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ABSTRACT

The rise of 3D large language models (3D-LLMs) has unlocked new potential in
multimodal reasoning over unstructured 3D data, powering applications such as
robotics and autonomous driving. However, these models also face new security
risks, particularly during the inference-time computation. In this work, we present
Exhaust3D, the first targeted energy-oriented adversarial framework against 3D-
LLMs. Exhaust3D performs a resource exhaustion attack by injecting imper-
ceptible yet strategically structured semantic perturbations into 3D point clouds,
causing the model to overgenerate outputs and inflate inference latency. Specifi-
cally, we design two key components: (1) a semantic-aware adversarial manipu-
lation strategy that leverages internal model representations to selectively perturb
semantically critical point regions while preserving geometric structure, and (2)
a trajectory disruption mechanism that maintains high-entropy token predictions
to prolong auto-regressive decoding and induce verbose outputs. Experiments on
widely-used 3D-LLM benchmarks show that Exhaust3D increases decoding steps
and energy consumption by up to 6.45× with negligible degradation in functional
performance. These results expose a previously underestimated vulnerability of
3D-LLMs to resource exhaustion attacks, highlighting the urgent need for energy-
aware robustness in future multimodal foundation models.

1 INTRODUCTION

Recent advances in 3D large language models (3D-LLMs) such as PointLLM (Xu et al., 2024;
2025)and X-InstructBLIP (Panagopoulou et al., 2023) have significantly improved spatial-language
reasoning, enabling robust performance in a wide range of 3D tasks including object understanding,
scene-level decision-making, and multimodal navigation. These models typically adopt a language
foundation model (LLM) as their backbone and extend it to the 3D domain by aligning textual and
geometric modalities, thereby generalizing the LLM’s linguistic capabilities to visual and spatial
perception. Consequently, 3D-LLMs are increasingly deployed in high-stakes applications such as
autonomous driving, embodied AI, and digital reconstruction.

However, the powerful generative and reasoning capabilities of 3D-LLMs come at the cost of enor-
mous model sizes and expensive inference pipelines. In particular, their autoregressive decoding
requires substantial computational resources per query. Moreover, due to the limited availability
and high cost of constructing 3D datasets, users often rely on publicly available 3D assets (e.g.,
meshes, point clouds) sourced from the internet to support downstream reasoning tasks. This opens
up a new vulnerability: an adversary may subtly manipulate these 3D inputs to induce 3D-LLMs to
generate abnormally long outputs at inference time—causing excessive energy usage or cloud token
consumption, thereby launching a resource exhaustion attack.

Several prior works have explored resource exhaustion attacks in text and image modalities. In the
text domain, Sponge examples (Shumailov et al., 2021) increase inference cost by maximizing ac-
tivation norms across layers. Meanwhile, Engorgio Prompt (Dong et al., 2024) demonstrates that
carefully crafted prompts can suppress end-of-sequence (EOS) token generation in LLMs, forc-
ing abnormally long outputs without degrading semantic quality. In the vision-language setting,
NICGSlowdown (Chen et al., 2022) manipulates logit dynamics to delay EOS emission, and Ver-
bose Images (Gao et al., 2024) introduce imperceptible perturbations that promote diverse outputs
in VLMs, thereby amplifying computational overhead.
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Latent 3D semantic space

clean sample
perturbed sample

This is a 3D model of a cartoon-style pony, 
primarily colored in vibrant blue.

Caption this 3D object in one sentence.

This 3D model appears to depict a “Lego”-styled 
creature, primarily constructed of bright blue 
bricks. It stands out with two distinctly white, 
round eyes, implying some form of sentient being. 
The model’s complexion also features a striking 
contrast with two large, bushy eyebrows made of 
a darker shade. Judging by this, it might be a 
character from a children’s entertainment …

perturb

Caption this 3D object in one sentence.

Figure 1: Demonstration of Exhaust3D’s effects. Left (output level): Adversarial perturbations
significantly prolong auto-regressive decoding while preserving input fidelity. Right (model level):
Perturbations shift samples into regions of semantic ambiguity, blurring distinctions from clean
examples in semantic space.

Despite these efforts, existing computation-based attacks have primarily focused on LLMs and
VLMs, whereas the study of 3D-LLMs remains largely unexplored. The unique characteristics of
3D domains pose distinctive challenges for effective attacks, such as maintaining geometric fidelity,
ensuring robust cross-modal alignment, and addressing the semantic sparsity inherent in 3D spaces.
To bridge this gap, we present Exhaust3D, the first adversarial framework that performs semantic-
aware resource exhaustion attacks against 3D-LLMs through purely 3D-modal perturbations. Ex-
haust3D injects imperceptible but strategically crafted changes into point cloud inputs to manipulate
the LLM’s generation process and escalate inference-time energy consumption. The key compo-
nents of our method are two-fold: (1) Semantic-aware adversarial manipulation: We leverage the
model’s internal hidden states to identify semantically important tokens and selectively perturb their
corresponding points in the input space, disrupting the model’s reasoning process while preserving
the overall geometric structure. (2) Trajectory disruption mechanism: We maintain high-entropy
token predictions and suppress premature EOS emission to prolong auto-regressive decoding, trig-
gering verbose outputs and significantly increasing inference-time energy consumption. Figure 1
illustrates the effect of Exhaust3D. Experiments on widely-used 3D-LLM benchmarks show that
Exhaust3D substantially increases decoding steps and energy consumption, exposing a critical vul-
nerability in 3D multimodal reasoning systems. By combining semantic-aware adversarial manip-
ulation and a trajectory disruption mechanism, the attack induces excessively long sequences in a
highly stealthy and resource-draining manner. Our contributions are summarized as follows:

• To the best of our knowledge, we propose the first attack framework named Exhaust3D,
which performs semantic-aware resource exhaustion attacks on 3D-LLMs via impercep-
tible perturbations crafted entirely in the 3D input space.

• We design a novel ambiguity-driven trajectory disruption mechanism that effectively ma-
nipulates token dispersion and persistence to prolong decoding and induce verbose, energy-
expensive outputs from various 3D-LLMs.

• We conduct comprehensive experiments on the Objaverse (Deitke et al., 2023) and Model-
Net40 (Wu et al., 2015) benchmark, showing that Exhaust3D increases output length and
energy cost by up to 6.45× and 6.12× respectively, demonstrating consistent and powerful
attack performance.

2 RELATED WORK

2.1 RECENT ADVANCES IN 3D-LLMS

Recent advances in 3D large language models (3D-LLMs) have substantially enhanced the ability
of language models to perceive and reason over 3D data. A first line of research leverages 2D
vision-language models for 3D understanding. 3D-LLM (Hong et al., 2023) renders 3D objects into
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multi-view images and applies CLIP-like encoders (Radford et al., 2021) together with BLIP (Li
et al., 2023a) to bridge 3D perception and language understanding.

Beyond explicit multi-view rendering, another line of work focuses on directly aligning 3D point
clouds with language models. Point-Bind (Guo et al., 2023) constructs a shared multimodal em-
bedding space under the guidance of ImageBind (Girdhar et al., 2023), using image features to as-
sist point cloud alignment and enabling generative capabilities through 2D multimodal models like
ImageBind-LLM (Han et al., 2023). PointLLM (Xu et al., 2024; 2025) encodes 3D point clouds into
latent point tokens and concatenates them with textual tokens for auto-regressive LLM processing,
enabling end-to-end spatial-language reasoning from 3D input. LEO (?) extends this framework by
incorporating additional modalities to enhance cross-modal reasoning for downstream tasks.

A number of other models explore advanced 3D reasoning and scene-level understanding.
ShapeLLM (Qi et al., 2024) combines contrastive pretraining with cross-modal alignment to enable
zero-shot generalization. MiniGPT-3D (Tang et al., 2024) improves scalability through a multi-stage
projection pipeline from 3D point clouds to token representations. GreenPLM (Tang et al., 2025)
achieves data-efficient learning by mapping point clouds into text space, requiring only 12% of 3D
training data. Video-3D LLM (Zheng et al., 2025) introduces 3D positional encoding into video
representations for reasoning over dynamic scenes. X-InstructBLIP (Panagopoulou et al., 2023)
aligns multiple modalities with a frozen LLM using complementary Q-Former and projection mod-
ules. Finally, LSceneLLM (Zhi et al., 2025) targets large-scale scene understanding with adaptive
preference identification and scene magnification.

2.2 RESOURCE EXHAUSTION ATTACKS

In the field of computer security, Denial-of-Service (DoS) attacks are a classic and pervasive threat.
Denial-of-Service (DoS) attacks aim to exhaust system resources or bandwidth, preventing legiti-
mate users from accessing services (Elleithy et al., 2005; Aldhyani & Alkahtani, 2023; Bhatia et al.,
2018). Typical strategies include overwhelming servers with massive request floods or exploiting
vulnerabilities (Mirkovic & Reiher, 2004; Long & Thomas, 2001). Such attacks pose long-standing
risks to real-world platforms, as they directly undermine service availability.

With the emergence of adaptive neural architectures, including adaptive computation time networks
and large-scale models such as Large Language Models (LLMs) and Vision-Language Models
(VLMs), inference-time computation has become input-dependent. Unlike conventional networks
with fixed costs, these models dynamically adjust decoding length or intermediate computation ac-
cording to input content. This paradigm shift has enabled a new family of resource exhaustion
attacks, which drain computational resources by inducing excessive energy consumption and la-
tency through adversarial inputs (Hong et al., 2020; Liu et al., 2023). For example, sponge sam-
ples (Shumailov et al., 2021) maximize the L2 norm of intermediate activations to trigger redundant
computation, while NICGSlowDown (Chen et al., 2022) manipulates end-of-sequence (EOS) logits
to prolong sequence generation and increase decoding overhead.

In the era of generative models, resource exhaustion attacks have also emerged against LLMs and
VLMs. Engorgio Prompt (Dong et al., 2024) shows that carefully crafted prompts can suppress EOS
token generation in LLMs, forcing abnormally long outputs without degrading semantic quality.
Verbose Images (Gao et al., 2024) extends this idea to vision-language models by delaying EOS
generation, increasing output uncertainty, and enhancing token diversity to induce energy-intensive
decoding. LLMEffiChecker (Feng et al., 2024) further identifies critical tokens and constructs input
variants to systematically reduce LLM inference efficiency across layers. In the 3D domain, Poison-
splat (Lu et al., 2024) perturbs multi-view data to substantially increase the computational overhead
of 3D Gaussian Splatting (Kerbl et al., 2023), highlighting how input-level perturbations translate
into heavy resource consumption.

Despite this growing body of work, resource exhaustion attacks targeting 3D-LLMs remain
largely unexplored. These models combine multi-view perception, geometric reasoning, and cross-
modal text generation, leading to complex and input-dependent inference pipelines. Such character-
istics create new vulnerabilities but also raise unique challenges for attack design. Our work takes
the first step toward systematically exploring and exploiting these vulnerabilities, providing insights
that can guide the development of more robust and resource-efficient 3D-LLMs.

3
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3D Point Cloud:

Text Input: Describe the
3d model.

LLM backbonePoint Cloud
Encoder

Text
Encoder

Concat

TopK Tokens

Token-Group MappingGroup-Point Mapping

Point GroupsPoint Mask

Perturbation
Attacker

Logits

Next Token

i) 3D Modality

ii) Text Modality

Lefficiency

Figure 2: Overall pipeline of Exhaust3D. The input 3D point cloud P is first tokenized, and sub-
tle perturbations are injected only at semantically critical points indicated via the token–group–
point mapping, creating targeted semantic ambiguity. Point tokens are then combined with textual
embeddings to drive auto-regressive decoding in the LLM. By evaluating the predicted logits, the
efficiency-oriented loss Lefficiency directs the perturbations to extend output sequences and amplify
computational cost.

3 METHODOLOGY

3.1 METHOD OVERVIEW

To extend generated sequences while keeping perturbations imperceptible, Exhaust3D leverages 3D
point cloud structure through two modules. Semantic-aware Adversarial Manipulation identifies
semantically critical points based on token importance and selectively perturbs them to preserve
local geometry. Trajectory Disruption Mechanism prolongs generated outputs using a dispersion
loss to increase token uncertainty and a persistence loss to delay EOS emission. To balance two
losses, we adopt a projection-based adjustment optimization method. Together, these components
generate longer outputs with minimal geometric distortion, amplifying the inference-time cost of
3D-LLMs. An overview of the attack pipeline is shown in Figure. 2.

3.2 PROBLEM FORMULATION

3D-LLM Inference Procedure. We consider a 3D large language model (3D-LLM) composed
of an encoder and an auto-regressive decoder. Let P ∈ RN×3 denote the input point cloud and
T = {t1, . . . , tm} the textual instruction. The encoder maps P into latent point tokens Hp and the
textual input into tokens Ht. These are concatenated to form the initial context for the decoder. The
decoder then generates an output sequence Y = {y1, . . . , yk} auto-regressively. At decoding step s,
the model predicts token ys conditioned on the encoded inputs and the prefix Y<s = {y1, . . . , ys−1}.
Concretely, the decoder logits at step s are:

zs(P, T, y<s) = fdec
(
[Hp;Ht], y<s

)
, (1)

and the conditional probability of generating token v ∈ V at step s is:

p(v | P, T, y<s) = softmax
(
zs(P, T, y<s)

)
v
. (2)

Attack Objective. We aim to craft an imperceptible perturbation δ applied to the point cloud P to
obtain a perturbed input P̃ = P + δ, such that the 3D-LLM generates abnormally long output se-
quences Y , increasing inference-time computation. This is formalized by minimizing an efficiency-
oriented objective:

min
∥δ∥∞≤ϵ

Lefficiency

(
fdec([fenc(P + δ);Ht])

)
, (3)

where ϵ bounds the perturbation magnitude. The perturbation δ should preserve the geometric in-
tegrity of the original point cloud (See details in Section 3.3) while the minimization of Lefficiency
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aims to reduce the decoding efficiency, encourages high energy consumption during inference (See
details in Section 3.4).

3.3 SEMANTIC-AWARE ADVERSARIAL MANIPULATION

To preserve the geometric fidelity of the input, we introduce a semantic-aware adversarial manipu-
lation strategy that perturbs only a subset of semantically critical points. This strategy consists of
three steps: (1) estimating token importance, (2) mapping tokens back to their corresponding points,
and (3) applying masked perturbations under perceptual constraints.

We first measure the importance of each point token using the ℓ2 norm of its final-layer hidden state.
The top-k tokens are then selected according to a ratio ρ:

I = TopK
(
{∥h(L)

j ∥2}
n
j=1, k = ⌊ρn⌋

)
. (4)

This step highlights the tokens with the strongest influence on the next-token logits and therefore
the model’s generation behavior. Each selected token j corresponds to a local group of raw points
Gj , as determined by the encoder’s grouping stage. We expand the token set I into a point-level
set P =

⋃
j∈I Gj , which specifies all candidate points eligible for perturbation. In practice, we

construct a semantic-aware mask M ∈ {0, 1}N to mark these points, ensuring that gradients
outside P are suppressed during optimization. Finally, the adversarial perturbation is applied in
masked form:

P̃ = P + δ ⊙M, (5)

where δ denotes the additive perturbation constrained by an ℓ∞ budget to maintain imperceptibility.
During optimization, only masked points are updated, focusing perturbations on semantically influ-
ential regions while leaving the majority of the point cloud untouched. This semantic-aware mask
design enables strong attack effectiveness with minimal perceptual distortion.

3.4 TRAJECTORY DISRUPTION MECHANISM

Building upon the semantic-aware perturbation strategy described above to maintain imperceptibil-
ity, we further introduce our trajectory disruption mechanism. It aims to prolong the auto-regressive
decoding trajectory, which maximizes the inference-time energy cost of 3D-LLMs.

From Adversarial Examples to Semantic Ambiguity. In classification tasks, adversarial exam-
ples (AEs) are known to probe the decision boundary by applying small perturbations that induce
misclassification (He et al., 2018; Ilyas et al., 2019; Rice et al., 2020). However, large language
models, particularly 3D-LLMs, operate in an open-ended generative setting rather than a closed la-
bel space. In this context, the notion of a decision boundary must be reinterpreted. Instead of forcing
high-confidence misclassifications, we transfer the functionality of AEs into the semantic space of
generative models: perturbations are designed to push samples toward regions of high uncertainty,
where token predictions become more ambiguous.

Definition of SAI. Formally, let P̃ = P + δ denote the perturbed point cloud, and let T denote the
input text. Let ẑi ∈ R|V | denote the model’s logits for the i-th token, and define

p̂i(·) := softmax(ẑi), (6)

where p̂i(v) gives the predicted probability for token v ∈ V . We call P̃ a spatially ambiguous
instance (SAI) if its predictive distribution exhibits sufficiently high entropy:

H(p̂i) ≥ log |V | − τ, (7)

where H(p̂i) = −
∑

v∈V p̂i(v) log p̂i(v), log |V | is the entropy of the uniform distribution over the
vocabulary, and τ ≥ 0 is a slack threshold. Intuitively, a smaller τ enforces a distribution closer
to uniform (higher ambiguity); in the extreme τ = 0 the condition requires near-uniformity. SAIs
therefore correspond to perturbed samples that lie near the semantic boundary of the model’s latent
space, producing ambiguous predictions that prolong auto-regressive decoding and inflate inference-
time energy consumption.

5
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Dispersion loss. This geometric interpretation provides intuition for why SAIs exhibit unstable
decoding behavior, and it naturally motivates the need for an objective that can deliberately induce
such high-entropy states. To actively construct SAIs, we define a dispersion loss that encourages the
predicted distributions to approach the maximum entropy distribution across the full sequence:

Ldispersion = EL
i=1

[
KL(p̂i ∥ U)

]
, (8)

where U is the uniform distribution over the vocabulary V , and the expectation is taken over se-
quence positions i = 1, . . . , L. Minimizing Ldispersion drives the predicted distributions toward
high entropy, thereby encouraging SAIs as defined in Eq. 7.

Persistence loss. Entropy maximization alone only diversifies token predictions but leaves the
stopping behavior uncontrolled. To regulate the termination dynamics, we design a persistence loss
that discourages premature EOS emission:

Lpersistence = EL
i=1

[
− log

(
1− p̂i(EOS)

)]
, (9)

where p̂i(EOS) denotes the predicted EOS probability at position i. This penalizes early EOS
predictions and enforces a more persistent decoding trajectory. By combining the dispersion and
persistence terms, we obtain the overall efficiency-oriented objective:

Lefficiency = Ldispersion + Lpersistence. (10)

This joint formulation drives predictions toward high-entropy distributions while simultaneously
suppressing EOS emission, thereby prolonging auto-regressive trajectories and inflating inference-
time energy consumption in 3D-LLMs.

Gradient conflict optimization. When jointly optimizing Ldispersion and Lpersistence, their gra-
dients may conflict. To stabilize the optimization, we adopt a projection-based adjustment inspired
by PCGrad (Yu et al., 2020). Given gradients gdisp and gpers, if their inner product is negative, we
remove the conflicting component:

gdisp ← gdisp −
⟨gdisp, gpers⟩
∥gpers∥2 + ϵ

gpers. (11)

The final update direction is then
gfinal = gdisp + gpers. (12)

This adjustment mitigates destructive interference and improves optimization stability.

4 EXPERIMENTS

4.1 EXPERIMENTAL CONFIGURATIONS

Datasets and Models. We conduct experiments on two point-cloud datasets: Objaverse (Deitke
et al., 2023), a large-scale collection of diverse 3D objects with rich annotations, and Model-
Net40 (Wu et al., 2015), a widely used benchmark of CAD-based 3D models. For each dataset,
we uniformly sample 8,192 points per object and randomly select 500 point clouds as the eval-
uation set. For 3D-LLMs, we consider four representative models that take raw point clouds as
input: PointLLM (Xu et al., 2024), X-InstructBLIP (Panagopoulou et al., 2023), GreenPLM (Tang
et al., 2025), and MiniGPT-3D (Tang et al., 2024), ensuring that the evaluation focuses purely on
point-cloud understanding without interference from auxiliary modalities.

Comparison Baselines. To the best of our knowledge, we are the first to investigate resource ex-
haustion attacks against 3D-LLMs. Since no prior work explicitly targets resource-oriented degra-
dation, we compare Exhaust3D against Gaussian Noise, which adds random perturbations to point
coordinates, and Random Drop, which removes 10% of points. These baselines simulate realistic
point cloud corruptions commonly encountered in practice and generally affect 3D understanding.
Comparing with them highlights that our method specifically targets inference-time computation
rather than recognition accuracy.

6
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Table 1: Resource overhead of four 3D-LLMs on Objaverse and ModelNet40 under different attack
settings. Best results are in bold.

Model Method Objaverse ModelNet40
Length Latency Energy Length Latency Energy

PointLLM

Original 19.77 0.84 66.45 14.76 0.65 52.45
Gaussian Noise 20.58 1.08 104.78 22.84 0.89 70.62
Random Drop 25.27 1.32 127.95 19.26 0.78 62.32
Exhaust3D 127.52 5.65 406.50 45.90 1.88 139.27

X-InstructBLIP

Original 16.87 1.76 98.65 10.04 1.62 88.52
Gaussian Noise 11.86 1.22 72.68 7.91 1.67 92.34
Random Drop 16.62 1.72 100.35 10.12 1.62 89.29
Exhaust3D 39.03 2.83 272.43 32.85 2.40 193.54

MiniGPT-3D

Original 27.84 6.92 183.96 11.34 6.93 239.10
Gaussian Noise 12.98 6.91 181.70 13.00 6.92 243.54
Random Drop 26.28 6.87 190.14 11.34 6.92 237.48
Exhaust3D 74.71 6.79 553.37 65.87 6.71 383.17

GreenPLM

Original 16.52 0.92 43.03 13.69 0.82 14.01
Gaussian Noise 16.25 1.04 45.84 16.69 0.91 15.26
Random Drop 17.67 1.09 47.80 13.93 0.84 14.46
Exhaust3D 41.48 1.52 67.10 35.58 1.50 59.82

Evaluation Metrics. Our evaluation considers efficiency-oriented metrics, including average out-
put sequence length, inference latency (s), and energy consumption (J), which directly reflect the
ability of an attack to exhaust computational resources.

Implementation Details. For all models, the default prompts are applied, and the maximum out-
put length is set to 2,048 tokens. Exhaust3D is optimized for 100 iterations with a perturbation
bound of ℓ∞ ≤ 0.1. Gaussian Noise is also applied with the same ℓ∞ ≤ 0.1 bound, while Ran-
dom Drop directly removes 10% of the points. Additional architectural settings and implementation
details are provided in Appendix A.

4.2 MAIN RESULTS

Table. 1 evaluates the resource overhead induced by different perturbations on four 3D-LLMs across
Objaverse and ModelNet40. Exhaust3D consistently produces the most severe increases, while
Gaussian Noise and Random Drop have limited effects.

On Objaverse, Exhaust3D significantly inflates PointLLM’s response length (from 20 to 128 tokens,
6.5×), latency (6.7×), and energy (512% ↑). MiniGPT-3D also shows notable overhead, whereas
X-InstructBLIP exhibits moderate growth and GreenPLM remains relatively robust (costs roughly
double).

On ModelNet40, the same pattern holds with slightly smaller magnitudes: PointLLM and MiniGPT-
3D are most affected, X-InstructBLIP sees moderate inflation, and GreenPLM is stable.

Overall, PointLLM and MiniGPT-3D are consistently the most vulnerable to Exhaust3D, X-
InstructBLIP shows moderate sensitivity, and GreenPLM demonstrates strong resilience, highlight-
ing efficiency robustness as a key consideration for 3D-LLMs.

To further illustrate these effects, we analyze the distribution of output length, latency, and energy
across all perturbations(Figure. 3. Interestingly, all three metrics under Exhaust3D exhibit a bimodal
distribution: one peak remains close to the baseline responses of the original inputs, while another
peak emerges at significantly higher values. This pattern suggests that the attack not only shifts
the average cost upward but also creates highly variable responses, with some inputs remaining

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Length (b) Energy (c) Latency

Figure 3: Distribution of PointLLM results on Objaverse: (a) Sequence Length, (b) Energy Con-
sumption, and (c) Inference Latency.

relatively stable while others trigger extreme resource escalation. Such bimodality highlights the
instability of 3D-LLMs under targeted perturbations and the difficulty of predicting computational
demands in adversarial settings.

Figure 4: T-SNE visualization of learned embed-
dings under Exhaust3D. Left: token-level embed-
dings become more compact. Right: instance-
level embeddings retain the overall layout.

We further conduct t-SNE analyses of the
learned embeddings to gain an interpretable
perspective. At the token level, Exhaust3D
induces clear structural changes in the feature
space: clusters become more concentrated and
compact compared to the dispersed structure
in the original setting, reflecting that token se-
mantics are significantly altered by the pertur-
bation. At the instance level, however, the
global layout of embeddings remains relatively
close to the original distribution, indicating that
the overall point cloud appearance is preserved.
Taken together, these results reveal that Ex-
haust3D achieves a favorable trade-off: it main-
tains a degree of visual imperceptibility at the
instance level while substantially disrupting token-level semantic alignment, thereby driving the
observed escalation in sequence length, latency, and energy.

Table 2: Ablation study of loss objectives for PointLLM on the Objaverse dataset. Best results are
in bold.

Ldispersion Lpersistence PCGrad Length Latency Energy

✓ 101.85 4.62 320.79
✓ 31.42 1.53 116.79

✓ ✓ 124.25 5.21 336.17
✓ ✓ ✓ 127.52 5.65 406.50

4.3 ABLATION STUDY

Effect of Loss Objectives. We first investigate the contribution of each loss objective in Ex-
haust3D. Table 2 reports the results for Ldispersion, Lpersistence, and PCGrad, individually and
in combination. Both Ldispersion and Lpersistence independently improve attack effectiveness,
increasing sequence length and energy consumption, with Ldispersion having a more decisive impact
due to its substantially higher numerical gains. Combining the two further enhances performance,
while the addition of PCGrad yields the most pronounced effect, achieving the longest outputs,
highest latency, and largest energy overhead. This confirms that all three components contribute
positively and synergistically to Exhaust3D’s efficiency attack.

Effect of Masking Strategy. We next assess the importance of the semantic-aware point mask
by comparing it with a random mask of identical sparsity (Table 3). While random masking can
still produce moderate perturbation effects, our semantic-aware mask consistently focuses on points
associated with top-ranked latent tokens, yielding slightly stronger attack effects. Visual inspection
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Table 3: Ablation study on the mask method.

Method Length Latency Energy
Original 14.76 0.65 52.45
Random Mask 42.85 1.88 139.27
Ours 45.90 2.25 148.46

Table 4: Ablation study on the mask ratio.

Mask ratio Length Energy Latency l2

30% 32.68 1.39 108.52 0.38
50% 45.90 1.88 139.27 0.45
100% 44.06 1.79 141.61 0.70

Table 5: Ablation study on the effect of point number.

Points Objaverse ModelNet40
Length Energy Latency Length Energy Latency

2048 52.10 2.15 154.04 46.38 2.44 179.23
4096 140.71 7.71 503.01 45.91 1.88 138.54
8192 127.52 5.65 406.50 45.90 1.88 139.27

further confirms that the mask tends to cover informative regions, enhancing the attack impact while
maintaining imperceptibility (see Appendix B for detailed visualization).

Effect of Mask Ratio. We conduct an ablation study on the mask ratio to examine its effect on
attack behavior (Table 4). The results reveal a clear trade-off: smaller mask ratios yield more im-
perceptible perturbations with reduced ℓ2 norms, while moderate ratios enhance attack effectiveness
with only a slight loss in stealthiness. However, overly large ratios do not bring proportional gains
and instead increase perturbation magnitude, suggesting that balanced sparsity is key to achieving
both efficiency and imperceptibility.

Effect of Point Cloud Size. We further study the impact of point count on Exhaust3D (Table 5).
On Objaverse, the attack weakens significantly at 2,048 points, with much shorter responses and
lower overhead compared to denser inputs. This is likely because Objaverse objects contain fine-
grained structures that become underrepresented at lower resolutions, limiting the effectiveness of
semantic-aware perturbations. In contrast, ModelNet40 exhibits relatively stable results across all
point counts. Since its CAD-style objects are already coarse and lack detailed geometry, reducing
the number of points does not substantially change the attack outcome.

Summary. Overall, these ablation studies demonstrate that (i) the combination of loss objectives
with PCGrad maximizes attack efficiency, (ii) semantic-aware masking plays a key role in selecting
high-impact points while preserving imperceptibility, (iii) smaller mask ratios yield more stealthy
perturbations without fully sacrificing attack strength, and (iv) the effect of point count depends
on dataset granularity: attacks weaken on Objaverse at low resolutions due to loss of fine-grained
details, whereas ModelNet40 remains stable given its inherently coarse geometry. These findings
highlight the design choices that underpin Exhaust3D’s effectiveness and adaptability across diverse
scenarios.

5 CONCLUSION

In this work, we presented Exhaust3D, the first adversarial framework that performs semantic-
aware resource exhaustion attacks against 3D-LLMs through purely 3D-modal perturbations. By
integrating semantic-aware adversarial manipulation with a trajectory disruption mechanism, Ex-
haust3D induces verbose decoding and substantially escalates inference-time energy consumption
while remaining imperceptible to human observers. Our experiments across multiple datasets, point
cloud resolutions, and masking strategies confirm both the effectiveness and generalizability of the
method, exposing a critical vulnerability in 3D multimodal reasoning systems and underscoring the
need for future research on efficiency-aware defense mechanisms.
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APPENDIX

A MORE EXPERIMENTAL DETAILS

In this work, we focus on 3D point clouds as the input modality (instead of projecting them into
images or multi-view representations). Accordingly, we adopt several open-source and competi-
tive 3D-to-text models as baselines. Below we describe their architectural details and the common
implementation protocols.

PointLLM Settings The adopted PointLLM (Xu et al., 2024) is composed of a Point-BERT (Yu
et al., 2022) encoder pre-trained with ULIP-2 (Xue et al., 2024), a multi-layer projector with GeLU
activations to map point features into the embedding space, and a Vicuna-7B (Chiang et al., 2023)
LLM as the language backbone. With two additional special tokens, the vocabulary size is 32003.
Prompt template used in PointLLM is ‘‘Describe the 3D model.’’.

X-InstructBLIP Settings The adopted X-InstructBLIP (Panagopoulou et al., 2023) integrates a
Point-BERT (Yu et al., 2022) encoder pre-trained with ULIP-2 (Xue et al., 2024) for 3D repre-
sentation learning, a Q-Former module that learns query tokens, and a Vicuna-7B (Chiang et al.,
2023) as the language backbone. All Q-Formers are initialized with BLIP-2 (Li et al., 2023b) stage-
1 weights to ensure stable training and effective multimodal alignment. Prompt template used in
X-InstructBLIP is ‘‘Describe the 3D model.’’.

MiniGPT-3D Settings The adopted MiniGPT-3D (Tang et al., 2024) is composed of a Q-Former
initialized from BLIP-2 (Li et al., 2023b), a Mixture of Query Experts (MQE) to enhance semantic
representation, a modality projector for aligning point queries with the text embedding space, and
the Phi-2-2.7B backbone (Javaheripi et al., 2023) as the language model. Prompt template used in
MiniGPT-3D is ‘‘Describe the 3D model in short’’.

GreenPLM Settings The adopted GreenPLM (Tang et al., 2025) consists of a ViT (Dosovitskiy
et al., 2020) point encoder and an EVA-CLIP-E (Sun et al., 2023) text encoder, both trained by
Uni3D (Zhou et al., 2023), a two-layer MLP projector with GeLU activation to align encoder outputs
with the language embedding space, and the Phi-3 (Abdin et al., 2024) model as the language back-
bone. Prompt template used in GreenPLM is ‘‘Describe the 3D model in detail’’.

Implementation Notes

• All experiments are conducted with FP16 precision.
• Each point cloud is uniformly sampled into 8192 points (except for ablation studies on

point number).
• ModelNet40 objects are assigned a fixed black color to compensate for missing texture.
• All models are evaluated in their default inference mode (no fine-tuning for our attack).
• We ensure that all models receive the same point sampling (e.g., fixed 8,192 points unless

testing point-number ablations).
• For metrics like latency and energy, we run each model under the same hardware setting

(single H20 GPU) and average over multiple runs.

B VISUALIZATION OF OUR SAMANTIC-AWARE MASK

To qualitatively illustrate the behavior of our semantic-aware mask, we visualize its effect on rep-
resentative point clouds from both Objaverse (Deitke et al., 2023) (Figure 5) and ModelNet40 (Wu
et al., 2015) (Figure 6). In each figure, the top row shows the point cloud with the semantic-aware
mask applied, highlighting the points selected for perturbation, while the bottom row shows the
original, unmasked point cloud for reference.

As can be observed, the semantic-aware mask consistently covers the core regions of the objects
that are strongly associated with their semantic meaning. For example, in the Objaverse samples
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(Figure 5), the mask predominantly highlights the body and characteristic parts of objects, leaving
peripheral or less informative points unaltered. Similarly, in ModelNet40 (Figure 6), masked points
focus on the geometrically and semantically salient regions, such as the roof and legs of chairs or the
wings and fuselage of airplanes. This visualization confirms that our mask selectively targets points
that are most influential for the model’s understanding, ensuring that perturbations concentrate on
semantically critical areas while minimally affecting irrelevant points.

Figure 5: The visualization of our semantic-aware mask on Objaverse. The top row shows the
masked object, while the bottom row shows the original object without mask. In the masked objects,
points covered by the semantic-aware mask are highlighted in red, while the remaining unmasked
points are shown in green.

Figure 6: The visualization of our semantic-aware mask on ModelNet40. The top row shows the
masked object, while the bottom row shows the original object without mask. In the masked objects,
points covered by the semantic-aware mask are highlighted in red, while the remaining unmasked
points are shown in green.
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C LLM USAGE

We used an OpenAI LLM (GPT-5) as a writing and formatting assistant. In particular, it helped refine
grammar and phrasing, improve clarity, and suggest edits to figure/table captions and layout (e.g.,
column alignment, caption length, placement). The LLM did not contribute to research ideation,
experimental design, implementation, data analysis, or technical content beyond surface-level edits.
All outputs were reviewed and edited by the authors, who take full responsibility for the final text
and visuals.
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