Taylor TD-learning

Michele Garibbo! Maxime Robeyns' Laurence Aitchison '

Abstract

Many reinforcement learning approaches rely on
temporal-difference (TD) learning to learn a critic.
However, TD-learning updates can be high vari-
ance due to their sole reliance on Monte Carlo esti-
mates of the updates. Here, we introduce a model-
based RL framework, Taylor TD, which reduces
this variance. Taylor TD uses a first-order Taylor
series expansion of TD updates. This expansion
allows to analytically integrate over stochasticity
in the action-choice, and some stochasticity in the
state distribution for the initial state and action
of each TD update. We include theoretical and
empirical evidence of Taylor TD updates being
lower variance than (standard) TD updates. Addi-
tionally, we show that Taylor TD has the same sta-
ble learning guarantees as (standard) TD-learning
under linear function approximation. Next, we
combine Taylor TD with the TD3 algorithm (Fuji-
moto et al., 2018), into TaTD3. We show TaTD3
performs as well, if not better, than several state-
of-the art model-free and model-based baseline
algorithms on a set of standard benchmark tasks.
Finally, we include further analysis of the settings
in which Taylor TD may be most beneficial to
performance relative to standard TD-learning.

1. Introduction

Actor-critic algorithms underlie many of the recent suc-
cesses of deep RL (Fujimoto et al., 2018; Haarnoja et al.,
2018; Lillicrap et al., 2015; Schulman et al., 2015b;a; 2017;
Silver et al., 2014; Voelcker et al., 2022). In these algo-
rithms, the actor provides the control policy while the critic
provides estimates of the policy’s expected long-term re-
turns (i.e. a value function; Barto et al., 1983; Konda &
Tsitsiklis, 1999). The critic is typically trained using some
form of temporal-difference (TD) update (e.g. Lillicrap et al.,
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2015; Silver et al., 2014; Fujimoto et al., 2018; Haarnoja
et al., 2018; Schulman et al., 2017). These TD updates need
to be computed in expectation over a large distribution of
visited states and actions, induced by the policy and the en-
vironment dynamics (Sutton, 1988; Sutton & Barto, 2018).
Since this expectation is analytically intractable, TD updates
are typically performed based on individually sampled state-
action pairs from real environmental transitions (i.e. Monte
Carlo (MC) estimates). However, the variance of (MC) TD
updates can be quite large, meaning that we need to average
over many TD updates for different initial states and actions
to get a good estimate of the expected updates (Fairbank &
Alonso, 2011).

Model-based strategies provide a promising candidate to
tackle this high variance (Kaelbling et al., 1996). For in-
stance, Dyna methods, among the most popular model-
based strategies, use a learned model of the environment
transitions to generate additional imaginary transitions.
These imaginary transitions can be used as extra train-
ing samples for TD methods (e.g. Sutton, 1990; Gu et al.,
2016; Feinberg et al., 2018; Janner et al., 2019; D’Oro &
Jaskowski, 2020; Buckman et al., 2018). Although the addi-
tional (imaginary) transitions help in reducing the variance
in the expected TD updates, Dyna methods still rely on
the same, potentially high-variance (MC) TD-updates as
standard TD-learning.

We address the issue of high-variance TD-updates by for-
mulating an expected TD-update over a small distribution
of state-action pairs. We show this expected update can be
analytically estimated with a first-order Taylor expansion,
in an approach we call Taylor TD. By analytically estimat-
ing this expected update, rather than exclusively relying on
MC estimates (as in e.g. Dyna), we show both theoretically
and empirically to achieve lower variance TD updates. Ad-
ditionally, we show Taylor TD does not affect the stable
learning guarantees of TD-learning under linear function
approximation (for a fixed policy as shown by Tsitsiklis &
Van Roy, 1996). Next, we propose a model-based off-policy
algorithm, Taylor TD3 (TaTD?3), which uses Taylor TD in
combination with the TD3 algorithm (Fujimoto et al., 2018).
We show TaTD3 performs as well as if not better than sev-
eral state-of-the art model-free and model-based baseline
algorithms on a set of standard benchmark tasks. Finally, we
compare TaTD3 to its “Dyna” equivalent, which exclusively
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relies on MC TD-updates. We found the largest benefits
of Taylor TD may appear in high dimensional state-action
spaces.

2. Related work

Model-based strategies provide a promising solution to im-
proving the sample complexity of RL algorithms (Kaelbling
et al., 1996). In Dyna methods, a model of the environment
transitions is learned through interactions with the environ-
ment and then employed to generate additional imaginary
transitions, for instance in the form of model roll-outs (Sut-
ton, 1990). These imaginary transitions, can be used to en-
hance existing model-free algorithms, leading to improved
sample complexity. For example, within TD-learning, imag-
inary transitions can be used to train a Q-function by pro-
viding additional training examples (e.g. Sutton, 1990; Gu
etal., 2016; D’Oro & Jaskowski, 2020). Alternatively, imag-
inary transitions can be used to provide better TD targets for
existing data points (e.g. Feinberg et al., 2018) or to train
the actor and/or critic by generating short-horizon trajecto-
ries starting at existing state-action pairs (e.g. Janner et al.,
2019; Clavera et al., 2020; Buckman et al., 2018). These
(Dyna) approaches have a clear relation to our approach
(Taylor TD), as they attempt to estimate the same expected
TD-update in Eq. (7). However, Dyna approaches only use
potentially high-variance MC estimates, while Taylor TD
exploits analytic results to reduce that variance.

Conceptually, our approach may resemble previous meth-
ods that also rely on analytical computations of expected
updates to achieve lower-variance critic or policy updates
(e.g. Ciosek & Whiteson, 2018; Whiteson, 2020; Van Sei-
jen et al., 2009; Sutton & Barto, 2018; Asadi et al., 2017).
The most well-known example of this is Expected-SARSA.
Expected-SARSA achieves a lower variance TD-update (rel-
ative to SARSA), by analytically computing the expectation
over the distribution of target actions in the TD-update (i.e.
assuming a stochastic target policy) (Van Seijen et al., 2009;
Sutton & Barto, 2018);

do(s,a) =r(s,a) + yEqyx [Qo(s',a")] — Qo(s,a) (1)

This approach can only reduce variance of TD-updates at
the level of the target actions, a’, induced by a stochastic
target policy. In the case of a deterministic target policy,
Expected-SARSA does not provide any benefit. Conversely,
our approach attempts to reduce the variance at the level
of the initial state-action pairs, (s, a) at which TD-updates
are evaluated. That is; we take the expectation over (s, a)
instead of a’ (see Eq. 7 and 19) which yields benefits with
both stochastic and deterministic target policies. Other RL
approaches exploiting analytical computations of expected
updates are Expected Policy Gradients (Ciosek & White-
son, 2018; Whiteson, 2020) and Mean Actor Critic (Asadi

etal., 2017). Both methods attempt to reduce the variance
of the stochastic policy gradient update by integrating over
the action distribution. Although similar in principle to our
approach, these two methods focus on the policy update in-
stead of the critic update and, similarly to Expected-SARSA
only apply to stochastic target policies.

In practice, our approach may relate to value gradient meth-
ods, as it explicitly incorporates the gradient of the value
function into the update (e.g. Heess et al., 2015; Clavera
et al., 2020; Amos et al., 2021; D’Oro & Jaskowski, 2020;
Balduzzi & Ghifary, 2015; Fairbank & Alonso, 2012). To
our knowledge, the value gradient approach that most relates
to our work is MAGE (D’Oro & Jaskowski, 2020), which,
nonetheless, has a radically different motivation from Taylor
TD. MAGE is motivated by noting that the action-gradients
of Q drive deterministic policy updates (Silver et al., 2014),
so getting the action-gradients right is critical for policy
learning. In order to encourage the action-gradients of Q to
be correct, MAGE explicitly adds a term to the objective that
consists of the norm of the action-gradient of the TD-error,
which takes it outside of the standard TD-framework. In con-
trast, our motivation is to reduce the minibatch gradient vari-
ance of standard TD updates by performing some analytic
integration. We do this through a first-order Taylor expan-
sion of the TD update. This difference in motivation leads to
numerous differences in the method and analysis, the least
of which is that MAGE uses only the action-gradients, while
Taylor TD additionally suggests using the state-gradients,
as both the state and action gradients can be used to reduce
the variance in the minibatch updates.

3. Background

Reinforcement learning aims to learn reward-maximising
behaviour by interacting with the surrounding environment.
At each discrete time step, ¢, the agent in state s € S,
chooses an action a € A based on a policy 7 : § — A,
and observes a scalar reward, r and a new state s’ € S from
the environment. The agent’s goal is to find the policy that
maximises the expected sum of rewards (i.e. the expected
return), from a distribution of initial states (or state-action
pairs). As such, it is usually necessary to compute the
expected return for a state-action pair (s, a) and a policy ;
which we can do with a value function. Given a policy 7
and an initial state-action pair (s, a), we define the value
function Q™ (s,a) = E[R; | St = s, A; = a], where R; =
ZiT:t v~ tr; is the discounted sum of future rewards from
the current time step ¢ until termination 7', with discount
factor v € [0, 1]. The value function or critic, Q™, quantifies
how good the policy, 7, is in terms of its expected return
when taking action a in state s and following the policy 7
thereafter.

To estimate the value function for a policy 7, we must
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usually interact with the environment. The most popular ap-
proach to do so is temporal difference (TD) learning (Sutton,
1988), which is based on the Bellman equation (Bellman,
1966). Assuming the (true) underlying critic Q™ is approx-
imated by a differentiable function approximation @y, we
can write the overall TD-update over the entire distribution
of visited state-action pairs as:

E [Ao] - Eswd";awﬂ' [50 (S7 a)v9Q9 (Sa a)} (2)
where d™ is the state distribution induced by policy 7, and

dg(s,a) =r(s,a) +1Qu(s",a’) — Qu(s,a)  (3)

Here, 0y (s, a) represents the TD-error for TD(0), although
the same expected update applies for any TD method by
adjusting the TD-error term (e.g. TD(n), TD()) Sutton,
1988; van Seijen et al., 2015). Note that in off-policy learn-
ing, this expectation is computed over the off-policy state
distribution d™, and the behavioural policy 7, while a’ still
comes from the target policy m

E [Ae] = Es~d”b;a~7rb [50 (S, a)VGQQ (57 a)} (4)

where (D still approximates the target (policy) Q-function
Q™. Conversely, in model-based off-policy learning, the ini-
tial action, a, in the TD update may be sampled from a third
policy which does not correspond to either the behavioral 7,
or the target policy 7. This enables us to explore the value
of additional actions independently from the behavioural
policy, thanks to the model generating transitions for these
additional actions. In practice, analytically computing the
expected updates in Eq. (2) and (4) is intractable, due to
the complex underlying state-action pair distributions (be-
yond requiring access to the environment dynamics). Hence,
TD-learning methods typically employ a Monte Carlo (MC)
(i.e. sampled-based) estimate of these expected updates.
For instance, at each time step ¢, a TD-update is computed
based on state-action pairs that are sampled from the envi-
ronment, a replay buffer (i.e. off-policy) or a model (or any
combination of those three).

4. Taylor TD-learning

As mentioned above, we can not analytically compute the
(expected) TD update over the entire distribution of state-
action pairs (e.g. Eq. 2). However, we can reduce the vari-
ance by combining MC estimates with some analytic inte-
gration. For instance, at time step ¢, we can consider an ex-
pected TD-update over a distribution over actions. We could
compute this expected update for continuous actions being
drawn from a Gaussian distribution with mean a; and covari-
ance 3,. In particular, we can do this by re-parametrizing
the action, a, at which we evaluate the TD-update, in terms
of a (deterministic) action at time ¢ (i.e. a;), plus some

zero-mean Gaussian random noise, &,, with covariance X,.

a=a;+§, &)

Ee, [6,) = 0 Be [6£1] =% ©

The expected TD update, averaging over actions from the
Gaussian distributed policy is,

B¢ [A0;] = nEg [06(st,a; + &,)VeQo(se,ar +&,)] (1)

Standard TD-learning updates, which sample actions from a
(Gaussian) policy, can be understood as computing MC esti-
mates of this expected update. However, these MC estimates
would likely be high variance (e.g. Ciosek & Whiteson,
2018), leading to slow learning.

We should stress that XJ,, the covariance of initial actions
in this expected TD-update does not necessarily need to
match the covariance of the behavioural policy. For instance,
3}, could be larger than the behavioural policy covariance,
enabling to learn the value of broader actions that are not
taken in the environment (i.e. assuming knowledge of dy
and @)y is available for those actions).

4.1. Action expansion

Here, we show we can analytically approximate the
expected-TD update in Eq. (7), using a first-order Taylor
expansion. The full expectation is taken over §,,,

B180] =B suls1 0+ €)VoQulsr 0 +6)] - ®
Applying the first-order Taylor expansion,
E [Ag,0;] = UE[ (50(% a;) + &, Vado(st, at)) ©)]
Vo (Qg(st, a;) + £ VaQo(st, at))]
As Vy is a linear operator, and &, does not depend on 6,
Blant] = nE| (bsi.a) + € Vadofsa) 10
(VeQa(St’ at) + §ZV§,9Q9(St,at)>}

where vwag (s, a¢) is a matrix of second derivatives. The
expectation of £, is zero, so the terms linear in £, are zero,
leading to,

E [Ar0:] = ndg(se, ar) VoQo(st, ar) (11)
+ 0B [ (€1 Vado(siar)) (€92 Qu(si.a0))]
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Swapping the order of the terms in the expectation,

E [Ar0:] = ndg(se, ar) VoQa(st, ar) (12)
+ B [(6V2,4Qo(sa)) (€1 Vado(sa0)]

And transposing the first term in the expectation (which we
can do as it is overall a scalar),

E [Ar0:] = ndg(st, ar) VeQa(st, ar) (13)
0B [(V3.aQos0:a0)6,) (€] Vado(sr.a) )|

We can then move the terms independent of &, out of the
expectation:

E[Ambt:] = nde(st,ar) VeQo(st, at) (14)
03 aQo(sta) B [€,€7| Vada(si,a)

Finally, we know E [gag,ﬂ =3,

E[Amb:] = nde(st,ar) VoQo(st, at)
‘H?Vg,aQO(Stv a;)X,Vade(st, ar)

(15)

If we assume the action covariance is isotropic, 3, = A\,I,
we get the following (1st-order) Taylor TD-update estimat-
ing the expected TD-update formulated in Eq. 7:

E [Ar0:] = ndo(st,a:)VeQo(se, ar)
17X V5 2Qo(st,a:) Vado(se, ar)

(16)

The first term is the standard TD update with state s; and
action a;. The new second term tries to align the action gra-
dient of the critic (Q-function) with the action gradient of
the TD target. Conceptually, this gradient matching should
help reduce the variance across TD-updates since it provides
a way to estimate the expected update in Eq. (7). In the ap-
pendix, we include a proof that at least under linear function
approximation, these extra Taylor gradient terms do not
affect the stability of TD-learning, assuming A, and 7 are
chosen in a certain way (see Appendix B). Critically, even
with linear function approximation, there are errors in the
first-order Taylor expansion, as we use a nonlinear function
to transform actions into a feature vector, while the Taylor
expansion is taken with respect to the underlying action.
Nevertheless, we provide theoretical and empirical evidence
that the first-order Taylor expansion reduces the variance
of standard TD-updates and support efficient learning, even
under non-linear function approximation (see sections, 4.4,
5.1and 5.2.4).

4.2. State expansion

We are not limited to formulating an expected TD-update
over a distribution of actions, but we can expand this to a

distribution of states too. Namely, instead of performing a
TD-update at the single state location, s;, we perform this
update over a distribution of states. We take this distribution
to be Gaussian with mean at s; and covariance Y. To do
S0, we can re-write the state at time ¢ as:

s=s;+& (17

where £, is a Gaussian random variable with mean zero and
covariance X,
T
Ee, [6] = 0 Be [e£7] == a8)
Based on this, we can formulate an expected TD-update,
averaging over this Gaussian distribution of states.

Ess [A‘gt] = UE.SS [50(575 + &, at)VGQG(St +&,, at)]
(19)

Again, we can approximate this expected update with a
first-order Taylor approximation, but this time, expanding
it around s;. Based on a similar derivation to the action
expansion, we get the following update (see Appendix B.1.1
for the full derivation):

Ee [Ara0:] = ndo(st,a:)VeQoa(st, ar)
+ n)\sVZ,sQe(st, a;)Vsdg(ss,as)  (20)

The rational behind this update is trying to tackle some
of the TD-update variance induced by the (visited) state
distribution, although we expect this only to work for states
close-by to the visited ones (i.e. for small values of ;)

4.3. State-Action expansion

Finally, we can combine the two Taylor expansions into a
single TD-update involving both state and action expansions.
Nevertheless, computing the dot products between Vdy and
VQp terms for both state and action terms may not be op-
timal. One reason for this is dot products are unbounded,
increasing the risk of high variance (TD) updates (e.g. Luo
et al., 2018). To tackle this issue, we use cosine distances
between the gradient terms instead of dot products (see Ap-
pendix G.2 for the benefits of this). The cosine distance
has the advantage of being bounded. By putting everything
together, we propose a novel TD update, which we express
below in terms of a loss:

Ly = n5(5t7at)Q9(Staat)
+ nA, CosineSimilarity(VaQo(st, a:), Vad(st, ar))
+ n s CosineSimilarity(VsQg (s, at), Vsd(st, ar))
(21)

Note we used the notation § instead of dy to indicate we
are treating 6(s, a;) as a fixed variable independent of 6.
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Figure 1. Mean update variance between Taylor TD and standard (MC) TD-learning (batch) updates, based on several sampled states and
the distribution of actions for those states (i.e. the policy). All results are based on 10 runs with corresponding error bars.

Algorithm 1 Taylor TD
Initialise reply buffer B
Initialise model, critic, target policy parameters {w, 6, ¢}
Initialise (,, (s = 0
for each training step do
Collect transition (s, a, r, s’) according to 7,
B+ BUB(s,a,r,s)
for each model update step do
w4 w— 1,V L(s,a,rs),
end for
for each policy update step do
(s,,) ~B
a=my(s)
7,8 ~py (- |s,a)
d=r+ 7@0(§17 7T¢(é/)) —Qo(s,a)
if Action expansion then
Ca = CosineSimilarity(VaQa(s, a), Vad(s,a))
end if
if State expansion then
(s = CosineSimilarity(VsQy(s,a), Vsi(s,a))
end if
0«0+ 7766 VBQG (S, a) + nc)\aVE'Ca + nc)\sv0<s
¢ < O+ 1mpVeQo (Sv a)
end for
end for

(S’ a? T’ S/) ~ B

This ensures when we take the gradient of this loss relative
to 0, we do not differentiate through any § terms (follow-
ing the standard implementation of TD-updates in autodiff
frameworks such as PyTorch, see Appendix D). It should be
noted Taylor TD requires a differentiable model of the envi-
ronment transitions as well as reward function in order to
compute V,0p(st, a;) and Vdg(se, a¢) (see Appendix C).
In principle, Taylor TD can be used with any actor-critic
approach that relies on TD-learning, and even be extended
to Monte Carlo returns. However, in practice, computing

Vg (st, a;) over long horizons of states and actions will
suffer from the same exploding/vanishing gradient problem
as backpropagating rewards through several transitions (e.g.
Clavera et al., 2020; Xu et al., 2022). Therefore, we im-
plement Taylor TD within a TD(0) set-up and expect it to
work best with short-horizon TD updates. We provide a
Taylor TD algorithm implementation with this set-up in the
Algorithm box 1.

4.4. Variance analysis

Here, we show that the Taylor TD update in Eq. (16) has
lower variance than standard (MC) TD-updates over the
same distribution of actions. We only provide this variance
analysis for the distribution over actions, because analogous
theorems can be derived for the distribution over states (i.e.
Eq. 20). To begin, we apply the law of total variance, to
standard TD-updates,

Var [A0;] = Es, [Var, [A6;|s:]] + Vars, [Ex [AG;]s]]
(22)

Recall that the updates, AB; = dg(s¢,a;)VoQo(se, a), de-
pend on the starting state, s;, and action, a; ~ 7(+|s;). The
inner expectation and inner variance sample actions from
the policy, 7, while the outer expectation and outer vari-
ance sample states from the distribution of visited states. To
relate this expression to Taylor TD, recall that Taylor TD
updates are motivated as performing analytic integration
over actions from the policy, 7, using a first-order Taylor ex-
pansion based approximation (i.e. assuming 7 corresponds
to the re-parameterize actions in Eq. 5),

Ar0; = Eq [A9t|st] = AExpet (23)
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Here, we defined Ag,,0; as the exact expected update, av-
eraging over actions. Thus, the variance of standard (MC)
TD-updates is exactly the variance of Ag,,0;, plus an ad-
ditional term to account for variance induced by sampling
actions,

Var [A0;] = Eg, [Var, [Ab[s¢]] + Vars, [Apgpb:] (24)

This directly gives a theorem,

Theorem 4.1. The variance for standard (MC) TD-updates
is larger than the variance of Agy,0; that arises from exact
integration over actions (Eq. 7),

Var [Af;] > Vars, [Agxp0:] (25)

Of course, we ultimately seek to relate the variance of the
standard (MC) TD updates, Af; to the Taylor-TD updates,
A0, which involve some degree of approximation from
the first order Taylor expansion. While at first, it might seem
that we are only able to get an approximate relationship,

Var [A6;] = Eg, [Var, [Af;|si]] + Vars, [A1,6;] (26)

we can in actuality obtain a formal relationship by consid-
ering differentiable Af; = 0p(st, a:)VoQo(st, ar). If Ab;
is differentiable then the Taylor series expansion becomes
increasingly accurate as we consider smaller regions around
the mean action, which correspond to smaller variances, \,,
in the distribution over actions.

Theorem 4.2. Iont(St,at) = 59(st,at)V9Q9(st,at) is
a continuous and differentiable function of a;, and if for
all sy € S Vary [Ab|s¢] > € for some € > 0, and if we
truncate the distribution over actions at some multiple of
the standard deviation (e.g. sampled actions cannot be more

than 10 standard deviations from the mean) then there exists
Ay > 0 for which

Var [A6;] > Vars, [ATa64] 27

5. Experiments
5.1. Variance reduction

In this section we empirically test the claim that Taylor TD
updates are lower variance than standard (MC) TD-learning
updates. To do so, we compute "batch updates" (Sutton &
Barto, 2018), where given an approximate value function
(Qp and a policy , several (Qy updates are computed across
several sampled states and actions, updating )y only once,
based on the sum of all updates. Batch updates ensure
the variance of the updates is estimated based on the same
underlying value function. We compute batch updates for
both Taylor TD and standard (MC) TD updates, comparing
the variance of the updates between the two approaches (see
Appendix E for more details).

Fig. (1) shows Taylor TD provides reliably lower variance
updates compared to standard TD-learning across all tested
tasks, but the Pendulum environment. This finding is consis-
tent with the idea that Taylor TD updates may be most ben-
eficial in higher dimensional state-action spaces, while the
Pendulum environment represents the lowest dimensional
environment with only four dimensions This is because MC
sampling (i.e., standard TD-learning) may become less ef-
ficient in higher dimensional spaces. We further explore
this proposal in a toy example comparing MC estimates
and Taylor expansions of expected updates. We perform
this comparison across data points of different dimensions,
and find the benefits of the Taylor expansion (over MC)
seem to increase with the dimension of the data points (see
Appendix F).

5.2. Comparison with baselines
5.2.1. ALGORITHM

We implement Taylor TD (i.e. Algorithm 1) with the TD3 al-
gorithm (Fujimoto et al., 2018) in a model-based off-policy
algorithm we denote as Taylor TD3 (TaTD3). TaTD3 aims
to provide a state-of-the-art implementation of Taylor TD
for comparison with baseline algorithms. At each iteration,
TaTD3 uses a learned model of the transitions and learned
reward function to generate several differentiable (imagi-
nary) 1-step transitions, starting from real states (sampled
from a reply buffer). These differentiable 1-step transitions
are used to train two critics (i.e. TD3) with several Taylor
TD updates in a hybrid value gradient and Dyna approach.
The model of the transitions consists of an ensemble of 8
Gaussian models trained by maximum likelihood on the ob-
served environment transitions. This model ensemble aims
to reduce over-fitting and model biases (Deisenroth & Ras-
mussen, 2011). The reward function is a Neural Network
trained with mean-square error on the observed environ-
ment rewards. Hence, TaTD3 does not require any a priori
knowledge of the environment transitions or reward func-
tion. Crucially, we found we could get good performance
for TaTD3 across all tested environments without needing
to fine tune the value of )\, and ) to each environment (see
Appendix I). Finally, the actor is trained with the determin-
istic policy gradient (Silver et al., 2014) on real states as in
standard TD3 (Fujimoto et al., 2018).

5.2.2. ENVIRONMENTS

The first environment consists of a classic problem in con-
trol theory used to evaluate RL algorithms (i.e. Pendu-
lum, Brockman et al., 2016). The other 5 environments
are stanard MuJoCo continous control tasks (i.e. Hopper,
HalfCheetah, Walker2d, Ant and Humanoid, Todorov et al.,
2012). All results are reported in terms of average perfor-
mance across 5 runs, each with a different random seed
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Figure 2. Performance in terms of average returns for TaTD3 and four state-of-the-art baseline algorithms on six benchmark continuous
control tasks. TaTD3 performs as well, if not better, than the four baseline algorithms on all six tasks. All performance are based on 5

runs, with shade representing 95% c.i.

(shade represents 95% CI).

5.2.3. CODE

All the code is available at https://anonymous.
4open.science/r/TaylorTD-7E61

5.2.4. RESULTS

Here, we report the comparison of TaTD3 with some state-
of-the art model -free and -based baselines on the four
benchmark environments. These baselines include 3 model-
based algorithms and one model-free algorithm. The first
model-based algorithm is Model-based Policy Optimiza-
tion (MBPO) (Janner et al., 2019), which employs the soft
actor-critic algorithm (SAC) (Haarnoja et al., 2018) within
a model-based Dyna setting. Plotted performance of MBPO
was directly taken from the official algorithm repository on
GitHub. The second model-based algorithm is Model-based
Action-Gradient-Estimator Policy Optimization (MAGE)
(D’Oro & Jaskowski, 2020), which uses a differentiable
model of the environment transitions to train the critic by
minimising the norm of the action-gradient of the TD-error.

The third model-based algorithm is TD3 combined with a
model-based Dyna approach (i.e. Dyna-TD3). This algo-
rithm was proposed by D’Oro & Jaskowski (2020) and was
shown to outperform its model-free counterpart, TD3 (Fu-
jimoto et al., 2018) on most benchmark tasks. Dyna-TD3
is conceptually similar to MBPO, with the main difference
of MBPO relying on SAC instead of TD3. Plotted perfor-
mances of both MAGE and Dyna-TD3 were obtained by re-
running these algorithms on the benchmark environments,
taking the implementations from the official algorithms’
repository. Finally, we included SAC (Haarnoja et al., 2018)
as a model-free baseline. Plotted performance of SAC was
obtained by running the Stable Baselines implementation
of this algorithm on the six benchmark environments (Hill
et al., 2018).

Fig. (2) shows TaTD3 performs at least as well, if not better,
than the baseline algorithms in all six benchmark tasks:
note the much poorer performance of MAGE on Hopper-
v2, Walker2d-v2 and Ant-v2, of MBPO on Humanoid-v2
relative to TaTD3.
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Figure 3. Performance comparison of TaTD3 with its Monte Carlo equivalent, MC Expected-TD3. All performance are based on 5 runs,

with shade representing 95% c.i.

5.3. Taylor vs MC-sampling TD-learning

Next, we ask whether Taylor TD provides any performance
benefit in computing the expected TD updates in Eq. (7)
and (19) over standard MC estimates. To do so, we imple-
ment a model-based TD3 algorithm analogous to TaTD3,
but where the expected TD updates, Eq. (7) and (19), are
estimated by sampling several state and action perturbations
at each time step (i.e. instead of being analytically computed
through the Taylor expansions). We denote this algorithm

MC Expected-TD3 (available at https://anonymous.

4open.science/r/TaylorTD-7E61). In practice,
at each time step, MC Expected-TD3 uses a (learned) model
of the transitions to compute multiple TD-updates by sam-
pling several state perturbations of visited states and action
perturbations of the current policy (i.e. estimating Eq. (7)
and (19) through MC estimates). Crucially, we ensure the
variance of the state and action perturbations (i.e. A, and
)s) is matched between TaTD3 and MC Expected-TD3. In
Fig. (3), we can see TaTD3 provides performance bene-
fits over MC Expected-TD?3 across the three most difficult
environments. Interestingly, the benefit of the Taylor ex-
pansion (i.e TaTD3) over MC sampling (i.e MC Expected-
TD3) may be more evident in high dimensional state-action
spaces. Indeed, the largest performance advantage of TaTD3
is seen in Humanoid-v2, which has the highest dimensional
state-action space by a large margin. Conversely, the least
advantage of TaTD3 over MC Expected-TD3 is seen in
Pendulum-v1, which is the task with smallest dimensional
state-action space. We further explore this proposal in a toy
example comparing MC estimates and Taylor expansions
of expected updates. We perform this comparison across
data points of different dimensions, and find the benefits of
the Taylor expansion (over MC) seem to increase with the
dimension of the data points (see Appendix F).

Finally, we should point out MC Expected-TD3 is different

from Dyna-TD3, as the latter does not implement any ac-
tion or state perturbation in the TD-updates. Hence, unlike
MC Expected-TD3, Dyna-TD3 does not compute the ex-
pected updates in Eq. (7) and (19), but relies on standard TD-
learning (This is also evident in the massive performance
difference between Dyna-TD3 and MC Expected-TD3 - i.e.
see Fig. 2).

6. Conclusion and Limitations

In this article, we introduce a model-based RL framework,
Taylor TD, to help reduce the variance of standard TD-
learning updates and, speed-up learning of critics. We theo-
retically and empirically show Taylor TD updates are lower
variance than standard (MC) TD-learning updates. We show
the extra gradient terms used by Taylor TD do not affect the
stable learning guarantees of TD-learning with linear func-
tion approximation under a reasonable assumption. Next,
we combine Taylor-TD with the TD3 algorithm (Fujimoto
et al., 2018) into a model-based off-policy algorithm we
denote as TaTD3. We show TaTD3 performs as well, if not
better, than several state-of-the art model-free and model-
based baseline algorithms on a set of standard benchmark
tasks.

Taylor TD has the limitation that it requires a differentiable
model of transitions to calculate the additional (TD) gradient
terms, i.e. it must be in the model-based rather than model-
free setting (see Appendix C). Additionally, the gradient
terms in Taylor TD imply additional computational cost;
in the Appendix H, we show this cost is not that large in
terms of training times and we expect it to reduce as faster
automatic differentiation tools are developed (Baydin et al.,
2018).
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A. Appendix

B. Proof of stable learning for Taylor TD with linear function approximation (with a fixed policy)

The Taylor TD update for the action expansion can be written as (an equivalent proof can be derived for the state expansion):
Ar0(s,a) = dg(s,a)VeQo(s,a) + )\avaan(s, a)Vady(s,a) (28)

This update is composed of two quantities, the standard TD update (i.e., first term in the sum) plus the extra term induced by
the Taylor expansion (i.e., second term in the sum). For the purposes of this proof, we consider linear function approximation,

Qo(s,a) = 0"x Qo(s',a") = 7% (29)
where,
x = ¢(s,a) € RN x' = ¢(s',a’) e RY (30)

and where x and x’ are feature-vectors of length N. We can re-write each of the two terms in the Taylor TD update in terms
of this linear function approximation. The first term, corresponding to a standard TD-update can be written,

S0(s,2)VgQo(s,a) = (r +v07x" — 67x)x

=rx —x(x —yx)76. 31

The second term, which is the new term introduced by Taylor-TD methods, can be written,
V3.aQo(s,8)Vady(s,a) = Vg a (x70) (Var + 7Va(x70) — Va(x"))
= (Va ) (Var +7(Vax')0 — (Vax)0)

= (Vax)" Var +7 (Vax)” Vax'0 — (Vax)” Vaxd
= (Vax)" Var — (Vax)" (Vax — yVax') 6 (32)
Here, Vax € RA*N is a matrix, while V,r € R4 is a vector.

Putting the two terms together Eq. 31 & 32 and factorising the terms multiplying 6;, we can write the expected next weight
vector as:

E 011 | 6 = 6; +1nA0 = (I —n(A + \A))b, +nu (33)
where:
u=E [rx + (Vax)” Var} (34)
A =E [x(x —x)T] e RV*V (35)
A=E [(VaX)T (Vax — wax')} e RVXN (36)

Since only A and A multiplies 6, these two quantities exclusively are important for guaranteeing stable learning. If A
is positive definite and Ais positive-semi-definite, then (A + /\aA) is positive-definite, and for sufficiently small 7, the
magnitude of the eigenvalues of I — n(A + )\aA) are all smaller than 1, in which case the system is stable. Crucially, the
term A is the same as traditional TD-learning so (Sutton, 1988) provides a proof that A is always positive definite (see also
Sutton & Barto, 2018). Thus, all we have to prove is that Ais positive semi-definite. In order to prove that Ais positive
semi-definite, we require an (very reasonable) assumption, that the timestep At is small. Specifically, if we take,

s'=At f(s,a) +s (37)

Then the V,x’ terms must be small. Specifically, applying the chain rule, the full derivative is (expressed here for 1d case,
Vax' = %ia, for simplicity),

Oz’ 0z’ 0a’ 0s'  0x' 0s' Oz’ <8x’ oa’ 8;1:’) 0s’ (38)

Da 0a 05 9a 05 9a 0a  \oa o5 95 ) 9a
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This is proportional to At, as

‘?)—Z/ N ésa @) (39)
The key test for positive semi-definiteness is that for all vectors b,
0 < bTAb. (40)
Substituting the definition of A from Eq. (36),
0 < bTE[(Vax)TVax]b — vbT E[(Vax) T Vax']b. (41)
Putting the b’s inside the expectation,
0 < E[(Vaxb)"(Vaxb)] — vE[(Vaxb)” (Vax'b)] (42)

Now, (Vaxb) € R'*4 is a length-A row-vector, and the terms inside the expectations are inner products of two length A
vectors. We can write these vector inner products as sums,

A
0< > E[(Va,xb)"(Va,xb)] = vE[(Va,xb)" (Va,x'b)] 43)

where a; is a particular element of the action-vector, a, so V,,x € RY isa length-N vector, and

Va, X
Vi, X
VaX = . (44)
Va X
Critically, the overall inequality in Eq. (42) holds if a similar inequality holds for every term in the sum in Eq. (43),
0 < E[(Va,xb)" (Va,xb)] = vE[(V4,xb)" (V4,x'D)] (45)
As V,,xb and V,,x'b are scalars, we can write,
0 < E[(Va,xb)?] = 7E[(V4,xb)(Va,x'b)] (46)

There are now two cases. If 0 = E[(V,,xb)?], we must have that 0 = (V,,xb) always (except at a set of measure zero).
Thus, the second term must also be zero (except at a set of measure zero), i.e. 0 = E[(V4,xb)(V,,x'b)] and the inequality
holds. Alternatively, if E[(V,,xb)?] is non-zero, it must be positive, in that case, the second term can also be non-zero, but
it scales with At, so we can always choose a At, small enough to ensure that the Eq. (46) holds, in which case Ais positive
semi-definite.

B.1. First-order Taylor approximation

B.1.1. STATE EXPANSION PROOF

This proof is analogous to the action expansion proof (i.e. section 4.1) and, is included for completeness. The expectation is
taken over &,

E [A@t} = ’I]E [69(St + 557 at)VQQ(St + SS, at)] (47)

Applying the first-order Taylor expansion

E[Anb] = nE | (do(sia) + € Vedo(st.a) ) Vo (Qlsi.a0) + €/ VeQlsrra) )| (48)
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As Vy is a linear operator, and £, does not depend on 6,

=nk [(59(St, ay) + &' Vsdy(st, at)) <V0Q9(5t7 ay) + €STV3,9Q9(St7 at))} (49)

where V2 ,Qq(st, a;) is a matrix of second derivatives. The expectation of &, is zero, so the terms linear in &, are zero,

=ndgp(st,a;)VeQo(st,ar) + nE [(ESTViQQ(,‘(st, at)) (ﬁsTVSég(st, at)ﬂ (50)
transposing the first term in the expectation (which we can do as it is overall a scalar)

=ndg(st,a:)VeQa(st,ar) +nE [(Vg,sQe(Smat)Es) (ESTVS%(Suat)ﬂ (S
we can then move the terms independent of &, out of the expectation:

= no(st,20) VoQa(st, ar) + 11V Qo (st 20) E [ 6,60 | Vido (51, 1) (52)
we defined E [é’sfﬂ =3,

=ndp(st,ar)VeQo(st,ar) + T)ngsQ(,(st, ;)3 Voo (se, ar) (53)

Finally, if we assume the state covariance is isotropic, 3 = AI, we get the following (1st-order) Taylor TD-update for the
state expansion

=160 (st, 1) VoQo(st, ar) + 1AV Qo(st,a:) Vo (s, ar) (54)

C. Using the chain rule to expand the gradient of Taylor TD

A (learned) differentiable model of the transitions and rewards is needed to compute the gradient terms V,dy(s, a) and
Vsdg(s,a) in Taylor TD. This is because the TD target, 5y = r(s,a) + Qs (s’,a’), comprises the reward and the Q-value
at the next time step, both of which depend on s and a. The full gradients for the action expansion can be written:

Or(s,a) B 0Qy (s, at)
Oa Oa

Vadg(s,a) =

+7

08 (0Qy(8',a’) 0a’ 0Qy(§,a’)
aa< 05 o8 oa (53)

where 7 denotes a (differentiable) reward function, § denotes the predicted next state, while %—i denotes the gradient term
computed by differentiating through a differentiable model of the transitions. An analogous gradient can be written for
Vsdg(s,a) (i.e., state expansion). However, we do not have to explicitly implement these expressions, as we use autodiff in
PyTorch to find gradients of dy (s, a) wrt a and s directly, by re-writing the Taylor TD updates in terms of a simple loss (see
Appendix D).

D. Taylor TD-update as a loss

Here we report how to easily implement the Taylor TD-update (i.e. Eq. 21) as a loss to be passed to an optimizer (e.g.
PyTorch optimizer).

Ly = (56)
— stopgrad,{do(st, at)} Qo(st, at)
stopgrady{Vado(st,ar)} - VaQo (81, at)
“stopgrad {[| (Vado(st, ar)) [[[[VaQo (51, ar)[|}
stopgrady {(Vsdg(s¢,at))} - VeQo(se,ar)
“stopgrady {[| (Vs0a(st, ar)) [|1VsQo(s1, a0}

"stopgrad,{ }" denotes the optimizer should not differentiate the quantity inside the curly brackets relative to the parameters
0 (i.e. equivalent to ".detach()" in PyTorch).



Taylor TD-learning

E. Variance reduction

Here we describe in more details how we computed the variance of Taylor TD and standard TD-learning updates on the
continuous control task Half-Cheetah-v2 (i.e. Section 5.1). Based on a policy, a value function and a set of randomly
sampled states from a memory buffer, we computed the Taylor and the standard (MC) TD batch updates across all sampled
states (under the policy). The update for each state takes the form of a gradient evaluation of the value function relative to
the TD objective. Next, we computed the variance of these gradient terms across all states and summed them up since the
variance of each parameter update contributes to the variance of the value function relative to the TD objective. We repeated
this process for different seeds and plotted the mean update variance for both Taylor and the standard TD updates (i.e. Fig.1).

F. Toy example

We provide a toy example to investigate the settings in which using a Taylor expansion of an expected update may provide the
largest benefits relative to MC estimates of the expected update. To do so, we train a function approximation parameterised
by 6 (e.g. acritic) to approximate the expected outputs of an underlying target function (e.g. TD targets). Starting from a
single expected target value, we can formulate the following objective (for multiple targets, we can just sum the objectives):

T(0) = 5 Fe, [(yla + &) — olx + &) 57)

where &, is sampled form a Gaussian distribution with E[£,] = 0, E [ﬁxﬁﬂ = M. Hence, the task requires the function

approximation gy () to approximate the expected outputs of the target function y(), based on a set of randomly perturbed
inputs (i.e. z 4+ &,). We do this by comparing two different approaches. The first approach involves sampling different
outputs of y (based on different input perturbations £,) and training gy () to match those outputs. We denote this approach as
"MC targets". This approach aims to mimic standard TD-learning, where TD-targets are sampled at each time step to train
the critic (i.e. MC estimates). The second approach aims to mimic Taylor TD, applying a first-order Taylor expansion to the
objective in Eq 57,

1 N .
Ju(0) = 5 Be, |(y+ &5 Vay — o — & Vicilo)? (58)

For clarity we used the notation s = ¢g(x) and y = y(z). The terms that are linear in £, cancels and after summing up
equal terms, we get:

1 N . .
JTa(e) = §(y - y9)2 + %)\x(vxy - meG)T(me - mee) (59)

We can then take the gradient of this approximation relative to the function approximation weights to get the weight update
for the Taylor approach:

Vo J(0) ~ 96V oie (60)
+ MVo (Vi Vaio)
=y Vols
= AVo(Vey" ' Vaig)

Note, this update is reminiscent of of double backpropagation settings in the supervised learning literature (Czarnecki et al.,
2017; Drucker & Le Cun, 1992). The toy example allows us to compare the Taylor expansion with the MC estimation under
different conditions (i.e. dimension size of the data points as well as number of data points). In particular, we compare the
two approaches for inputs of different dimensions (from 1 to 100 dimensional inputs) and across two data regimes, a low
data regime (i.e. only 15 training samples are used to train the function approximation) and a high data regime (i.e. over
100 samples are used to train the function approximation). Performance are then assessed based on a novel set of inputs (i.e.
50), sampled from the same underlying distribution as the training data. Fig. 4 show that the benefits of the Taylor approach
over MC estimates increase as the dimension of the data points grows in size (e.g. RL tasks involving high dimensional
action and state spaces). In particular, these benefits are even larger in the presence of a low data regime, such as RL settings
in which for any given state-action pair we can only sample a few transitions from the environment.
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Figure 4. Average performance of the Taylor expansion approach relative to MC estimates on unseen input examples across several input
dimensions (x-axis) and two data regimes (5 runs, 95% c.i.).

G. Ablations
G.1. State expansion ablation

Here, we ask whether the Taylor state expansion brings any benefit to performance, on top of the Taylor action expansion. To
do so, we compare the TaTD3 algorithms with and without state expansion on two standard benchmark tasks (i.e. analogous
to setting As = 0 in the update Eq. 21). Fig. (5) shows that including the state expansion is beneficial to both environments.

HalfCheetah-v2 Walker2d-v2
12000 4
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c -
S 8000 - 4000
©
% 6000 - 3000 +
£ 4000 1 2000
2000 4 1000 4
[
0 T T 1 T T 1
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= TaTD3 == ActionOnly-TaTD3

Figure 5. Performance in terms of average returns for TaTD3 (with both state and action expansions) compared to a version of TaTD3 that
uses the action expansion only, on two benchmark continuous control tasks. Including the state expansion in TaTD3 seem to improve
performance on both tasks (5 runs, 95% c.i.).

G.2. Cosine similarity ablation

Here, we ask whether taking the cosine similarity of state and action gradient terms benefit the performance of TaTD3. To
do so, we compare the standard TaTD3 algorithms (trained with the loss in Eq. 21) with a version of TaTD3 trained with a
loss without cosine similarity,

Lo = n0(st,ar)Qa(se,ar) +nha VaQo(st,a:) - Vad(st, ar) +ns VsQo(se, ar) - Vsd(st, ar) (61)

Namely, this loss optimizes the dot-product for state and action gradient terms instead of the cosine similarity. We assess
this comparison on two standard benchmark tasks (i.e. see Fig. 6). In Fig. 6, we can see the cosine similarity does improve
performance on both tasks.
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Figure 6. Performance in terms of average returns for TaTD3 compared to a version of TaTD3 that computes the dot product of state and
action gradient terms, instead of cosine similarity (5 runs, 95% c.i.).

H. Computing

All experiments were run on a cluster of GPUs, including NVIDIA GeForce RTX 2080, 3090 and NDVIDIA A100. Here,
we report the difference in computing time between standard TD-learning and Taylor TD based on the same GPU for each
comparison. We do so for a low dimensional (Pendulum), a 'medium’ dimensional (Walker2d) and a high dimensional
(Humanoid) environment to span a broad range of settings.

H Environment TD-learning time Taylor TD time n. time steps H

Pendulum 24s 38s 200
Walker2d 50s 68s 1000
Humanoid 94s 117s 1000

I. Hyperparameters settings

Below, we reported the hyperparameter settings for TaTD3 (and MC Expected-TD3),

Pendulum-v1

HalfCheetah-v2

Walker2d-v2

Steps

10000

150000

150000

Model ensemble size

8

8

8

Model architecture (MLP)

4 h-layers of size 512

4 h-layers of size 512

4 h-layers of size 512

Reward model architecture (MLP)

3 h-layers of size 256

3 h-layers of size 256

3 h-layers of size 256

Actor-critic architecture (MLP)

2 h-layers of size 400

2 h-layers of size 400

2 h-layers of size 400

Dyna steps per environment step 10 10 10
Model horizon 1 1 1
Aa 0.25 0.25 0.25
As le-5 le-5 le-5
Hopper-v2 Ant-v2 Humanoid-v2
Steps 10000 150000 150000
Model ensemble size 8 8 8

Model architecture (MLP)

4 h-layers of size 512

4 h-layers of size 512

4 h-layers of size 512

Reward model architecture (MLP)

3 h-layers of size 256

3 h-layers of size 512

3 h-layers of size 512

Actor-critic architecture (MLP)

2 h-layers of size 400

4 h-layers of size 400

4 h-layers of size 400

Dyna steps per environment step 10 10 10
Model horizon 1 1 1
Aa 0.05 0.05 0.25
s le-5 le-5 le-5

Note, "h-layers" stands for hidden layers and the size is in terms of number of units.
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We found we could achieve good performance for TaTD3 across all tested environments without needing to fine tune the
value of )\, and ) to each environment (i.e., A, = 0.05 and Ay = 0.00005). These parameters were founded by running a
grid search over potential values of these parameters based on a single environment (i.e., Pendulum), then using the best
values for all other environments. Nevertheless, we reached top performance in HalfCheetah, Walker2d and Humanoid by
using a larger A, (i.e., A\, = 0.25). This finding suggests these 3 environments benefit from learning a broader distribution of
Q-values over the actions, we believe for better exploration.



