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Abstract

Ultrasound is an especially challenging modality to interpret because it requires unique
domain knowledge to draw conclusions on the anatomy based on analysis of B-mode in-
tensity. For this reason, there is great value in transforming B-mode images to a color
scheme that is more closely aligned with the anatomy and its unique tissue properties like
speed-of-sound and scattering coefficient to simplify ultrasound analysis. In this work,
we introduce texture ultrasound semantic analysis (TUSA), a self-supervised transformer
model trained to decompose B-mode ultrasound into distinct channels that are defined by
the texture they represent. We train our model on 10 freely available ultrasound datasets
and demonstrate superior segmentation performance and consistency compared to train-
ing on B-mode intensity on an additional 11th dataset. We conclude that by incorporating
TUSA into the training pipeline, downstream models can focus on recognizing the anatomy
instead of extracting features from intensity.
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1. Introduction

Ultrasound imaging relies on B-mode intensity, which represents tissue properties but lacks
direct anatomical correlation, making interpretation dependent on expert knowledge. In
this work, we focus on the texture patterns in the image, which are closely intertwined
with the anatomical structures. Previous efforts have explored classical texture analysis
techniques to enhance ultrasound segmentation (Milko et al., 2008; Muzzolini et al., 1993;
Id et al., 2019; Zhan and Shen, 2006), but these approaches often fail to generalize due to the
high variability in B-mode images caused by low contrast and noise (Abhisheka et al., 2023),
which has prompted great interest in deep learning applications for ultrasound analysis, as
deep learning algorithms have been able to generalize well in a wide variety of ultrasound
applications (Prevost et al., 2018; Park and Lee, 2020; Byra et al., 2018; Schein et al.,
2023; Shin et al., 2024; Burgos-Artizzu et al., 2020; Simson et al., 2024). However, deep
learning algorithms are bounded by the quantity and quality of their datasets, and although
many ultrasound datasets are freely available online, semantic pixel-wise labels only exist
for targeted applications rather than for general-purpose comprehension of images. This
challenge can be alleviated by using contrastive learning methods based on SimCLR (Chen
et al., 2020) to build powerful representations of data so that downstream models can focus
on learning the task at hand rather than how to analyze the images. Inspired by the ability
of self-supervised networks to learn deep intuition, our goal is to build a general-purpose
ultrasound model that can pre-analyze B-mode images and semantically label the macro-
scale texture groups to improve the accessibility of ultrasound.
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2. Methods

2.1. General Framework

We propose the following texture ultrasound semantic analysis (TUSA) pipeline. First, a
sliding window U-Net transformer (SwinUNETR) (Hatamizadeh et al., 2022) processes an
input B-mode ultrasound image with an output dimension corresponding to the expected
number of unique textures visible in the dataset and is numerically encouraged to select a
single texture channel using the differentiable Sparsemax activation (Martins and Astudillo,
2016). Finally, a depth-wise separable convolution reproduces the B-mode image from its
texture components. After training, the segmentation model can be used as a standalone
pre-processing mechanism for downstream tasks.

2.2. Training Data

Our TUSA model is trained on freely available ultrasound data from various sources, coun-
tries, hardware and a uniform sampling of the following organs: knee (Yerich et al., 2020),
fetal (Lu et al., 2022; Burgos-Artizzu et al., 2020), cardiac (Leclerc et al., 2019), carotid
(Momot, 2022), breast (Al-Dhabyani et al., 2020; A., 2024), thyroid (Pedraza et al., 2015),
liver (Byra et al., 2018), and uterine fibroid (Yang, 2023). An additional dataset featuring
kidney ultrasound (Singla et al., 2023) was used for downstream validation experiments in
addition to the JNU-IFM (Lu et al., 2022) dataset that was a part of the training set.

2.3. Downstream Segmentation

Downstream Segmentation. After selecting a model candidate, we trained segmentation
models on the JNU-IFM and kidney datasets. The JNU-IFM dataset contains semantic
labels of the fetal head and symphysis pubis. The kidney dataset contains two types of
semantic labels: a binary mask encapsulating the entire kidney and a multi-class mask of
the cortex, medulla, and central echogenic complex. Each of the downstream datasets was
split into training and test data, each comprising 80% and 20% of the data accordingly. We
trained Attention U-Net (Oktay et al.) 100 times, half of the train runs operated on the
B-mode image and half of them learned to segment the kidney from TUSA’s texture logits.

3. Results and Discussion

Table 1: Dice scores for segmentation models trained on the kidney and JNU-IFM datasets

Dataset Standard B-mode TUSA
JNU-IFM (multi-class) 0.87 ± 0.02 0.88± 0.00
Kidney (multi-class) 0.54 ± 0.03 0.55± 0.01
Kidney (capsule) 0.8 ± 0.04 0.83± 0.01

The improvement in models trained on texture channels (Table 1) is in line with our
expectation that simplifying B-mode intensity makes analysis of the image easier, as down-
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stream models can skip straight to identifying target structures rather than extracting
features from intensity patterns. This is reinforced by looking at individual channels of the
validation data Figure 1, where certain features can be found just by isolating the cor-rect
channel and analyzing the shapes, as in the case of the carotid artery (1c), fetal brain
ventricle (1c), and breast lesions (1g).

Figure 1: TUSA Validation Images– A sample image is shown for each organ in the val-
idation set (a) alongside the corresponding TUSA decomposition (b). The in-
dividual texture channels (c-g) are presented in order of echo-genicity from left
(most echogenic) to right (most anechoic). Output b-mode reconstruction (h)
from TUSA feature channels.

4. Conclusion

We introduce TUSA, a self-supervised texture decomposition model for ultrasound segmen-
tation and analysis. By learning a texture-based representation of ultrasound images, TUSA
improves segmentation accuracy and consistency across datasets. Our approach provides
a general-purpose tool for ultrasound analysis, reducing the reliance on expert annotations
and enhancing model interpretability.
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A., Ćwierz-Pieńkowska. A curated benchmark dataset for ultrasound based breast lesion
analysis (breast-lesions-usg, 2024.

Barsha Abhisheka, Saroj Kumar Biswas, Biswajit Purkayastha, Dolly Das, and Alexandre
Escargueil. Recent trend in medical imaging modalities and their applications in disease
diagnosis: a review. Multimedia Tools and Applications, 83:43035–43070, 10 2023. ISSN
1573-7721. doi: 10.1007/s11042-023-17326-1.

Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. Dataset of breast
ultrasound images. Data in brief, 28:104863, 2 2020. ISSN 2352-3409. doi: 10.1016/j.dib.
2019.104863.

Xavier P. Burgos-Artizzu, David Coronado-Gutiérrez, Brenda Valenzuela-Alcaraz, Elisenda
Bonet-Carne, Elisenda Eixarch, Fatima Crispi, and Eduard Gratacós. Evaluation of
deep convolutional neural networks for automatic classification of common maternal fetal
ultrasound planes. Scientific Reports, 10:10200, 6 2020. ISSN 2045-2322. doi: 10.1038/
s41598-020-67076-5.

Micha l Byra, Grzegorz Styczynski, Cezary Szmigielski, Piotr Kalinowski,  Lukasz
Micha lowski, Rafa l Paluszkiewicz, Bogna Ziarkiewicz-Wróblewska, Krzysztof Zieniewicz,
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