is applied multiple times 887

in parallel among the token sequence, allowing the 888

model to focus on different parts of the sequence 889

at different positions. The attention computation is 890

calculated as: 891

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V (6) 892

where Q,K, V ∈ RL×d are the query, key, and 893

value matrices of the input sequence, L is the se- 894

quence length, and d is the dimension of the key. 895

The result of the attention mechanism for each to- 896

ken is a weighted sum of all the tokens in the se- 897

quence. After applying attention, the model passes 898

the output through a feed-forward network that con- 899

sists of two fully connected layers with a non-linear 900

layer. The forward computation of the i-th block in 901

a transformer can be expressed as follows: 902

X ′
i = MHA(LN(Xi)) +Xi

Xi+1 = FFN(LN(X ′
i)) +X ′

i

(7) 903

where Xi ∈ RL×d is the input of the i-th block, LN 904

is layer normalization applied to the inputs, MHA 905

is the multi-head attention mechanism, and FFN is 906

the feed-forward network. The computation com- 907

plexity of a transformer block is mostly dominated 908

11



MHA
FFN

Block N

Block 1

Tokens

Tokens

Tokens

Prompt

Block 2

Block N

Block 1

Tokens

Tokens

Tokens

Prompt

Block 2 Token Router

Compute

Skip and Stay unchanged

Routing
Decision

Token Importance

Top-k

Dense Transformer

FFN

MHA

Xi
Token

Router

Compute

FFN

MHA

Xi
Token

Router

Skip and Stay
unchanged

Token Router for Transformer

0.78

0.22

0.39
0.61


MHA
FFN

MHA
FFN

MHA
FFN

MHA
FFN

MHA
FFN

Input

Required

Sparsity


Figure 4: Overview of LLM structure and router workflow. (Left) Dense Transformer where all tokens are processed
in every block. (Middle) Token router for transformer, which dynamically selects tokens to compute or skip based
on their importance and block-wise sparsity at each block. (Right) A detailed view of how the token router uses
token importance features to make binary decisions (compute or skip) for each token within a block.

Method ARC-c MMLU Avg. Percentage

Recurrent 40.23 45.53 93.73
Non-shared 38.21 43.69 89.52
Global shared 43.65 46.07 98.03

Table 5: Different global routing designs on LLaMA2-
7B with 30% sparsity.

by two components: the MHA and the FFN. The909

MHA has a complexity of O(L2 · d), where L is910

the sequence length and d is the hidden dimension,911

due to the pairwise attention computation across912

tokens. The FFN, which processes each token in-913

dependently, has a complexity of O(L · d2). There-914

fore, the overall complexity of a transformer block915

is O(L2 · d + L · d2), where the quadratic depen-916

dency on L makes attention particularly expensive917

for long sequences (Clark et al., 2020). Transform-918

ers capture contextual information and predict the919

next token by leveraging the effectiveness of the920

attention mechanism. However, the computational921

cost of large language models (LLMs) is extremely922

high. The attention mechanism in a transformer923

block has a complexity of O(L2 ·d+L ·d2), mean-924

ing the FLOPs of an LLM grow exponentially with925

the number of tokens. Token routing, as shown926

in 4, a mechanism that selectively permits only a927

subset of tokens to engage in the computation of928

each transformer block, offers an effective strategy929

to reduce the sequence length processed by each930

block, thereby significantly lowering the overall931

computational cost.932

A.3 Global Routing Implementations. 933

In FTP and its variants, all blocks share a same 934

router. Here we provide a further study on dif- 935

ferent implementations in Table 5. First is a re- 936

current approach, we use a LSTM model, treating 937

each block as a timestep and predicting decisions 938

based on the designed input, along with the previ- 939

ous block’s decision and token importance. Second 940

is a non-shared approach, we assign routers for 941

each block and following the same FTP steps. We 942

can observer that the shared approach achieves the 943

best performance. Global sharing approach learns 944

a more comprehensive view of block interdepen- 945

dences than others. 946

A.4 More Analysis on FTP-static 947

FTP-static is a well-performed variant, and bene- 948

fited from the step 1 sparsity searching. Here we 949

provide more ablations on it. 950

A.4.1 Compared to the Random Selection. 951

After obtaining the sparsity configuration under 952

the overall sparsity ratio of 30%, we compare the 953

performance between random token selection and 954

FTP-static, as shown in Table 6. In the random 955

selection, we randomly choose the same number 956

of tokens for skipping, while keeping within its 957

sparsity ratio limits. The random selection is cross- 958

validated 5 times, with results averaged across tri- 959

als. Notably, FTP-static outperforms random se- 960

lection, highlighting the critical importance of to- 961

12



Method Priority Retained Token ID ARC-c MMLU Avg. Percentage
Dense - 46.16 45.39 100
Random selection - 28.92 34.16 68.96
Random selection 1st 32.17 34.84 73.22
FTP-static* 2nd 31.91 34.54 72.61
FTP-static w. perturbation 1st 40.19 43.95 91.95
FTP-static 1st 43.26 46.09 97.63

Table 6: Comparisons of different static routers with 30% sparsity.

Model Results (Block ID: Sparsity ratio)

LLama-2-7B 16: 0.2596, 17: 0.3987, 18: 0.4808, 19: 0.5481, 20: 0.5451, 21: 0.6642, 22: 0.682,
(Initial) 23: 0.7337, 24: 0.7589, 25: 0.7973, 26: 0.7766, 27: 0.7996, 28: 0.7862, 29: 0.7729, 30: 0.5962

LLama-2-7B 13: 0.1708, 14: 0.1904, 15: 0.1912, 16: 0.1839, 17: 0.3372, 18: 0.4277, 19: 0.5019, 20: 0.4986, 21: 0.6299, 22: 0.6494,
(Finetuned) 23: 0.7065, 24: 0.7342, 25: 0.7766, 26: 0.7538, 27: 0.7791, 28: 0.7644, 29: 0.7497, 30: 0.5548

LLama2-13B 11: 0.0693, 12: 0.1014, 13: 0.1182, 14: 0.1477, 15: 0.1595, 16: 0.1164, 17: 0.1401, 18: 0.1283
(Initial) , 19: 0.2169, 20: 0.2363, 21: 0.3318, 22: 0.3019, 23: 0.4579, 24: 0.7259, 25: 0.659, 26: 0.5836, 27: 0.5282, 28: 0.5267,

29: 0.6702, 30: 0.5661, 31: 0.658, 32: 0.6851, 33: 0.6721, 34: 0.6825, 35: 0.6053, 36: 0.8427, 37: 0.6111, 38: 0.5934

LLama2-13B 12: 0.0171, 13: 0.0148, 14: 0.0476, 15: 0.0795, 16: 0.1144, 17: 0.1467, 18: 0.2193, 19: 0.4022, 20: 0.4383, 21: 0.4738,
(Finetuned) 22: 0.5108, 23: 0.6531, 24: 0.5355, 25: 0.597, 26: 0.5807, 27: 0.599, 28: 0.627, 29: 0.6175, 30: 0.6068, 31: 0.6059,

32: 0.6012, 33: 0.6019, 34: 0.613, 35: 0.6007, 36: 0.6127, 37: 0.6111, 38: 0.4786

Table 7: Block-wise sparsity ratios obtained by sparsity scheduler for overall 30% sparsity.

ken position in selection. Despite this, random962

selection achieves nearly 70% performance, due963

to the underlying block configuration derived from964

the search process. This underscores the signifi-965

cance of the sparsity scheduler in maintaining per-966

formance.967

A.4.2 Priority Token Retained.968

We conduct a further investigation into the token969

importance. A comparison between the random970

token selection approaches in rows 3 and 4 reveals971

that performance improves when the first token is972

retained. This is further supported by the results973

in row 5 of Table 6, where the firstly retaining of974

the second token leads to a performance drop in975

the FTP-static. These findings highlight the crit-976

ical importance of the first token selection. Fur-977

thermore, we observe a significant drop in perfor-978

mance when introducing random perturbations into979

the final static decision process. Specifically, we980

randomly select 10% of tokens from the sequence981

(take 5% from skip tokens, and 5% from updated to-982

kens) and swap their decision flags to maintain the983

block sparsity ratio. This highlights the sensitivity984

of token selection within the model. Nevertheless,985

our dynamic FTP outperforms the static version,986

demonstrating the robustness and efficacy of the987

dynamic routing mechanism.988

A.5 Attention Score 989

Define the Q ∈ RL×d×N and K ∈ RL×d×N , 990

where the L is the sequence lengths of the query 991

and key in attention. The N is the head number 992

of the multi-head attention. The attention score 993

As ∈ RL can be formulated as following: 994

A =
QKT

√
d

As =
1

L

L∑
j=1

Ai,j , i = 1, 2, . . . , L

(8) 995

After obtaining the A ∈ RL×L×N , we execute 996

a mean operation in head dimension N , then we 997

obtain the As by a mean operation in the dimension 998

of the key length. The attention score can reflect 999

the relationships among the tokens, which is an 1000

important factor as input for the learnable router. 1001

A.6 Pseudo Code of GA-based Sparsity 1002

Scheduler 1003

We introduce the details of the GA-based sparsity 1004

scheduler via pseudo-code in Algorithm 1. The 1005

GA-based approach aims to find an optimal block- 1006

wise sparsity configuration, S∗, for an LLM M, 1007

that satisfies a target overall sparsity ratio Poverall, 1008

while maximizing model performance. The pro- 1009

cess begins by generating an initial population P 1010

of candidate configurations, where each configu- 1011

ration Si is sampled from the search space Sspace, 1012

13



Method Ratio (%) ARC-c MMLU Avg. Percentage PPL

Dense 0 46.16 45.39 100 5.47
ShortGPT 21.02 36.09 44.51 88.04 18.45
BlockPruner 21.99 37.29 - 80.78 11.51
FTP 22.0 45.31 46.15 99.90 11.14
FTP (threshold) 21.92 45.52 46.35 100.35 11.12
FTP (strict constraint) 22.10 45.30 46.12 99.86 11.14

Table 8: Performance comparisons of different methods on LLaMA2-7B.

ensuring
∑

si = Poverall. Each configuration is as-1013

sessed by applying it to the LLM and measuring the1014

model’s accuracy on the evaluation dataset, Deval.1015

Following these evaluations, the configurations are1016

ranked by accuracy, with the highest-performing1017

ones selected for reproduction.1018

In each iteration, parents are selected to produce1019

offspring through crossover and mutation. Mu-1020

tation is applied with a probability of pmutate to1021

introduce diversity while preserving the overall1022

sparsity constraint. The offspring are evaluated1023

and replaced with the worst-performing configura-1024

tions in the population. This process is repeated1025

for Tmax_iter iterations, with the population progres-1026

sively evolving towards an optimal solution. The1027

final configuration, S∗ , which achieves the highest1028

accuracy, is returned as the optimal sparsity config-1029

uration, effectively balancing model performance1030

and computational efficiency.1031

A.7 Sparsity Ratio Results1032

As shown in Table 7, we report the block-wise1033

sparsity ratio details obtained from the scheduler.1034

Note that, the block ID is started from 0. We join1035

the (block number - 2) blocks into the scheduler,1036

e.g., 32 blocks in Llama2-7B and 30 blocks involve1037

optimization. Note that, the sparsity ratio of blocks1038

not mentioned in this table are default 0.1039

A.8 The Results of Supporting KV Cache1040

As depicted in Section 4.4.2, we introduce a spe-1041

cific threshold to constrain the sparsity ratio for1042

the last token in the depth dimension of LLMs.1043

Apart from the last token, the router’s decisions1044

for the other tokens continue to follow the original1045

approach, selecting the required ratio of remaining1046

tokens to be skipped based on the predicted score1047

within each block. Thus, our method, incorporat-1048

ing KV cache modifications, enforces two sparsity1049

constraints: token sparsity across the sequence and1050

last token sparsity in the depth dimension. How-1051

ever, the threshold strategy can not strictly con-1052

strain the sparsity of the last token in different input1053

sequences.1054

Furthermore, we introduce a strict sparsity con- 1055

straint strategy, combined with the threshold strat- 1056

egy during autoregressive decoding, to consistently 1057

ensure that the sparsity target for the last token is 1058

achieved. This method monitors the sparsity of the 1059

last token across the depth dimension and halts the 1060

processing of additional blocks once the target spar- 1061

sity is reached. If the cumulative sparsity reaches 1062

the target before finishing all block computations, 1063

subsequent blocks for the last token are required 1064

to undergo forward computation. Meantime, it 1065

also monitors the number of the remaining blocks 1066

waiting for computation together with the current 1067

sparsity of the last token to ensure the final sparsity 1068

can meet the target sparsity. If the combination of 1069

the ratio of remaining blocks and the current spar- 1070

sity is close to the target, the subsequent blocks 1071

should be skipped to guarantee that the final spar- 1072

sity meets the intended goal. As shown in Table 1073

8, the pruning results, along with the supporting 1074

KV cache modifications, demonstrate virtually no 1075

performance loss compared to the original results 1076

on the ARC-c and MMLU benchmarks. Moreover, 1077

the perplexity (PPL) results further demonstrate the 1078

robustness of our method in text generation, with a 1079

PPL of 11.12 using a threshold strategy to support 1080

KV cache, which surpasses the other SOTA meth- 1081

ods, indicating that text generation performance 1082

remains stable. Additionally, applying the strict 1083

sparsity constraint ensures that the overall sparsity 1084

target can be met, with a PPL of 11.14 and mini- 1085

mal accuracy impact, confirming that our method 1086

is effectively compatible with the KV cache. 1087

A.9 Ethics Statement 1088

This research focuses on improving the efficiency 1089

of large language models (LLMs) through fine- 1090

grained token-wise pruning, with the goal of re- 1091

ducing computational costs during inference while 1092

maintaining model performance. Our work does 1093

not involve human subjects or the collection of 1094

sensitive data, and thus, does not raise concerns 1095

related to privacy, security, or legal compliance. 1096

In terms of dataset usage, we primarily evalu- 1097

14



Algorithm 1 GA-Based Sparsity Scheduler

Input:
M: Pretrained LLM
Poverall: Target sparsity ratio
Deval: Evaluation dataset
Sspace: Search space of block-wise sparsity
Tmax_iter: Max iterations for GA

Output:
S∗: Optimal block-wise sparsity ratio configuration

Initialize population P of block-wise sparsity configurations {Si} from Sspace, where
∑

si = Poverall.
Evaluate each Si in P by applying it toM on Deval and record Accuracy(MSi ,Deval).
Sort P by accuracy and select top configurations.
Set t = 0.
while t < Tmax_iter do

Select parents from P based on performance.
Crossover selected parents to generate new configurations.
Mutate offspring configurations with probability pmutate, ensuring

∑
si = Poverall.

Evaluate offspring by computing Accuracy(MSoffspring ,Deval).
Replace worst-performing configurations with the best offspring.
Sort updated P by accuracy.
t← t+ 1

end while
return S∗ with the highest accuracy from the final population.

ate our approach using publicly available bench-1098

mark datasets, such as WinoGrande, ARC-c, and1099

MMLU, which are widely used in the field. We1100

ensure compliance with the licensing and usage1101

terms of these datasets. No personally identifiable1102

information or sensitive data is included in our ex-1103

periments. We are mindful of the potential societal1104

impact of our research, especially concerning the1105

deployment of LLMs in real-world applications.1106

While the techniques proposed in this work can1107

lead to more efficient LLM deployments, which1108

may lower computational resource requirements1109

and costs, we recognize that LLMs, in general, can1110

perpetuate biases present in their training data. Our1111

research focuses on improving efficiency and does1112

not directly address fairness or bias in language1113

models. However, we acknowledge the importance1114

of addressing these issues in future work. Addi-1115

tionally, all authors have no conflicts of interest1116

influencing the research presented in this paper.1117

A.10 Reproducibility Statement1118

Comprehensive descriptions of the datasets used1119

in our experiments are provided, please refer to1120

the Section 4.1. We report the software version1121

and hardware environments, and related hyper-1122

parameters in training and validation, please refer 1123

to the Section A.1 and 4.1. In Section 3.1, we intro- 1124

duce the LLM architecture and discuss the token 1125

redundancy in Section 3.1.1. The implementation 1126

details of the sparsity scheduler are provided in Sec- 1127

tion 3.2.2, followed by a description of the static 1128

router in Section 3.2.2 and the dynamic router in 1129

Section 3.2.3. Finally, the loss formulations are 1130

presented in Section 3.2.4. We report the ablation 1131

study results in Section 4.3. We believe these ef- 1132

forts will facilitate the replication and verification 1133

of our findings by other researchers. The research is 1134

conducted with full adherence to research integrity 1135

standards, and all relevant documentation, code, 1136

and experimental results will be made available 1137

after obtaining a public license. 1138

15


