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ABSTRACT

A powerful framework for studying graphs is to consider them as geometric graphs:
nodes are randomly sampled from an underlying metric space, and any pair of nodes
is connected if their distance is less than a specified neighborhood radius. Currently,
the literature mostly focuses on uniform sampling and constant neighborhood
radius. However, real-world graphs are likely to be better represented by a model
in which the sampling density and the neighborhood radius can both vary over the
latent space. For instance, in a social network communities can be modeled as
densely sampled areas, and hubs as nodes with larger neighborhood radius. In this
work, we first perform a rigorous mathematical analysis of this (more general) class
of models, including derivations of the resulting graph shift operators. The key
insight is that graph shift operators should be corrected in order to avoid potential
distortions introduced by the non-uniform sampling. Then, we develop methods to
estimate the unknown sampling density in a self-supervised fashion. Finally, we
present exemplary applications in which the learned density is used to 1) correct
the graph shift operator and improve performance on a variety of tasks, 2) improve
pooling, and 3) extract knowledge from networks. Our experimental findings
support our theory and provide strong evidence for our model.

1 INTRODUCTION

Graphs are mathematical objects used to represent relationships among entities. Their use is ubiq-
uitous, ranging from social networks to recommender systems, from protein-protein interactions
to functional brain networks. Despite their versatility, their non-euclidean nature makes graphs
hard to analyze. For instance, the indexing of the nodes is arbitrary, there is no natural definition
of orientation, and neighborhoods can vary in size and topology. Moreover, it is not clear how to
compare a general pair of graphs since they can have a different number of nodes. Therefore, new
ways of thinking about graphs were developed by the community. One approach is proposed in
graphon theory (Lovasz, [2012): graphs are sampled from continuous graph models called graphons,
and any two graphs of any size and topology can be compared using certain metrics defined in the
space of graphons. A geometric graph is an important case of a graph sampled from a graphon. In a
geometric graph, a set of points is uniformly sampled from a metric-measure space, and every pair of
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points is linked if their distance is less than a specified neighborhood radius. Therefore, a geometric
graph inherits a geometric structure from its latent space that can be leveraged to perform rigorous
mathematical analysis and to derive computational methods.

Geometric graphs have a long history, dating back to the 60s (Gilbert, [1961). They have been
extensively used to model complex spatial networks (Barthelemyl |2011)). One of the first models
of geometric graphs is the random geometric graph (Penrose, 2003), where the latent space is a
Euclidean unit square. Various generalizations and modifications of this model have been proposed
in the literature, such as random rectangular graphs (Estrada & Sheerin, 20135)), random spherical
graphs (Allen-Perkins, [2018)), and random hyperbolic graphs (Krioukov et al., 2010).

Geometric graphs are particularly useful since they share properties with real-world networks. For
instance, random hyperbolic graphs are small-world, scale-free, with high clustering (Papadopoulos
et al.,|2010; |Gugelmann et al.l 2012). The small-world property asserts that the distance between any
two nodes is small, even if the graph is large. The scale-free property is the description of the degree
sequence as a heavy-tailed distribution: a small number of nodes have many connections, while the
rest have small neighborhoods. These two properties are related to the presence of hubs — nodes with
large neighborhoods — while the high clustering is related to the network’s community structure.

However, standard geometric graph models focus mainly on uniform sampling, which does not
describe real-world networks well. For instance, in location-based social networks, the spatial
distribution of nodes is rarely uniform because people congregate around the city centers (Cho et al.,
2011; [Wang & Gonzalez, 2009). In online communities such as the LiveJournal social network,
non-uniformity arises since the probability of befriending a particular person is inversely proportional
to the number of closer people (Hu et al., [2011}; [Liben-Nowell et al., [2005). In a WWW network,
there are more pages for popular topics than obscure ones. In social networks, different demographics
(age, gender, ethnicity, etc.) may join a social media platform at different rates. For surface meshes,
specific locations may be sampled more finely, depending on the required level of detail.

The imbalance caused by non-uniform sampling could affect the analysis and lead to biased results.
For instance, Janssen et al.| (2016) show that incorrectly assuming uniform density consistently
overestimates the node distances while using the (estimated) density gives more accurate results.
Therefore, it is essential to assess the sampling density, which is one of the main goals of this paper.

Barring a few exceptions, non-uniformity is rarely considered in geometric graphs. Iyer & Thacker
(2012) study a class of non-uniform random geometric graphs where the radii depend on the location.
Martinez-Martinez et al.|(2022) study non-uniform graphs on the plane with the density functions
specified in polar coordinates. |Pratt et al.| (2018) consider temporal connectivity in finite networks
with non-uniform measures. In all of these works, the focus is on (asymptotic) statistical properties
of the graphs, such as the average degree and the number of isolated nodes.

1.1 OUR CONTRIBUTION

While traditional Laplacian approximation approaches solve the direct problem — approximating a
known continuous Laplacian with a graph Laplacian — in this paper we solve the inverse problem —
constructing a graph Laplacian from an observed graph that is guaranteed to approximate an unknown
continuous Laplacian. We believe that our approach has high practical significance, as in practical
data science on graphs, the graph is typically given, but the underlying continuous model is unknown.

To be able to solve this inverse problem, we introduce the non-uniform geometric graph (NuG) model.
Unlike the standard geometric graph model, a NuG is generated by a non-uniform sampling density
and a non-constant neighborhood radius. In this setting, we propose a class of graph shift operators
(GSOs), called non-uniform geometric GSOs, that are computed solely from the topology of the
graph and the node/edge features while guaranteeing that these GSOs approximate corresponding
latent continuous operators defined on the underlying geometric spaces. Together with |Dasoulas et al.
(2021)) and Sahbi| (2021)), our work can be listed as a theoretically grounded way to learn the GSO.

Justified by formulas grounded in Monte-Carlo analysis, we show how to compensate for the non-
uniformity in the sampling when computing non-uniform geometric GSOs. This requires having
estimates both of the sampling density and the neighborhood radii. Estimating these by only observing
the graph is a hard task. For example, graph quantities like the node degrees are affected both by the
density and the radius, and hence, it is hard to decouple the density from the radius by only observing
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the graph. We hence propose methods for estimating the density (and radius) using a self-supervision
approach. The idea is to train, against some arbitrary task, a spectral graph neural network, where
the GSOs underlying the convolution operators are taken as a non-uniform geometric GSO with
learnable density. For the model to perform well, it learns to estimate the underlying sampling density,
even though it is not directly supervised to do so. We explain heuristically the feasibility of the
self-supervision approach on a sub-class of non-uniform geometric graphs that we call geometric
graphs with hubs. This is a class of geometric graphs, motivated by properties of real-world networks,
where the radius is roughly piece-wise constant, and the sampling density is smooth.

We show experimentally that the NuG model can effectively model real-world graphs by training
a graph autoencoder, where the encoder embeds the nodes in an underlying geometric space, and
the decoder produces edges according to the NuG model. Moreover, we show that using our non-
uniform geometric GSOs with learned sampling density in spectral graph neural networks improves
downstream tasks. Finally, we present proof-of-concept applications in which we use the learned
density to improve pooling and extract knowledge from graphs.

2  NON-UNIFORM GEOMETRIC MODELS

In this section, we define non-uniform geometric GSOs, and a subclass of such GSOs called geometric
graphs with hubs. To compute such GSOs from the data, we show how to estimate the sampling
density from a given graph using self-supervision.

2.1 GRAPH SHIFT OPERATORS AND KERNEL OPERATORS

We denote graphs by G = (V, £), where V is the set of nodes, |V| is the number of nodes, and & is
the set of edges. A one-dimensional graph signal is a mapping u : V — R. For a higher feature
dimension F' € N, a signal is a mapping u : V — R’ In graph data science, typically, the data
comprises only the graph structure G and node/edge features u, and the practitioner has the freedom
to design a graph shift operator (GSO). Loosely speaking, given a graph G = (V, £), a GSO is any
matrix L € RIVIXIVI that respects the connectivity of the graph, i.e., L; ; = 0 whenever (i, j) ¢ &,
i # 7 (Mateos et al.|[2019). GSOs are used in graph signal processing to define filters, as functions
of the GSO of the form f(L), where f : R — Riis, e.g., a polynomial (Defferrard et al.,2016)) or a
rational (Levie et al.,|2019)) function. The filters operate on graph signals u by f(L)u. Spectral graph
convolutional networks are the class of graph neural networks that implement convolutions as filters.
When a spectral graph convolutional network is trained, only the filters f : R — R are learned. One
significant advantage of the spectral approach is that the convolution network is not tied to a specific
graph, but can rather be transferred between different graphs of different sizes and topologies.

In this work, we see GSOs as randomly sampled from kernel operators defined on underlying
geometric spaces. The underlying spaces are modelled as metric spaces. To allow modeling the
random sampling of points, each metric space is also assumed to be a probability space.

Definition 1. Let (S, d, i) be a metric-probability spac with probability measure p and metric d;
letm € L"O(S)E]; let K € L>°(S x S). The metric-probability Laplacian £ = L ., is defined as

L:L7(8) = L=(S), (Lu)(z) :/K(x,y) u(y) dp(y) —m(z) u(z). M
S

For example, let S be a Riemannian manifold, and take K (z,y) = lg_(2)(y)/u(Ba(z)) and
m(z) = 1, where B, () is the ball or radius o about . In this case, the operator £ ,,, approximates
the Laplace-Beltrami operator when « is small (Burago et al., 2019).

A random graph is generated by randomly sampling points from the metric-probability space (S, d, ut).
As a modeling assumption, we suppose the sampling is performed according to a measure v. We
assume v is a weighted measure with respect to , i.e., there exists a density function p : S — (0, 00)

'A metric-probability space is a triple (S, d, 1), where S is a set of points, and  is the Borel measure
corresponding to the metric d.

?A function g : S — R is an element of L°°(S) iff. IM < oo : p({x € S : |g(z)| > M}) = 0. The norm
in L°°(S) is the essential supremum, i.e. inf{M > 0: |g(z)| < M for almost every z € S}.
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such that dv(y) = p(y) du(y)ﬂ We assume that p is bounded away from zero and infinity. Using a
change of variable, it is easy to see that

(Cu)(z) = / K () ply) " u(y) dv(y) — m(z) u(z)
S

Let x = {z;}}¥, be a random independent sample from S according to the distribution . The
corresponding sampled GSO L is defined by

Lij = N'K(xi,z;)p(z;) " — m(z;). 2)

Given a signal u € L>°(S), and its sampled version u = {u(z;)}%,, it is well known that (Lu);
approximates Lu(x;) forevery i € {1,..., N} (Hein et al., 2007; von Luxburg et al., 2008).

2.2 NON-UNIFORM GEOMETRIC GSOs

According to a GSO L can be directly sampled from the metric-probability Laplacian £. However,
such an approach would violate our motivating guidelines, since we are interested in GSOs that can
be computed directly from the graph structure, without explicitly knowing the underlying continuous
kernel and density. In this subsection, we define a class of metric-probability Laplacians that allow
such direct sampling. For that, we first define a model of adjacency in the metric space.

Definition 2. Let (S, d, 1) be a metric-probability space. Let e : S — (0, +00) be a non-negative
measurable function named neighborhood radius. The neighborhood model N is defined as the set-
valued function that assigns to each z € S theball N'(z) = {y € S : d(z,y) < max (a(z), (y))}.

Since y € N (x) implies z € N (y) for all z, y € S,[Def. 2] models only symmetric graphs. Next, we
define a class of continuous Laplacians based on neighborhood models.

Definition 3. Let (S, d, ;1) be a metric-probability space, and A/ a neighborhood model as in
Let m® : R — R be a continuous function for every i € {1,...,4}. The metric-probability
Laplacian model is the kernel operator £ that operates on signals u : S — R by

(L) (@)= [ (1 (V@) ) ) (1 (V) ) ulo) di(o)

= [ (0 @) D (1 (V) o) )
N)

3)

In order to give a concrete example, suppose the neighborhood radius «(z) = « is a constant,
mM(z) =mB(z) = 2=, and m? (z) = m® (x) = 1, then|(3)|gives

(Lars) () = ) / u(y) dply) — u(z),

14 (B(,(x)
Ba(m)

which is an approximation of the Laplace-Beltrami operator.

Since the neighborhood model of S represents adjacency in the metric space, we make the modeling
assumption that graphs are sampled from neighborhood models, as follows. First, random independent
points x = {z;}¥; are sampled from S according to the “non-uniform” distribution v as before.
Then, an edge is created between each pair z; and z; if 2; € N (x;), to form the graph G. Now,
a GSO can be sampled from a metric-probability Laplacian model £xr by [2)] if the underlying
continuous model is known. However, such knowledge is not required, since the special structure of
the metric-probability Laplacian model allows deriving the GSO directly from the sampled graph G
and the sampled density {p(z;)} ;. below gives such a construction of GSO. In the following,
given a vector u € RY and a function m : R — R, we denote by m(u) the vector {m(u;)}¥ , and
by diag(u) € RY*¥ the diagonal matrix with diagonal u.

3Formally, v is absolutely continuous with respect to 4, with Radon-Nykodin derivative p.
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Definition 4. Let G = (V, £) be a graph with adjacency matrix A; let p : V — (0, 00) be a graph
signal, referred to as graph density. The non-uniform geometric GSO is defined to be

Lg, = N"'D{)A,DP — N~ diag (D A,D{1) | )
where A, = A diag(p)~! and DY) = diag (m(i) (N"*A, 1))

can retrieve, as particular cases, the usual GSOs, as shown in [Tab. 3| in [Appendix C} For
example, in case of m(Y (z) = m®)(2) = 271, m®(z) = m® (x) = 1, and uniform sampling
p = 1,|(4)|leads to the random-walk Laplacian Lg ; = D~'A — I. The non-uniform geometric GSO
in [Def. 4]is the Monte-Carlo approximation of the metric-probability Laplacian in[Def. 3] This is
shown in the following proposition, whose proof can be found in

Proposition 1. Let G = (V, £) be a random graph with i.i.d. sample x = {x;}¥| from the metric-
probability space (S, d, i) with neighborhood structure N'. Let Lg , be the non-uniform geometric

GSO as in Letu € L>°(S) and u = {u(x;)}} .. Then, for everyi=1,..., N,

E (Lgpu); — (Lau)(z:))* = O(NY). )

In[Appendix D] we also show that, in probability at least 1 — p, it holds
Vi€ {1, N}, (Lo pu)i — (Lxw)(e:)] = O (N4 log(1/p) +log(N)) . (6)

Prop. 1| means that if we are given a graph that was sampled from a neighborhood model, and we
know (or have an estimate of) the sampling density at every node of the graph, then we can compute a
GSO according to[(4)| that is guaranteed to approximate a corresponding unknown metric-probability
Laplacian. The next goal is hence to estimate the sampling density from a given graph.

2.3 INFERRING THE SAMPLING DENSITY

In real-world scenarios, the true value of the sampling density is not known. The following result
gives a first rough estimate of the sampling density in a special case.

Lemma 1. Let (S, d, 1) be a metric-probability space; let N be a neighborhood model; let v be a
weighted measure with respect to |1 with continuous density p bounded away from zero and infinity.

There exists a function ¢ : 8 — S such that c(z) € N(z) and (poc)(z) =v(N(z))/nN(z)).

The proof can be found in[Appendix D] In light of if the neighborhood radius of z is small

enough, if the volumes (N (z)) are approximately constant, and if p does not vary too fast, the
sampling density at x is roughly proportional to v(N(z)), that is, the likelihood a point is drawn from
N (). Therefore, in this situation, the sampling density p(z) can be approximated by the degree of
the node . In practice, we are interested in graphs where the volumes of the neighborhoods 1(N ()
are not constant. Still, a normalization of the GSO by the degree can soften the distortion introduced
by non-uniform sampling, at least locally in areas where p (N (x)) is slowly varying. This suggests
that the degree of a node is a good input feature for a method that learns the sampling density from
the graph structure and the node features. Such a method is developed next.

2.4 GEOMETRIC GRAPHS WITH HUBS

When designing a method to estimate the sampling density from the graph, the degree is not a
sufficient input parameter. The reason is that the degree of a node has two main contributions: the
sampling density and the neighborhood radius. The problem of decoupling the two contributions
is difficult in the general case. However, if the sampling density is slowly varying, and if the
neighborhood radius is piecewise constant, the problem becomes easier. Intuitively, a slowly varying
sampling density causes a slight change in the degree of adjacent nodes. In contrast, a sudden change
in the degree is caused by a radius jump. In time-frequency analysis and compressed sensing, various
results guarantee the ability to separate a signal into its different components, e.g., piecewise constant
and smooth components (Do et al.| [2022; Donoho & Kutyniok, 2013} |Gribonval & Bacry, [2003).
This motivates our model of geometric graphs with hubs.
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Definition 5. A geometric graph with hubs is a random graph with non-uniform geometric GSO,
sampled from a metric-probability space (S, d, 1) with neighborhood model NV, where the sampling
density p is Lipschitz continuous in S and p(N (x)) is piecewise constant.

We call this model a geometric graph with hubs since we typically assume that p(N(z)) has a low
value for most points x € S, while only a few small regions, called hubs, have large neighborhoods.
In[Section 3.1] we exhibit that geometric graphs with hubs can model real-world graphs. To validate
this, we train a graph auto-encoder on real-world networks, where the decoder is restricted to be a
geometric graph with hubs. The fact that such a decoder can achieve low error rates suggests that
real-world graphs can often be modeled as geometric graphs with hubs.

Geometric graphs with hubs are also reasonable from a modeling point of view. For example, it is
reasonable to assume that different demographics join a social media platform at different rates. Since
the demographic is directly related to the node features, and the graph roughly exhibits homophily,
the features are slowly varying over the graph, and hence, so is the sampling density. On the other
hand, hubs in social networks are associated with influencers. The conditions that make a certain user
an influencer are not directly related to the features. Indeed, if the node features in a social network
are user interests, users that follow an influencer tend to share their features with the influencer, so
the features themselves are not enough to determine if a node is deemed to be a center of a hub or not.
Hence, the radius does not tend to be continuous over the graph, and, instead, is roughly constant and
small over most of the graph (non-influencers), except for some narrow and sharp peaks (influencers).

2.5 LEARNING THE SAMPLING DENSITY

In the current section, we propose a strategy to assess the sampling density p. As suggested by the
above discussion, the local changes in the degree of the graph give us a lot of information about
the local changes in the sampling density and neighborhood radius of geometric graphs with hubs.
Hence, we implement the density estimator as a message-passing graph neural network (MPNN) ©
because it performs local computations and it is equivariant to node indexing, a property that both
the density and the degree satisfy. Since we are mainly interested in estimating the inverse of the
sampling density, © takes as input the inverse of the degree and the inverse of the mean degree of the
one-hop neighborhood for all nodes in the graph as two input channels.

However, it is not yet clear how to train ©. Since in real-world scenarios the ground-truth density is
not known, we train © in a self-supervised manner. In this context, we choose a task (link prediction,
node or graph classification, etc.) on a real-world graph G and we solve it by means of a graph neural
network U, referred to as task network. Since we want W to depend on the sampling density estimator
O, we define W as a spectral graph convolution network based on the non-uniform geometric GSO
Lg’@(g), e.g., GCN (Kipf & Welling, |2017), ChebNet (Defferrard et al.,|2016) or CayleyNet (Levie
et al.,[2019). We, therefore, train W end-to-end on the given task.

The idea behind the proposed method is that the task depends mostly on the underlying continuous
model. For example, in shape classification, the label of each graph depends on the surface from which
the graph is sampled, rather than the specific intricate structure of the discretization. Therefore, the
task network W can perform well if it learns to ignore the particular fine details of the discretization,
and focus on the underlying space. The correction of the GSO via the estimated sampling density
gives the network exactly such power. Therefore, we conjecture that © will indeed learn how
to estimate the sampling density for graphs that exhibit homophily. In order to verify the previous
claim, and to validate our model, we focus on link prediction on synthetic datasets (see[Appendix BJ),
for which the ground-truth sampling density is known. As shown in|[Fig. T| the MPNN © is able to
correctly identify hubs, and correctly predict the ground-truth density in a self-supervised manner.

3 EXPERIMENTS

In the following, we validate the NuG model experimentally. Moreover, we verify the validity of our
method first on synthetic datasets, then on real-world graphs in a transductive (node classification)
and inductive (graph classification) setting. Finally, we propose proof-of-concept applications in
explainability, learning GSOs, and differentiable pooling.
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Figure 1: Example of the learned probability density function in link prediction, where the underlying
metric space is (a) the unit-circle, and (b) the unit disk. (Left) Ground-truth sampling density vs.
learned sampling density at the nodes. (Right) Degree vs. learned sampling density.
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Figure 2: Test AUC for link prediction task as a function of the dimension of the latent space.
Performances averaged across 10 runs on each value of the latent dimension.

3.1 LINK PREDICTION

The method proposed in is applied on synthetic datasets of geometric graphs with hubs
(see for details . In[Fig- ] it is shown that © is able to correctly predict
the value of the sampling density. The left plots of and [Tb] show that the density is well
approximated both at hubs and non-hubs. Looking at the right plots, it is evident that the density

cannot be predicted solely from the degree.

[Fig. 2]and [Fig. 7]in [Appendix A.3|show that the NuG model is able to effectively represent real-world
graphs, outperforming other graph auto-encoder methods (see for the number of parameters
of each method). Here, we learn an auto-encoder with four types of decoders: inner product,
MLP, constant neighborhood radius, and piecewise constant neighborhood radius corresponding to a
geometric graph with hubs (see [Appendix A.3|for more details). Better performances are reached if
the graph is allowed to be a geometric graph with hubs as in Moreover, the performances
of distance and distance+hubs decoder seem to be consistent among different datasets, unlike the
inner product and MLP decoders. This corroborates the claims that real-world graphs can be better
modeled as geometric graphs with non-constant neighborhood radius. |[Fig. 8|in[Appendix A.3[shows
the learned probabilities of being a hub, and the learned values of « and 3, for the Pubmed graph.

3.2 NODE CLASSIFICATION

Another exemplary application is to use a non-uniform geometric GSO Lg , in a spectral
graph convolution network for node classification tasks, where the density p; at each node 7 is
computed by a different graph neural network, and the whole model is trained end-to-end on the task.
The details are reported in|Appendix A.2} In|Fig. 3| we show the accuracy of the best-scoring GSO
out of the ones reported in “ when the density is ignored against the best-scoring GSO when the
sampling density is learned. For Citeseer and FacebookPagePage, the best GSOs are the symmetric
normalized adjacency matrix. For Cora and Pubmed, the best density-ignored GSO is the symmetric
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Figure 3: Test accuracy on node classification task. Comparison between the best scoring GSOs
when the density is ignored (I) or learned (L). Results averaged across 10 runs: each point represents

the performance at one run
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Figure 4: Test metrics of the graph classification task on the AIDS dataset, using the combinatorial
Laplacian (a) and the symmetric normalized adjacency (b), averaged over 10 runs. Comparison when
the importance p~—! is ignored (I), used to correct the Laplacian (L), or used for pooling (P). Each
point represents the performance at one run. In (a) the best performances are reached when p~! is

used to correct the Laplacian, and in (b) when p~* is used for pooling.

normalized adjacency matrix, while the best density-normalized GSO is the adjacency matrix.
For AmazonComputers and AmazonPhoto, the best-scoring GSOs are the symmetric normalized
Laplacian. This validates our analysis: if the sampling density is ignored, the best choice is to
normalize the Laplacian by the degree to soften the distortion of non-uniform sampling.

3.3 GRAPH CLASSIFICATION & DIFFERENTIABLE POOLING

In this experiment we perform graph classification on the AIDS dataset (Riesen & Bunkel 2008)), as
explained in [Appendix A.2} [Fig. 4] shows that the classification performances of a spectral graph
neural network are better if a quota of parameters is used to learn p which is used in a non-uniform
geometric GSO (Def. 4). The learnable p on the AIDS dataset can be used not only to correct the
Laplacian but also to perform a better pooling (see [Appendix A.2]for the details). Usually, a graph
convolutional neural network is followed by a global pooling layer in order to extract a representation
of the whole graph. A vanilla pooling layer aggregates uniformly the contribution of all nodes. We
implemented a weighted pooling layer that takes into account the importance of each node. As shown
in the weighted pooling layer can indeed improve performances on the graph classification
task. [Fig. 6]in [Appendix A.2]shows a comparison between the degree, the density learned to correct
the GSO and the density learned for pooling. From the plot it is clear that the degree cannot predict
the density. Indeed, the sampling density at nodes with the same degree can have different values .
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Figure 5: (Left) Distribution of chemical elements per class (active, inactive respectively in blue, red)
computed as the number of compounds labeled as active (inactive) containing that particular element
divided by the number of active (inactive) compounds. This is a measure of rarity. For example,
potassium is present in 5 out of 400 active compounds, and in 1 over 1600 inactive compounds.
Hence, it is more rare to find potassium in an inactive compound. (Right) The mean importance of
each element when p~! is used to correct the GSO (L, orange) and when it is used for weighted
pooling (P, green). Carbon, oxygen, and nitrogen have low mean importance, which makes sense
as they are present in almost every compound, as shown in the left plot. The chemical elements are
sorted according to their mean importance when p~! is used to correct the GSO (orange bars).

3.4 EXPLAINABILITY IN GRAPH CLASSIFICATION

In this experiment, we show how to use the density estimator for explainability. The inverse density
vector p~! can be interpreted as a measure of importance of each node, relative to the task at hand,
instead of sampling density. Thinking about p~! as importance is useful when the graph is not
naturally seen as randomly generated from a graphon model. We applied this paradigm to the AIDS
dataset, as explained in the previous subsection. The better classification performances when p is
learned demonstrates that p is an important feature for the classification task, and hence, it can be
exploited to extract knowledge from the graph. We define the mean importance of each chemical
element e as the sum of all values of p~! corresponding to nodes labeled as e divided by the number
of nodes labeled e. shows the mean importance of each element, when p~! is estimated by
using it as a module in the task network in two ways. (1) The importance p~! is used to correct the
GSO. (2) The importance p~*! is used in a pooling layer, that maps the output of the graph neural

network W to one feature of the form le‘;ll p; ¥ (X);, where X denotes the node features. In both
cases, the most important elements are the same; therefore, the two methods seem to be consistent.

CONCLUSIONS

In this paper, we addressed the problem of learning the latent sampling density by which graphs are
sampled from their underlying continuous models. We developed formulas for representing graphs
given their connectivity structure and sampling density using non-uniform geometric GSOs. We then
showcased how the density of geometric graphs with hubs can be estimated using self-supervision,
and validated our approach experimentally. Last, we showed how knowing the sampling density can
help with various tasks, e.g., improving spectral methods, improving pooling, and gaining knowledge
from graphs. One limitation of our methodology is the difficulty in validating that real-world graphs
are indeed sampled from latent geometric spaces. While we reported experiments that support this
modeling assumption, an important future direction is to develop further experiments and tools to
support our model. For instance, can we learn a density estimator on one class of graphs and transfer
it to another? Can we use ground-truth demographic data to validate the estimated density in social
networks? We believe future research will shed light on those questions and find new ways to exploit
the sampling density for various applications.
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A IMPLEMENTATION DETAILS

A.1 SYNTHETIC DATASET GENERATION

This section explains how to generate a synthetic dataset of geometric graphs with hubs. We first
consider a metric space. For our experiments, we mainly focused on the unit-circle S! and on the unit-
disk D (see[Appendix B|for more details). Each graph is generated as follows. First, a non-uniform
distribution is randomly generated. We considered an angular non-uniformity as described in[Def. 6]
where the number of oscillating terms, as well as the parameters ¢, n, u, are chosen randomly. In the
case of 2-dimensional spaces, the radial distribution is the one shown in[Tab. 2] According to each
generated probability density function, N points {z;}Y , are drawn mdependently Among them,
m < N are chosen randomly to be hubs, and any other node whose distance from a hub is less than
some £ > 0 is also marked as a hub. We consider two parameters «, 5 > 0. The neighborhood radius
about non-hub (respectively, hubs) nodes is taken to be « (respectively o + ). Any two points are
then connected if

« x is non-hub

(i, ;) < max{r(z:), r(z;)}, 7(z) = {a L5 i
In practical terms, « is computed such that the resulting graph is strongly connected, hence, it differs
from graph to graph; 3 is set to be 3 « and € to be «/10.

A.2 DENSITY ESTIMATION WITH SELF-SUPERVISION

Density Estimation Network In our experiments, the inverse of the sampling density, 1/p, is
learned by means of an EdgeConv neural network © (Wang et al.|[2019), which is referred to as PNet
in the following, where the message function is a multi-layer perceptron (MLP), and the aggregation
function is max(-), followed by a abs(-) non-linearity. The number of hidden layers, hidden channels,
and output channels is 3, 32, and 1, respectively. Since the degree is an approximation of the sampling
density, as stated in and since we are interested in computing its inverse to correct the
GSO, the input of PNet is the inverse of the degree and the inverse of the mean degree of the one-hop
neighborhood. Justified by the Monte-Carlo approximation

N
1= [duty) = [ o) dvl) % NN plan) T i p¥i =1,
s s i=1

the output of PNet is normalized by its mean.

Self-Supervision of PNet via Link Prediction on Synthetic Dataset To train the PNet ©, for each
graph G, we use ©(G) to define a GSO Lg ¢(g). Then, we define a graph auto-encoder, where the
encoder is implemented as a spectral graph convolution network with GSO Lg o(g)- The decoder is
the usual inner-product decoder. The graph signal is a slice of 20 random columns of the adjacency
matrix. The number of hidden channels, hidden layers, and output channels is respectively 32, 2, and
2. For each node j, the network outputs a feature O(G) ; in R™. Here, R™ is seen as the metric space
underlying the NuG. In our experiments (Section 3.1)), we choose n = 2. Some results are shown in
Fig. 1

Node Classification Let G be the real-world graph. In we considered G to be one of
the graphs reported in The task network ¥ is a polynomial convolutional neural network
implementing a GSO Lg ¢(g), where © is the PNet; the order of the polynomial spectral filters is 1,
the number of hidden channels 32, and the number of hidden layers 2; the GSOs used are the ones in
The optimizer is ADAM (Kingma & Ba, 2015) with learning rate 10~2. We split the nodes in
training (85%), validation (5%), and test (10%) in a stratified fashion, and apply early stopping. The
performances of the method are shown in

Graph Classification Let G be the real-world graph. In G is any compound in the
AIDS dataset. The task network W is a polynomial convolutional neural network implementing a
GSO Lg o(g), where O is the PNet; the order of the spectral polynomial filters is 1, the number of
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Figure 6: Comparison between degree, density learnt to correct the GSO py,, and density learnt to
perform weighted pooling pp, AIDS dataset.

hidden channels 128 and the number of hidden layers 2. The optimizer is ADAM with learning rate
10~2. We perform a stratified splitting of the graphs in training (85%), validation (5%), and test
(10%), and applied early stopping. The chosen batch size is 64. The pooling layer is a global add
layer.

In case of weighted pooling as in{Section 3.3| the task network ¥ implements as GSO Lg 1, while ©
is used to output the weights of the pooling layer. The performance metrics of both approaches are

shown in

A.3 GEOMETRIC GRAPHS WITH HUBS AUTO-ENCODER

Here, we validate that real-world graphs can be modeled approximately as geometric graphs with
hubs, as claimed in[Section 3.1} We consider the datasets listed in[Tab. 1] The auto-encoder is defined
as follows. Let G be the real-world graph with N nodes and F node features; let X € RV ¥ be the
feature matrix. Let n be the dimension of the metric space in which nodes are embedded. Let ¥ be a
spectral graph convolutional network, referred to as encoder. Let ¥(X); and ¥(X); € R” be the
embedding of nodes 7 and j respectively. A decoder is a mapping R™ x R™ — [0, 1] that takes as
input the embedding of two nodes i, j and returns the probability that the edge (4, j) exists.

We use four types of decoders. (1) The inner product decoder from Kipt & Welling| (2016) is defined
as o ((¥(X);, ¥(X);)), where o(-) is the logistic sigmoid function. (2) The MLP decoder is defined
as o (MLP([¥(X);, ¥(X);])), where [¥(X);, U(X);] € R?" denotes the concatenation of ¥ (X);
and ¥(X);, and MLP denotes a multi-layer perceptron. (3) The distance decoder corresponds to
geometric graphs. Itis defined as o (o — || ¥(X); — ¥(X);]|2), where « is the trainable neighborhood
radius. (4) The distance+hubs decoder corresponds to geometric graphs with hubs. It is defined
as o(o + max{Y(D);, T(D);}5 — || ¥(X); — ¥(X),]|2), where ¢, § are trainable parameters that
describe the radii of hubs and non-hubs. T is a message-passing graph neural network (with the same
architecture of PNet) that takes as input a signal D computed from the node degrees (i.e., the inverse
of the degree and the inverse of the mean degree of the one-hop neighborhood), and outputs the
probability that each node is a hub. Y is learned end-to-end together with the rest of the auto-encoder.
In order to guarantee that 0 < Y(G); < 1 the network is followed by a min-max normalization.

The distance decoder is justified by the fact that the condition ||¥(X); — ¥(X);]|2 < « can be
rewritten as H(a — ||¥(X); — ¥(X);||2), where H(-) is the Heaviside function. The Heaviside
function is relaxed to the logistic sigmoid for differentiability. Similar reasoning lies behind the
formula of the distance+hubs decoder.

The encoder ¥ is a polynomial spectral graph convolutional neural network implementing as GSO
the symmetric normalized adjacency matrix; the order of the polynomial filters is 1, the number
of hidden channels 32 and the number of hidden layers 2. In the case of inner-product, MLP and
distance decoder, the loss is the cross entropy of existing and non-existing edges. In the case of
distance+hubs-decoder, we also add || Y(G)||1/N to the loss, as a regularization term, since in our
model we suppose the number of hubs is low. The optimizer is ADAM with learning rate 1072, We
split the edges in training (85%), validation (5%) and test (10%), and apply early stopping. The
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Table 1: Real-world networks used for the link prediction task: graph statistics and number of param-
eters of the auto-encoder for each of the three decoder types: inner product, distance, distance+hubs
and MLP. Since the number of input channels of the MLP decoder depends on the latent dimension
n, we report the number of parameter for n = 3.

Statistics Decoder
Dataset N.nodes N.edges N.features N. classes Inner product Distance Distance+Hubs MLP
Citeseer
(Yang et al.| 2016} 3,327 9,104 3,703 6 237,154 237,155 239,689 239,750
Cora
(Yang et aL.|2016} 2,708 10,556 1,433 7 91,874 91,875 94,409 94,470
Pubmed
(Yang et al.| 2016) 19,717 88,648 500 3 32,162 32,163 34,697 34,758
Amazon Computers
(Shchur et al.| 2019} 13,752 491,722 767 10 49,250 49,251 51,785 51,846
Amazon Photo
(Shehur et al.|2019) 7,650 238,162 745 8 47,842 47,843 50,377 50,438
FacebookPagePage
(Rozemberczki et al.|[2021) 22470 342,004 128 4 8,354 8,355 10,889 10,950
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Figure 7: Test AP for link prediction task as a function of the dimension of the latent space.
Performances averaged across 10 runs on each value of the latent dimension.

performances of both methods are shown in[Figs. 2and[7} while examples of embeddings and learned
« and 3 are shown in[Fig_ g

The distance decoder has one learnable parameter more than the inner-product decoder. Since PNet
has a fixed number of input channels, the distance+hubs decoder has 2, 535 learnable parameters
more than the inner-product one. On the contrary, the mlp decoder has a number of input channels
that depends on the latent dimension; therefore, the number of hidden channels is chosen to guarantee
that the number of learnable parameters of the mlp decoder is approximately 2, 535.

B SYNTHETIC DATASETS - A BLUEPRINT

In the following, we consider some simple latent metric spaces and construct methods for randomly
generating non-uniform samples. For each space, structural properties of the corresponding NuG are
studied, such as the expected degree of a node and the expected average degree, in case the radius
is fixed and the sampling is non-uniform. All proofs can be found in[Appendix D} if not otherwise
stated.

Three natural metric measure spaces are the euclidean, spherical, and hyperbolic spaces. If we restrict
the attention to 2-dimensional spaces, a way to uniformly sample is summarized in In all
three cases, the radial component arises naturally from the measure of the space. A possible way to
introduce non-uniformity is changing the angular distribution. In this way, preferential directions
will be identified, leading to an anisotropic model.
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Figure 8: (Top left) Embedding of Pubmed in 2 dimensions using a distance+hubs decoder. The
intensity of the color for each node i is proportional to the probability p; = Y(G); of being a hub.
The three colours (red, green and blue) corresponds to the three different classes to which a node
can belong, as reported in[Tab. 1} (Bottom left) Histogram of the probabilities p = T (G) of being
hub divided per class. (Right) Learned values of the radius parameters « (top) and 5 (bottom) of the
geometric graph with hubs auto-encoder on Pubmed, as a function of the latent dimension. Results
averaged across 10 runs for each value of the latent dimension. The average probability of being
a hub is 19.06%, and the number of nodes with a probability of being a hub greater than 0.99 is
10.10%.

Table 2: Properties of euclidean, spherical and hyperbolic spaces of dimension 2. In the case of
euclidean and hyperbolic spaces, the uniform distribution refers to a disk of radius R.

Property Geometry

euclidean 7 a?

spherical 27 (1 — cos(«))
hyperbolic 2 (cosh(a) — 1)
euclidean  (27)~! [ =m) (0)2R™ 11 ry(r)
Uniform pa.  spherical - (27)° !0, (02 (o 0 (#)
hyperbolic  (27)~! 1 =) (0)(cosh(R) — 1)~t smh(r)]l[oﬂ)(r)

euclidean \/7"1 + 12 — 2r17r9 cos(f; — 62)
spherical  arccos (cos(¢1) cos(¢2) + sin(¢1) sin(¢z) cos(fy — 62))
hyperbolic  arccosh(cosh(ry) cosh(rz) — sinh(ry) sinh(ra) cos(6; — 63))

Measure of a ball
of radius «

Distance in polar
coordinates
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Definition 6. Given a natural number C' € N, and vectors ¢ € R®, n € N¢, y € R the function

c c
sb(f;e,n,p) = chcosnzH i) +2,A:2|ci|7B:2w ;|ci|+20i ,

;=0
is a continuous, 27-periodic probability density function. It will be referred to as spectrally bounded.

The cosine can be replaced by a generic 27-periodic function; the only change in the construction
will be the offset and the normalization constant.

Definition 7. Given a natural number C' € N, and the vectors ¢ € R¢, n € N°, n e RS k € R>0,
the function

HlVM(G, N, U,k

+7a

exp(k;cos(n; (0 —p;)) A
B Z 27 To(ky) B

where

A g o e Y S el

it <0 img>1 i, =0 ire; <0 ki)

is a continuous, 27-periodic probability density function. It will be referred to as multimodal von
Mises.

Both densities introduced previously can be thought of as functions over the unit circle. Hence, the
very first space to be studied is S' = {x € R? : ||z|| = 1} equipped with geodesic distance. As
shown in the next proposition, the geodesic distance can be computed in a fairly easy way.

Proposition 2. Given two points x,y € S* corresponding to the angles x,y € [—, ), their geodesic
distance is equal to

d(@,y) =7 — |7 — [z —yl|.
The next proposition computes the degree of a node in a non-uniform unit circle graph.

Proposition 3. Given a spectrally bounded probability density function as in[Def. 6] the expected
degree of a node 0 in a unit circle geometric graph with neighborhood radius o is

deg(f) = % Z & cos(n; (0 — py)) sin(n; ) + Z a+A| al,

n
i £0 iin; =0

and the expected average degree of the whole graph is

E[deg(6)] = 2;# Z Z cic; cos(n (pi — /Lj))M +2 Z ¢+ A

. . n; & )
iin;7#0 jing=n; im; =0
As a direct consequence, in the limit of  going to zero
. PB.O)] 1 5 sin(n; a)
Jm e T E | 2 ceostm @) ((Jm I )| D ek d
i:m; #0 ;=0
=sb(f;¢e,n, 1)

thus, for sufficiently small «, the probability of a ball centered at 6 is proportional to the density
computed in §. Moreover, the error can be computed as

P[B,
Sb(e;c7na“’) [ 205 ‘ 6B Zn &) )

which shows that the approximation worsens the more oscillatory terms there are. In the case of

multimodal von Mises distribution, a closed formula for the probability of balls does not exist. The
following proposition introduces an approximation based solely on cosine functions.
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Proposition 4. A multimodal von Mises probability density function can be approximated by a
spectrally bounded one.

The previous result, combined with gives a way to approximate the expected degree of
spatial networks sampled accordingly to a multimodal von Mises angular distribution. However, the
computation is straightforward when n is the constant vector n 1, since the product of two von Mises
pdf is the kernel of a von Mises pdf
exp(r1 cos(n(8 — 1)) exp(rs cos(n(0 — p2)))
2m Io(lﬁ‘,l) 2m Io(h‘,g)

e (\//c% + K3 + 2K1 K2 cos(n(pr — p2)) cos (n(0 — @)))
471'2 Io(lil)I()(K,Q) ’

where

1 K1 sin(npy) + Ko sin(n pg)
¢ =mn - arctan .
K1 cos(n p1) + Ko cos(n po)
D = {x € R? : ||x|| < 1} equipped with geodesic distance, as in
Proposition 5. Given a spectrally bounded angular distribution as in the degree of a node
(r,0) in a unit disk geometric graph with neighborhood radius o is
deg(r,0) ~ 2w a® Nsb(0;¢,n, ),

and the average degree of the whole network is

The unit circle model is preparatory to the study of more complex spaces, for instance, the unit disk
fTab. 2

272 a? N
E[deg(r, )] ~ —5r Z Z cicj cos(n; (s — py)) + 2 Z ci+A

i:n; #0 jing=n; i:n; =0

shows some examples of non-uniform sampling of the unit disk. The last example will be the
hyperbolic disk with radius R > 1, equipped with geodesic distance as in[Tab. 2]

Proposition 6. Given a spectrally bounded angular distribution as in the degree of a node
(r,0) in a hyperbolic geometric graph with neighborhood radius o is

a—R

deg(r,0) ~ 8Ne 2 sb(8;e,n,p),

a—2R

and the average degree of the whole network is O(N e 2 ).

The proof can be found in The computed approximation is in line with the findings of
Krioukov et al.| (2010), where a closed formula for the uniform case is provided when @ = R. To
the best of our knowledge, this is the first work that considers & # R. Examples of non-uniform

sampling of the hyperbolic disk are shown in

C RETRIEVING AND BUILDING GSOS

In the current section, we first show how to retrieve the usual definition of graph shift operators from
and then how can be used to create novel GSOs. For simplicity, for both goals we
suppose uniform sampling p = 1;[(4)| can be rewritten as

Loi = N~ diag <m<1> (Nld)) A diag (m(2) (N1d>)

— N~ ldiag (diag (m(?’) (N_ld)> A diag (m(4) (N_ld)) 1)

where A is the adjacency matrix and d is the degree vector. exhibit which choice of {m()}1_,
correspond to which graph Laplacian.

)

A question that may arise is whether the innermost diag(-) in|(7)|can be factored out of the outermost
one. As shown in the next proposition, it is not possible in general.
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(a) Non-uniform sampling of the euclidean disk.

(b) Non-uniform sampling of the hyperbolic disk.

Figure 9: Examples of non-uniform (a) euclidean and (b) hyperbolic sampling. The orange curve
represents the angular probability density function, conveniently rescaled for visibility purposes.

Proposition 7. Let A € RV*N A = AT letv € Rgo and V = diag(v), it holds
diag(VA1) =V diag(A1l) = diag(A1) V.
Moreover

diag(AV1) = diag(VAl) <= A, ,;=0Vij=1,...,N : v; #v;.

The proof of the statement can be found in[Appendix D] An important consequence of [Prop. 7is that
the graph Laplacian

L—D AD % — diag (D*%AD*%I) , D = diag(d), 8)

obtained with m(®) () = 22 forevery i € {1,...,4}, is in general different from the symmetric
normalized Laplacian, since

L=D $AD % — diag (D*%AD*%I) 4D PAD ? - D }diag(A1)D"? = Ly,
In light of the two Laplacians are equivalent if every node is connected to nodes with the
same degree, e.g., if the graph is k-regular.

The difference between the two Laplacians can be better seen by studying their spectrum. The next
proposition introduces an upper bound on the eigenvalues of the Laplacian in[(8)]

Proposition 8. Let G = (V, &) be an undirected graph with adjacency matrix A € RN*N and
degree matrix D = diag(A1). Let A be an eigenvalue of the graph Laplacian

L=D #AD"} —diag (D"?AD"#1) ,
it holds |\ < 2v/N.

The proof of the proposition can be found in [Appendix D} It is well known that the spectral radius of
the symmetric normalized Laplacian is less than or equal to 2 (Chung, [1997), with equality holding
for bipartite graphs. However, this is not the case for the Laplacian in[(8)] as shown in the next
example.

19



Published as a conference paper at ICLR 2023

Table 3: Usual graph shift operators as metric-probability Laplacians.

Graph Shift Operator mM(z) mP(z) m® () m®(z)
Adjacency 1(x) 1(x) 0(zx) 0(z)
Combinatorial Laplacian 1(x) 1(x) 1(x) 1(z)
Signless Laplacian
(Cvetkovic & Simic, 2009) @) 1@ -~ @)
Random walk Laplacian x! 1(x -1 1(x)
Right normalized Laplacian 1(z) x ! x! 1(z)
Symmetric normalized adjacency _1 1
(Kipf & Welling| 2017) v v 0@)  0)
Symmetric normalized Laplacian ™2 z72 x! 1(x)
Equation x72 73 73 72

Example 1 (Complete Bipartite Graph). Consider the complete bipartite graph with n nodes in the
first part and mm > n nodes in the second part. Its adjacency and degree matrix are

0 1 ml 0
A — nxn nxm D — nxXn nxm .
(17?’1)(11 Ome) ’ ( Oan nIm.Xm)

A simple computation leads to

L—-D #AD# - diag (D" #AD"#1) = —mAn Fha ()2 Lo )
(nm)*élan *nimialmxm

It can be noted that L has null eigenvalue A\; = 0 corresponding to the constant eigenvector 1,,4,.

The vector v; = —ej + €;, i € {2,...,n} is an eigenvector with eigenvalue Ay = —/m/n,
whose multiplicity is n — 1. Analogously, v; = —e,+1 + €41, € {n+1,...,n+m — 1} is
an eigenvector with eigenvalue \3 = —+/n/m, whose multiplicity is m — 1. Finally, the vector
Voirm = [—m/n1t 11T is eigenvector with eigenvalues Ay = Ao + A3. Therefore, the spectral
radius of L is

A\ | _m +n

A4 vmn

In the case of a balanced graph, n = m implies that the spectral radius is 2. In the case of a star
graph, n = 1 and |\4| = O(y/m) as m — oo; therefore, the asymptotic in is tight.

D PROOFS

Proof of[Prop._1|and concentration of error. Let x = {x;}| be an i.i.d. random sample from p.
Let K and m be the kernel and diagonal parts corresponding to the metric-probability Laplacian L.
Let L, ube

Lij = NT'K (@i, 2)p(a;) " —m(@:), wi = u(w) .
Note that the non-uniform geometric GSO Lg , based on the graph G, which is randomly sampled
from S with neighborhood model N via the sample points X, is exactly equal to L. Conditioned on
xr; = x, the expected value is

N
E(Lw), =N Y B (K(e,a0) o) ulay)) = ml@)u(a) = Lau(a).

Since the random variables {x; };VZI are i.i.d. to y, then also the random variables

N
{E @ 2ole) Fula))}
are i.i.d., hence,
N
var (Lu), = var [ N7! Z K(x,2;)p(x;) tu(z;) — m(z) u(z)

Jj=1
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= N var (K (2, 0)o(y) ()

< N7E (‘K(w,y)p(y)‘lu(y)m
—N—! / ‘K(xyy)p(y)‘lu(y)rp(y) du(y)
S

-1 2 —1 2
<N HK(a:, (1) HLOO(S) ||U||L2(S) )

which proves [(5)]

Next, we prove the concentration of error result. We know that there exist a,b > 0 such that
almost everywhere K (z,z;)p(z;) *u(z;) € [a,b], since K, 1/p and u are essentially bounded. By
Hoeffding’s inequality, for ¢ > 0,

P|(Lu)i — Lau(@)| 2 ¢] < 2 exp (‘<§—Nt>> .

P 9 0 2 N 2
P g [ 2N
N PlTe—az )

solving for ¢, we obtain that for every node there is an event with probability at least 1 — p/N such

that
|(Lu); — Lyu(@)| <272 (b—a)N~21/log(2Np~).

We then intersect all of these events to obtain an event of probability at least 1 — p that satisfies

(6) O

Setting

Proof of[Lemma 1] By hypothesis, there exist m,, M, > 0 such that m, < p(y) < M, for all
y € N (z). Therefore,

it [t < [ )= [ ot <mt [ a).
Nz

N (z) N(z) N(z)
from which
dv
my < f/\/(x) (?J)
fN(;c) du(y)

By the Intermediate Value Theorem, there exists ¢, € A () such that
Inw W)
f N(z) dp(y) 7

from which the thesis follows. O

< M,.

p(Cx) =

Proof of[Prop_2] Consider the map
@ [-m,m) = S", 0~ (cos(f), sin(G))T ,
and the angles z, y, € [—m, 7) such that p(z) = z, p(y) = ¥, it holds

d(z,y) = arccos(zTy) = arccos(cos(z) cos(y) + sin(z) sin(y))
= arccos(cos(x — y))

=r—y+2km
2n4+ax—y, Tz—yE[-2m —7)
y—x, x—y € [-m0)
Y-y, x—y€[0,m)
2r+y—x, x—y€Em2m)
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2=z —yl, [z-yl>7
|z —yl, e —y| <=

= —|r—|z—yl.

O

Proof of[Prop. 3] The expected degree of a node 6 is the probability of the ball centered at 6 times
the size NV of the sample. The probability of a ball can be computed by noting that

0.+ 2o , n; = 0
cos(ni(0 — p;)) A0 = ¢ 2 cos(n; (6. — ;) sin(n; a)
O.—a n;

, otherwise

Therefore, the average degree can be computed as
=N / P[B..(0)] sb(6: ¢, m, 1) 0.

The inspection of sb(f; ¢,n, p) and P[B,(#)] shows that the only terms surviving integration are the
constant term and the product of cosines with the same frequency

T

/cos(ni(ﬁ — i) cos(ns(6 — i) d6 = {g’cos(ni(ﬂj = Hi))s Zi ; Zj

—T

from which the thesis follows. ]

Proof of[Prop. 4] Using Taylor expansion, it holds

exp(k; cos(n; (0 — ;) = Z Hi' cos(n; (0 — pi))™

0 m.
=1+ Z: (Q;n)! cos(ni (6 — pi))*™
"
+) m cos(ni(6 — p))>™ L.

A first approximation can be made noting that cos(z)*™ < cos(x)? and cos(x)?™~! ~ cos(z) for
all m > 1, obtaining

exp(kicos(ni (0 — ;) = 1+ (cosh(k;) — 1) cos(n; (6 — pi))? + sinh(k;) cos(n; (0 — ;) .

Such approximation deteriorates fast when «; increases. A more refined approximation is obtained
considering the power of cosine with higher coefficient in the Taylor expansion. Using Stirling’s
approximation of factorial, it can be shown that

wito 1 </{Z—e)m
m!  2arm \m )

In order to make the computation easier, suppose ; is an integer; When m = «; + 1, it holds

1 ( ki€ )RH_l B efiitl ( K )RH_l - eri - eri
27 (ki +1) \ ki +1 V2m(ki+1) \kit+1 V2r(ki+1)  V27Ri
where the first inequality is justified by the fact that (x;/(k; + 1))* ! is an increasing sequence that

tends to 1/e. The previous formula shows that the coefficient with m = k; + 1 is always smaller
than the coefficient with m = ;. The same reasoning can be applied to all the coefficients with
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m > k;. Suppose now k; > 3, if m < k; — 2 the previous reasoning holds. A peculiarity happens
whenm = k; — 1:

1 kie \" 1_ eri~t Kq M S e
27 (k; —1) \Ki — 1 V2R \ki—1 2Tk

because the sequence (x;/(k; — 1))%~ /2 is decreasing; therefore m = r; — 1 is the point of
maximum, and m = k; is the second largest value. Therefore, the following approximation for
exp(k; cos(n;(6 — u;))) holds:

1+ (cosh(k;) — 1) cos(ni(0 — u;))))? + sinh(x;) cos(ni (6 — 1;)))), ki <1
1+ (cosh(k;) — 1) cos(ni(6 — ;)% + sinh(r;) cos(n; (6 — w;)))) 1, K; > 1, even
1+ (cosh(k;) — 1) cos(ni(0 — 1;))))~~1 + sinh(k;) cos(n; (0 — i)™, K; > 1, odd

The thesis follows from the equality

cos(ng (6 — i)™ = 1: ’L (IZ> cos((2k — ki)ni(0 — ps)) -
O

Proof of [Prop. 3] The domain of integration can be parametrized as dp ((r, 8), (¢, 6.)) < c, leading

to
2, ,.2 2 2,2 2
re+r; —« re+r] —«
0e|b.—arccos| ——=—— 1,0, + arccos | ————
2rre 2rr.

Three cases must be discussed: (1) 0 <r. —a<r.+a<1,2)r.—a<0,3)r.+a>11In
scenario (1), the ball B, (7., 0..) is contained in ID. The probability of the ball can be computed as
reta  0.+0,
P [Ba(re,0c)] =2 / T / sb(6;¢,m, ) dO dr
re—a  0.—0,

Teta

4 ’ 2,2 2
=5 Z 7072 cos(n; (0. — u;)) / r sin | n,; arccos (W) dr
in; #0 Fe—a
reta
4 2.2 2
+ B i.nz;() ci+ A / 7 arccos <r+2:frca> dr,

Te—Q

)
where the last equality comes from [Prop. 3] For simplicity, define

2

2 2 2 2 2 2

rtt+r, -« re+r, —«

N =r1-|—V U, | —e
Jnima(r) < 277, ) " 1( 2rr, )’

r? +r2 —a?
277, ’

g(r) = r arccos (

where Uy, is the k-th Chebyshev polynomial of second kind. It is worthy to note that f,,, 1 (r. + «) =
0, fr,—1(re —a) =0, fn,—1(a —7.) = 0 and

2 2 |
« « Te Te
fm—l(rc) =« 1- (2rc> Unq',—l (1 - 7"(2;> ) fm—l(a) = 1- % Um—l (20() )

2
while g(r. + @) =0, g(r. — @) =0, gla — 1)
o2

Q(TC) = T'c AICCOS <1 - 273) ) g(O[) = (¥ arccos (;;) .

(o — 7e)m and

c
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The integral in can be approximated by the semi-area of an ellipse having « and f,,,_1(7.)
(respectively g(r.)) as axes

reta reta
™ ™
| fuarx Jaguate, [ gr)ar = Jagr). (10)

that can be seen as a modified version of Simpson’s rule since the latter would lead to a coefficient of

4/3 instead of 7/2. A comparison between the two methods is shown in|Appendix D} In scenario (2)

the domain of integration contains the origin and the argument of arccos in|Appendix D]could be not
well defined. The singularity can be removed by decomposing the domain of integration as the union
of a disk of radius o — 7 around the origin and the remaining. Hence

a—re T a+r. 60.+6,
P [Ba(re,0c)] =2 / r /sb(@;c,n,p,) dé dr +2 / r / sb(0;¢e,n, p) Ao dr
0 -7 a—rc  0.—0,
atre  Oc+0r-
= (a—71.)%+2 / T / sb(0;¢,n,p) A6 dr.
a=re  9o—0,

The same reasoning as before leads to the approximations

a+re a+re
T T
/ fri—1(r)dr =~ 57'6 fn—1(a), / g(r)dr = 5%9(@) .

In scenario (3) the domain of integration partially lies outside D. Hence
1 Oc+0r
P [Bo(re,0.)] =2 / r / sb(0;¢,n, pu) do dr,
re—a  0.—0,

that can be approximated as

1
n;— c 1- c . 1- c
/ fri—1(r)dr =~ I, 21(r) ( ar a2 —(1-r)2+a arcsm( ar )) ,

Te—Q

1

/ g(r)dr ~ 9(50) <1;rc a? — (1 —r¢)? + a arcsin <1 ;Tc>> .

Te—Q

The three scenarios can be summarized in one big formula. For simplicity, define the operator

T+ Tre +min{a —7e, 7 — @ a—+ T+ max{o — T, e — Q&
7)) = § & b & H
~ max{rc+a—1,0} f,—1(rc) o arecos L—re\ 1-rc peay Tl
re+a—1 2 « «

that given a function f returns the ellipse approximation of the integral over balls, it holds

P [Ba(rm 90)] = % Z :T: COS(ni (Hc - Mi))z-[fmfl](rc) + %
i:m; #0

+ max{0, o — r.}2.

Z i+ A I[g](rc)

i:n; =0

from which the thesis follows. To compute the average degree of a spatial network from the unit disk,
the quantity

1 T
d= /2r /P[Ba(r, 9)] sb(6;¢,n,p)dodr,
0 -
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Figure 10: Approximation of f g(r) dr (top) and f fo(r) dr (bottom) when a = a—r.and b = a+r,

a
(left), a = r. — @ and b = r. + « (center), and a = a4+ re.and b = 1 (right) as a function of r,
a = 0.05.

must be computed. Using the integral can be written in the form

ity oy e (= 11) [ Tl ))

iin;7#0 jing=n; 0
2
167
o (Y aa /rI[g](r)dr.
1:n;=0 0

From Uy (1) = k the following approximation can be derived

2 2
s o ™ [e%
I[fm._ﬂ(r) ~ 5 n; 042 1-— (27‘) ~ 5 n; a2 (1 — 8’[“2> ,

hence the integral boils down to

1
T
[rai ey dr = e
0
The term )
/rI[g](r) —Z ( V4 —a? + 4 arccos (1—2>
0
4
—|—% <1 <2+\/ —oz2) log(c )
T a2 T a2 a? T o
~Y _ 2 ~Y - T ~
2(4+4O‘) 24(6 4) 4
from which the thesis follows. O

Proof of[Prop_6] Similarly to what has been done in the domain of integration can be
parametrized as

cosh(r) cosh(r.) — cosh(«)

sinh(r.) sinh(r) '
In order to remove the singularity of the argument of arccos, the domain of integration can be
decomposed as a ball containing the origin and the remaining, leading to

0e(d.—0,.60.+80,), 0, =arccos(d,.) , d,

P[Bu(re, 0.)] = m / sinh(r) sb(6; ¢, n, ) A6 dr
I, —m
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1 uz Oc+0;
T cosh(B) =1 sinh(r) sb(0; ¢, n, ) d9 dr,
ly 6.—6,

where l; = 0, u; = max{a — ¢, 0}, Iy = |a — 7.| and uy = min{r. + «, R}.

~ cosh(up) —1 1 ¢ )
~ cosh(R) — 1 + cosh(R) — 1 /Smh(r) P [BGT(QC)} dr

l2

cosh(uy) — 1 <z‘:n,_-0 > ’

" cosh(R)—1 B (cosh(R) 1) / sinh ()0, dr

l2

Uz

2 ¢i cos(n; (0. — wi) /
= — h(r)y/1—d2 Uy,
* B Z n; cosh(R)—1 sin i
in; #0 Iy
The approximations 0, ~ /2 — 2d, and d, ~ 1 +2 (e 72" 4+ e727c — ¥ Te™" — =TT agin
Gugelmann et al.[(2012) can be used to analyze the behaviors of both integrals. For large R, it holds

u u2
inh
/%&d’r% 6T7R</17drdr

cosh(R) —
2 lo
u

~ 2/67._R\/ea—rc—r 4 e—a—Te—T 6—27“ _ 6_2 re dr

l2

u2
—2R4a—
— 2/6% \/1 + €—2o¢ _ e—r—a—i—rc —er—a—Te dp

l2

a—R—r¢

~d4e” 2

where the last approximation is justified by v/1+x = 1 + O(z) when |z| < 1. Noting that
—1 < d, <1, one can get rid of the polynomial contribution

R R
h .
/ sin \/ —d2U,,—1(d,)dr =~ ni/e7_R\/1 —d2dr
l

cosh(R
l2

R

= ni/eT*Rm —d,\/1+d,.dr

l2
R

2ni/e%\/l+drdr

l2

—R—7r¢

a—R=re
~4dne 2

Therefore, the probability of balls is approximately

P[Ba(rmecn ~ B Z & COS(ni (ec - Mi)) + Z ¢+ A ,
i #0 i:m; =0
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and the expected average degree of the network is

R «
- sinh(r)
d=N P[B,(r, 0)] sb(6; ————dfd
[ [ PBat o sbitie.n S o
0 —m
N 2
16T Ne“ 2
N Z Z cicjcos(ng (pi — py)) +2 Z ci+A
in; #0 jing=n; ;=0

O

Proof of [Prop. 7] Equality (2) is trivial, since diagonal matrices commutes; equality (1) follows from

j=1

j=1k=1
=Y Viidip =Vii Y Aig = (V diag(A1));; .
k=1 k=1
In order to prove (3), we note that V' can be decomposed as V.= """ | v; e@e®™ Therefore

n

0 = (diag(AV1) — diag(VA1)) , = diag Z V5 (Ae(i)e(i)Tl - e(i)e(i)TAl)

i=1 Kk
= Z (O Ae(i) — Z Ai’je(i) = Z viAk,i — VL Z Ak,j
i=1 J=1 i=1 j=1
k
= Z(Uz — V) A
i=1
must hold for all values of k. Consider the indices k1, ko, ..., k, corresponding to the values

Vg, S Vg, <-o- S, then

0= (Ui - vk1) Akl’i )
1 >0

n

7

then Ay, ; = 0 for each 7 such that v; > vy, . Take the index ky and consider

n n

0= E (Vi — Vky) Apyi = E (Vi = Vky) Akgi + (Vi — Viy) Ay ey -
— e — ‘ —_—
=1 >0 iZ;zé:]cll >0 -5

The second addend is O because vy, can be either equal to vy, , in which case the difference is null, or
Vg, > Uk, , in which case from the previous step Ay, , = 0. Therefore Ay, ; = 0 for each ¢ such
that v; > vy, . By finite induction, the thesis holds when A has null entries in position (¢, j) whenever

V; }é V.
Proof of[Prop. 8 The eigenvalues can be characterized via the Rayleigh quotient

<u, (diag (D—%AD—%1) _ D-éAD-é) u>

(u, u)

Using and considering u = D:zv the previous formula can be rewritten as

<Dév, (diag (AD-%1) - D-éA> v> VT (diag (D%AD,%l) _ A) v

<D%V,D%V> viDv
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Let d; = D; ; the degree of the ¢-th node, using the symmetry of A, the numerator can be rewritten
as

ZU% %Ai,j — ZviAi,jUj
i3 J i,j
= Z A,j—i— Z \/7 i Zvl 4,7 Vj

1 [d; /d;
= ZUiAi,j 7 — Uy ZUJ 1,5 ( Vi — (;Uj>
i, '

- Z(\F \ﬁ) ,J(\/>Uz \/d>jvj>
- Z\/ﬁ<\/d7“i‘@”j)2

From the last equality follows that the eigenvalues are all positive. From (a — b)? < 2(a? + b?)
follows

N

dﬂ)? + dJUJ2>

_QZAJ\/jZQ

= 2\/NVTDV7

from which the thesis follows. O
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