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ABSTRACT

3D structure modeling is essential across scales, enabling applications from fluid
simulation and 3D reconstruction to protein folding and molecular docking. Yet,
despite shared 3D spatial patterns, current approaches remain fragmented, with
models narrowly specialized for specific domains and unable to generalize across
tasks or scales. We propose Uni-3DAR, a unified autoregressive framework
for cross-scale 3D generation and understanding. At its core is a coarse-to-fine
tokenizer based on octree data structures, which compresses diverse 3D structures
into compact 1D token sequences. We further propose a two-level subtree
compression strategy, which reduces the octree token sequence by up to 8x.
To address the challenge of dynamically varying token positions introduced
by compression, we introduce a masked next-token prediction strategy that
ensures accurate positional modeling, significantly boosting model performance.
Extensive experiments across multiple 3D generation and understanding tasks,
including small molecules, proteins, polymers, crystals, and macroscopic 3D
objects, validate its effectiveness and versatility. Notably, Uni-3DAR surpasses
previous state-of-the-art diffusion models by a substantial margin, achieving up to
256% relative improvement while delivering inference speeds up to 21.8x faster.

1 INTRODUCTION

3D structure modeling underpins a wide range of real-world applications, spanning the planetary-
scale dynamics of celestial bodies to the angstrom-scale arrangements of atoms and electrons. At the
macroscopic level, it enables 3D object reconstruction, computational fluid dynamics simulations,
and climate forecasting; at the microscopic level, it supports protein structure prediction (Jumper
et al., 2021), crystal generation (Jiao et al., 2023), molecular dynamics (Wang et al., 2018a), and
molecular docking (Alcaide et al., 2024).

Despite these shared spatial principles, 3D modeling tasks have largely evolved in silos. Models
tailored for macroscopic structures fail to transfer to microscopic domains, and even applications
at similar scales rarely generalize. For instance, a model designed for crystal generation cannot be
directly applied to protein folding (Xie et al., 2021; Jiao et al., 2023). This fragmented development
hinders data reuse and results in redundant, highly specialized models rather than a unified solution.

To overcome this fragmentation, we propose Uni-3DAR, a unified autoregressive framework for
cross-scale 3D generation and understanding. At its core is a tokenizer that efficiently compresses
diverse 3D structures into discrete 1D token sequences. Leveraging these compressed sequences,
our autoregressive model unifies generative and understanding tasks within a single architecture.

The proposed tokenizer uses an octree data structure to compress the full-size 3D grid both losslessly
and efficiently. As illustrated in Fig. 2 (a) and (b), we construct an octree by recursively subdividing
the space up to a maximum depth of L. To adapt to data sparsity, branches corresponding to empty
regions are pruned, resulting in a maximum of 8L−1 leaf grid cells (but most will be pruned due to
sparsity). We then introduce a fine-grained tokenization that encodes details within each occupied
leaf cell (we call it a “3D patch”), such as atomic types and precise coordinates for molecules, or
more general VQVAE tokens (Van Den Oord et al., 2017). Concatenating these tokens level by
level produces a hierarchical, coarse-to-fine 1D token sequence that effectively represents the 3D
structure (fig. 2(c)). Furthermore, we compress each two-level subtree (eight subcells) into a single
8-bit token instead of assigning an individual occupancy token to each node (Fig. 2 (d)). Since each
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Figure 1: Uni-3DAR Overview. (a) A coarse-to-fine octree-based tokenizer converts 3D structures into 1D
sequences (details in fig. 2). The tokens are modeled by an autoregressive transformer trained with masked next-
token prediction (details in fig. 3) and can be optionally conditioned on cross-modal inputs (e.g., text, biological
sequences, spectra). A single model supports single- and multi-frame generation as well as token- and structure-
level understanding. (b) An example of octree from coarse level to fine level. Uni-3DAR generates tokens in
a coarse-to-fine order: high-level occupancy tokens followed by level-0 tokens that capture local details (e.g.,
atom types and coordinates). The merits of octree over other 3D representations are discussed in Appendix A.

subcell is binary (empty or not), grouping eight subcells yields 28 = 256 distinct states, reducing the
sequence length approximately 8x and converting 8 binary classifications into one 256-class task.

However, the octree compression with empty tokens pruned disrupts the spatial mapping, meaning
adjacent tokens no longer correspond to uniform intervals in the original 3D space. Unlike in 2D
images with fixed patch positions, the model cannot reliably predict the next token without knowing
its explicit target coordinates. We found that simply appending the next position to the current token
yielded unsatisfactory results. To address this challenge, we propose a masked next-token prediction
strategy. As illustrated in Fig. 3 (a), our method duplicates each token so that it appears twice with
the same positional embedding. We then replace the first copy with a [MASK] token. The model still
performs next-token prediction, but the prediction is made exclusively at the masked position. This
setup ensures that the prediction is conditioned on the correct positional information of the intended
target token, effectively resolving the issue of dynamic token positions. Although this approach
doubles the sequence length, it achieves significant performance gains as validated in appendix D.2.

Uni-3DAR is built on several technical innovations: (1) a coarse-to-fine octree-based tokenization
for efficient representation, (2) a 2-level subtree compression to reduce sequence length, (3) a
unified fine-grained structural representation (for “3D patch”) to capture local details, and (4)
a masked next-token prediction strategy to handle dynamic token positions, which enable our key
contributions:

1. Unified Cross-Scale 3D Modeling. Leveraging the proposed coarse-to-fine tokenizer, Uni-3DAR
can process a wide range of 3D structures, from macroscopic to microscopic scales.

2. Unified Generation and Understanding. Uni-3DAR seamlessly unifies 3D structural generation
and understanding tasks within a single framework. As illustrated in Fig. 3 (b), different tasks use
distinct tokens, ensuring clear separation without interference.

3. High Efficiency. Thanks to the octree and two-level subtree compression, Uni-3DAR repre-
sents 3D structures with far fewer tokens. For example, while O Pinheiro et al. (2023) requires
323 = 262, 144 tokens for a small molecule, Uni-3DAR needs only hundreds, and can scale to large
proteins with thousands of atoms with deeper octree levels (section 3.4). Moreover, appendix D.3
shows that Uni-3DAR is approximately 21.8x faster than prior diffusion-based models.
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Figure 2: Overview of Uni-3DAR tokenization (illustrated in 2D using quadtree for clarity). (a) Adaptive
coarse-to-fine subdivision of grid cells, where darker nodes indicate non-empty cells that can be further parti-
tioned. (b) This partitioning process constructs an octree, providing a lossless compression of the full-size 3D
grid. (c) Uni-3DAR’s tokenization consists of two components: hierarchical spatial compression via an octree
and fine-grained structural tokenization. Each node’s position is determined by its tree level and cell center. (d)
The proposed 2-level subtree compression reduces the octree tokens by 8x (4x in the illustrated quadtree).

4. High Accuracy. Extensive experiments across diverse tasks—including macroscopic 3D shape
generation (table 4), molecular (table 1), crystal generation (table 2), protein pocket prediction (ta-
ble 6), molecular docking (table 7), and molecular pretraining (tables 8 and 9)—demonstrate Uni-
3DAR’s superior or competitive performance compared to existing methods. Notably, Uni-3DAR
consistently outperforms diffusion-based models. Ablation studies (table 12) highlight the benefits
of unifying generation and understanding and validate the effectiveness of each component.

2 METHOD

2.1 DYNAMIC COARSE-TO-FINE TOKENIZATION FOR 3D STRUCTURES

3D structures are inherently sparse: at the microscopic scale, most space is empty except for scat-
tered atoms; at the macroscopic level, detailed representations are only needed at object surfaces,
with most volume remaining empty. Using a full-size voxel grid is thus highly inefficient. To ad-
dress this, we propose a hierarchical, coarse-to-fine tokenization of 3D structures that exploits this
sparsity. As shown in Fig. 1, our approach consists of two parts: (1) a hierarchical compression of
3D space using an octree, and (2) a fine-grained structural tokenization.

The first component is the octree, an efficient data structure for lossless 3D grid compression. Start-
ing with a single cell covering the entire structure, we recursively subdivide it: if a cell contains
atoms, it is partitioned further. Each subdivision halves each dimension, producing 23 = 8 equal
subcells (hence “octree”). This process continues for L levels. If c0 is the root cell length, the
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Figure 3: (a) Masked Next-Token Prediction. To handle the challenge of dynamically positioned tokens
in sparse 3D structures, Uni-3DAR decouples position and content generation. Unlike standard next-token
prediction, we first infer the next token’s position from the octree hierarchy, place a “[MASK]” token, and then
have the model predict only its content (e.g., occupancy or fine-grained properties). (b) Unified Framework
for 3D Generation and Understanding. The Uni-3DAR architecture is a versatile, multi-task model. It
supports autoregressive generation of complex 3D structures (blue arrows) and can be prompted to perform
both token-level (green arrows) and structure-level (blue box) understanding tasks within a single framework.

cell length at level L − 1 is cL−1 = c0/2
L−1. We refer to these leaf subcells as fine-grained "3D

patches," which are then tokenized as detailed in the following paragraph.

The second component is the fine-grained tokenization of structural details. While the octree ef-
fectively identifies coarse, non-empty regions, it lacks finer details such as atom types and precise
coordinates (microscopic) or surface features (macroscopic). Although using deeper octrees can
capture more detail (Ibing et al., 2023), this approach becomes inefficient due to the rapidly increas-
ing number of tokens. Instead, inspired by the use of 2D image patches (Alexey, 2020), we treat the
contents of each final-level non-empty region as a “3D patch.” These patches can be processed in
various ways; for instance, they can be quantized into discrete tokens for autoregressive prediction,
similar to VQ-VAE (Van Den Oord et al., 2017), or modeled using a patch-level diffusion loss for
continuous vector representations (Li et al., 2024b) (ablation in Table 12). In our experiments, we
demonstrate this flexibility by using raw atom types and coordinates as fine-grained tokens for mi-
croscopic data (we set the patch size to ensure each 3D patch only contains one atom), and VQ-VAE
tokens for macroscopic data. More details are in Appendix B.

Finally, we concatenate tokens level by level. Beyond token content, we represent each token’s
positional information using its tree level and the spatial coordinates of its cell center. For instance,
the root cell is at level 0 with a center at (c0/2, c0/2, c0/2). During autoregressive prediction, since
octree tokens are dynamically unfolded level by level, the positions of all tokens at the current
level are known based on the predictions from previous level. This explicit knowledge of the token
position is crucial, as autoregressive models predict only token content.

2-Level Subtree Compression Although octree tokenization avoids cubic cell growth, it remains
inefficient for large 3D structures. Each level has up to 8N tokens (N = non-empty final-level cells),
totaling up to 8NL tokens across L levels, about two orders of magnitude larger than N . To reduce
this, we introduce 2-level subtree compression, merging a parent and its 8 children into a single
token. As the parent’s type is always 1, the subtree is fully represented by its 8 children’s types,
yielding 28 = 256 possible states. This cuts token count by 8×, down to at most N(L− 1) tokens.
For positional information of the compressed nodes, we retain the their parent’s center and level.

2.2 MASKED NEXT-TOKEN PREDICTION FOR DYNAMIC TOKEN POSITIONS

In standard autoregressive models, such as those for text, token positions follow a fixed, sequential
order (e.g., token i + 1 always follows token i). This static structure makes the next token’s posi-
tion implicitly known, obviating the need for its explicit prediction. In contrast, our coarse-to-fine
3D tokenization generates a token sequence where positions are dynamic and vary across different
structures. This variability introduces a significant challenge: inferring the next token’s position
becomes non-trivial, making it preferable to provide this information to the model explicitly.
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A straightforward approach is to encode both the current and next positions within each token (Ibing
et al., 2023). However, we found this method leads to suboptimal performance (Table 12). We
hypothesize that the unpredictable nature of the next token’s position introduces noise that degrades
the current token’s representation. This intuition is supported by prior work like Yan et al. (2022),
which decouples position and content prediction into two separate transformer modules.

Another promising direction is masked prediction (Chang et al., 2022; Li et al., 2024b), where a
model predicts the content of a masked token given its position. This has proven effective for gen-
erative tasks with non-sequential or randomized token orders (Li et al., 2024b; Pang et al., 2024).
However, directly applying conventional masked prediction to our framework is problematic. First,
it typically relies on bi-directional attention, whereas our hierarchical tokenization unfolds uni-
directionally. Second, it often requires parallel, non-causal sampling, which necessitates complex,
rule-based inference strategies to balance performance and efficiency (Li et al., 2024b).

To resolve these issues, we introduce Masked Next-Token Prediction (MNTP), a simple yet effec-
tive method that integrates masked prediction into a standard autoregressive framework. The core
idea is to duplicate each token. For a given token, we first generate a placeholder with its content
replaced by a special [MASK] symbol while retaining its correct position. This is immediately fol-
lowed by a second token at the same position but with the true content. The model’s objective is to
predict the content of this second token, conditioned on the [MASK] token and all preceding tokens.

This formulation effectively reframes next-token prediction as a masked prediction task: the model
is given a position with a mask and asked to fill in the content. This approach elegantly sidesteps
the challenge of predicting dynamic next positions. Compared to conventional masked prediction,
MNTP preserves a strictly causal, uni-directional attention flow, eliminating the need for complex
sampling schemes. While this duplication doubles the sequence length, we demonstrate in Ap-
pendix D.2 that the substantial performance gains justify this trade-off. Furthermore, through tar-
geted optimizations discussed in Appendix D.3, the impact on inference latency is modest, with only
a 15%–30% increase compared to standard next-token prediction (appendix D.3).

2.3 UNIFIED 3D GENERATION AND UNDERSTANDING FRAMEWORK

By integrating techniques in sections 2.1 and 2.2, Uni-3DAR provides a unified framework for a
wide range of 3D tasks (Figure 3(b)). The model architecture assigns distinct roles to different
token types, enabling it to handle four primary task categories individually or jointly:
1. Single-Frame Generation (sections 3.1, 3.3, 3.4 and 3.6): Generating a single 3D structure,

either unconditionally or conditioned on external modalities like text or chemical properties. This
is accomplished using the masked tokens for autoregressive generation.

2. Multi-Frame Generation (sections 3.2 and 3.5) Autoregressively producing a sequence of 3D
structures (multiple octrees), such as a molecular dynamics trajectory, molecular docking, or
pocket-based generation. Each frame is distinguished by a unique frame-index embedding.

3. Token-Level Understanding (section 3.4) Predicting properties of local components (e.g.,
atomic forces or partial charges) by attaching a prediction head to the fine-grained tokens.

4. Structure-Level Understanding (section 3.6): Predicting global properties of an entire structure
(e.g., solubility, toxicity) via a prediction head on the final “[EoS]” token. This allows Uni-3DAR
to be pre-trained on large-scale unlabeled 3D data and efficiently fine-tuned for downstream tasks.

This versatile design allows for seamless joint training across these diverse tasks. Each token type
serves a clear purpose: masked tokens drive generation, fine-grained tokens facilitate local under-
standing, and the “[EoS]” token enables global understanding.

Furthermore, the autoregressive nature of Uni-3DAR inherently supports multi-modal conditioning,
which is critical for many scientific applications. For instance, a protein’s amino acid sequence
can guide the generation of its 3D fold. Similarly, experimental data like Powder X-ray Diffraction
(PXRD) spectra can constrain the prediction of a crystal structure, a task we explore in section 3.2.

3 EXPERIMENTS

We conducted extensive experiments to validate Uni-3DAR across diverse benchmarks. This section
summarizes the key findings; complete implementation details settings can be found in appendices B
and C. To ensure a fair comparison against existing methods, we trained separate model for each
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Table 1: Performance comparison on unconditional 3D molecular generation. Results for UniGEM are marked
with an asterisk (*) to indicate the use of additional molecular property information during training.

QM9 DRUG
Atom Sta(%)↑ Mol Sta(%)↑ Valid(%)↑ V × U(%)↑ Atom Sta(%)↑ Valid(%)↑

Data 99.0 95.2 97.7 97.7 86.5 99.9

ENF (Garcia Satorras et al., 2021) 85.0 4.9 40.2 39.4 - -
G-Schnet (Gebauer et al., 2022) 95.7 68.1 85.5 80.3 - -
GDM (Hoogeboom et al., 2022) 97.0 63.2 - - 75.0 90.8
GDM-AUG (Hoogeboom et al., 2022) 97.6 71.6 90.4 89.5 77.7 91.8
EDM (Hoogeboom et al., 2022) 98.7 82.0 91.9 90.7 81.3 92.6
EDM-Bridge (Wu et al., 2022) 98.8 84.6 92.0 90.7 82.4 92.8
GeoLDM (Xu et al., 2023b) 98.9 89.4 93.8 92.7 84.4 99.3
UniGEM* (Feng et al., 2024) 99.0 89.8 95.0 93.2 85.1 98.4

Uni-3DAR 99.4 93.7 98.0 94.0 85.5 99.4

Table 2: Results on de novo crystal generation. Baseline results are taken from Xie et al. (2021).

Data Method Validity (%) ↑ Coverage (%) ↑ Property ↓
Struc. Comp. COV-R COV-P dp dE delem

Carbon-24 FTCP (Ren et al., 2021) 0.08 – 0.00 0.00 5.206 19.05 –
G-SchNet (Gebauer et al., 2019) 99.94 – 0.00 0.00 0.9427 1.320 –
P-G-SchNet (Gebauer et al., 2019) 48.39 – 0.00 0.00 1.533 134.7 –
CDVAE (Xie et al., 2021) 100.0 – 99.80 83.08 0.1407 0.2850 –
DiffCSP (Jiao et al., 2023) 100.0 – 99.90 97.27 0.0805 0.0820 –
Uni-3DAR 99.99 – 100.0 98.16 0.0660 0.0289 –

MP-20 FTCP (Ren et al., 2021) 1.55 48.37 4.72 0.09 23.71 160.9 0.7363
G-SchNet (Gebauer et al., 2019) 99.65 75.96 38.33 99.57 3.034 42.09 0.6411
P-G-SchNet (Gebauer et al., 2019) 77.51 76.40 41.93 99.74 4.04 2.448 0.6234
CDVAE (Xie et al., 2021) 100.0 86.70 99.15 99.49 0.6875 0.2778 1.432
DiffCSP (Jiao et al., 2023) 100.0 83.25 99.71 99.76 0.3502 0.1247 0.3398
FlowMM (Miller et al., 2024) 96.85 83.19 99.49 99.58 0.239 – 0.083
Uni-3DAR 99.89 90.31 99.62 99.83 0.4768 0.1237 0.0694

benchmark. We defer the investigation of joint training to future work. Uni-3DAR is robust to
hyper-parameters, requiring no significant tuning and using a consistent setting across all tasks.

3.1 3D SMALL MOLECULE GENERATION

We assess Uni-3DAR on unconditional 3D molecular generation, a fundamental task challenged by
the need to produce realistic conformations while accounting for molecular flexibility and diverse
rotatable bonds. Our evaluation employs two standard benchmarks: QM9 (Ramakrishnan et al.,
2014b), a dataset of small molecules with up to 29 atoms, and GEOM-DRUG (Axelrod and Gomez-
Bombarelli, 2022), which contains larger, more complex drug-like compounds with up to 181 atoms.
Following the established protocols of Hoogeboom et al. (2022), we report on key metrics including
Atom Stability, Molecule Stability, chemical validity (as determined by RDKit), and uniqueness.
Bond types are inferred from the generated geometries to evaluate chemical correctness.

As shown in table 1, Uni-3DAR significantly outperforms all baseline models. On QM9, it achieves
notable improvements in crucial metrics, reaching a Molecule Stability of 93.7% and a Validity
of 98.0%, substantially exceeding the second-best methods. These results underscore Uni-3DAR’s
robust capability to generate high-quality, chemically valid molecules. Furthermore, Uni-3DAR sur-
passes UniGEM, a model that leverages additional molecular property information during training,
using only 3D geometric data. This highlights the efficacy and robustness of our proposed model.

3.2 CRYSTAL GENERATION

We evaluate Uni-3DAR on crystal structure generation, a task distinct from organic molecules due
to crystals’ rigidity, symmetry, and periodicity. A crystal is represented by its lattice (parallelepiped
unit cell) and atomic configurations. Uni-3DAR adopts a two-frame generation approach: first gen-
erating lattice vertices, then atom positions within the lattice. We consider three tasks: (1) de novo
crystal generation (unconditional sampling), (2) crystal structure prediction (CSP) from given com-
positions, and (3) PXRD-guided CSP, which reconstructs crystal structures from PXRD signals and
compositions, with practical relevance for real-world material discovery. For composition condition-
ing, we prepend a token from a multi-hot atom-type vector. PXRD data (0°–120° at 0.1° resolution)
is converted into a 1200-dim vector, split into four segments, each as a conditional token—yielding

6
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Table 3: Results on crystal structure prediction (CSP) and PXRD-guided CSP. For a fair comparison, we report
UniGenX results obtained from the model trained from scratch, rather than using its default configuration that
leverages large-scale datasets for additional pretraining and fine-tuning.

Method Carbon-24 MPTS-52 MP-20 MP-20 (PXRD-Guided)

Match Rate
(%) ↑

RMSE
↓

Match Rate
(%) ↑

RMSE
↓

Match Rate
(%) ↑

RMSE
↓

Match Rate
(%) ↑

RMSE
↓

CDVAE (Xie et al., 2021) 17.09 0.2969 5.34 0.2106 33.90 0.1045 – –
DiffCSP (Jiao et al., 2023) 17.54 0.2759 12.19 0.1786 51.49 0.0631 – –
FlowMM (Miller et al., 2024) 23.47 0.4122 17.54 0.1726 61.39 0.0566 – –
UniGenX (Zhang et al., 2025) 27.09 0.2264 29.09 0.1256 63.88 0.0598 – –
PXRDGEN (Li et al., 2024a) – – – – – – 68.68 0.0707

Uni-3DAR 31.23 0.2194 32.44 0.0684 65.48 0.0317 75.08 0.0276

five tokens in total (one for composition, four for PXRD). Uni-3DAR’s autoregressive framework
integrates these tokens directly, avoiding extra encoders used in prior work (Li et al., 2024a; Lai
et al., 2025). Following prior work (Xie et al., 2021; Jiao et al., 2023; Miller et al., 2024), we use
Carbon-24 (Pickard, 2020), MP-20 (Jain et al., 2013), and MPTS-52 datasets. De novo generation
is evaluated via validity, coverage, and property statistics (Xie et al., 2021), while CSP and PXRD-
guided CSP are assessed by top-1 match rate and RMSE, using StructureMatcher (Ong et al.,
2013) with the same thresholds as in (Miller et al., 2024).

Table 2 shows Uni-3DAR’s performance on Carbon-24 and MP-20. On Carbon-24, Uni-3DAR
outperforms baselines, especially in coverage, generating diverse and realistic structures. On MP-20,
it achieves higher component validity while maintaining competitive results overall, highlighting its
strength in producing chemically valid crystals. Table 3 summarizes CSP results across all datasets.
Uni-3DAR consistently outperforms baselines, improving match rate by 4.14% on Carbon-24 and
reducing RMSE from 0.0566 to 0.0317 on MP-20 (178% relative gain). On MPTS-52, it achieves
0.0684 RMSE, a 184% improvement despite higher complexity, demonstrating strong precision and
generalization. For PXRD-guided CSP, Uni-3DAR surpasses PXRDGEN (Li et al., 2024a), raising
the match rate from 68.68% to 75.08% and cutting RMSE from 0.0707 to 0.0276 (256% relative
gain), showing exceptional accuracy in reconstructing crystals from PXRD data.

3.3 MACROSCOPIC 3D OBJECT GENERATION

Table 4: Unconditional 3D object generation results (1-
NNA↓) on ShapeNet. The best and second-best results
among the baselines are highlighted.

Airplane Chair Car
Method CD ↓ EMD ↓ CD ↓ EMD ↓ CD ↓ EMD ↓
r-GAN (Achlioptas et al., 2018) 98.40 96.79 83.69 99.70 94.46 99.01
l-GAN (CD) (Achlioptas et al., 2018) 87.30 93.95 68.58 83.84 66.49 88.78
l-GAN (EMD) (Achlioptas et al., 2018) 89.49 76.91 71.90 64.65 71.16 66.19
PointFlow (Yang et al., 2019) 75.68 70.74 62.84 60.57 58.10 56.25
SoftFlow (Kim et al., 2020) 76.05 65.80 59.21 60.05 64.77 60.09
SetVAE (Kim et al., 2021) 76.54 67.65 58.84 60.57 59.94 59.94
DPF-Net (Klokov et al., 2020) 75.18 65.55 62.00 58.53 62.35 54.48
DPM (Luo and Hu, 2021) 76.42 86.91 60.05 74.77 68.89 79.97
PVD (Zhou et al., 2021) 73.82 64.81 56.26 53.32 54.55 53.83
LION (Vahdat et al., 2022) 67.41 61.23 53.70 52.34 53.41 51.14

Uni-3DAR (Ours) 67.35 61.09 53.11 51.78 53.35 50.89

To demonstrate its versatility beyond micro-
scopic domains, Uni-3DAR was also evalu-
ated on unconditional macroscopic 3D object
generation, a fundamental task in 3D com-
puter vision. We utilized three ShapeNet cat-
egories (airplane, chair, car) (Chang et al.,
2015), where objects are represented as point
clouds, and assessed using 1-NNA (with both
Chamfer distance (CD) and earth mover dis-
tance (EMD) as our main metric following Vah-
dat et al. (2022). A distinctive aspect for this
task is Uni-3DAR’s processing of an input object as 512 × 512 × 512 voxels, and the resulting 3D
patches (fine-grained structural tokens) are defined as 16 × 16 × 16 voxels. Each patch is quan-
tized using VQVAE. As shown in Table 4, Uni-3DAR exhibits highly competitive, often superior,
performance against established baselines (Yang et al., 2019). More details are in Appendix B.

3.4 PROTEIN POCKET PREDICTION

Predicting protein binding pockets is crucial for drug design and molecular docking. We eval-
uate Uni-3DAR’s token-level understanding on this task, formulating it as a classical atom-level
classification problem where each atom is labeled as part of a pocket or not. Following previous
work (Zhao et al., 2024), we train and evaluate on a composite dataset built from the CASF-2016
core set (Su et al., 2018), the PDBBind v2020 refined set (pdb, 2025), and MOAD (Hu et al., 2005).
Performance is measured using the Intersection-over-Union (IoU) metric. As shown in Table 6, Uni-
3DAR achieves state-of-the-art performance. Notably, it matches or exceeds specialized methods
like Vabs-Net, which relies on additional features such as ESM embeddings and Solvent Accessible
Surface Area, whereas Uni-3DAR uses only 3D structural information. These results highlight Uni-
3DAR’s strong capacity to interpret protein structures for fine-grained, atom-level prediction tasks.
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3.5 MOLECULAR DOCKING

Molecular docking, which predicts the binding pose of a ligand to a protein, is a cornerstone of
drug discovery. Uni-3DAR frames this as a three-frame generation task: the first two frames are the
protein and the initial ligand conformation, and the third is the predicted docked pose. We evaluate
this approach on the PDBbind2020 dataset (pdb, 2025), benchmarking against 13 classical and deep
learning methods using standard RMSD-based metrics (Top-1/5 success rates for RMSD < 1Å and
< 2Å, and median RMSD), following the protocol of Cao et al. (2024). Uni-3DAR operates solely
on atom types and coordinates, forgoing complex feature engineering and a separate scoring model;
poses are ranked using the cumulative probability from the autoregressive generation. The results in
Table 7 demonstrate that Uni-3DAR achieves state-of-the-art performance. It surpasses the previous
best, SurfDock, on Top-1 metrics, with higher success rates for poses with RMSD < 1Å (44.75%
vs. 40.96%) and < 2Å (69.06% vs. 68.41%), and a lower median RMSD (1.08Å vs. 1.18Å). While
its Top-5 performance is slightly lower, likely due to its implicit scoring mechanism, these results
underscore the strong potential of our unified, feature-light approach for molecular docking.

3.6 MOLECULAR AND POLYMER PROPERTY PREDICTION VIA PRETRAINING

To evaluate its structure-level understanding, we assess Uni-3DAR on property prediction for small
molecules and homopolymers after pretraining. For small molecules, we adopt the pretraining data,
downstream tasks, and evaluation settings from state-of-the-art models Uni-Mol (Zhou et al., 2023b)
and SpaceFormer (Lu et al., 2025), using Mean Absolute Error (MAE) as the metric. For homopoly-
mers, we follow Wang et al. (2024) and use eight DFT-calculated property datasets, reporting the
Root Mean Squared Error (RMSE) from a 5-fold cross-validation averaged over three seeds.

As summarized in Tables 8 and 9, Uni-3DAR demonstrates strong and versatile performance.
On small molecule tasks (Table 8), it ranks first in 4 of 10 tasks and in the top two for 8 of 10,
performing comparably to the specialized SpaceFormer model. On homopolymer tasks (Table 9), it
ranks first in 4 of 8 tasks and in the top two for 7 of 8. These results affirm that Uni-3DAR develops
robust and competitive representations for predicting properties across diverse chemical systems.

3.7 ADDITIONAL EXPERIMENTS

Due to space limitations, we present further experimental results in Appendix D. These include (1)
an analysis of the benefits of unifying understanding and generation, (2) comprehensive ablation
studies evaluating our proposed tokenization and MNTP, and (3) a comparison of inference speeds.

4 RELATED WORK

Octree and Hierarchical Autoregressive Models The coarse-to-fine hierarchical structure is
widely used in 3D vision (Wang et al., 2017; Tatarchenko et al., 2017; Tang et al., 2021; Zhou et al.,
2023a; Wang, 2023; Ibing et al., 2023; Zhang et al., 2024b; Ren et al., 2024). Among these works,
(Ibing et al., 2023) is most similar to Uni-3DAR, as it also employs autoregressive generation using
an octree. However, our method differs in three key aspects: (1) instead of relying on deep tree-
level generation for fine details, we add an extra layer of fine-grained tokens to avoid excessively
deep trees; (2) rather than compressing nodes via convolutional layers, we represent a compressed
subtree with a single token; and (3) to handle dynamic token positions, while (Ibing et al., 2023)
appends the next position to the current token, we adopt a masked next-token prediction strategy.
These innovations make Uni-3DAR more efficient and effective than (Ibing et al., 2023). Recently,
some image generative models have adopted a coarse-to-fine, level-by-level generation approach,
such as VAR (Tian et al., 2024). Although the high-level idea appears similar, our motivation is dis-
tinct: Uni-3DAR is designed to avoid the inefficiencies of a full-size cubic grid, whereas VAR uses
more tokens to boost performance. Moreover, Uni-3DAR remains within the next-token prediction
framework, while VAR employs next-scale prediction.

Microscopic 3D Structure Modeling Most previous generative models for microscopic 3D
structures employ diffusion-based approaches (Wu et al., 2022; Anand and Achim, 2022; Hooge-
boom et al., 2022; Xu et al., 2023b; Jiao et al., 2023) to generate atomic positions from noise.
However, diffusion models have two major limitations. First, they require the number of atoms
to be predetermined. Second, atom types are sampled from a categorical distribution, for which a
proper score function is not well defined. Some studies have explored grid-based generation (O Pin-
heiro et al., 2024), but using a full-size 3D grid is computationally prohibitive. Other works have
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investigated autoregressive models for 3D molecules (Luo and Ji, 2022; Luo et al., 2021; Zhang
et al., 2025), but these models generate molecules atom by atom, requiring a predefined sequence
order. For microscopic 3D structure understanding, prior studies primarily leverage SE(3)-invariant
or equivariant models (Schütt et al., 2021; Fuchs et al., 2020). Additionally, unsupervised pretrain-
ing is widely used to mitigate the scarcity of labeled data (Stärk et al., 2022a; Cui et al., 2024; Yang
et al., 2024; Zaidi et al., 2022; Zhou et al., 2023b). These models typically follow a BERT-style pre-
training framework (Devlin, 2018), where some atoms are masked, their 3D positions are perturbed,
and the model is trained to recover the ground truth. While highly effective for understanding tasks,
most of these models cannot be directly applied to generation.

Some recent efforts have attempted to unify generation and understanding for microscopic data.
However, most focus solely on sequence data (e.g., 1D SMILES, nucleotide sequences, or textual
descriptions) and directly apply autoregressive language models (Christofidellis et al., 2023; Zhang
et al., 2024a; Nguyen et al., 2024; Xia et al., 2025). While these models are straightforward, they
lack essential 3D structural information, limiting their performance and applicability. Recent studies
have also explored diffusion-based approaches. For example, UniGEM (Feng et al., 2024) demon-
strated that a two-phase, multi-task training strategy can improve performance for both tasks. This
approach combines diffusion loss with a prediction task applied during later diffusion steps. In sum-
mary, while previous work has made progress in bridging generation and understanding, Uni-3DAR
is the first autoregressive framework to unify both tasks for 3D microscopic structures.

Macroscopic 3D Structure Modeling Macroscopic 3D structure modeling encompasses the
understanding and generation of everyday objects (Chang et al., 2015; Deitke et al., 2023),
scenes (Peng et al., 2023), CAD models (Wu et al., 2021; Willis et al., 2021; Xu et al., 2024),
avatars (Canfes et al., 2023), and more. Similar to microscopic 3D structures, macroscopic 3D
structures lack a unified representation format. Commonly used 3D representations include vox-
els (Wang et al., 2018b), point clouds (Xue et al., 2023), polygon meshes (Liu et al., 2024), implicit
functions (Tang et al., 2021), and 3D Gaussian Splatting (Kerbl et al., 2023). Recent methods (Zhang
et al., 2023a; Zhao et al., 2023; Zhang et al., 2024b; Chen et al., 2024) based on Diffusion Transform-
ers (Peebles and Xie, 2023) encode 3D shapes into compressed, compact latent codes, substantially
improving representation efficiency. Previous literature also explored autoregressive modeling for
macroscopic 3D structures. For example, Polygen (Nash et al., 2020) and MeshGPT (Siddiqui et al.,
2024) generate mesh faces sequentially from lowest to highest on the vertical axis, correspond-
ing to the point-based tokenization strategy as discussed in Sec. 1, suffering from the same chal-
lenges in dynamic token positions. Another category of 3D structure generation methods, known as
optimization-based approaches (Tang et al., 2023; Lin et al., 2023a; Metzer et al., 2023; Poole et al.,
2022), leverages text-to-image generative models and refines 3D representations by distilling infor-
mation from 2D images (Poole et al., 2022). Unlike true 3D generation, these methods primarily
perform 3D reconstruction, making them fundamentally distinct from the previously mentioned 3D
generation techniques and Uni-3DAR.

5 CONCLUSION

In this work, we introduced Uni-3DAR, a unified autoregressive framework designed to address the
long-standing fragmentation of 3D modeling. By leveraging a novel coarse-to-fine octree-based tok-
enizer, Uni-3DAR compresses diverse 3D structures—from molecules to macroscopic shapes—into
a common 1D sequence representation. This core innovation, enhanced by 2-level subtree compres-
sion for efficiency and a masked next-token prediction strategy to handle sparse spatial data, enables
a single model to seamlessly bridge the gap between generative and understanding tasks across
different scales. Our extensive experiments validate this unified approach, demonstrating that Uni-
3DAR achieves state-of-the-art or highly competitive performance on a wide array of benchmarks.
Notably, it consistently outperforms specialized, diffusion-based models while being significantly
more efficient. Additionally, we prioritize a general, scalable architecture over hard-coded inductive
biases like SE(3) invariance. By relying on data augmentation rather than architectural constraints,
Uni-3DAR effectively learns geometric principles from data, matching or outperforming specialized
SE(3)-equivariant baselines on molecular tasks. By proving that a simple yet powerful autoregres-
sive paradigm can unify disparate tasks without compromising accuracy, we believe Uni-3DAR
marks a pivotal step toward a general-purpose foundation model (a “GPT-2 moment”) for the cross-
scale 3D domain.
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Limitations While our results demonstrate the mutual benefits of unifying generation and under-
standing, we have not yet trained a single, large-scale foundation model on a heterogeneous mixture
of 3D data and tasks. Realizing this vision through joint pretraining is a primary goal for future work.
Other critical avenues for research include extending the framework to real-world applications.

ETHICS STATEMENT

The research presented in this paper aims to advance scientific discovery by creating a unified frame-
work for 3D modeling. We have strived to conduct this work with the highest ethical standards.

All datasets used in our experiments—including QM9, GEOM-DRUG, Materials Project, ShapeNet,
and PDBBind—are publicly available and are standard benchmarks in their respective scientific
communities. We did not collect any new data, and no personally identifiable or sensitive informa-
tion was used.

We acknowledge that generative models for molecular and material design could potentially be mis-
used for creating harmful substances. However, Uni-3DAR is intended as a fundamental scientific
tool to accelerate beneficial research in fields such as drug discovery and materials science. Its ca-
pabilities are grounded in the principles learned from public scientific data. We believe the potential
benefits—such as the rapid design of novel therapeutics and efficient materials—significantly out-
weigh the risks. As with any powerful technology, we advocate for its responsible use and encourage
the research community to establish clear guidelines for the ethical application of generative models
in science.

Finally, we recognize the environmental impact associated with training large-scale models. Our
work incorporates significant efficiency optimizations, such as octree and subtree compression,
which substantially reduce the computational resources and token count required for training and
inference compared to alternative approaches.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we are committed to making our research as transparent
as possible.

Code Upon acceptance of this paper, we will release the complete source code for Uni-3DAR,
including model implementation, training scripts, and evaluation protocols, under a permissive open-
source license.

Data All datasets used in our experiments are publicly available and have been cited appropriately.
We followed standard data processing and splitting protocols as established in prior work. Detailed
descriptions of data preparation for each task are provided in Appendix C.

Hyperparameters and Architecture The full details of our model architecture, as well as the
specific hyperparameters used for every experiment (including learning rates, batch sizes, model
dimensions, and training steps), are thoroughly documented in Appendix B and C. We used a con-
sistent model configuration across most tasks to demonstrate the robustness and generality of our
framework.

Computational Environment Our experiments were conducted using standard deep learning li-
braries. Specific details about the hardware (e.g., NVIDIA A100 and 4090 GPUs) and software
environment are provided in the appendices to facilitate the replication of our training and infer-
ence setups. The efficiency optimizations used, such as FlashAttention and KV-caching, are also
described in Appendix B.
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A THE MERITS OF USING OCTREES FOR 3D GENERATION

Octrees offer a principled way to turn sparse 3D geometry into short, informative token se-
quences—exactly what an autoregressive (AR) model needs to scale across domains and resolu-
tions. Compared with uniform voxel grids and point/atom lists, an octree (i) adapts to sparsity,
(ii) preserves precise spatial locality, and (iii) supplies a natural coarse-to-fine generation order that
dramatically simplifies next-token prediction.

• Token efficiency at scale. Let the finest grid resolution be 2L per axis, and let N denote the
number of non-empty leaf cells at level L− 1. A uniform 2L × 2L × 2L grid yields O(8L) tokens
regardless of sparsity. In contrast, an octree emits at most 8N tokens per level, totaling ≤ 8NL
across L levels (see Section 2.1). With our 2-level subtree compression (2LSC), a parent and its
8 children are encoded as one 8-bit token, reducing the count by ≈ 8× to ≤ N(L − 1). For thin
structures (e.g., molecular surfaces or macroscopic shells) where N scales roughly with surface
area, the token complexity approaches O(M2 logM) rather than O(M3) for a grid of side length
M = 2L—a decisive advantage for large systems.

• Coarse-to-fine inductive bias. The octree’s hierarchy (Figure 2) gives each token strong context:
high-level occupancy constrains where fine detail can appear, and subsequent levels specialize
only within occupied regions. This bias shrinks the search space early—occupancy first, details
later—so the AR model solves a sequence of easier problems rather than one monolithic one.

• Stable, explicit positions for AR prediction. Point- or atom-based sequences suffer from order-
ing ambiguities and unknown future positions. Octree nodes, however, have deterministic posi-
tions (cell centers) and levels, which we feed as positional signals. Combined with our masked
next-token prediction (MNTP; Section 2.2), the model conditions on the correct target position
before predicting content, avoiding the instability of “predict-where-then-what” pipelines.

• Precision where it matters. Deepening the tree only where geometry exists allocates resolution
adaptively. Our fine-grained “3D patch” tokens then capture sub-voxel attributes (e.g., atom type
and in-cell coordinates for molecules, or VQ codes for macroscopic shapes), marrying lossless
spatial scaffolding with rich local detail (Section 2.1).

• Small, well-posed classification tasks. 2LSC transforms eight binary occupancy decisions into
a single 256-way classification, improving statistical efficiency and reducing sequence length.
Downstream heads predict small discrete/continuous targets (e.g., token type and in-cell offsets)
conditioned on strong spatial priors, which is well suited to AR transformers.

• Unified across scales and modalities. Because the same octree scaffolding applies to Å-scale
atoms and meter-scale objects, Uni-3DAR uses one tokenizer and one AR model for generation
and understanding across molecules, crystals, proteins, and macroscopic shapes (Section 2.3).
This uniformity simplifies conditioning (e.g., sequences, PXRD, text) and multi-frame tasks with-
out custom architectures.

In sum, the octree representation yields shorter sequences, clearer positional signals, and a natu-
ral generation curriculum. Together with 2LSC and MNTP, it makes AR modeling practical and
accurate for cross-scale 3D generation and understanding.

B IMPLEMENTATION DETAILS

This section outlines the technical details of our approach, covering the tokenization schemes for
different scales, the model architecture, and various optimizations.

B.1 FINE-GRAINED ATOM TOKENIZATION FOR MICROSCOPIC STRUCTURES

For microscopic 3D structures like molecules, we employ a fine-grained tokenization strategy where
each token represents a single atom. This is achieved by recursively partitioning the 3D space using
an octree until the final-level 3D patches are small enough to contain at most one atom. In our
experiments, we set this final cell size, cL−1, to 0.24Å.

Each atom is thus represented by a token (ti, ei), where ti is the atom type (e.g., Carbon, Oxygen)
and ei = (e0i , e

1
i , e

2
i ) specifies the atom’s coordinates within its cell (we don’t model the radius of a
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atom). To handle continuous positions, we discretize the coordinates with a resolution cr = 0.01Å,
mapping them to integers in the range {0, . . . , Np − 1}, where Np = cL−1/cr. In contrast, tokens
representing non-terminal octree cells, which do not have a specific in-cell position, are assigned a
default coordinate ei = (Np/2, Np/2, Np/2). For data augmentation, we apply a random rotation
to the structure before tokenization.

This octree-based approach is highly efficient. For example, when applied to the QM9 dataset
(Ramakrishnan et al., 2014a) using L = 6 levels, a typical structure with an average of 18
atoms is converted into approximately 160 tokens. This is a dramatic reduction compared to the
(26)3 = 262, 144 tokens that would be required by a uniform grid of the same resolution. For othe
microscopic tasks, we keep the same size cL−1 = 0.24Å for 3D patch, while the number of levels
L is set according to the data type. For example, we use L = 10 for large proteins.

B.2 VECTOR QUANTIZED TOKENIZATION FOR MACROSCOPIC STRUCTURES

For large, macroscopic 3D structures, we adopt a voxel-based representation and employ a Vector-
Quantized Variational Autoencoder (VQ-VAE) for tokenization. This approach is analogous to
methods used for 2D image tokenization, where an image is converted into a sequence of discrete
tokens.

The core idea is to divide a high-resolution boolean voxel grid (e.g., 512 × 512 × 512) into non-
overlapping 3D patches and learn a discrete, compressed representation for each one. From the
input grid resolution of 5123 and a target latent grid of 163 tokens, each token ultimately represents
a 32 × 32 × 32 patch of the original structure. To maintain a unified token format (ti, ei) with our
other representations, the discrete code index from the VQ-VAE serves as the token type ti, while
its in-cell coordinate ei is set to a default value.

Our VQ-VAE tokenization pipeline involves the following steps:

1. Lossless Voxel-to-Channel Packing: We first perform a lossless pre-processing step to make
the data more amenable to standard 3D convolutional networks. Each non-overlapping 4× 4× 4
block of the boolean input grid, containing 64 bits of information, is bit-packed into 8 bytes. This
transforms the input data from a sparse, single-channel boolean tensor of shape 1 × 5123 into a
dense, multi-channel tensor of shape 8 × 1283, where each value is an integer in {0, . . . , 255}.
This can be expressed as a mapping: B1×512×512×512 → U8×128×128×128

8 .

2. VQ-VAE Encoding: A 3D VQ-VAE is trained on this 8 × 128 × 128 × 128 multi-channel
representation. The VQ-VAE’s encoder network processes this volume using a downsampling
factor of 8, mapping each 8 × 8 × 8 spatial patch of the multi-channel data to a single latent
vector. This results in a final latent grid of 16 × 16 × 16 vectors. Each vector is then quantized
by finding the nearest entry in a learned codebook.

3. Token Representation: The output of this process is a grid of integer indices, Z ∈
{0, . . . , Nc}16×16×16, where each index corresponds to a vector in the codebook. Based on
the provided code, we use a codebook with Nc = 512 learnable "content" codes, where each
code is a vector of dimensionality Dc = 4.

To efficiently handle the inherent sparsity of most macroscopic structures, we introduce a special
"blank" token. A 32×32×32 patch in the original voxel grid is considered blank if and only if all
voxels within it are zero. During encoding, these blank patches are mapped to a reserved index (e.g.,
index 0). The remaining Nc indices are used for non-empty patches. This allows subsequent gen-
erative models to ignore the blank tokens, focusing computational resources exclusively on regions
containing geometry. We implement this VQ-VAE using the vector-quantize-pytorch library,
configuring it with techniques like cosine similarity, k-means initialization, and diversity losses to
ensure robust codebook utilization.

B.3 MODEL ARCHITECTURE

We use a standard decoder-only Transformer architecture (Vaswani, 2017), based on the GPT-2
model size. The model consists of 12 layers, an embedding dimension of 768, and 12 attention
heads with a head dimension of 64, totaling approximately 90M parameters. Each layer contains a
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Algorithm 1 A Simple Autoregressive Head for Sequential Target Prediction

Require: Input tensor x, number of targets n, prediction heads for each target {pred_heads}, embedding
layers for each prediction {emb_layers}

1: y ← x
2: Initialize preds← {}
3: for i← 1 to n do
4: p← pred_heads[i](y)
5: Append p to preds
6: y ← y + emb_layers[i](p) {Teacher-forcing during training}
7: end for
8: return preds

unidirectional self-attention module and a SwiGLU (Shazeer, 2020) feed-forward network. For nor-
malization, we employ a pre-norm design (Xiong et al., 2020) with RMSNorm (Zhang and Sennrich,
2019).

B.4 INPUT EMBEDDING AND POSITIONAL ENCODING

The input representation for the i-th token combines several pieces of information: its type ti, in-
cell coordinates ei, octree level li, frame index fi (for multi-frame sequences), and its absolute 3D
coordinate ci. For octree and masked tokens, ci is the center of the corresponding cell. For atom
tokens, we use the precise atom coordinate for ci to provide a more accurate positional signal.

These discrete attributes (ti, ei, li, fi) are converted into high-dimensional vectors via separate em-
bedding layers, and their embeddings are summed to form the final input to the model. Notably,
our method does not use any 2D graphical information, such as chemical bonds, making it broadly
applicable to diverse 3D data. For encoding pairwise positional information, we apply 3D Rotary
Position Embedding (RoPE-3D) (Su et al., 2024) to the absolute coordinates ci.

B.5 GENERATION HEADS

The model’s generative task is to predict the content of masked tokens. For an octree token, only the
type ti needs to be predicted (since ei is fixed), which is handled by a simple classification head. For
an atom token, both the type ti and the in-cell coordinates ei must be predicted. After predicting
ti, we predict ei using one of two methods:

• Autoregressive Prediction: The coordinates (e0i , e
1
i , e

2
i ) are predicted sequentially, as detailed in

Alg. 1.
• Diffusion Prediction: We adapt the token-level diffusion module from MAR (Li et al., 2024b) to

generate the continuous coordinates ei.

Our experiments showed that both methods yield similar performance (see Sec. D.2). We therefore
use the more computationally efficient autoregressive approach as our default. During inference,
we employ a sampling strategy to balance quality and diversity: we first sample from the model
using a slightly elevated temperature and then select the top-r candidates based on their cumulative
autoregressive probabilities. This method has proven more effective than standard low-temperature
sampling.

B.6 EFFICIENCY OPTIMIZATIONS

We implement several optimizations to ensure efficient training and inference. During training, we
use FlashAttention (Dao et al., 2022) with bfloat16 to accelerate computation and reduce memory
usage. We also employ sequence packing, where tokens from multiple samples are concatenated into
a single sequence. This technique eliminates the overhead of padding and is particularly effective for
handling systems of varying sizes, such as proteins. During inference, we use a KV-cache to speed
up token generation. To further improve throughput for masked prediction, we generate tokens in
pairs instead of one by one. This is possible because the inputs for masked tokens are known in
advance, allowing us to pack adjacent prediction steps to better utilize the GPU.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Our experiments cover a broad spectrum of real-world tasks, each of which can be seamlessly adapted
by the unified framework of Uni-3DAR.

Section Data Type Single-Frame Gen. Multi-Frame Gen. Token Und. Structure Und.

Sec. 3.1 Molecule ✓

Sec. 3.2 Crystal + PXRD ✓

Sec. 3.3 Macroscopic 3D Object ✓

Sec. 3.4 Protein ✓ ✓

Sec. 3.5 Protein + Molecule ✓

Sec. 3.6 Molecule / Polymer ✓ ✓

C EXPERIMENT SETTINGS

C.1 3D SMALL MOLECULE GENERATION

Generating small organic molecules with accurate 3D conformations is a classical, benchmark-rich
task in molecular modeling, yet the inherent flexibility due to rotatable bonds and diverse conforma-
tions poses significant challenges. Evaluating Uni-3DAR on this task directly tests its capability to
generate realistic 3D molecular structures through a straightforward application of its single-frame
generation methodology.

Dataset and Metric Consistent with previous studies (Hoogeboom et al., 2022), we use the QM9
(Ramakrishnan et al., 2014b) and GEOM-DRUG (Axelrod and Gomez-Bombarelli, 2022) datasets
for unconditional 3D molecular generation. QM9, a widely-used molecular machine learning bench-
mark, contains 130K small molecules with high-quality 3D conformations (up to 9 heavy atoms and
29 total atoms including hydrogens), split into training (100K), validation (18K), and test sets (13K).
GEOM-DRUG, in contrast, features larger organic compounds containing up to 181 atoms (averag-
ing 44.2 atoms across 5 types), covering approximately 37 million conformations for around 450K
unique molecules. Following established protocols (Hoogeboom et al., 2022), we select the 30
lowest-energy conformations per molecule for training.

Model performance is evaluated based on chemical feasibility. Bond types (single, double, triple,
or none) are inferred from molecular geometries using pairwise atomic distances and atom types.
Metrics include Atom Stability (the fraction of atoms exhibiting correct valency), Molecule Stability
(the percentage of molecules where all atoms are stable), validity (percentage of chemically valid
molecules verified by RDKit), and uniqueness (percentage of unique compounds among generated
molecules). Metrics are computed consistently using the evaluation code from previous studies
(Hoogeboom et al., 2022).

Baselines and Implementation We benchmark Uni-3DAR against established models, including
G-SchNet (Gebauer et al., 2022), ENF (Garcia Satorras et al., 2021), EDM (Hoogeboom et al.,
2022) and its variants GDM (Hoogeboom et al., 2022), EDM-Bridge (Wu et al., 2022), GeoLDM
(Xu et al., 2023b), and UniGEM (Feng et al., 2024), which uses additional molecular properties to
enhance generation performance.

Uni-3DAR employs a single-frame generation approach with a batch size of 64 for QM9 and 128
for GEOM-DRUG. The model is trained for 500K steps (approximately 320 epochs for QM9 and 12
epochs for GEOM-DRUG). We apply a peak learning rate of 3e-4, incorporating a 6% linear warmup
phase followed by cosine decay. Training duration is approximately 6.9 hours on 4 NVIDIA 4090
GPUs for QM9 and around 11.7 hours on 8 NVIDIA 4090 GPUs for GEOM-DRUG.

C.2 CRYSTAL GENERATION

Tasks Unlike organic molecules, crystal structures are typically rigid with stable conformations.
However, crystals introduce unique challenges due to their inherent symmetry and periodic arrange-
ment in 3D space. A crystal is conventionally represented by its lattice (a parallelepiped unit cell)
along with atomic details, including atom types and their coordinates within the lattice.
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In Uni-3DAR, crystal structure generation is approached as a two-frame generative process: first
generating the eight vertices defining the lattice, followed by generating the atomic configurations
inside the generated lattice. Notably, unlike previous methods employing fractional coordinates, we
consistently use physical coordinates to maintain uniformity across various molecular data types.

Based on this generation approach, we define and address three distinct tasks:

1. De Novo Crystal Generation: Learning the distribution of crystal structures from data to generate
novel samples unconditionally.

2. Crystal Structure Prediction (CSP): Predicting crystal structures from given chemical composi-
tions (atom types and counts). During inference, the chemical composition is provided as condi-
tion, enabling the model to generate the corresponding crystal structure.

3. PXRD-guided Crystal Structure Prediction: Establishing a cross-modal mapping from powder
X-ray diffraction (PXRD) signals and chemical compositions to reconstruct crystal structures that
accurately match observed PXRD patterns. This task has significant practical implications, as
PXRD analysis is widely used in crystal structure determination and validation of novel materials
in real-world scenarios.

Dataset and Metric We employ established datasets consistent with prior studies (Xie et al., 2021;
Jiao et al., 2023; Miller et al., 2024) for both training and evaluation purposes. Specifically, we
employ the Carbon-24 dataset (Pickard, 2020), containing 10,153 carbon-based structures with cells
composed of 6 to 24 atoms. The MP-20 dataset (Jain et al., 2013), derived from the Materials
Project (Jain et al., 2013), includes 45,231 stable inorganic materials representing a wide range of
experimentally validated compounds, each containing up to 20 atoms per cell. Additionally, we use
the more challenging MPTS-52 dataset, an extended version of MP-20, comprising 40,476 structures
with up to 52 atoms per cell, organized by the earliest publication year. We follow the same data
split strategy as outlined in previous work (Jiao et al., 2023).

To evaluate de novo crystal generation performance, we adopt the standard evaluation framework
proposed by Xie et al. (2021), which includes three key metrics: validity, coverage, and property
statistics. Validity quantifies the proportion of generated structures that satisfy established physical
plausibility criteria. Coverage measures the ability of generated structures to capture the diversity
present in the test set. Property statistics compare essential attributes such as density, formation
energy, and elemental composition between generated and ground-truth distributions.

For assessing performance in CSP and PXRD-guided CSP tasks, we align our evaluation method-
ology with prior research (Miller et al., 2024). We compute the top-1 match rate alongside
the corresponding average root-mean-square error (RMSE) for matched structures. We employ
StructureMatcher(Ong et al., 2013), using thresholds set to stol=0.5, angle_tol=10, and
ltol=0.3, consistent with the methodology of previous studies (Miller et al., 2024).

Baseline Models and Implementation We benchmark Uni-3DAR against established methods,
including FTCP (Ren et al., 2021), G-SchNet (Gebauer et al., 2019), P-G-SchNet (Gebauer et al.,
2019), CDVAE (Xie et al., 2021), DiffCSP (Jiao et al., 2023), and FlowMM (Miller et al., 2024).
Additionally, we evaluate Uni-3DAR against the recent UniGenX (Zhang et al., 2025) for the CSP
task. For PXRD-guided CSP, we compare Uni-3DAR with PXRDGEN (Li et al., 2024a), a model
tailored for this task.

In Uni-3DAR, we use a 12-layer model with a 768-dimensional embedding for de novo crystal
generation, while a larger 24-layer model with a 1024-dimensional embedding is employed for CSP
and PXRD-guided CSP tasks. All models are trained for 400k steps with a batch size of 64 and a
peak learning rate of 3e-4. For chemical composition conditioning, we prepend a token derived from
a multi-hot atom-type vector. PXRD data, spanning angles from 0° to 120°, is converted into a 1200-
dimensional vector with a 0.1° resolution, evenly divided into four segments, each represented by a
conditional token. As a result, PXRD-guided CSP utilizes a total of five conditional tokens (one for
composition and four for PXRD signals). The autoregressive nature of Uni-3DAR enables seamless
integration of these conditional tokens, eliminating the need for additional encoders required by
previous methods (Li et al., 2024a; Lai et al., 2025).
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Results of De Novo Crystal Generation The performance of Uni-3DAR on the Carbon-24 and
MP-20 datasets is presented in Table 2. On Carbon-24, Uni-3DAR outperforms existing models, par-
ticularly excelling in coverage, demonstrating its ability to generate diverse and realistic structures.
On MP-20, Uni-3DAR significantly enhances component validity compared to previous approaches
while maintaining competitive performance on other metrics. These results underscore Uni-3DAR’s
strength in producing chemically valid crystal structures that closely align with key physical and
chemical properties.

Results of Crystal Structure Prediction (CSP) We evaluate Uni-3DAR’s performance on CSP
across all datasets, as summarized in Table 3. Uni-3DAR consistently outperforms baseline methods
by significant margins. Specifically, on Carbon-24, it improves the match rate by 4.14% over the
previous best method, demonstrating superior accuracy in reconstructing crystal structures. On MP-
20, Uni-3DAR achieves a substantial improvement in RMSE, reducing it from 0.0566 to 0.0317,
a relative improvement of 178% over the second-best model. Furthermore, on MPTS-52, Uni-
3DAR achieves an impressively low RMSE of 0.0684, representing a 184% relative improvement,
despite the increased structural complexity. This result highlights its exceptional precision in atomic
placement. Overall, these findings demonstrate Uni-3DAR’s strong generalization capability across
datasets of varying difficulty levels.

Results of PXRD-Guided CSP Table 3 demonstrates Uni-3DAR’s performance in PXRD-guided
CSP on the MP-20 dataset, benchmarked against PXRDGEN (Li et al., 2024a). Uni-3DAR substan-
tially outperforms PXRDGEN, elevating the match rate from 68.68% to 75.08% while drastically
reducing the RMSE from 0.0707 to 0.0276—a 256% relative improvement. This significant RMSE
reduction underscores Uni-3DAR’s exceptional ability to generate crystal structures that precisely
correspond to experimental PXRD patterns. Collectively, these results underscore the superior ca-
pability of Uni-3DAR in harnessing diffraction constraints to reliably predict crystal structures.

C.3 MACROSCOPIC 3D OBJECT GENERATION

To demonstrate versatility beyond the microscopic realm of molecules and crystals, we further eval-
uate Uni-3DAR on unconditional macroscopic 3D object generation, a core task in 3D computer
vision (3DCV). The goal is to synthesize realistic and diverse 3D shapes of everyday objects di-
rectly from the learned data distribution.

Dataset and Evaluation Protocol Following common practice, we adopt three categories from
ShapeNet (Chang et al., 2015)—airplane, chair, and car. Each object is represented as a point
cloud with 2,048 points uniformly sampled from the surface. In line with recent recommendations,
we evaluate using 1-nearest-neighbor accuracy (1-NNA; lower is better) computed with both
Chamfer Distance (CD) and Earth Mover’s Distance (EMD) (Yang et al., 2019; Vahdat et al., 2022).
Concretely, given a generated set Sg and a reference set Sr, 1-NNA is the leave-one-out accuracy
of a 1-NN classifier on Sg ∪ Sr; if Sg matches Sr well, the classification accuracy approaches
50%. Compared with legacy metrics such as coverage (COV) and minimum matching distance
(MMD), 1-NNA more directly captures distributional similarity while jointly reflecting both quality
and diversity, and avoids several known failure modes of COV/MMD. We therefore report 1-NNA
(with CD/EMD) as our primary metric throughout this section and in the main paper.

Baselines and Implementation Details We benchmark Uni-3DAR against established point-
cloud generative models, including r-GAN and l-GAN (Achlioptas et al., 2018), PointFlow (Yang
et al., 2019), SoftFlow (Kim et al., 2020), SetVAE (Kim et al., 2021), DPF-Net (Klokov et al.,
2020), diffusion-based methods DPM (Luo and Hu, 2021) and PVD (Zhou et al., 2021), and the
recent LION (Vahdat et al., 2022). To ensure clear and reproducible comparisons, we follow the
PointFlow data protocol and training/test splits for the three categories.

For Uni-3DAR, the input 3D object is voxelized at 512 × 512 × 512 resolution. We define fine-
grained structural tokens as non-overlapping 16 × 16 × 16 voxel patches and quantize each patch
with a VQVAE codebook. (In our main text we summarize this as “each patch is quantized using
VQVAE”; here we provide the fuller setup for completeness.) Unless otherwise specified, generation
uses our single-frame sampling procedure, analogous to the molecular setting. For each ShapeNet
category, the VQVAE is trained for 200 epochs; Uni-3DAR is then trained for 10,000 steps with
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Table 6: Results for atom-level binding site prediction measured by IoU (%). Baseline results are taken from
Zhao et al. (2024). For a fair comparison with other methods, we report Vabs-Net’s result using only α-carbon
atoms.

Method pretrained B277↑ DT198↑ ASTEX85↑ CHEN251↑ COACH420↑
FPocket (Le Guilloux et al., 2009) × 31.5 23.2 34.1 25.4 30.0
SiteHound (Hernandez et al., 2009) × 36.4 23.1 38.9 29.4 34.9
MetaPocket2 (Macari et al., 2019) × 37.3 25.8 37.5 32.8 37.7
DeepSite (Jiménez et al., 2017) × 34.0 29.1 37.4 27.4 33.9
P2Rank (Krivák and Hoksza, 2018) × 49.8 38.6 47.4 56.5 45.3
ESM2_150M (Lin et al., 2023b)

√
19.6 16.6 20.5 18.9 22.0

GearNet (Zhang et al., 2022b)
√

39.9 35.8 41.0 36.4 41.3
Siamdiff (Zhang et al., 2023d)

√
37.7 31.0 40.7 35.3 40.3

Vabs-Net (Zhao et al., 2024)
√

- - - - 56.3
Uni-3DAR

√
53.4 46.7 51.4 47.9 56.2

batch size 64. On a single NVIDIA RTX 4090, training per category requires approximately 10
hours for the VQVAE and 2 hours for Uni-3DAR.

Results Table 4 (main paper) summarizes unconditional generation under the 1-NNA protocol.
Uni-3DAR achieves the lowest (best) 1-NNA in all six category–metric pairs (Airplane/Chair/Car
× CD/EMD), outperforming strong diffusion and flow-based baselines. In particular, Uni-3DAR
consistently improves over LION—the strongest baseline in our comparison—by small but system-
atic margins: Airplane (CD: 67.35 vs. 67.41; EMD: 61.09 vs. 61.23), Chair (CD: 53.11 vs. 53.70;
EMD: 50.98 vs. 52.34), and Car (CD: 53.35 vs. 53.41; EMD: 50.89 vs. 51.14). Taken together, these
results indicate that Uni-3DAR produces point-cloud distributions that are both high-quality and di-
verse, closely matching the real data according to a metric expressly designed to assess distributional
similarity.

C.4 PROTEIN POCKET PREDICTION

Proteins are a crucial class of biological structures, and accurate prediction of binding pockets is
essential for de novo drug design and applications such as molecular docking. Traditionally, pocket
prediction is formulated as an atom-level or residue-level classification task. Each atom or residue
is assigned a binary label indicating whether it belongs to a binding pocket. We adopt this classical
formulation to evaluate Uni-3DAR’s token-level understanding capabilities.

Dataset and Metric We follow previous studies (Zhao et al., 2024) and employ a binding site
dataset constructed from the CASF-2016 core set (Su et al., 2018), PDBBind v2020 refined set (pdb,
2025), and MOAD (Hu et al., 2005). The dataset consists of 23k training samples, 5k validation
samples, and five test sets of roughly 1k samples each. Model performance is assessed using the
Intersection-over-Union (IoU) metric, consistent with previous evaluations (Zhao et al., 2024).

Baselines and Implementation We benchmark Uni-3DAR against established methods. Our
comparisons include non-pretrained approaches (e.g., FPocket (Le Guilloux et al., 2009), SiteHound
(Hernandez et al., 2009), etc.) and pretrained models (e.g., ESM2_150M (Lin et al., 2023b), GearNet
(Zhang et al., 2022b), Siamdiff (Zhang et al., 2023d), and Vabs-Net (Zhao et al., 2024)). In line with
prior works (Zhao et al., 2024), we pretrain Uni-3DAR on approximately 1.3 million protein struc-
tures before fine-tuning it on the binding site dataset. Unlike Vabs-Net, which employs full-atom
representations, our experiments are restricted to α-carbon atoms to facilitate direct comparisons.

Pretraining is conducted using a single-frame generation approach for 300k steps with a batch size
of 64. We use a peak learning rate of 3e-4 with a 10% linear warmup followed by cosine decay,
which requires approximately 19 hours on 16 NVIDIA A100 GPUs. Fine-tuning adopts an atom-
level classification strategy, conducted for 100 epochs with a batch size of 32, a peak learning rate
of 1e-4, requiring roughly 7 hours on 8 NVIDIA A100 GPUs.
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Table 7: Comparison of docking performance on the Top1- and Top5-RMSD metrics. The first group of five
baselines comprises classical docking software, while the second group of eight baselines consists of deep
learning–based methods. The results are reproduced directly from Cao et al. (2024). The best outcomes are
shown in bold, and the second-best are underlined.

Top1-RMSD Top5-RMSD

%<1Å ↑ %<2Å ↑ Med(Å) ↓ %<1Å ↑ %<2Å ↑ Med(Å) ↓
Uni-Dock (Yu et al., 2022) 32.51±0.39 50.69±0.59 1.89±0.04 47.11±0.22 67.03±0.94 1.10±0.02
Glide SP (Friesner et al., 2004) 17.36±0.00 44.63±0.00 2.27±0.00 31.13±0.00 60.06±0.00 1.54±0.00
GNINA (Ragoza et al., 2017) 21.12±0.26 43.62±1.06 2.45±0.07 28.47±0.57 58.13±0.81 1.65±0.02
SMINA (Koes et al., 2013) 18.73±0.00 31.68±0.00 3.99±0.00 28.47±0.56 48.48±0.00 2.07±0.00
Vina (Eberhardt et al., 2021) 18.32±0.02 36.64±0.05 3.42±0.01 24.79±0.00 50.96±0.00 1.87±0.01

EquiBind (Stärk et al., 2022b) / 5.5±1.2 6.2±0.3 / / /
TANKBind (Lu et al., 2022) 2.66±0.26 18.18±0.60 4.2±0.05 4.13±0.0 20.39±0.45 3.5±0.04
E3Bind (Zhang et al., 2022a) / 25.6 7.2 / / /
KarmaDock (Zhang et al., 2023c) / 56.2 / / / /
DiffDock(Pocket) (Corso et al.) / 51.8 2.0 / 60.7 1.9
DiffDock (Corso et al.) 15.15 36.09 3.35 21.76 43.52 2.46
DiffDock-L (Corso et al., 2024) 19.07±0.57 40.74±1.25 2.88±0.18 21.95±0.39 48.15±0.91 2.05±0.04
SurfDock (Cao et al., 2024) 40.96±0.34 68.41±0.26 1.18±0.00 54.18±0.13 75.11±0.13 0.94±0.00

Uni-3DAR 44.75±2.63 69.06±0.75 1.08±0.04 56.35±1.99 72.38±0.73 0.76±0.02

C.5 MOLECULAR DOCKING

Molecular docking predicts how a ligand binds to a target protein, playing a crucial role in drug
discovery. In Uni-3DAR, this process is structured as a three-frame generation task. The first two
frames represent the protein and the initial ligand, both provided as inputs during inference, while
the third frame corresponds to the predicted docked conformation of the ligand.

Dataset and Metric Following Cao et al. (2024), we train and evaluate docking methods on the
PDBbind2020 dataset. The training and validation set consists of 17,000 complexes from 2018
or earlier, while the test set includes 363 structures from 2019, ensuring no ligand overlap with
the training data. Given a protein-binding pocket and a randomly generated ligand conformation
from RDKit, the goal is to generate a user-specified number of poses (set to 40, as in Cao et al.
(2024)). Docking methods typically incorporate a confidence scoring mechanism to rank these
poses. Performance is assessed using the percentage of predictions with RMSD < 1Å and RMSD
< 2Å, as well as the median RMSD for the top-ranked pose and the best pose among the top five
ranked poses.

Baselines and Implementation We evaluate Uni-3DAR against 13 baselines, including five clas-
sical docking software tools and eight deep learning–based methods. Most existing deep learning
approaches rely on complex featurizations, such as using protein language model embeddings (e.g.,
from ESM2 (Lin et al., 2022)). To simplify and unify the molecular tasks, we omit these com-
plicated features in Uni-3DAR and instead use only atom types and coordinates. We also adopt a
full-atom representation of the protein pocket to enhance expressive power. We frame docking as
an autoregressive generation task by embedding both the pocket and the RDKit conformation as
two frames, concatenating them into a single input sequence, and training the model to generate the
docked molecule conformation as a new frame sequence. For further simplicity, we do not impose
constraints such as matching the number and types of atoms in the output frame to those of the
input molecule. Also, we do not train a separate scoring model for pose ranking. Instead, we use
the cumulative probability derived from autoregressive generation to score each generated pose. We
train Uni-3DAR for 300k steps (approximately 300 epochs) with a batch size of 16. The learning
rate schedule follows the same configuration as the experiments detailed in section 3.1. The training
is completed in approximately one day on 4 NVIDIA A100 GPUs.

Results Experimental results are summarized in Table 7. Uni-3DAR outperforms to the state-of-
the-art method, SurfDock, demonstrating similar percentages of poses with RMSD below 1Å and
2Å. Notably, Uni-3DAR excels in generating higher-quality poses, reflected by its lower median
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Table 8: Results on molecular property prediction performance. The best results are highlighted in bold, and
the second-best results are underlined. Baseline results are taken from Lu et al. (2025).

Model HOMO↓
(Hartree)

LUMO ↓
(Hartree)

GAP ↓
(Hartree)

E1-CC2 ↓
(eV)

E2-CC2 ↓
(eV)

f1-CC2 ↓ f2-CC2 ↓ Dipmom ↓
(Debye)

aIP↓
(eV)

D3_disp↓
_corr (eV)

GROVER (Rong et al., 2020) 0.0075
± 2.0e-4

0.0086
± 8.0e-4

0.0109
± 1.4e-3

0.0101
± 9.7e-4

0.0129
± 4.6e-4

0.0219
± 3.5e-4

0.0401
± 1.2e-3

0.0752
± 1.1e-3

0.1467
± 1.5e-2

0.2516
± 5.3e-2

GEM (Fang et al., 2022) 0.0068
± 7.0e-5

0.0080
± 2.0e-5

0.0107
± 1.9e-4

0.0090
± 1.3e-4

0.0102
± 2.3e-4

0.0170
± 4.3e-4

0.0352
± 5.4e-4

0.0289
± 1.2e-3

0.0207
± 2.6e-4

0.0077
± 6.6e-4

3D Infomax (Stärk et al., 2022a) 0.0065
± 1.0e-5

0.0070
± 1.0e-4

0.0095
± 1.0e-4

0.0089
± 2.0e-4

0.0091
± 3.0e-4

0.0172
± 4.0e-4

0.0364
± 9.0e-4

0.0291
± 1.7e-3

0.0526
± 1.4e-4

0.2285
± 7.5e-3

Uni-Mol (Zhou et al., 2023b) 0.0052
± 2.0e-5

0.0060
± 6.0e-5

0.0081
± 4.0e-5

0.0067
± 4.0e-5

0.0080
± 4.0e-5

0.0143
± 2.0e-4

0.0309
± 9.4e-4

0.0106
± 3.1e-4

0.0095
± 6.4e-4

0.0047
± 5.6e-4

Mol-AE (Yang et al., 2024) 0.0050
± 8.0e-5

0.0057
± 4.7e-4

0.0080
± 8.0e-5

0.0070
± 6.0e-5

0.0080
± 4.0e-5

0.0140
± 4.0e-5

0.0307
± 1.3e-3

0.0113
± 4.7e-4

0.0103
± 1.3e-4

0.0077
± 1.3e-3

SpaceFormer (Lu et al., 2025) 0.0042
± 1.0e-5

0.0040
± 2.0e-5

0.0064
± 1.2e-4

0.0058
± 8.0e-5

0.0074
± 8.4e-5

0.0142
± 3.7e-4

0.0294
± 7.1e-4

0.0083
± 5.0e-4

0.0090
± 5.9e-4

0.0053
± 1.2e-3

Uni-3DAR 0.0048
± 2.1e-5

0.0044
± 3.2e-5

0.0065
± 8.8e-5

0.0056
± 2.2e-5

0.0067
± 2.0e-5

0.0134
± 7.0e-5

0.0286
± 1.6e-4

0.0114
± 6.9e-4

0.0127
± 1.1e-4

0.0052
± 3.2e-4

RMSD values. However, Uni-3DAR exhibits slightly inferior performance in selecting Top-5 poses
for challenging cases, as evidenced by a lower percentage of poses with RMSD below 2Å in the
Top5-RMSD evaluation (72.38% vs. 75.11% for SurfDock). This gap may arise because the scoring
module in Uni-3DAR has not been explicitly trained and is only exposed to ground-truth conforma-
tions during the training phase. Addressing this limitation by training a dedicated scoring module
could potentially enhance its selection performance. Moreover, since Uni-3DAR avoids complex
feature engineering, its docking accuracy might further benefit from multitask learning strategies,
emphasizing the promise of a unified foundational model for molecular applications.

C.6 MOLECULAR PROPERTY PREDICTION VIA PRETRAINING

Molecular property prediction through pretraining has emerged as an effective strategy to address
data scarcity challenges in areas like drug discovery and material design. As a classical task with
established benchmarks, molecular property prediction directly assesses a model’s capacity to com-
prehend 3D molecular structures. Applying Uni-3DAR’s structure-level understanding framework
is thus straightforward.

Dataset and Metric We utilize the same pretraining dataset as employed by Uni-Mol (Zhou et al.,
2023b) and SpaceFormer (Lu et al., 2025), comprising approximately 19 million molecules. For
downstream evaluations, we follow the datasets and evaluation settings used by the state-of-the-
art SpaceFormer (Lu et al., 2025). These include a 20K dataset predicting electronic properties
(HOMO, LUMO, GAP), a 21K dataset targeting energy properties (E1-CC2, E2-CC2, f1-CC2, f2-
CC2), and an 8K dataset predicting mechanical and electronic properties (Dipmom, aIP, and D3 Dis-
persion Corrections). Data splits align exactly with SpaceFormer’s methodology (Lu et al., 2025).
Performance across all tasks is measured using the Mean Absolute Error (MAE) metric.

Baselines and Implementation Our baselines encompass several prominent models, including
Uni-Mol (Zhou et al., 2023b), Mol-AE (Yang et al., 2024), 3D Infomax (Stärk et al., 2022a),
GROVER (Rong et al., 2020), GEM (Fang et al., 2022), and the most recent state-of-the-art method,
SpaceFormer (Lu et al., 2025). For pretraining, we use the proposed masked next-token prediction
as pretraining task, training the model for 500k steps with a batch size of 128. The peak learning rate
is set to 3e-4, incorporating a 10% linear warmup followed by cosine decay, requiring approximately
11.5 hours on 8 NVIDIA 4090 GPUs.

During fine-tuning, we adopt a structure-level understanding strategy, supplemented by a masked
next-token prediction auxiliary generative loss. Training is conducted over a maximum of 200
epochs. We systematically explore hyperparameter combinations, considering two batch sizes (32,
64) and two learning rates (5e-4, 1e-4), resulting in four distinct setups. For each hyperparameter
configuration, models are trained three times using different random seeds, and we report the mean
performance along with standard deviation. The best-performing model based on validation loss is
selected for evaluation.
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Table 9: Polymer properties prediction performance. The best results are highlighted in bold, and the second-
best results are underlined.

Model Egc ↓ Egb ↓ Eea ↓ Ei ↓ Xc ↓ Eps ↓ Nc ↓ Eat ↓
(eV) (eV) (eV) (eV) % 1 1 eV/atom

ChemBERTa (Chithrananda et al., 2020) 0.539
± 0.049

0.664
± 0.079

0.350
± 0.036

0.485
± 0.086

18.711
± 1.396

0.603
± 0.083

0.140
± 0.010

0.219
± 0.056

Uni-Mol (Zhou et al., 2023b) 0.489
± 0.028

0.531
± 0.055

0.332
± 0.027

0.407
± 0.080

17.414
± 1.581

0.536
± 0.053

0.095
± 0.013

0.084
± 0.034

SML (Zhang et al., 2023b) 0.489
± 0.056

0.547
± 0.110

0.313
± 0.016

0.432
± 0.060

18.981
± 1.258

0.576
± 0.020

0.102
± 0.010

0.062
± 0.014

PLM (Zhang et al., 2023b) 0.459
± 0.036

0.528
± 0.081

0.322
± 0.037

0.444
± 0.062

19.181
± 1.308

0.576
± 0.060

0.100
± 0.010

0.050
± 0.010

polyBERT (Kuenneth and Ramprasad, 2023) 0.553
± 0.011

0.759
± 0.042

0.363
± 0.037

0.526
± 0.068

18.437
± 0.560

0.618
± 0.049

0.113
± 0.003

0.172
± 0.016

Transpolymer (Xu et al., 2023a) 0.453
± 0.007

0.576
± 0.021

0.326
± 0.040

0.397
± 0.061

17.740
± 0.732

0.547
± 0.051

0.096
± 0.016

0.147
± 0.093

MMPolymer (Wang et al., 2024) 0.431
± 0.017

0.503
± 0.038

0.286
± 0.029

0.390
± 0.057

16.814
± 0.867

0.511
± 0.035

0.087
± 0.010

0.061
± 0.016

Uni-3DAR 0.426
± 0.022

0.498
± 0.048

0.291
± 0.022

0.396
± 0.072

17.16
± 1.498

0.487
± 0.034

0.087
± 0.011

0.066
± 0.031

C.7 POLYMER PROPERTY PREDICTION VIA PRETRAINING

Polymers, synthesized through various polymerization methods such as addition, ring-opening, and
condensation, consist of repeating monomer units. These materials play essential roles across multi-
ple fields, including materials science, drug design, and bioinformatics, necessitating accurate prop-
erty prediction methods. Here, we demonstrate Uni-3DAR’s structure-level understanding capability
by focusing on homopolymer property prediction.

Dataset and Metric Following prior research (Zhang et al., 2023b; Wang et al., 2024), we use
eight publicly available polymer property datasets (Egc, Egb, Eea, Ei, Xc, EPS, Nc, and Eat), ob-
tained via density functional theory (DFT) calculations. Given that all tasks involve structure-level
regression, we employ a robust evaluation strategy using 5-fold cross-validation with random splits,
consistent with previous work (Wang et al., 2024). Results are reported as the root mean squared
error (RMSE), averaged across three different random seeds.

Baselines and Implementation Baseline methods include ChemBERTa (Chithrananda et al.,
2020), Uni-Mol (Zhou et al., 2023b), SML (Zhang et al., 2023b), PML (Zhang et al., 2023b), poly-
BERT (Kuenneth and Ramprasad, 2023), Transpolymer (Xu et al., 2023a), and MMPolymer (Wang
et al., 2024). For pretraining, we represent homopolymers as specialized molecular structures us-
ing the star substitution strategy proposed in (Wang et al., 2024). The model is pretrained using
our masked next-token prediction strategy for 1 million steps with a batch size of 128. All other
experimental details follow the settings previously described in the molecular property prediction
experiments.

During fine-tuning, we adopt structure-level understanding strategy with masked next-token predic-
tion auxiliary generative loss. Training is capped at 200 epochs. We thoroughly investigate various
hyperparameter combinations by using three different batch sizes (32, 64, 128) and three learning
rates (5e-4, 1e-4, 3e-4), creating nine unique configurations. Each configuration is tested by train-
ing models three times with different random seeds. We follow the same 5-fold split index align
with (Wang et al., 2024), by averaging the best validation metrics in each fold. Subsequently, we
present the mean performance along with the standard deviation across three seeds.

D MORE EXPERIMENTS

D.1 MUTUAL BENEFITS OF GENERATION AND UNDERSTANDING TASKS

In the previous experiments, we applied Uni-3DAR independently to each task to ensure fair com-
parisons with established approaches, rather than employing joint training across multiple tasks and
diverse data sources. Although earlier results already demonstrate Uni-3DAR’s effectiveness, the
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Table 10: In the molecular pretrained representation task, incorporating a generation loss during downstream
fine-tuning improves performance.

HOMO ↓ LUMO ↓ E1-CC2 ↓ E2-CC2 ↓
(Hartree) (Hartree) (eV) (eV)

Uni-3DAR w/o Gen. loss 0.0052 0.0049 0.0063 0.0077
Uni-3DAR 0.0048 0.0044 0.0056 0.0067

Table 11: In the QM9 unconditional generation task, incorporating a structure-level understanding task further
enhances the quality of the generated samples.

QM9
Atom Sta(%)↑ Mol Sta(%)↑ Valid(%)↑ V × U(%)↑

Uni-3DAR 99.4 93.7 98.0 94.0
Uni-3DAR w/ Structure Und. loss 99.6 95.8 98.5 93.1

advantages of joint training, particularly combining generation and understanding tasks, remain less
explored. Due to resource limitations, comprehensive large-scale joint training was not feasible in
this paper. Nonetheless, this subsection presents two additional experiments that clearly illustrate
how generation and understanding tasks can mutually reinforce each other, highlighting the potential
for enhanced performance through joint training in Uni-3DAR.

The first experiment leverages the pretrained molecular representation described in Sec. 3.6. Typi-
cally, during downstream fine-tuning, we include an auxiliary generative loss by predicting ground-
truth atom types and positions with the proposed masked next-token prediction. To investigate the
contribution of this auxiliary generation task, we performed an ablation experiment by removing the
generation loss during fine-tuning (results shown in Table 10). The results indicate a notable perfor-
mance drop without the generation loss, clearly demonstrating that generative training significantly
strengthens structure-level understanding.

The second experiment builds upon the unconditional 3D molecule generation task using the QM9
dataset described in Sec. 3.1. Previously, to align with prior studies, we used only 3D molecular
structure data. Here, we additionally incorporate a structure-level understanding task by predicting
the molecular property U (internal energy at 298.15 K), with results shown in Table 11. Models
trained with this auxiliary structure-level understanding task consistently outperform those without,
especially in metrics such as molecular stability and validity. This demonstrates that structure-level
understanding significantly enhances generative performance.

In summary, these experiments robustly illustrate that generation and understanding tasks positively
reinforce one another. The findings underscore that integrating diverse datasets and joint task train-
ing can establish a more powerful and effective foundation model for 3D structural modeling.

D.2 ABLATION STUDY

We conducted comprehensive ablation experiments on QM9 generation task (Sec. 3.1) to evalu-
ate the contributions of key components in Uni-3DAR. The experimental results, summarized in
Table 12, lead to the following insights:

1. Masked Next-Token Prediction significantly enhances generation performance. In experi-
ment No.2, we followed previous work (Ibing et al., 2023) that merely appends the position of the
next token to the current token, without using our proposed masked next-token prediction. Com-
paring experiments No.1 and No.2 clearly demonstrates that our proposed masked next-token
prediction substantially outperforms this baseline approach.

2. 2-Level Subtree Compression boosts efficiency without compromising performance. Exper-
iment No.3 evaluates performance without 2-level subtree compression. Comparing No.1 (with
compression) and No.3 (without compression), we observe that using subtree compression re-
duces token count by approximately 6x, leading to significantly faster training with comparable
results. Interestingly, experiment No.4 (No.2 without subtree compression) outperforms No.2.
This indicates that while subtree compression alone may slightly impact performance negatively
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Table 12: Ablation Studies for Uni-3DAR. MNTP (Masked Next-Token Prediction) boosts performance, while
2LSC (2-Level Subtree Compression) enhances efficiency. Uni-3DAR integrates both techniques to balance
effectiveness and efficiency. Token-level diffusion loss (diff. loss) performs comparably to our proposed simple
autoregressive head. Training cost is measured using 4 NVIDIA 4090 GPUs.

No. Settings QM9 # AVG. Training
Atom Sta(%)↑ Mol Sta(%)↑ Valid(%)↑ V × U(%)↑ Tokens Cost ↓

1 Uni-3DAR 99.4 93.7 98.0 94.0 160 6.9h
2 1 w/o MNTP 98.7 88.2 97.0 91.5 80 6h
3 1 w/o 2LSC 99.4 94.4 98.2 92.1 1060 20h
4 2 w/o 2LSC 99.3 94.2 97.7 92.7 530 11h
5 2 w/o octree 87.7 25.3 72.1 65.7 18 3h
6 1 w/ diff. loss 99.4 93.6 98.2 94.0 160 7.8h
7 5 w/ diff. loss 88.3 35.4 67.3 46.5 18 5.6h

(No.2 vs. No.4), when combined with masked next-token prediction (No.1 vs. No.3), it achieves
comparable performance efficiently.

3. Coarse-to-fine octree tokens provide essential spatial information. In experiment No.5, we
removed octree tokens, significantly degrading model performance. Without coarse-to-fine to-
kenization, the model degrades to atom-based autoregressive prediction of both atom types and
positions, a much more challenging task. Our coarse-to-fine octree tokenization method effec-
tively provides positional priors from preceding levels, substantially enhancing performance. This
clearly validates the importance of the coarse-to-fine tokenization strategy for 3D structural gen-
eration.

4. Token-level diffusion loss yields comparable performance to the autoregressive head but
with lower efficiency. Our default generation head uses a simple autoregressive head (refer to
Alg. 1) to sequentially predict atom types and in-cell positions. We examined whether employing
a more powerful head, such as the token-level diffusion loss from MAR (Li et al., 2024b), could
further enhance performance. Experiment No.6, utilizing the diffusion head, achieved similar
results but required more computational time. Therefore, we opt for the simpler, more efficient
autoregressive head by default.

5. Combining atom-based autoregressive and diffusion losses without spatial tokenization is in-
sufficient. Recent works have explored improving atom-based autoregressive generation through
token-level diffusion losses (Zhang et al., 2025). We tested this approach by adding a token-
level diffusion loss to experiment No.5, resulting in experiment No.7. Although No.7 performed
slightly better than No.5, it remained significantly inferior to the proposed Uni-3DAR. This un-
derscores that comprehensive spatial information, as provided by our tokenization strategy, is
crucial, mere integration of diffusion-based methods into atom-based autoregressive model, with-
out spatial tokenization, cannot achieve substantial performance improvements.

D.3 INFERENCE SPEED

We benchmarked Uni-3DAR against the diffusion-based generative model GeoLDM (Xu et al.,
2023b) on QM9 generation task (Sec.3.1) by evaluating the throughput (i.e., the number of
molecules generated per second). Model throughput was evaluated across a range of batch sizes,
with all experiments conducted on a single Nvidia 4090 GPU. As shown in Fig.4, Uni-3DAR con-
sistently outperforms the diffusion-based approach in sampling efficiency, achieving significantly
reduced generation times across all tested settings. In particular, at larger batch sizes, Uni-3DAR
is approximately 21.8x faster than GeoLDM, and even at a small batch size of 64, it remains about
7.5x faster. Additionally, we assessed the inference overhead introduced by masked next-token pre-
diction. Thanks to our optimizations (Sec. B), we find that masked next-token prediction incurs
only a 15% to 30% slowdown. Given its substantial performance gains, this additional cost is well
justified.
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Figure 4: Left: Uni-3DAR generation speed on different batch sizes compared with the diffusion-based method;
Right: Uni-3DAR generation speed on different rank ratios r compared with the diffusion-based method
(higher is better).

E ILLUSTRATION OF THE GENERATED EXAMPLES

Figure SI-1: Unconditional 3D molecular generation samples of QM9 dataset.

Figure SI-2: Unconditional 3D molecular generation samples of GEOM-DRUG dataset.
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Figure SI-3: De novo crystal generation samples of MP-20 dataset.

Figure SI-4: Macroscopic 3D object generation samples of ShapeNet dataset.
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F LLM USAGE DETAILS

During the preparation of this manuscript, we utilized Large Language Models (LLMs), Google’s
Gemini-2.5-pro, for assistance. The use of these models was strictly limited to improving the lan-
guage and readability of the text. Specific applications included proofreading for grammatical errors,
refining sentence structure for clarity, and ensuring a consistent and professional tone throughout the
paper. The core scientific ideas, methodologies, experimental results, and conclusions presented in
this work were conceived and articulated entirely by the human authors. All AI-generated sugges-
tions were carefully reviewed and edited by the authors to ensure that the final text accurately reflects
our original research and intent. The authors take full responsibility for the scientific content and
integrity of this paper.
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