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Abstract001

Spatial reasoning is a fundamental aspect of002
human intelligence. One key concept in spa-003
tial cognition is the Frame of Reference (FoR),004
which identifies the perspective of spatial ex-005
pressions. Despite its significance, FoR has006
received limited attention in AI models that007
need spatial intelligence. There is a lack of008
dedicated benchmarks and in-depth evaluation009
of large language models (LLMs) in this area.010
To address this issue, we introduce the Frame011
of Reference Evaluation in Spatial Reasoning012
Tasks (FoREST) benchmark, designed to as-013
sess FoR comprehension in LLMs. We evaluate014
LLMs on answering questions that require FoR015
comprehension and layout generation in text-016
to-image models using FoREST. Our results re-017
veal a notable performance gap across different018
FoR classes in various LLMs, affecting their019
ability to generate accurate layouts for text-to-020
image generation. This highlights critical short-021
comings in FoR comprehension. To improve022
FoR understanding, we propose Spatial-Guided023
prompting, which improves LLMs’ ability to024
extract essential spatial concepts. Our proposed025
method improves overall performance across026
spatial reasoning tasks.027

1 Introduction028

Spatial reasoning plays a significant role in human029

cognition and daily activities. It is also a crucial030

aspect in many AI problems, including language031

grounding (Zhang and Kordjamshidi, 2022; Yang032

et al., 2024), navigation (Yamada et al., 2024), com-033

puter vision (Liu et al., 2023; Chen et al., 2024),034

medical domain (Gong et al., 2024), and image035

generation (Gokhale et al., 2023). One key con-036

cept in spatial reasoning is the Frame of Refer-037

ence (FoR), which identifies the perspective of spa-038

tial expressions. FoR has been studied extensively039

in cognitive linguistics (Edmonds-Wathen, 2012;040

Vukovic and Williams, 2015). Levinson (2003)041

initially defines three FoR classes: relative, based042

Figure 1: Illustration of FoR classes. The cat is the
locatum, the car is the relatum, and the arrow denotes
the perspective.

on the observer’s perspective; intrinsic, based on 043

an inherent feature of the reference object; and 044

absolute, using environmental cues like cardinal 045

directions -See Figure 1. This framework was ex- 046

panded by Tenbrink (2011) to create a more com- 047

prehensive framework, serving as the basis of our 048

work. Understanding FoR is important for many 049

applications, especially in embodied AI. In such 050

applications, an agent must simultaneously com- 051

prehend multiple perspectives, including the one 052

from the instruction giver and from the instruction 053

follower, to communicate and perform tasks effec- 054

tively. However, recent spatial evaluation bench- 055

marks have largely overlooked FoR. For exam- 056

ple, the text-based benchmarks Shi et al. (2022); 057

Mirzaee and Kordjamshidi (2022); Rizvi et al. 058

(2024) and text-to-images benchmarks (Gokhale 059

et al., 2023; Huang et al., 2023; Cho et al., 2023a,b) 060

assume a fixed perspective for all spatial expres- 061

sions. This inherent bias limits situated spatial 062

reasoning, restricting adaptability in interactive en- 063

vironments where perspectives can change. 064

To systematically investigate the role of FoR in 065

spatial understanding and create a new resource, 066

that is, Frame of Reference Evaluation in Spatial 067
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Reasoning Tasks (FoREST), FoREST is designed068

to evaluate models’ ability to comprehend FoR069

from textual descriptions and extend this evalua-070

tion to grounding and visualization. Our bench-071

mark includes spatial expressions with FoR am-072

biguity—where multiple FoRs may apply to the073

described situation—and spatial expressions with074

only a single valid FoR. This design allows evalua-075

tion of the models’ understanding of FoR in both076

scenarios. We evaluate several LLMs in a QA set-077

ting that require FoR understanding and apply the078

FoR concept in text-to-image models. Our findings079

reveal performance differences across FoR classes080

and show that LLMs exhibit bias toward specific081

FoRs when handling ambiguous cases. This bias082

extends to layout-diffusion models, which rely on083

LLM-generated layouts in the image generation084

pipeline. To enhance FoR comprehension in LLMs,085

we propose Spatial-Guided prompting, which en-086

ables models to analyze and extract additional spa-087

tial information, including directional, topological,088

and distance relations. We demonstrate that in-089

corporating spatial information improves question-090

answering and layout generation, ultimately en-091

hancing text-to-image generation performance.092

Our contribution1 are summarized as follows,093

1. We introduce the FoREST benchmark to eval-094

uate LLMs’ FoR comprehension in a QA setting095

systematically. 2. We analyze the impact of FoR096

information on text-to-image generation using mul-097

tiple diffusion models. 3. We propose a prompting098

approach that generates spatial information, which099

can be incorporated into QA and layout diffusion100

to enhance performance.101

2 Spatial Primitives102

We review three semantic aspects of spatial infor-103

mation expressed in language: Spatial Roles, Spa-104

tial Relations, and Frame of Reference.105

Spatial Roles. We focus on two main spatial106

roles (Kordjamshidi et al., 2010) of Locatum, and107

Relatum. The locatum is the object described in the108

spatial expression, while the relatum is the other109

object used to describe the position of the locatum.110

An example is a cat is to the left of a dog, where111

the cat is the locatum, and the dog is the relatum.112

Spatial Relations. When dealing with spatial113

knowledge representation and reasoning, three114

main relations are often considered, directional,115

topological, and distance (Hernández, 1994; Cohn116

1code and dataset available at Annonymous repository.

and Renz, 2008; Kordjamshidi et al., 2011). Di- 117

rectional describes an object’s direction based on 118

specific coordinates, e.g., left and right. Topologi- 119

cal describes the containment between two objects, 120

such as inside. Distance describes qualitative and 121

quantitative relations between entities. Examples 122

of qualitative are far, and quantitative are 3km. 123

Spatial Frame of Reference. We use four frames 124

of references investigated in the cognitive linguistic 125

studies (Tenbrink, 2011). These are defined based 126

on the concept of Perspective, which is the origin 127

of a coordinate system to determine the direction. 128

The four frames of reference are defined as follows. 129

1. External Intrinsic describes a spatial relation 130

from the relatum’s perspective, where the relatum 131

does not contain the locatum. The top-right image 132

in Figure 1 illustrates this with the sentence, A cat 133

is to the right of the car from the car’s perspective. 134

2. External Relative describes a spatial relation 135

from the observer’s perspective. The top-left image 136

in Figure 1 shows an example with the sentence, A 137

cat is to the left of a car from my perspective. 138

3. Internal Intrinsic describes a spatial relation 139

from the relatum’s perspective, where the relatum 140

contains the locatum. The bottom-right image in 141

Figure 1 shows this with the sentence, A cat is in- 142

side and back of the car from the car’s perspective. 143

4. Internal Relative describes a spatial relation 144

from the observer’s perspective where the locatum 145

is inside the relatum. The bottom-left image in 146

Figure 1 shows this FoR with the sentence, A cat is 147

inside and to the left of the car from my perspective. 148

3 FoREST Dataset Construction 149

To systematically evaluate LLM on the frame 150

of reference (FoR) recognition, we introduce the 151

Frame of Reference Evaluation in Spatial Reason- 152

ing Tasks (FoREST) benchmark. Each instance in 153

FoREST consists of a spatial context (T ), a set of 154

corresponding FoR (FoR) which is a subset of {ex- 155

ternal relative, external intrinsic, internal intrinsic, 156

internal relative}, a set of questions and answers 157

({Q,A}), and a set of visualizations ({I}). An 158

example of T is A cat is to the right of a dog. A 159

dog is facing toward the camera. The FoR of T is 160

{external intrinsic, external relative}. A question- 161

answer is Q = Based on the camera’s perspective, 162

where is the cat from the dog’s position?, A = {left, 163

right}. There is an ambiguity in the FoR for this ex- 164

pression. Thus, the answer will be left if the model 165

assumes the external relative. Conversely, it will 166
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Orientation Templates
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Figure 2: Pipeline for dataset creation, starting from selecting a locatum and relatum from available objects and then
applying a spatial template to generate the spatial expression (T ). FoRs are assigned based on relatum properties. T
is categorized based on the number of FoRs. For example, A cat is to the right of a dog (with two possible FoRs:
external intrinsic and external relative) belongs to the A-split. Then, its disambiguated version (A cat is to the right
of a dog from the dog’s perspective) is added to the C-split. Next, if applicable, a relatum’s orientation is included
for visualization and question generation. Finally, Unity3D generates scene configurations, and question-answer
pairs are derived from T .

be right if the model assumes the external intrinsic.167

The visualization of this example is in Figure 2.168

3.1 Context Generation169

We select two distinct objects—a relatum (R) and170

a locatum (L)—from a set of 20 objects and apply171

them to a Spatial Relation template, <L> <spatial172

relation> <R> to generate the context T . FoRs173

for T are determined based on the properties of174

the selected objects. Depending on the number of175

possible FoRs, T is categorized as ambiguous (A-176

split), where multiple FoRs apply, or clear (C-split),177

where only one FoR is valid. We further augment178

the C-split with disambiguated spatial expressions179

derived from the A-split, as shown in Figure 2.180

3.2 Categories based on Relatum Properties181

Using the FoR classes in Section 2, we identify two182

key properties contributing to FoR ambiguity. The183

first property is the relatum’s intrinsic direction. It184

creates ambiguity between intrinsic and relative185

FoRs as spatial relations may originate from either186

relatum’s or observer’s perspectives. The second187

is the relatum’s affordance as a container. It intro-188

duces the ambiguity between internal and external189

FoR, as spatial relations may refer to either inside190

or outside of the relatum. Note that containment191

is defined as the ability of the relatum to contain192

the locatum, considering both objects’ sizes. Based193

on these properties, we define four distinct cases:194

Cow, Box, Car, and Pen.195

Case 1: Cow Case. In this case, the selected re-196

latum has intrinsic directions but cannot be the 197

container for the locatum. An example is a cow. In 198

such cases, the relatum potentially provides a per- 199

spective for spatial relations. The applicable FoR 200

classes are FoR = {external intrinsic, external rel- 201

ative}. We augment the C-split with expressions 202

of this case but include the perspective to resolve 203

their ambiguity. To specify the perspective, we use 204

predefined templates for augmenting clauses, such 205

as from {relatum}’s perspective for external intrin- 206

sic or from the camera’s perspective for external 207

relative. For example, if the context is A cat is to 208

the right of the cow, in the A-split. The counter- 209

parts included in the C-split are A cat is to the right 210

of the cow from cow’s perspective. for external 211

intrinsic and A cat is to the right of the cow from 212

my perspective. for external intrinsic. 213

Case 2: Box Case. The relatum in this case has 214

the property of being a container but lacks intrinsic 215

directions, making the internal FoR applicable. An 216

example is a box. The applicable FoR classes are 217

FoR = {external relative, internal relative}. To 218

include their unambiguous counterparts in the C- 219

split, we specify the topological relation by adding 220

inside for internal relative and outside for external 221

relative. For example, for the sentence A cat is to 222

the right of the box., the unambiguous T with inter- 223

nal relative FoR is A cat is inside and to the right 224

of the box. The counterpart for external relative is 225

A cat is outside and to the right of the box. 226

Case 3: Car Case. A relatum with an intrinsic di- 227

rection and container affordance falls into this case, 228
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allowing all FoR classes. An obvious example is a229

car that can be a container with intrinsic directions.230

The applicable FoR classes are FoR = { external231

relative, external intrinsic, internal intrinsic, inter-232

nal relative}. To augment C-split with this case’s233

disambiguated counterparts, we add perspective234

and topology information similar to the Cow and235

Box cases. An example expression for this case236

is A person is in front of the car. The four disam-237

biguated counterparts to include in the C-split are238

A person is outside and in front of the car from239

the car itself. for external intrinsic, A person is240

outside and in front of the car from the observer.241

for external relative, A person is inside and in front242

of the car from the car itself. for internal intrinsic,243

and A person is inside and in front of the car from244

the observer. for internal relative.245

Case 4: Pen Case. In this case, the relatum lacks246

both the intrinsic direction and the affordance as a247

container. An obvious example is a pen. Lacking248

these two properties, the created context has only249

one applicable FoR, FoR = {external relative}.250

Therefore, we can categorize this case into both251

splits without any modification. An example of252

such a context is The book is to the left of a pen.253

3.3 Context Visualization254

In our visualization, complexity arises when the re-255

latum has an intrinsic direction within the intrinsic256

FoR, as its orientation can complicate the spatial257

representation. For example, for visualization of A258

cat is to the right of a dog from the dog’s view, the259

cat can be placed in different coordinates based on260

the dog’s orientation. To address this issue, we add261

a template sentence for each direction, such as <re-262

latum> is facing toward the camera, to specify the263

relatum’s orientation of all applicable T for visual-264

ization and QA. For instance, A cat is to the left of a265

dog. becomes A cat is to the left of a dog. The dog266

is facing toward the camera. To avoid occlusion267

issues, we generate visualizations only for external268

FoRs, as one object may become invisible in inter-269

nal FoR classes. We use only expressions in C-split270

since those have a unique FoR interpretation for271

visualization. We then create a scene configuration272

by applying a predefined template, as illustrated273

in Figure 2. Images are generated using the Unity274

3D simulator (Juliani et al., 2020), producing four275

variations per expression T with different back-276

grounds and object positions. Further details on the277

simulation process are in Appendix A.2.278

3.4 Question-Answering Generation 279

We generate questions for all generated spatial ex- 280

pressions (T ). Note that we include the relatum ori- 281

entation for cases where the relatum has an intrinsic 282

direction, as mentioned in the visualization. Our 283

benchmark includes two types of questions. The 284

first type asks for the spatial relation between two 285

given objects from the camera’s perspective, fol- 286

lowing predefined templates such as, Based on the 287

camera’s perspective, where is the locatum relative 288

to the relatum’s position? Template variations are 289

made based on GPT4o; details are provided in Ap- 290

pendix A.2.4. The second type of question queries 291

the spatial relation from the relatum’s perspective. 292

This question type follows the same templates but 293

replaces the camera with the relatum. The first type 294

of question is generated for all T , while the second 295

type is only generated for T where the relatum has 296

intrinsic direction and a perspective can be defined 297

accordingly. Answers are determined based on the 298

corresponding FoRs, the spatial relation in T , and 299

the relatum’s orientation when applicable. 300

4 Models and Tasks 301

This paper focuses on Question-Answering and 302

Text-to-Image using the FoREST benchmark to 303

evaluate FoR in spatial reasoning comprehensively. 304

FoREST also supports other tasks, such as FoR 305

identification, detailed in Appendix H. 306

4.1 Question-Answering (QA) 307

Task. This QA task evaluates LLMs’ ability to 308

adapt contextual perspectives across different FoRs. 309

The input includes a spatial expression T , relatum 310

orientation (if available), and a question Q query- 311

ing the spatial relation from either the observer’s 312

or the relatum’s perspective. The output is a spatial 313

relation S, restricted to {left, right, front, back}. 314

We use the context from both splits for this task. 315

Zero-shot baseline. We call the LLM with instruc- 316

tions, a spatial context, and a question expecting 317

a spatial relation as the response. The prompt in- 318

structs the model to answer the question with one of 319

the candidate spatial relations without explanation. 320

Few-shot baseline. We create four spatial expres- 321

sions, each assigned to a single FoR class to prevent 322

bias. Following the steps in Section 3.4, we gener- 323

ate a corresponding question and answer for each. 324

These serve as examples in our few-shot prompting. 325

The input to the model is the instruction, example, 326

spatial context, and the question. 327
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Chain-of-Thought (CoT) baseline (Wei et al.,328

2023). To create CoT examples, we modify the329

prompt to require reasoning before answering. We330

manually craft reasoning explanations with the nec-331

essary information for the few-shot examples. The332

input to the model is the instruction, CoT example,333

spatial context, and the question.334

Human baseline. We conducted a small scope hu-335

man study with three participants, paid as research336

assistants, to establish a human baseline for A-split.337

Each participant is shown 25 randomly sampled338

QA examples per relatum case, totaling 150 exam-339

ples. Each includes a textual scene description and340

corresponding question. See Appendix I for details.341

We report average accuracy across participants to342

reflect the human baseline.343

4.2 Text-To-Image (T2I)344

Task. This task assesses the diffusion models’ abil-345

ity to consider FoR by evaluating their generated346

images. The input is a spatial expression, T , and347

the output is a generated image (I). C and A splits348

with external FoRs are used for this task.349

Stable Diffusion Models. We use the stable diffu-350

sion models as the baseline for the T2I task. This351

model only needs the scene description as input.352

Layout Diffusion Models. This model operates353

in two phases: text-to-layout and layout-to-image.354

Given that LLMs can generate the bounding box355

layout (Cho et al., 2023b), we provide them with356

instructions and T to create the layout. The layout357

consists of bounding box coordinates for each ob-358

ject in the format of {object: [x, y, w, h]}, where x359

and y denote the starting point and h and w denote360

the height and width. The bounding box coordi-361

nates and T are then passed to the layout-to-image362

model to produce the final image, I .363

4.3 Spatial-Guide (SG) Prompting364

We hypothesize that the spatial relation types and365

FoR classes defined in Section 2 can improve QA366

and layout generation. For example, the external367

intrinsic FoR emphasizes that spatial relations orig-368

inate from the relatum’s perspective. To leverage369

this, we propose SG prompting, an additional step370

applied before QA or layout generation. This step371

extracts spatial information, including direction,372

topology, distance, and the FoR, from the spatial ex-373

pression T , as supplementary input to guide LLMs374

in QA or layout generation. We manually craft four375

examples covering these aspects. First, we spec-376

ify the perspective for directional relations, e.g.,377

left relative to the observer, to distinguish intrinsic 378

from relative FoR. Next, we indicate whether the 379

locatum is inside or outside the relatum for topolog- 380

ical relations to differentiate internal from external 381

FoR. Lastly, we provide an estimated quantitative 382

distance to support topological and directional re- 383

lation identification, e.g., far. These examples are 384

provided in a few-shot setting to guide the model 385

in automatically extracting such information. 386

5 Experimental Results 387

5.1 Evaluation Metrics 388

QA. We report an accuracy (acc.) based on the cor- 389

rect answer defined as follows. Since the questions 390

can have multiple correct answers, as explained in 391

Section 3, the prediction is correct if it matches any 392

valid answer. Additionally, we report the model’s 393

bias distribution when FoR ambiguity exists. I% is 394

the percentage of correct answers when assuming 395

an intrinsic FoR, while R% is this percentage with 396

a relative FoR assumption. Note that cases where 397

both FoR assumptions lead to the same answer are 398

excluded from the bias calculation. 399

T2I. We adopt spatialEval (Cho et al., 2023b) for 400

evaluating T2I spatial ability. We modify it to ac- 401

count for FoR by converting relations to a cam- 402

era perspective before passing them to spatialEval, 403

which assumes this viewpoint. Accuracy is deter- 404

mined by comparing the bounding box and depth 405

map of the relatum and locatum. For FoR ambi- 406

guity, a generated image is correct if it aligns with 407

at least one valid FoR interpretation. We report re- 408

sults using VISORcond and VISORuncond (Gokhale 409

et al., 2023) metrics. VISORcond evaluates spatial 410

relations only when both objects appear correctly, 411

aligning with our focus on spatial reasoning. While, 412

VISORuncond evaluates the overall performance, 413

including object creation errors. 414

5.2 Experimental Setting 415

QA. We use Llama3-70B (Llama, 2024), Qwen2- 416

72B (Qwen Team, 2024), Qwen2VL-72B (Wang 417

et al., 2024), and GPT-4o (OpenAI, 2024) as back- 418

bone models. All models are evaluated with zero- 419

shot, few-shot, CoT, and our SG+CoT prompting 420

under temperature 0 to ensure reproducibility. 421

T2I. We select Stable Diffusion SD-1.5 and SD- 422

2.1 (Rombach et al., 2021) as our stable diffu- 423

sion models and GLIGEN(Li et al., 2023) as the 424

layout-to-image backbone. For translating spatial 425

descriptions into bounding box information, we 426
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Camera perspective Relatum perspective
Model Cow Car Box Pen Avg. Cow Car Avg.

R% I% Acc. R% I% Acc. Acc. Acc. Acc. R% I% Acc. R% I% Acc. Acc.
Llama3-70B (1) 48.1 51.5 62.5 58.0 41.6 65.5 73.3 72.5 64.3 61.0 38.7 62.1 51.8 47.9 61.8 62.1
Llama3-70B (2) 49.1 50.5 62.2 52.2 47.4 64.7 85.8 85.5 65.8 59.6 40.1 57.1 55.5 44.2 61.8 57.7
Llama3-70B (3) 49.4 50.3 80.7 49.4 50.3 79.6 95.8 94.9 82.6 60.8 39.0 77.2 55.1 44.6 80.9 77.7
Llama3-70B (4) 59.4 40.2 73.6 57.9 41.7 74.8 100.0 100.0 77.5 60.6 39.1 65.7 56.0 43.7 67.7 66.0
Qwen2-72B (1) 96.6 2.9 95.6 95.9 3.6 95.0 100.0 100.0 96.1 8.8 90.6 79.3 7.8 91.7 83.6 79.9
Qwen2-72B (2) 89.0 10.5 84.4 85.6 13.9 85.5 100.0 100.0 86.8 17.7 81.8 78.3 10.4 89.1 86.3 79.4
Qwen2-72B (3) 67.2 32.4 88.6 62.0 37.6 83.4 100.0 100.0 89.6 21.3 78.3 85.5 22.7 76.9 83.6 85.2
Qwen2-72B (4) 93.0 6.5 90.1 94.6 4.9 93.3 100.0 98.6 91.7 8.2 91.2 86.0 10.5 89.0 87.4 86.2
Qwen2VL-72B (1) 49.5 50.5 78.3 51.6 48.4 80.0 98.3 96.9 81.2 41.0 59.0 55.4 44.7 55.3 59.0 56.0
Qwen2VL-72B (2) 40.9 59.1 89.4 44.7 55.3 79.0 100.0 100.0 89.6 32.7 67.3 66.9 28.5 71.5 67.0 66.9
Qwen2VL-72B (3) 63.5 36.5 84.0 72.2 27.8 84.5 100.0 100.0 86.3 51.0 49.0 77.7 54.6 45.4 82.8 78.4
Qwen2VL-72B (4) 50.5 49.5 78.3 59.5 40.5 67.4 98.3 99.6 79.9 23.5 76.5 78.2 33.0 67.0 67.7 76.7
GPT-4o (1) 84.3 15.3 94.5 88.5 11.0 97.3 99.2 99.8 95.6 21.6 78.0 91.6 16.1 83.5 90.5 91.4
GPT-4o (2) 69.0 30.6 76.6 80.3 19.2 89.5 100.0 100.0 81.5 29.0 70.5 74.7 30.9 68.7 77.5 75.1
GPT-4o (3) 41.5 58.3 92.3 38.2 61.6 91.0 100.0 99.8 93.2 33.9 65.8 93.9 32.0 67.6 93.9 93.9
GPT-4o (4) 26.0 73.9 79.2 27.7 72.1 79.4 96.7 94.3 81.4 16.2 83.4 95.5 19.2 80.4 94.8 95.4
Human-baseline 36.6 63.4 90.7 27.8 72.2 96.0 72.0 82.7 85.3 41.4 58.6 97.3 36.1 63.9 96.0 96.7

Table 1: QA accuracy in the A-Split. R% and I% represent the percentage the model assumes relative or intrinsic
FoR for ambiguous expression, explained in Section 5.1. Acc is the accuracy, and Avg is the micro-average of
accuracy. (1): 0-shot, (2): 4-shot, (3): CoT, and (4): SG+CoT.

Camera perspective Relatum perspective
Model ER (CP) EI (RP) II (RP) IR (CP) Avg. ER (CP) EI (RP) II (RP) IR (CP) Avg.
Llama3-70B (0-shot) 44.8 38.4 39.7 54.4 42.6 42.2 47.1 62.5 34.4 45.1
Llama3-70B (4-shot) 43.0 40.0 39.1 47.3 41.9 41.8 60.9 77.7 35.2 52.0
Llama3-70B (CoT) 57.8 46.1 44.7 46.0 51.5 55.5 56.8 71.5 49.0 56.6
Llama3-70B (SG+CoT) 47.6 42.9 50.0 35.6 45.0 55.4 64.5 75.0 47.1 60.1
Qwen2-72B (0-shot) 94.5 35.2 31.8 93.2 66.9 28.7 89.3 93.6 23.8 59.0
Qwen2-72B (4-shot) 90.2 39.5 39.1 68.5 65.3 33.5 92.1 94.0 29.5 62.7
Qwen2-72B (CoT) 81.4 57.4 58.6 62.5 69.1 39.5 83.7 85.2 37.7 61.6
Qwen2-72B (SG+CoT) 97.6 42.5 31.3 93.8 71.4 42.8 86.6 92.0 34.0 64.5
Qwen2VL-72B (0-shot) 68.3 40.2 42.4 75.3 56.0 37.4 60.1 82.2 35.5 50.0
Qwen2VL-72B (4-shot) 78.4 41.0 44.5 66.1 60.5 38.0 85.4 91.2 29.9 61.6
Qwen2VL-72B (CoT) 58.4 62.4 68.4 40.7 59.3 48.6 43.5 36.1 61.9 46.4
Qwen2VL-72B (SG+CoT) 99.0 50.0 47.5 93.0 75.9 27.3 37.3 37.1 34.0 32.7
GPT-4o (0-shot) 79.7 45.1 39.5 90.2 64.2 46.9 88.5 98.2 34.8 67.5
GPT-4o (4-shot) 68.0 52.6 60.7 74.1 61.8 44.9 98.2 100.0 37.5 71.2
GPT-4o (CoT) 81.7 76.1 82.4 71.5 78.8 53.0 91.1 90.6 50.8 71.9
GPT-4o (SG+CoT) 97.9 72.2 72.7 93.4 85.8 48.9 96.3 95.9 36.1 71.8

Table 2: QA accuracy in the C-Split across various LLMs. ER, EI, II, and IR denote external relative, external
intrinsic, internal intrinsic, and internal relative FoRs. Avg represents the micro-average accuracy. CP refers to
context with camera perspective, while RP denotes context with relatum perspective.

use Llama3-8B and Llama3-70B, as detailed in427

Section 4.2. The same LLMs are used to generate428

spatial information for SG prompting. We generate429

four images to compute the VISOR score follow-430

ing (Gokhale et al., 2023) Inference steps for all431

T2I models are set to 50. For the evaluation, we432

select grounding DINO (Liu et al., 2025) for object433

detection and DPT (Ranftl et al., 2021) for depth434

mapping, following VPEval (Cho et al., 2023b).435

The experiments were conducted on two A6000436

GPUs, totaling approximately 300 GPU hours.437

5.3 Results438

RQ1. What is the LLM’s bias for the ambigu-439

ous FoR? Table 1 presents the QA results for440

the A-split. Ideally, a model extracting spatial441

relations without considering perspective should442

achieve 100% accuracy, as the context lacks a fixed443

perspective. However, our focus is not on this. We444

aim to assess LLMs’ bias by measuring how often445

they adopt a specific perspective when answering. 446

In the Box and Pen cases, relatum properties do not 447

introduce FoR ambiguity in directional relations, 448

making the task pure extraction rather than reason- 449

ing. Thus, we focus on the I% and R% of the 450

Cow and Car cases, which best reflect LLMs’ bias. 451

Qwen2 achieves 80% accuracy across all experi- 452

ments by selecting spatial relations directly from 453

context, suggesting it may disregard the question’s 454

perspective. This is supported by attention analy- 455

sis in Appendix C. The attention maps show that 456

most correct Qwen2 responses assume a shared 457

perspective between context and question and pay 458

low attention to the perspective mentioned in the 459

question. GPT-4o exhibits similar bias in 0-shot 460

and 4-shot settings but shifts toward intrinsic in- 461

terpretation with CoT. This shift reduces accuracy 462

in camera-perspective questions where FoR adap- 463

tation is more significant than relation extraction. 464

Llama3-70B shows no strong preference, slightly 465
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VISOR(%)
A-Split C-Split

Model cond (I) cond (R) cond (avg) cond (I) cond (R) cond (avg)
EI FoR ER FoR all

SD-1.5 51.11 21.61 72.72 48.95 68.72 53.92 53.77 53.83
SD-2.1 57.97 21.49 79.46 54.10 75.39 60.06 59.64 59.83
Llama3-8B + GLIGEN 53.67 25.78 79.45 66.08 77.38 57.51 65.98 62.12
Llama3-70B + GLIGEN 54.49 29.45 83.94 68.68 81.43 56.47 69.53 63.49
Llama3-8B + SG + GLIGEN (Our) 57.46 27.96 85.42 71.14 83.17 58.84 70.36 65.15
Llama3-70B + SG + GLIGEN (Our) 56.54 30.59 87.13 66.56 83.75 56.77 70.04 64.06

Table 3: VISORcond score explained in Section 5.1 where I refers to the Cow and Car cases where relatum has
intrinsic directions, and R refers to the Box and Pen cases where relatum lacks intrinsic directions, avg is the
micro-average of I and R. EI and ER FoR represent the generated image considered corrected by EI or ER FoR.

Figure 3: Confusion matrices of predicted spatial rela-
tions by Llama3 and GPT-4o when adapting to FoR is
required. 0-shot and SG-COT settings are reported here.

favoring relative FoR, but this balanced assumption466

leads to lower performance due to increased reason-467

ing demands. Qwen2VL exhibits a similar pattern468

but achieves higher accuracy, likely due to visual469

training. GPT-o4-mini with high visual reasoning470

shows the same pattern, which is later discussed as471

an additional experiment in Appendix J. Moreover,472

our experiments with humans, presumed to have473

prior visual knowledge, show strong reasoning abil-474

ity, achieving over 90% accuracy even in scenarios475

where perspective preference requires FoR adapta-476

tion. In our results, humans slightly prefer intrinsic477

FoR over relative FoR. Their cultural background478

and recently seen examples may also influence their479

preference as discussed in (Coventry et al., 2018).480

A more detailed analysis of human performance is481

provided in Appendix I. In summary, we conjecture482

that Qwen2 performs well by focusing on extrac-483

tion without reasoning FoR, while other models484

attempt reasoning but often fail to reach correct485

conclusions, leading to lower accuracy.486

RQ2. Can LLMs adapt FoR when answering487

the questions? To address this RQ, we analyze 488

QA results of C-split in Table 2, where context 489

and question explicitly specify perspective. Re- 490

sults show that LLMs struggle with FoR conver- 491

sion, achieving only up to 55.5% accuracy when 492

the question uses the relatum’s perspective and the 493

context uses the camera’s. We further examine how 494

Llama3 and GPT-4o adapt FoR using the confusion 495

matrix in Figure 3. Our findings reveal that pure- 496

text LLM (Llama3) reverses left and right. This 497

contrasts with humans when describing the spa- 498

tial relation from a perspective in English, which 499

reverses front and back while preserving lateral 500

directions. This leads to poor adaptation to the 501

camera perspective of Llama3. In contrast, large 502

multimodal models like GPT-4o follow expected 503

patterns, consistent with Zhang et al. 2025. While 504

our GPT-4o results suggest some abilities to con- 505

vert the relatum’s perspective into the camera’s 506

with in-context learning (72% accuracy), the re- 507

verse transformation in the textual domain remains 508

challenging (53% accuracy). A similar trend ap- 509

pears when comparing Qwen2 and Qwen2VL, as 510

discussed in Appendix B. Qwen2VL performs bet- 511

ter when shifting to the camera perspective but 512

performs worse with reverse transformation, often 513

failing to generate correct reasoning. This difficulty 514

persists for several models when converting spatial 515

relations from images to relatum’s perspective, as 516

noted in Zhang et al. 2025. A possible reason is 517

that the model often overlooks orientation tokens, 518

critical for answering FoR questions, based on At- 519

tention analysis provided in Appendix C. 520

RQ3. How can an explicit FoR identification 521

help spatial reasoning in QA? We compare CoT 522

and CoT+SG results to assess the effect of FoR 523

identification on LLMs’ spatial reasoning in QA. 524

Based on C-Split results (Table 2), incorporating 525

SG improves the model’s ability to identify the 526

correct perspective from input expression ranging 527

from 2.9% to 30% of cases where the context and 528

7



question share the same perspective. These cases529

are easier as the models do not need FoR adaptation.530

Two notable exceptions emerge. First, Llama3 per-531

forms poorly on camera-perspective questions, and532

FoR identification via SG fails to improve its per-533

formance. This may be due to Llama3’s lack of534

visual training, which we speculate limits its FoR535

understanding. Second, Qwen2VL struggles with536

relatum-perspective reasoning, showing negative537

gains even with CoT. SG is less effective when538

context and question differ in perspective; while it539

helps identify the correct FoR in context, it does not540

enhance reasoning across perspectives. This limita-541

tion is evident in A-Split results (Table 1), where542

models only improve significantly when SG aligns543

their preference with the question’s perspective, as544

seen in Qwen2-72B and GPT-4o. SG identification545

results are reported in the Appendix H. Still, FoR546

identification improves overall spatial reasoning547

(see Avg. column for SG+CoT in Table 3).548

RQ4. How can explicit FoR identification help549

spatial reasoning in visualization? We evalu-550

ate SG layout diffusion to assess the impact of551

incorporating FoR in image generation. We fo-552

cus on VISORcond metric, which better reflects the553

model’s spatial understanding than the overall per-554

formance measured by VISORuncond, reported in555

Appendix F. Table 3 shows that adding spatial infor-556

mation and FoR classes (SG+GLIGEN) improves557

performance across all splits compared to the base-558

line models (GLIGEN). In particular, SG improved559

the model’s performance when expressions follow560

a relative FoR. This finding aligns with QA results561

in Table 1, where Llama3 prefers relative FoR in562

camera-perspective scenarios. In contrast, baseline563

diffusion models (SD-1.5 and SD-2.1) perform bet-564

ter for intrinsic FoR, even though GLIGEN is based565

on SD-2.1. This outcome may be due to GLIGEN’s566

reliance on bounding boxes for spatial configura-567

tions, which makes it struggle with intrinsic FoR568

due to the absence of object properties and orien-569

tation. Despite this bias, incorporating FoR infor-570

mation via SG-prompting improves performance571

across all FoR classes. We provide further analysis572

on SG for the layout generation in Appendix G.573

6 Related Work574

Frame of Reference in Cognitive Studies. The575

concept of the frame of reference in cognitive576

studies was introduced by Levinson 2003 and577

later expanded with more diverse spatial relations578

(Tenbrink, 2011). Subsequent research investi- 579

gated the human preferences for specific FoR 580

classes (Vukovic and Williams, 2015; Shuster- 581

man and Li, 2016; Ruotolo et al., 2016; Coventry 582

et al., 2018). For instance, Ruotolo et al. 2016 583

examined how FoR influences scene memoriza- 584

tion. Their study found that participants performed 585

better when spatial relations were based on their 586

position rather than external objects, highlighting a 587

distinction between relative and intrinsic FoR. 588

Frame of Reference in AI. Several benchmarks 589

have been developed to evaluate the spatial under- 590

standing of AI models in multiple modalities; for 591

instance, textual QA (Shi et al., 2022; Mirzaee and 592

Kordjamshidi, 2022; Rizvi et al., 2024), and text- 593

to-image (T2I) benchmarks (Gokhale et al., 2023; 594

Cho et al., 2023a,b). However, most of these bench- 595

marks overlook FoR, assuming a single FoR for all 596

instances despite its significance in cognitive stud- 597

ies. Recent vision-language studies have begun 598

addressing this gap (Liu et al., 2023; Zhang et al., 599

2025). For instance, Zhang et al. 2025 explores 600

FoR ambiguity by evaluating spatial relations from 601

camera-perspective images, with FoR specified in 602

the question. In contrast, our work focuses on the 603

spatial reasoning when dealing with multiple FoRs 604

and when there are changes in perspective in ex- 605

plaining the context beyond the camera’s viewpoint. 606

We further show that explicitly identifying FoR en- 607

hances spatial reasoning in QA and T2I. 608

7 Conclusion 609

Given the significance of spatial reasoning in AI, 610

we introduce Frame of Reference Evaluation in 611

Spatial Reasoning Tasks (FoREST) benchmark 612

to evaluate Frame of Reference comprehension 613

in textual spatial expressions through question- 614

answering and grounding in visual modality via dif- 615

fusion models. Using this benchmark, we identify 616

notable differences in FoR comprehension across 617

LLMs and their struggle with questions that require 618

adaptation between multiple FoRs. Moreover, the 619

bias in FoR interpretations impacts the layout gen- 620

eration with LLMs for text-to-image models. To 621

improve FoR comprehension, we propose Spatial- 622

Guided prompting, which extracts spatial relations’ 623

topological, distal, and directional type information 624

in addition to FoR and includes this information 625

in downstream task prompting. Employing SG 626

improves performance in both QA tasks requiring 627

FoR understanding and text-to-image generation. 628
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8 Limitations629

While we analyze LLMs’ shortcomings, our bench-630

mark only highlights areas for improvement. The631

trustworthiness and reliability of the LLMs are still632

a research challenge. Our analysis is confined to633

the spatial reasoning domain and does not account634

for biases related to gender or race. However, we635

acknowledge that linguistic and cultural variations636

in spatial expression are not considered, as our637

study focuses solely on English. Extending this638

work to multiple languages could reveal important639

differences in FoR adaptation. Our analysis is still640

limited to the synthetic environment. Future re-641

search should consider the broader implications of642

the frame of reference of spatial reasoning in real-643

world applications. Additionally, our experiments644

require substantial GPU resources, limiting the se-645

lection of LLMs and constraining the feasibility of646

testing larger models. The computational demands647

also pose accessibility challenges for researchers648

with limited resources. We find no ethical concerns649

in our methodology or results, as our study does650

not involve human subjects or sensitive data.651
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Case Context QA-CP QA-RP T2I
Cow Case 792 3168 3168 3168
Car Case 128 512 512 512
Box Case 120 120 120 120
Pen Case 488 488 488 488

Total 1528 4288 4288 4288

Table 4: Dataset Statistic of FoREST A-split dataset.
QA-CP and QA-RP are question-answering with cam-
era perspective and question-answering with relatum
perspective, respectively. T2I refers to prompt used in
Text-to-Image experiments.

FoR Class Context QA-CP QA-RP T2I
External Relative 1528 4288 3680 4288
External Intrinsic 920 3680 3680 3680
Internal Intrinsic 128 512 512 0
Internal Relative 248 632 512 0

Total 2824 9112 8384 7968

Table 5: Dataset Statistic of FoREST C-spilt dataset.
QA-CP and QA-RP are question-answering with cam-
era perspective and question-answering with relatum
perspective, respectively. T2I refers to prompt used in
Text-to-Image experiments.

A Additional details of FoREST Dataset824

A.1 Dataset Statistics825

The FoREST dataset statistic is provided in the826

Table 4 for A-split and Table 5 for C-split.827

A.2 Details Creation of FoREST dataset828

We define the nine categories of objects selected829

in our dataset as indicated below in Table 6. We830

select sets of locatum and relatum based on the831

properties of each class to cover four cases of frame832

of reference defined in Section 3.2. Notice that we833

also consider the appropriateness of the container;834

for example, the car should not contain the bus.835

Based on the selected locatum and relatum. To836

create an A-split spatial expression, we substitute837

the actual locatum and relatum objects in the Spa-838

tial Relation template. After obtaining the A-split839

contexts, we create their counterparts using the per-840

spective/topology clauses to make the counterparts841

in the C-split. Then, we obtain the I-A and I-C842

split by applying the directional template to the843

first occurrence of relatum when it has intrinsic844

directions. The directional templates are "that is845

facing towards," "that is facing backward," "that is846

facing to the left," and "that is facing to the right."847

All the templates are in the Table 7. We then con-848

struct the scene configuration from each modified849

spatial expression and send it to the simulator de-850

veloped using Unity3D. Eventually, the simulator851

produces four visualization images for each scene 852

configuration. 853

A.2.1 Simulation Details 854

The simulation starts with randomly placing the 855

relatum into the scene with the orientation based 856

on the given scene configuration. We randomly 857

select the orientation by given scene configuration, 858

[-40, 40] for front, [40, 140] for left, [140, 220] 859

for back, and [220, 320] for right. Then, we create 860

the locatum from the relatum position and move 861

it in the spatial relation provided. If the frame of 862

reference is relative, we move the locatum based 863

on the camera’s orientation. Otherwise, we move it 864

from the relatum’s orientation. Then, we check the 865

camera’s visibility of both objects. If one of them 866

is not visible, we repeat the process of generating 867

the relatum until the correct placement is achieved. 868

After getting the proper placement, we randomly 869

choose the background from 6 backgrounds. Even- 870

tually, we repeat the procedures four times for one 871

configuration. 872

A.2.2 Object Models and Background 873

For the object models and background, we find it 874

from the unity assert store2. All of them are free 875

and available for download. All of the 3D models 876

used are shown in Figure 4. 877

A.2.3 Textual templates 878

All manually created templates used to create FoR- 879

EST are given in Table 7. 880

A.2.4 GPT template 881

We prompt GPT with an initial question using a 882

specific template (the first template in Table 8) to 883

generate four additional variations. Each generated 884

template was manually reviewed and validated be- 885

fore being added to the set of questions in our cor- 886

pus. All templates are listed in Table 8. Question 887

templates for asking the spatial relation from rela- 888

tum view are edited by replacing references from 889

the camera to the relatum object. 890

B Comparison between Qwen2 and 891

Qwen2-VL in QA setting 892

According to the A-split results in Table 1, 893

Qwen2VL demonstrates a more balanced prefer- 894

ence pattern and reasonable performance compared 895

to Qwen2. This suggests that, unlike Qwen2, which 896

often extracts spatial relations without accounting 897

2https://assetstore.unity.com
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Figure 4: All 3d models used to generate visualizations for FoREST.

Category Object(s) Intrinsic Direction Possible Container
Small object without intrinsic directions umbrella, bag, suitcase, fire hydrant ✗ ✗

Big object with intrinsic directions bench, chair ✓ ✗
Big object without intrinsic direction water tank ✗ ✗

Container box, container ✗ ✓
Small animal chicken, dog, cat ✓ ✗
Big animal deer, horse, cow, sheep ✓ ✗

Small vehicle bicycle ✓ ✗
Big vehicle bus, car ✓ ✓

Tree tree ✗ ✗

Table 6: All selected objects with two properties: intrinsic direction, affordance of being container

Figure 5: Confusion matrices of spatial relation answers
when Qwen2 and Qwen2-VL must adapt FoR in the
0-shot and (SG+CoT) settings.

for perspective, Qwen2VL appears capable of rea- 898

soning about perspective shifts as well. This obser- 899

vation is further supported by the C-split results in 900

Table 2, where Qwen2VL significantly outperforms 901

Qwen2 in cases requiring adapting the spatial rela- 902

tions mentioned between different perspectives in 903

most settings. These results support our hypothesis 904

that visual training enhances the model’s ability to 905

interpret perspective changes. 906

However, despite these improvements, 907

Qwen2VL still struggles to provide reasoning from 908

the relatum’s perspective on questions in CoT and 909

SG+CoT settings. This suggests that while the 910

model leverages visual training to reason about 911

perspective and perform perspective shifts when 912

necessary, its reasoning is more accurate when 913

questions are framed from the camera’s viewpoint. 914

However, it struggles with questions asked from 915

the relatum’s perspective. This limitation is 916

expected, as training data—particularly image 917

captioning datasets—are typically annotated from 918

12



{locatum} is in front of {relatum}
{locatum} is on the left of {relatum}
{locatum} is to the left of {relatum}

Spatial Relation Templates {locatum} is behind of {relatum}
{locatum} is back of {relatum}

{locatum} is on the right of {relatum}
{locatum} is to the right of {relatum}

within {relatum}
Topology Templates and inside {relatum}

and outside of {relatum}
from {relatum}’s view
relative to {relatum}

Perspective Templates from {relatum}’s perspective
from my perspective

from my point of view
relative to observer

{relatum} facing toward that camera
Orientation Templates {relatum}is facing away from the camera.

{relatum} facing left relative to the camera
{relatum} facing right relative to the camera

Table 7: All templates used to create FoREST dataset.

In the camera view, how is {locatum} positioned in relation to {relatum}?
Based on the camera perspective, where is the {locatum} from the {relatum}’s position?

Question Templates From the camera perspective, what is the relation of the{locatum} to the {relatum}?
Looking through the camera perspective, how does {locatum} appear to be oriented relative to {relatum}’s position?

Based on the camera angle, where is {locatum} located with respect to {relatum}’s location?

Table 8: All templates used to create FoREST dataset.

Figure 6: Attention weights of input context for Ques-
tion Answering in A-split. Considering the following
semantic concepts: locatum mention in context, relation
in context, relatum in context, relatum orientation, per-
spective in question, locatum in question, and relatum
in question. Three patterns are considered: (1) incorrect
answers, (2) correct answers assuming a shared per-
spective between context and question, and (3) correct
answers assuming different perspectives.

a human, camera-based perspective, restricting919

the model’s ability to generalize across different920

viewpoints.921

C Attention Analysis922

C.1 Experiment Setting923

We conducted an attention-based interpretability924

analysis using Qwen2 in a 0-shot setting, where925

only the context and question were provided. We926

focused on analyzing attention weights across key927

semantic elements in both A-split and C-split. We 928

analyzed the attention weights for various groups 929

of tokens that convey the following concepts: lo- 930

catum mention occurring in the context, relation 931

in context, relatum in context, perspective in con- 932

text, relatum orientation, perspective in question, 933

locatum in question, and relatum occurring in the 934

question. 935

We categorized response patterns into three sce- 936

narios: (1) the model answers incorrectly, (2) the 937

model answers correctly with the assumption that 938

the same perspective holds for context and ques- 939

tion, and (3) the model answers correctly with the 940

assumption that context and question have differ- 941

ent perspectives. Note that we separate the analysis 942

for both splits because the conceptual tokens are 943

different, that is, the perspective mentioned in the 944

context is only for the C-split. 945

C.2 Results 946

A-split. According to Figure 6, we found that, for 947

the correct responses, the model paid the least at- 948

tention to the question’s perspective in the same 949

perspective. Meanwhile, for the different perspec- 950

tive case, attention significantly increased to tokens 951

related to the relation, the question perspective, and 952

the relatum in the question. This result illustrates 953

that these tokens played an important role in adapt- 954

ing spatial relations for perspective shifts. However, 955

when the model increased attention weight on re- 956

latum orientation compared to other tokens, more 957
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errors occurred in answering the questions.958

C-split. According to Figure 7, in cases that require959

a shift in perspective, we observed that the model960

pays significantly more attention to the spatial re-961

lation in context, the question perspective, and the962

relatum in the question concepts necessary for an-963

swering correctly. However, the model largely over-964

looks the orientation tokens, which also play a cru-965

cial role in resolving these questions. This lack of966

attention to orientation may majorly contribute to967

the model’s failures in perspective-shifting scenar-968

ios. In cases where the relation mentioned remains969

the same in both the context and the answer, we970

observed that the model, in incorrect predictions,971

tends to assign higher attention to the relatum in the972

question. In contrast, correct predictions are asso-973

ciated with more balanced attention across tokens.974

Maintaining moderate attention to all tokens ap-975

pears to help the model consistently respond with976

the correct relation, repeating it from the context.977

D Quantitative Examples978

D.1 Example of QA Bias in the A-split979

To illustrate example biases in the A-split, we980

present three types of model behavior. The first,981

shown in Figure 8, occurs when the model assumes982

a shared perspective between context and ques-983

tion, allowing it to extract spatial relations directly984

without FoR reasoning. This scenario is the most985

common behavior of Qwen2. The second, illus-986

trated in Figure 9, arises when the model assumes987

the context always reflects the relatum’s perspec-988

tive, favoring intrinsic over relative interpretation.989

Lastly, Figure 10 shows the model assuming the990

context always adopts the camera perspective.991

D.2 Incorrect QA reasoning in the C-split992

Our results demonstrate that models struggle with993

converting between different perspectives when re-994

quired to answer the questions, especially when the995

correct answer is either left or right. This difficulty996

contributes to their performance, as discussed in997

research question 2 in the paper (RQ2). To fur-998

ther illustrate LLMs’ struggle, we provide quantita-999

tive examples of failure cases, focusing specifically1000

on the models’ most challenging instances in Fig-1001

ure 11.1002

E Template Variation in1003

Question-Answering1004

We report average accuracy on the C-split across all1005

question templates for Qwen2 and GPT-4o in Ta- 1006

ble 9. While results show notable variation across 1007

templates, no single template consistently outper- 1008

forms others across all tasks. Template effective- 1009

ness depends on both the prompting technique and 1010

the underlying model. Simpler templates gener- 1011

ally yield higher accuracy, though more complex 1012

expressions may reduce overall performance. Nev- 1013

ertheless, the comparative trend remains consis- 1014

tent, as SG+CoT often outperforms CoT in overall 1015

improvement across both models. Notably, SG 1016

prompting yields the smallest performance varia- 1017

tion across templates. 1018

F VISOR-uncond Score 1019

VISORuncond provides the overall spatial relation 1020

score, including images with object generation er- 1021

rors. Since it is less focused on evaluating spatial 1022

interpretation than VISORcond, which assesses ex- 1023

plicitly the text-to-image model’s spatial reasoning, 1024

we report VISORuncond results here in the Table 10 1025

rather than in the main paper. The results are simi- 1026

lar to the pattern observed in VISORuncond that the 1027

based models(SD-1.5 and SD-2.1) perform better 1028

in the relative frame of reference, while the layout- 1029

to image models, i.e. GLIGEN, are better in the 1030

intrinsic frame of reference. 1031

G Analyze the improvements in 1032

SG-prompting for T2I. 1033

To further explain improvements of SG-prompting 1034

in T2I task, we assess the generated bounding 1035

boxes in the I-C split for left and right relations 1036

relative to the camera since these can be evaluated 1037

using only bounding boxes without depth infor- 1038

mation. As seen is Table 11, our SG prompting 1039

improved Llama3-70B’s by 3.48%, while Llama3- 1040

8B saw a slight decrease of 0.22%. This evaluation 1041

was conducted on all generated layouts from the 1042

I-C split, which differs from the evaluation subset 1043

of images used for VISORcond in Table 3. We re- 1044

port the layoutcond score for a consistent evaluation 1045

in the same table. Layoutcond shows that Llama3- 1046

8B improves within the same evaluation subset 1047

with VISORcond. Overall, by incorporating FoR 1048

information through SG layout diffusion, Llama3 1049

generates better spatial configurations, enhancing 1050

image generation performance. 1051
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(a) Questions that require changing perspective. (b) Questions that do not require changing perspective.

Figure 7: Attention weights of input context for Question Answering in C-split. Considering the following semantic
concepts: locatum mention in context, relation in context, relatum in context, perspective in context, relatum
orientation, perspective in question, locatum in question, and relatum in question. Two patterns are considered: (1)
incorrect answers, (2) correct answers. We separate the questions that require and not-require perspective changing.

Model T0 T1 T2 T3 T4 Avg. Highest ∆
Qwen2 (0-shot) 70.23 61.36 69.35 65.55 67.97 66.91 8.87
Qwen2 (4-shot) 65.15 64.01 68.80 63.24 65.46 65.34 5.57
Qwen2 (CoT) 71.26 66.11 72.78 63.40 71.87 69.10 9.37
Qwen2 (SG + CoT) 71.15 70.92 72.89 70.11 71.69 71.36 2.78
GPT-4o (0-shot) 64.02 61.14 73.16 65.77 56.66 64.19 16.50
GPT-4o (4-shot) 65.85 52.23 70.55 61.64 58.33 61.78 18.31
GPT-4o (CoT) 80.98 69.65 84.81 83.24 74.98 78.78 15.16
GPT-4o (SG + CoT) 85.74 85.02 84.10 86.53 87.57 85.79 3.47

Table 9: Average accuracy across different templates. Ti refers to the generated QA template i in Table 7. ∆
measures the difference in accuracy between two different templates.

VISOR(%)
Model uncond (I) uncond (R) uncond (avg) uncond (I) uncond (R) uncond (avg)

I-A-Split I-C-Split
SD-1.5 45.43 33.22 43.51 35.06 35.68 35.40
SD-2.1 62.87 43.90 59.89 45.98 46.59 46.31
Llama3-8B + GLIGEN 46.74 38.16 45.39 33.98 39.36 36.89
Llama3-70B + GLIGEN 54.33 46.89 53.17 38.04 46.04 42.37
Llama3-8B + SG + GLIGEN (Our) 51.83 43.24 50.48 36.28 44.43 40.70
Llama3-70B + SG + GLIGEN (Our) 58.92 47.44 57.12 38.23 48.62 43.86

Table 10: VISORuncond score on the I-A-Split and I-C-Split where I refer to the Cow Case and Car Case where
relatum has intrinsic directions, and R refer to the Box Case and Pen case where relatum lacks intrinsic directions,
avg is mirco-average of I and R. cond and uncond are explained in Section 5.1.

Figure 8: The first example in A-split of FoREST, where
the model correctly answers both perspectives. In this
example, the model responds with the spatial relation in
the context, assuming all questions and context have the
same perspective.

H Frame of Reference Identification1052

We evaluate the LLMs’ performance in recognizing1053

the FoR classes from given spatial expressions. The1054

LLMs receive spatial expression, denoted as T , and1055

output one FoR class, FoR, from the valid set of1056

Figure 9: The second example in A-split of FoREST,
where the model correctly answers both perspectives.
In this example, the model assumes the context has a
relatum perspective.

FoR classes, For ∈ {external relative, external 1057

intrinsic, internal intrinsic, internal relative}. All in- 1058

context learning examples are in the Appendix K. 1059

H.1 Experimental Setting 1060

Zero-shot model. We follow the regular setting 1061

of zero-shot prompting. We only provide instruc- 1062
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Figure 10: The third example in A-split of FoREST,
where the model correctly answers both perspectives.
In this example, the model assumes the context has a
camera perspective.

Figure 11: An example of an incorrect SG+CoT case,
where the model generates incorrect reasoning and mis-
takenly converts left to right.

tion to LLM with spatial context. The instruction1063

prompt briefly explains each class of the FoR and1064

candidate answers for the LLM. We called the LLM1065

with the instruction prompt and T to find F .1066

Few-shot model. We manually craft four spatial1067

expressions for each FoR class. To avoid creating1068

bias, each spatial expression is ensured to fit in1069

only one FoR class. These expressions serve as1070

examples of our few-shotsetting. We provide these1071

examples in addition to the instruction as a part of1072

the prompt, followed by T and query F from the1073

LLM.1074

Chain-of-Thought (CoT) model. To create1075

CoT (Wei et al., 2023) examples, we modify the1076

prompt to require reasoning before answering.1077

Then, we manually crafted reasoning explanations1078

with the necessary information for each example1079

used in few-shot. Finally, we call the LLMs, adding1080

modified instructions to updated examples, fol-1081

lowed by T and query F .1082

Spatial-Guided Prompting (SG) model. We hy-1083

pothesize that the general spatial relation types de-1084

fined in Section 2 can provide meaningful informa-1085

tion for recognizing FoR classes. For instance, a1086

topological relation, such as “inside," is intuitively1087

Model Layout Layoutcond

Llama3-8B 85.26 88.84
Llama3-8B + SG 85.04 88.86
Llama3-70B 88.47 93.16
Llama3-70B + SG 91.95 95.45

Table 11: Layout accuracy where spatial relations are
left or right relative to the camera. Layout is evaluated
for all generated layouts in I-C split while Layoutcond
uses the same testing examples as VISORcond.

Model inherently clear require template
CoT SG CoT SG

Llama3-70B 19.84 44.64 (↑ 24.80) 76.72 87.39 (↑ 10.67)
Qwen2-72B 58.20 84.22 (↑ 26.02) 88.36 93.86 (↑ 10.67)
GPT-4o 12.50 29.17 (↑ 16.67) 87.73 90.74 (↑ 3.01)

Table 12: The comparison between CoT and SG prompt-
ing in C-split separated by inherently clear / required
template to be clear.

associated with an internal FoR. Therefore, we pro- 1088

pose Spatial-Guided Prompting to direct the model 1089

in identifying the type of relations before querying 1090

F . We revise the prompting instruction to guide the 1091

model in considering these three aspects. Then, we 1092

manually explain these three aspects. We specify 1093

the relation’s origin from the context for direction 1094

relations, such as "the left direction is relative to 1095

the observer." We hypothesize that this information 1096

helps the model distinguish between intrinsic and 1097

relative FoR. Next, we specify whether the locatum 1098

is inside or outside the relatum for topological re- 1099

lations. This information should help distinguish 1100

between internal and external FoR classes. Lastly, 1101

we provide the potential quantitative distance, e.g., 1102

far. This quantitative distance further encourages 1103

identifying the correct topological and directional 1104

relations. Eventually, we insert these new expla- 1105

nations in examples and call the model with the 1106

updated instructions followed by T to query F . 1107

H.2 Evaluation Metrics 1108

We report the accuracy of the model on the multi- 1109

class classification task. Note that the expressions 1110

in A-split can have multiple correct answers. There- 1111

fore, we consider the prediction correct when it is 1112

in one of the valid FoR classes for the given spatial 1113

expression. 1114

H.3 Results 1115

H.3.1 FoR Inherently Bias in LLMs 1116

C-spilt. The zero-shot setting reflects the LLMs’ 1117

inherent bias in identifying FoR. Table 13 presents 1118

the accuracy for each FoR class in C-split, where 1119

sentences explicitly include information about 1120
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A-split C-Split
Model ER-C-Split EC-Split IC-Split IR-C-Split Avg.
Gemma2-9B (0-shot) 94.17 94.24 35.98 53.91 57.66 60.45
Gemma2-9B (4-shot) 59.58 55.89(↓ 38.34) 72.61(↑ 36.63) 74.22(↑ 20.31) 54.44(↓ 3.23) 64.29(↑ 3.84)
Gemma2-9B (CoT) 60.49 60.49(↓ 33.74) 60.54(↑ 24.57) 87.50(↑ 33.59) 54.03(↓ 3.63) 65.64(↑ 5.20)
Gemma2-9B (SG)(Our) 72.67 65.87(↓ 28.37) 65.54(↑ 29.57) 53.12(↓ 0.78) 95.97(↑ 38.31) 70.13(↑ 9.68)
llama3-8B (0-shot) 60.21 32.20 90.11 75.78 0.00 49.52
llama3-8B (4-shot) 60.14 47.77(↑ 15.58) 54.35(↓ 35.76) 100.00(↑ 24.22) 41.13(↑ 41.13) 60.81(↑ 11.29)
llama3-8B (CoT) 61.32 61.06(↑ 28.86) 97.28(↑ 7.17) 100.00(↑ 24.22) 36.29(↑ 36.29) 73.66(↑ 24.14)
llama3-8B (SG) (Our) 62.95 63.29(↑ 31.09) 94.57(↑ 4.46) 100.00(↑ 24.22) 43.55(↑ 43.55) 75.35(↑ 25.83)
llama3-70B (0-shot) 84.23 74.08 9.57 92.19 68.55 61.10
llama3-70B (4-shot) 78.47 81.81(↑ 7.72) 64.89(↑ 55.33) 100.00(↑ 7.81) 75.81(↑ 7.26) 80.63(↑ 19.53)
llama3-70B (CoT) 69.11 72.05(↓ 2.03) 97.07(↑ 87.50) 100.00(↑ 7.81) 79.44(↑ 10.89) 87.14(↑ 26.04)
llama3-70B (SG) (Our) 76.50 78.21(↑ 4.12) 97.61(↑ 88.04) 100.00(↑ 7.81) 72.18(↑ 3.63) 87.00(↑ 25.90)
Qwen2-7B (0-shot) 83.64 79.97 59.24 77.34 40.73 64.32
Qwen2-7B (4-shot) 61.12 50.52(↓ 29.45) 65.76(↑ 6.52) 93.75(↑ 16.41) 56.05(↑ 15.32) 66.52(↑ 2.20)
Qwen2-7B (CoT) 72.12 70.81(↓ 9.16) 63.80(↑ 4.57) 99.22(↑ 21.88) 51.61(↑ 10.89) 71.36(↑ 7.04)
Qwen2-7B (SG) 70.61 68.00(↓ 11.98) 71.20(↑ 11.96) 88.28(↑ 10.94) 57.26(↑ 16.53) 71.18(↑ 6.86)
Qwen2-72B (0-shot) 64.46 62.70 100.00 100.00 39.11 75.45
Qwen2-72B (4-shot) 79.12 78.73(↑ 16.03) 99.35(↓ 0.65) 87.50(↓ 12.50) 87.10(↑ 47.98) 88.17(↑ 12.72)
Qwen2-72B (CoT) 88.54 88.87(↑ 26.18) 89.57(↓ 10.43) 93.75(↓ 6.25) 83.47(↑ 44.35) 88.91(↑ 13.46)
Qwen2-72B (SG) 90.51 90.18(↑ 27.49) 93.26(↓ 6.74) 98.44(↓ 1.56) 85.08(↑ 45.97) 91.74(↑ 16.29)
GPT3.5 (0-shot) 83.11 88.15 17.50 70.31 41.13 54.27
GPT3.5 (4-shot) 61.25 48.95(↓ 39.20) 62.72(↑ 45.22) 100.00(↑ 29.69) 28.63(↓ 12.50) 60.07(↑ 5.80)
GPT3.5 (CoT) 66.55 66.62(↓ 21.53) 96.85(↑ 79.35) 100.00(↑ 29.69) 50.81(↑ 9.68) 78.57(↑ 24.30)
GPT3.5 (SG) (Our) 70.61 73.30(↓ 14.86) 92.93(↑ 75.43) 99.22(↑ 28.91) 49.19(↑ 8.06) 78.66(↑ 24.39)
GPT4o (0-shot) 73.82 71.27 98.80 100.00 70.56 85.16
GPT4o (4-shot) 66.23 67.87(↓ 3.40) 98.70(↓ 0.11) 100.00(↑ 0.00) 78.63(↑ 8.06) 86.30(↑ 1.14)
GPT4o (CoT) 72.44 72.77(↑ 1.51) 100.00(↑ 1.20) 100.00(↑ 0.00) 73.79(↑ 3.23) 86.64(↑ 1.48)
GPT4o (SG) (Our) 76.44 74.67(↑ 3.40) 97.72(↓ 1.09) 100.00(↑ 0.00) 68.55(↓ 2.02) 85.23(↑ 0.08)

Table 13: Accuracy results report from FoR Identification with LLMs. The correct prediction is one of the valid FoR
classes for the given spatial expression. All FoR classes are external relative (ER), external intrinsic (EI), internal
intrinsic (II), and internal relative (IR).

topology and perspectives. We found that some1121

models strongly prefer specific FoR classes. No-1122

tably, Gemme2-9B achieves a near-perfect accu-1123

racy on external relative FoR but performs poorly1124

on other classes, especially external intrinsic, indi-1125

cating a notable bias towards external relative. In1126

contrast, GPT4o and Qwen2-72B perform excep-1127

tionally in both intrinsic FoR classes. However,1128

they perform poorly in the relative FoRs. We also1129

A-spilt. We examine the FoR bias in the A-split.1130

Based on the results in Table 13, we plotted the top-1131

3 models’ results (Gemma2-9B, Llama3-70B, and1132

GPT4o) for a more precise analysis in Figures 12.1133

The plots show the frequencies of each FoR cate-1134

gory. According to the plot, Gemma and GPT have1135

strong biases toward external relative and external1136

intrinsic, respectively. This bias helps Gemma2 per-1137

form well in the A-split since all spatial expressions1138

can be interpreted as external relative. However,1139

GPT4o’s bias leads to errors when intrinsic FoRs1140

aren’t valid, as in the Box and Pen cases (see plots1141

(c) and (d)). Llama3 exhibits different behavior,1142

showing a bias based on the relatum’s properties,1143

specifically the relatum’s affordance as a container.1144

In cases where relatum cannot serve as containers,1145

i.e., Cow and Pen cases, Llama3 favors external rel-1146

ative. Conversely, Llama3 tends to favor external1147

intrinsic when the relatum has the potential to be a1148

container.1149

H.3.2 Behavior with ICL variations 1150

C-spilt. We evaluate the models’ behavior under 1151

various in-context learning (ICL) methods. As ob- 1152

served in Table 13, the few-shot method improves 1153

the performance of the zero-shot method across 1154

multiple LLMs by reducing their original bias to- 1155

ward specific classes. Reducing the bias, however, 1156

lowers the performance in some cases, such as the 1157

performance of Gemma 2 in ER class. One note- 1158

worthy observation is that while the CoT prompting 1159

generally improves performance in larger LLMs, 1160

it is counterproductive in smaller models for some 1161

FoR classes. This suggests that the smaller mod- 1162

els have difficulty inferring FoR from the longer 1163

context. This negative effect also appears in SG 1164

prompting, which uses longer explanations. De- 1165

spite performance degradation in particular classes 1166

of small models, SG prompting performs excep- 1167

tionally well across various models and achieves 1168

outstanding performance with Qwen2-72B. We fur- 1169

ther investigate the performance of CoT and SG 1170

prompting. As shown in Table 12, CoT exhibits 1171

a substantial difference in performance between 1172

contexts with inherently clear FoR and contexts 1173

requiring the template to clarify FoR ambiguity. 1174

This implies that CoT heavily relies on the spe- 1175

cific template to identify FoR classes. In contrast, 1176

SG prompting demonstrates a smaller gap between 1177

these two scenarios and significantly enhances per- 1178
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(a) Results of Cow Case in A-Split. (b) Results of Car Case in A-Split.

(c) Results of Box Case in A-Split. (d) Results of Pen Case in A-Split.

Figure 12: Red shows the wrong FoR identifications, and green shows the correct ones. The dark color is for relative
FoRs, while the light color is for intrinsic FoRs. The round shape is for the external FoRs, while the square is for
internal FoRs. The depth of the plots shows the four FoRs, i.e., external relative, external intrinsic, internal intrinsic,
and internal relative, from front to back.

formance over CoT in inherently clear FoR con-1179

texts. Therefore, guiding the model to provide1180

characteristics regarding topological, distance, and1181

directional types of relations improves FoR com-1182

prehension.1183

A-spilt. We use the same Figure 12 to observe the1184

behavior when applying ICL. The A-split shows1185

minimal improvement with ICL variations, though1186

some notable changes are observed. With few-shot,1187

all models show a strong bias toward external in-1188

trinsic FoR, even when the relatum lacks intrinsic1189

directions, i.e., Box and Pen cases. This bias ap-1190

pears even in Gemma2-9B, which usually behaves1191

differently. This suggests that the models pick up1192

biases from the examples despite efforts to avoid1193

such patterns. However, CoT reduces some bias,1194

leading LLMs to revisit relative, which is generally1195

valid across scenarios. In Gemma2, the model pre-1196

dicts relative FoR where the relatum has intrinsic1197

directions, i.e., Cow and Car cases. Llama3 be-1198

haves similarly in cases where the relatum cannot1199

act as a container, i.e., Cow and Pen cases. GPT4o,1200

however, does not depend on the relatum’s proper-1201

ties and shows slight improvements across all cases.1202

Unlike CoT, our SG prompting is effective in all1203

scenarios. It significantly reduces biases while fol-1204

lowing a similar pattern to CoT. Specifically, SG1205

prompting increases external relative predictions1206

for Car and Cow in Gemma2-9B, and for Cow and1207

Pen in Llama3-70B. Nevertheless, GPT4o shows1208

only a slight bias reduction. However, Our pro- 1209

posed method improves the overall performance of 1210

most models, as shown in Table 13. The Llama3- 1211

70B behaviors are also seen in LLama3-8B and 1212

GPT3.5. The plots for LLama3-8B and GPT3.5 are 1213

in Figure 14. 1214

H.3.3 Experiment with different temperatures 1215

We conducted additional experiments to further in- 1216

vestigate the impact of temperature on the biased 1217

interpretation of the model in the A-split of our 1218

dataset. As presented in Table 14, comparing dis- 1219

tinct temperatures (0 and 1) revealed a shift in the 1220

distribution. The frequencies of the classes experi- 1221

enced a change of up to 10%. However, the mag- 1222

nitude of this change is relatively minor, and the 1223

relative preferences for most categories remained 1224

unchanged. Specifically, the model exhibited the 1225

highest frequency responses for the cow, car, and 1226

pen cases, even with higher frequencies in certain 1227

settings. Consequently, a high temperature does not 1228

substantially alter the diversity of LLMs’ responses 1229

to this task, which is an intriguing finding. 1230

I Study of Human bias in A-spilt 1231

I.1 Experiment Setting 1232

We provide a Google Form with instructions in List- 1233

ing 1, followed by 150 randomly ordered context- 1234

question pairs. These are sampled based on rela- 1235
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(a) Results of Cow Case in A-Split. (b) Results of Car Case in A-Split.

(c) Results of Box Case in A-Split. (d) Results of Pen Case in A-Split.

Figure 13: Red shows the wrong FoR identifications, and green shows the correct ones. The dark color is for relative
FoRs, while the light color is for intrinsic FoRs. The round shape is for the external FoRs, while the square is for
internal FoRs. The depth of the plots shows the four FoRs, i.e., external relative, external intrinsic, internal intrinsic,
and internal relative, from front to back. This plot is the result of the rest of LLMs.

tum category: 25 questions per case from the A-1236

split, covering four cases (Cow, Car, Box, Pen) for1237

camera-perspective questions, and two cases (Cow,1238

Car) for relatum-perspective questions, as Box and1239

Pen lack intrinsic direction. No time constraints1240

were imposed, and all participants were compen-1241

sated at the standard research assistant rate. All1242

participants were informed about the study details1243

at the end and asked for consent to use their re-1244

sponses in the analysis. After acquiring the results,1245

we utilize the same metric defined in Section 5.1.1246

Then, we average the accuracy of each participant1247

to derive the human baseline based on this study.1248

I.2 Results1249

Individual human results are shown in Table 15.1250

These results indicate that humans rely heavily1251

on their assumptions when interpreting ambiguous1252

frame-of-reference (FoR) contexts. Most partici-1253

pants favored the intrinsic FoR in A-split scenarios,1254

though this preference varied across individuals,1255

suggesting that background or prior visual experi-1256

ence may influence FoR interpretation. This aligns1257

with findings from cognitive studies on how hu-1258

mans describe spatial relations that recently seen1259

examples may influence (Coventry et al., 2018). 1260

However, our results contrast with other studies 1261

suggesting that humans tend to adopt an egocen- 1262

tric (relative) FoR in scenes with fewer landmarks 1263

and an allocentric (intrinsic) FoR in those with 1264

more landmarks (Forster et al., 2023). Since our 1265

study does not provide visual input, we cannot in- 1266

fer how participants mentally reconstruct scenes to 1267

answer the questions with only two objects in the 1268

scene. The next notable point is that while Box and 1269

Pen cases appear straightforward for models (Ta- 1270

ble 1), humans may still struggle with questions in 1271

these categories. Humans do not exhibit the same 1272

limitations as LLMs in perspective-shifting tasks. 1273

When the context and question differ in perspective, 1274

humans still achieve over 90% accuracy, whereas 1275

LLMs often struggle with this type of reasoning. 1276

1277
""" 1278
Instruction: 1279
You will be provided with a scene 1280

description that describes the 1281
spatial relationship between two 1282
objects. 1283

The scene description may include object 1284
orientation , such as A is facing 1285

toward the camera , to indicate the 1286
direction A is facing. 1287
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(a) Results of Cow Case in A-Split. (b) Results of Car Case in A-Split.

(c) Results of Box Case in A-Split. (d) Results of Pen Case in A-Split.

Figure 14: Red shows the wrong FoR identifications, and green shows the correct ones. The dark color is for relative
FoRs, while the light color is for intrinsic FoRs. The round shape is for the external FoRs, while the square is for
internal FoRs. The depth of the plots shows the four FoRs, i.e., external relative, external intrinsic, internal intrinsic,
and internal relative, from front to back. This plot is the result of the rest of LLMs.

You will then receive a question asking1288
about the spatial relationship1289
between A and B from either the1290
camera 's perspective or an object 's1291
perspective.1292

Your task is to answer the question1293
based on your understanding of the1294
given spatial relationship.1295

"""12961297

Listing 1: Insturction for collecting human results on
QA using A-split of FoREST dataset.

J Additional Results with1298

GPT-o4-mini-high1299

We include results from GPT-4o-mini-high, a1300

model configured for enhanced reasoning, for com-1301

parison with our previous results in Table 1 and1302

Table 2. In this experiment, the reasoning-effort1303

parameter is set to high. As shown in Table 16,1304

the model exhibits a balanced preference between1305

relative and intrinsic interpretations. Similar to1306

Qwen2VL, it demonstrates strong reasoning ability,1307

achieving high accuracy even when FoR adaptation1308

is required due to its visual reasoning capability.1309

Notably, GPT-o4-mini-high performs well on ques-1310

tions from the relatum perspective, even outper-1311

forms the GPT-4o (SG+CoT) in Table 17. However, 1312

its performance declines on camera-perspective 1313

questions. We believe this is possibly due to train- 1314

ing emphasizing alternative perspectives over the 1315

camera view, which may reduce their performance 1316

from the camera perspective. Therefore, even with 1317

a strong reasoning model, the perspective shift re- 1318

mains challenging in the textual domain. 1319

K LLM Prompt 1320

K.1 FoR Identification 1321

We provide the prompting for each in-context learn- 1322

ing. The prompting for zero-shot and few-shot 1323

is provided in Listing 2. The instruction answer 1324

for these two in-context learning is “Answer only 1325

the category without any explanation. The answer 1326

should be in the form of {Answer: Category.}" 1327

For the Chain of Thought (CoT), we only modi- 1328

fied the instruction answer to “Answer only the cat- 1329

egory with an explanation. The answer should be 1330

in the form of {Explanation: Explanation Answer: 1331

Category.}" Similarly to CoT, we only modified the 1332

instruction answer to “Answer only the category 1333

with an explanation regarding topological, distance, 1334
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Model ER EI II IR
temp-0 temp-1 temp-0 temp-1 temp-0 temp-1 temp-0 temp-1

Cow Case
0-shot 75.38 87.12 23.86 12.50 0.76 0.13 0.00 0.25
4-shot 0.00 15.66 100.00 84.34 0.00 0.00 0.00 0.00
CoT 31.82 49.87 68.18 49.87 0.00 0.13 0.00 0.13
SG 51.39 70.45 48.61 29.42 0.00 0.00 0.00 0.13
Box Case
0-shot 22.50 41.67 77.50 58.33 0.00 0.13 0.00 0.25
4-shot 0.00 0.00 100.00 100.00 0.00 0.00 0.00 0.00
CoT 0.00 5.83 100.00 94.17 0.00 0.00 0.00 0.00
SG 11.67 33.33 88.33 66.67 0.00 0.00 0.00 0.00
Car Case
0-shot 55.20 68.24 49.01 31.15 0.79 0.61 0.00 0.00
4-shot 0.60 5.94 99.40 94.06 0.00 0.00 0.00 0.00
CoT 19.64 38.52 80.16 61.27 0.20 0.20 0.00 0.00
SG 44.25 56.97 55.75 43.03 0.00 0.00 0.00 0.00
Pen Case
0-shot 90.62 96.88 9.38 3.12 0.00 0.61 0.00 0.00
4-shot 0.00 7.03 100.00 92.97 0.00 0.00 0.00 0.00
CoT 17.19 28.91 82.81 71.09 0.20 0.20 0.00 0.00
SG 48.31 57.81 54.69 42.19 0.00 0.00 0.00 0.00

Table 14: The results between two different temperatures of Llam3-70B on the A-spilt of FoREST. The number
shows the percentage frequency of responses from the model.

Camera perspective Relatum perspective
Model Cow Car Box Pen Avg. Cow Car Avg.

R% I% Acc. R% I% Acc. Acc. Acc. Acc. R% I% Acc. R% I% Acc. Acc.
P #1 22.7 77.3 88.0 8.3 91.7 96.0 92.0 96.0 93.0 20.8 79.2 96.0 4.2 95.8 96.0 96.0
P #2 8.7 91.3 92.0 0.0 100.0 96.0 36.0 56.0 70.0 20.0 80.0 100.0 16.7 83.3 96.0 98.0
P #3 78.3 21.7 92.0 75.0 25.0 96.0 88.0 96.0 93.0 83.3 16.7 96.0 87.5 12.5 96.0 96.0
Human-baseline 36.6 63.4 90.7 27.8 72.2 96.0 72.0 82.7 85.3 41.4 58.6 97.3 36.1 63.9 96.0 96.7

Table 15: QA accuracy in the A-Split of human study. R% and I% represent the percentage the model assumes
relative or intrinsic FoR for ambiguous expression, explained in Section 5.1. Acc is the accuracy, and Avg is the
micro-average of accuracy. (1): 0-shot, (2): 4-shot, (3): CoT, and (4): SG+CoT.

and direction aspects. The answer should be in the1335

form of {Explanation: Explanation Answer: Cate-1336

gory.}", respectively. The example responses are1337

provided in Listing 5 for Spatial Guided prompting.1338

1339
# Instruction to find frame of reference1340

class of given context1341
"""1342
Instruction:1343
You specialize in language and spatial1344

relations , specifically in the frame1345
of context (multiple perspectives1346

in the spatial relation). Identify1347
the frame of reference category1348
given the following context. There1349
are four classes of the frame of1350
reference (external intrinsic ,1351
internal intrinsic , external1352
relative , internal relative). Note1353
that the intrinsic direction refers1354
to whether the model has the front/1355
back by itself. (Example: a bird ,1356
human. Counter Example: a ball , a1357
box). "1358

1359
External intrinsic. The spatial1360

description of an entity A relative1361
to another entity B, where (1) A is1362
not contained by B, (2) the spatial1363
relation is based on B's facing1364
orientation (intrinsic direction) if1365
B has one.1366

1367
Internal intrinsic. The spatial1368

description of an entity A relative 1369
to another entity B, where (1) A is 1370
contained by B, (2) the spatial 1371
relation is based on B's facing 1372
orientation (intrinsic direction) if 1373
B has one. 1374

1375
External relative. The spatial 1376

description of an entity A relative 1377
to another entity B, where (1) A is 1378
not contained by B, (2) The spatial 1379
relation is relative to entity C, 1380
where C is not involved in the 1381
spatial relation and only provides 1382
the perspective. An example of C is 1383
the camera. 1384

1385
Internal relative. The spatial 1386

description of an entity A relative 1387
to another entity B, where (1) A is 1388
contained by B, (2) The spatial 1389
relation is relative to entity C, 1390
where C is not involved in the 1391
spatial relation and only provides 1392
the perspective. An example of C is 1393
the camera. 1394

1395
{Instruction answer} 1396
# Normal Instruction answer: Find the 1397

frame of reference category without 1398
any explanations. The answer should 1399
be in the form of Answer: Category. 1400

# COT Instruction answer: Find the frame 1401
of reference category with an 1402

explanation. The answer should be in 1403
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Camera perspective Relatum perspective
Model Cow Car Box Pen Avg. Cow Car Avg.

R% I% Acc. R% I% Acc. Acc. Acc. Acc. R% I% Acc. R% I% Acc. Acc.
GPT-4o (1) 84.3 15.3 94.5 88.5 11.0 97.3 99.2 99.8 95.6 21.6 78.0 91.6 16.1 83.5 90.5 91.4
GPT-4o (2) 69.0 30.6 76.6 80.3 19.2 89.5 100.0 100.0 81.5 29.0 70.5 74.7 30.9 68.7 77.5 75.1
GPT-4o (3) 41.5 58.3 92.3 38.2 61.6 91.0 100.0 99.8 93.2 33.9 65.8 93.9 32.0 67.6 93.9 93.9
GPT-4o (4) 26.0 73.9 79.2 27.7 72.1 79.4 96.7 94.3 81.4 16.2 83.4 95.5 19.2 80.4 94.8 95.4
o4-mini-high 68.0 31.6 92.0 69.9 29.7 94.7 100.0 99.4 93.4 58.5 41.3 86.9 50.2 49.5 93.3 87.8
Human-baseline 36.6 63.4 90.7 27.8 72.2 96.0 72.0 82.7 85.3 41.4 58.6 97.3 36.1 63.9 96.0 96.7

Table 16: Additional results of QA accuracy in the A-Split with GPT-o4-mini-high. R% and I% represent the
percentage the model assumes relative or intrinsic FoR for ambiguous expression, explained in Section 5.1. Acc is
the accuracy, and Avg is the micro-average of accuracy. (1): 0-shot, (2): 4-shot, (3): CoT, and (4): SG+CoT.

Camera perspective Relatum perspective
Model ER (CP) EI (RP) II (RP) IR (CP) Avg. ER (CP) EI (RP) II (RP) IR (CP) Avg.
GPT-4o (0-shot) 79.7 45.1 39.5 90.2 64.2 46.9 88.5 98.2 34.8 67.5
GPT-4o (4-shot) 68.0 52.6 60.7 74.1 61.8 44.9 98.2 100.0 37.5 71.2
GPT-4o (CoT) 81.7 76.1 82.4 71.5 78.8 53.0 91.1 90.6 50.8 71.9
GPT-4o (SG+CoT) 97.9 72.2 72.7 93.4 85.8 48.9 96.3 95.9 36.1 71.8
o4-mini-high 68.7 73.1 72.1 79.0 71.4 78.9 91.9 93.9 62.7 84.5

Table 17: Additional results of QA accuracy in the C-Split with GPT-o4-mini-high. ER, EI, II, and IR denote
external relative, external intrinsic, internal intrinsic, and internal relative FoRs. Avg represents the micro-average
accuracy. CP refers to context with camera perspective, while RP denotes context with relatum perspective.

the form of Explanation:1404
Explanation. Answer: Category.1405

# SG Instruction answer: Find the frame1406
of reference category with an1407
explanation. Additionally , include1408
three more explanations relating to1409
topology , distance , and direction1410
from the given context. The answer1411
should be in the form of \"1412
Explanation: Explanation. Topology:1413
Explanation. Distance: Explanation.1414
Direction: Explanation. Answer:1415
Category.1416

1417
Context: {spatial exprssion}1418
"""14191420

Listing 2: Prompt for finding the frame of reference
class of given context.

1421
## These are four examples used in few -1422

shot , CoT , and SG1423
# Example 1: The bird is outside the car1424

and in front of the car relative to1425
the car.1426

# Few -shot response: Answer: external1427
intrinsic1428

# CoT response: Explanation: The car1429
does not contain the bird , and the1430
spatial relation is relative to the1431
car's facing orientation. The1432
intrinsic direction of the car is1433
relevant in this context , as the1434
description \"in front of\" implies1435
a direction relative to the sheep's1436
front or back. Answer: external1437
intrinsic.1438

# SG response: Explanation: The car does1439
not contain the bird , and the1440

spatial relation is relative to the1441
car's facing orientation. The1442
intrinsic direction of the car is1443
relevant in this context , as the1444
description \"in front of\" implies1445

a direction relative to the sheep's 1446
front or back. Topology: The bird is 1447
outside the car. Distance: There is 1448
little distance between the bird 1449

and the car. Direction: The bird is 1450
in the front direction of the car ( 1451
entity B). Answer: external 1452
intrinsic. 1453

1454
# Example 2: The bird is inside of the 1455

car and left of the car from the car 1456
's perspective. 1457

# Few -shot response: Answer: internal 1458
intrinsic 1459

# CoT response: Explanation: In this 1460
scenario , the bird is contained 1461
within the car , meaning it is an 1462
internal relationship. Additionally , 1463
the description specifies the bird' 1464

s position relative to the car , 1465
indicating that the spatial relation 1466
is relative to the car itself , 1467

considering its intrinsic direction. 1468
Answer: internal intrinsic. 1469

# SG response: Explanation: In this 1470
scenario , the bird is contained 1471
within the car , meaning it is an 1472
internal relationship. Additionally , 1473
the description specifies the bird' 1474

s position relative to the car , 1475
indicating that the spatial relation 1476
is relative to the car itself , 1477

considering its intrinsic direction. 1478
Topological: The bird is inside the 1479
car. Distance: The bird is in the 1480

same location as the car. Direction: 1481
The bird is in the left direction 1482

of the car (entity B). Answer: 1483
internal intrinsic. 1484

1485
# Example 3: The box is inside and at 1486

the back of the room. 1487
# Few -shot response: Answer: internal 1488

relative 1489
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# CoT response: Explanation: In this1490
context , the box (entity A) is1491
described as inside the room (entity1492
B), fulfilling the first condition1493

for an internal frame of reference.1494
However , the spatial relation given1495
(\" at the back \") cannot originate1496
from the room since the room does1497
not have intrinsic direction ,1498
implying it is relative to an1499
external observer or reference point1500
(C), such as a camera or a person1501

viewing the scene. Answer: internal1502
relative1503

# SG response: Explanation: In this1504
context , the box (entity A) is1505
described as inside the room (entity1506
B), fulfilling the first condition1507

for an internal frame of reference.1508
However , the spatial relation given1509
(\" at the back \") cannot originate1510
from the room since the room does1511
not have intrinsic direction ,1512
implying it is relative to an1513
external observer or reference point1514
(C), such as a camera or a person1515

viewing the scene. Topological: The1516
box is inside the room. Distance:1517
The box is in the same location as1518
the room. Direction: From the1519
observer 's perspective , the box is1520
located at the back of the room.1521
Answer: internal relative1522

1523
# Example 4: A phone is on the left of a1524

tablet from my perspective.1525
# Few -shot response: Answer: external1526

relative1527
# CoT response: Explanation: In this1528

context , the spatial relation is1529
described from the perspective of an1530
observer (C) who is not involved in1531
the spatial relation. The phone (A)1532
is not contained by the tablet (B),1533
and the spatial relation \"left of1534

\" is relative to the observer 's1535
perspective , not the tablet 's facing1536
orientation. Answer: external1537

relative.1538
# SG response: Explanation: In this1539

context , the spatial relation is1540
described from the perspective of an1541
observer (C) who is not involved in1542
the spatial relation. The phone (A)1543
is not contained by the tablet (B),1544
and the spatial relation \"left of1545

\" is relative to the observer 's1546
perspective , not the tablet 's facing1547
orientation. Topological: The phone1548
is not contained by the tablet.1549

Distance: There is some distance1550
between the phone and the tablet.1551
Direction: From the observer 's1552
perspective , the phone is located to1553
the left of the tablet. Answer:1554

external relative.15551556

Listing 3: Spatial expression examples using for few-
shots, Chain-of-Thought (CoT), and Spatial Guide (SG)
prompting

K.2 Question Answering Example 1557

1558
''' 1559
#Context: The bird is outside the car 1560

and in front of the car relative to 1561
the car. The car is facing toward 1562
the camera. 1563

#Question: Based on the camera 's 1564
perspective , where is the bird from 1565
the car position in the scene? 1566

#SG information (used in SG + CoT): 1567
Frame of reference Explanation: The 1568
car does not contain the bird , and 1569
the spatial relation is relative to 1570
the car's facing orientation. The 1571
intrinsic direction of the car is 1572
relevant in this context , as the 1573
description \"in front of\" implies 1574
a direction relative to the sheep's 1575
front or back. Topology: The bird is 1576
outside the car. Distance: There is 1577
little distance between the bird 1578

and the car. Direction: The bird is 1579
in the front direction of the car ( 1580
entity B). Frame of reference: 1581
external intrinsic. 1582

#Normal response: Answer: front 1583
#CoT / (SG + COT) response:Explanation: 1584

Based on the context , the bird's 1585
position is in the front direction 1586
of the car. The car is facing toward 1587
the camera. Then , the car's front 1588

direction is the camera 's front 1589
direction. Therefore , the bird's 1590
position is in front of the car's 1591
position from the camera 's 1592
perspective. Answer: front 1593

1594
#Context: The bird is inside the car and 1595

left of the car from the car's 1596
perspective. The car is facing to 1597
the right relative to the camera. # 1598
Question: Based on the camera 's 1599
perspective , where is the bird from 1600
the car's position? 1601

#SG information (used in SG + CoT): 1602
Frame of reference Explanation: In 1603
this scenario , the bird is contained 1604
within the car , meaning it is an 1605

internal relationship. Additionally , 1606
the description specifies the bird' 1607

s position relative to the car , 1608
indicating that the spatial relation 1609
is relative to the car itself , 1610

considering its intrinsic direction. 1611
Topological: The bird is inside the 1612
car. Distance: The bird is in the 1613

same location as the car. Direction: 1614
The bird is in the left direction 1615

of the car (entity B). Frame of 1616
reference: internal intrinsic. 1617

#Normal response: Answer: back 1618
#CoT / (SG + COT) response: Explanation: 1619

Based on the context , the bird's 1620
position is in the left direction of 1621
the car. The car is facing to the 1622

right. Then , the car's left 1623
direction is the camera 's back 1624
direction. Therefore , the bird's 1625
position is to the back of the car's 1626

23



position from the camera 's1627
perspective. Answer: back1628

1629
Context: The box is inside and to the1630

right of the room from the observer '1631
s perspective.1632

Question: From the observer 's1633
perspective , what is the spatial1634
relation of the box to the room?1635

#SG information (used in SG + CoT):1636
Frame of reference Explanation: In1637
this context , the box (entity A) is1638
described as inside the room (entity1639
B), fulfilling the first condition1640

for an internal frame of reference.1641
However , the spatial relation given1642
(\" at the back \") cannot originate1643
from the room since the room does1644
not have intrinsic direction ,1645
implying it is relative to an1646
external observer or reference point1647
(C), such as a camera or a person1648

viewing the scene. Topological: The1649
box is inside the room. Distance:1650
The box is in the same location as1651
the room. Direction: From the1652
observer 's perspective , the box is1653
located at the back of the room.1654
Frame of reference: internal1655
relative.1656

#Normal response: Answer: right1657
#CoT / (SG + COT) response: Explanation:1658

Based on the context , the box is to1659
the right of the room from the1660

camera 's direction. Therefore , the1661
box's position is to the right of1662
the room's position from the1663
observer 's perspective. Answer:1664
right1665

1666
Context: A phone is to the left of a1667

tablet from my perspective. The1668
tablet is facing to the right.1669
Question: From my perspective , what1670
is the spatial relation of the phone1671
to the tablet?1672

#SG information (used in SG + CoT):1673
Frame of Reference Explanation: In1674
this context , the spatial relation1675
is described from the perspective of1676
an observer (C) who is not involved1677
in the spatial relation. The phone1678

(A) is not contained by the tablet (1679
B), and the spatial relation \"left1680
of\" is relative to the observer 's1681
perspective , not the tablet 's facing1682
orientation. Topological: The phone1683
is not contained by the tablet.1684

Distance: There is some distance1685
between the phone and the tablet.1686
Direction: From the observer 's1687
perspective , the phone is located to1688
the left of the tablet. Frame of1689

Reference: external relative.1690
#Normal response: Answer: left1691
#CoT / (SG + COT) response: Explanation:1692

Based on the context , the phone is1693
to the left of the tablet from my1694
perspective. The direction of the1695
tablet is not relevant in this1696

context since the left relation is 1697
from my perspective. Therefore , from 1698
my perspective , the phone is to the 1699
left of the tablet. Answer: left 1700

''' 17011702

Listing 4: Spatial expression examples using for few-
shots, Chain-of-Thought (CoT), and Spatial Guide (SG)
prompting for question-answering.

K.3 Text to Layout 1703

1704
# Instruction for generating 1705

bounding box 1706
""" 1707
Your task is to generate the bounding 1708

boxes of objects mentioned in the 1709
caption. 1710

The image is size 512 x512. The bounding 1711
box should be in the format of (x, y 1712
, width , height). Please considering 1713
the frame of reference of caption 1714

and direction of reference object if 1715
possible. If needed , you can make 1716

the reasonable guess. 1717
""" 17181719

Listing 5: Prompt for generating bounding coordinates
to use as the layout for layout-to-image models.
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