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Fig. 1: CuriousBot. We present a mobile robotic system that can (a) interactively explore the environment, such as inspecting hidden
spaces inside a cabinet or behind a box, (b) construct an actionable 3D relational object graph that encodes both the semantic and geometric
information of object nodes, along with various object relationships, and (c) perform manipulation tasks by retrieving objects through
traversal of the actionable 3D relational object graph.

Abstract— Mobile exploration is a longstanding challenge in
robotics, yet current methods primarily focus on active percep-
tion instead of active interaction, limiting the robot’s ability
to interact with and fully explore its environment. Existing
robotic exploration approaches via active interaction are often
restricted to tabletop scenes, neglecting the unique challenges
posed by mobile exploration, such as large exploration spaces,
complex action spaces, and diverse object relations. In this
work, we introduce a 3D relational object graph that encodes
diverse object relations and enables exploration through active
interaction. We develop a system based on this representation
and evaluate it across diverse scenes. Our qualitative and
quantitative results demonstrate the system’s effectiveness and
generalization capabilities, outperforming methods that rely
solely on vision-language models (VLMs).

I. INTRODUCTION

Exploration remains a significant challenge for mobile
robots, especially in complex household environments filled
with occlusions, such as objects concealed within cabinets,
hidden under furniture, or obscured behind other obstacles.
Traditional exploration methods primarily focus on active
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perception [1, 2], aiming to determine the optimal camera
position to minimize unknown spaces, and often neglect the
crucial aspect of active interaction, which involves deciding
where and how to physically interact with the environment to
reveal hidden spaces. While recent works like RoboEXP [3]
have considered active interaction, their focus is primarily
on tabletop manipulation, limiting their applicability in com-
plex, real-world mobile settings.

In contrast to tabletop scenarios, mobile exploration in
real-world environments introduces unique challenges:

• Expanded exploration space: the exploration area for
mobile robots is substantially larger and needs to utilize
complex navigation and mapping skills.

• Complex occlusion relationships: occlusions in house-
hold environments are intricate. While RoboEXP con-
siders basic relationships like on, belong, under,
behind, and inside, real-world settings present com-
plex occlusions, such as items hidden beneath furniture
or blocked by other objects, requiring more sophisticated
reasoning and interaction strategies.

• Larger action space: mobile exploration involves a
broader action space that includes both navigation and
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Fig. 2: Method Overview. (a) In the perception pipeline, SLAM processes RGBD observations and odometry estimation from the robot
to output camera poses, which are used alongside the RGBD observations to construct an actionable 3D relational object graph. (b) The
3D relational object graph comprises object nodes containing both geometric and semantic information, as well as object edges that encode
complex object relations. (c) The serialized object graph is fed into the task planner, and the generated task plans are executed using
low-level skills to interactively explore the environment.

manipulation to handle various objects and scenes.

In this work, we tackle the challenges of active mobile
exploration using our 3D relational object graph powered by
Visual Foundational Models (VFMs). Our system consists of
four modules - SLAM, Graph Constructor, Task Planner,
and Low-Level Skills, as shown in Figure 2.

The SLAM module takes in a sequence of RGBD obser-
vations and robot odometry, and outputs the camera pose.
Given observations and camera poses, our graph constructor
first builds object nodes by detecting and segmenting objects
via the open-vocabulary object detector and Segment Any-
thing [4, 5]. By leveraging spatial and semantic information,
we determine the relationships between nodes, which are
then used for downstream task planning. The task planning
module takes in the serialized object graph and generates
action plans using a Large Language Model (LLM). Finally,
low-level skills, consisting of several action primitives, exe-
cute the generated action plan.

We evaluate our system in various scenes requiring explo-
ration and demonstrate its capability to handle a wide range
of object categories, including articulated, deformable, and
rigid objects. Furthermore, our 3D relational object graph can
encode multiple occlusion relationships commonly seen in
household environments, such as of, on, under, behind,
and inside. The system can adapt to different environment
layouts, such as a box-filled room or a living room. We
quantitatively analyze our system by evaluating it across five
tasks, each repeated ten times under different initial condi-
tions, and identify common failure patterns. Additionally, we
compare our method with the direct use of GPT-4V to guide
robot exploration. Our findings indicate that our 3D relational
object graph is more effective for task planning.

In summary, our contributions are threefold: i) We intro-
duce the 3D relational object graph, which can encode a
number of common object relations, enabling the mobile
robot to explore diverse everyday environments. ii) We
develop the CuriousBot system, which can automatically
construct the 3D object graph, plan exploration, and interact
with the environment to reduce unknown spaces. iii) We

conduct comprehensive experiments, demonstrating that our
system can fully explore environments and accurately build
the object graph. The testing scenes feature diverse object
categories, object relations, and scene layouts. Additionally,
we provide deeper insights into our system through error
breakdown and comparisons with baseline methods.

II. METHOD

As shown in Figure 2, our framework consists of four
modules - SLAM, Graph Constructor, Task Planner, and
Low-Level Skills, each of which will be explained in detail
in the following sections.

A. Problem Statement

We define the object graph as G = (V,E), where V =
{v0,v1, . . . ,vN} represents the set of object nodes, and E =
{e0,e1, . . . ,eM} represents the set of edges. Each node v
contains both semantic attributes, such as object labels, and
geometric attributes, such as point clouds and normal esti-
mations. Each edge e represents a directed connection from
node vi to node v j, along with their object relationship. The
objective of mobile exploration is to construct a graph G that
can minimize the unknown space, discover as many object
nodes as possible, and establish correct object relationships.

B. SLAM

SLAM takes in a sequence of odometry estimation from
robot and RGBD observations, O0...t , where each Ot ∈
RH×W×4 represents one RGBD frame, and simultaneously
localizes the camera pose Tt and constructs the map Mt
denotes the map at time t. In practice, we use RTAB-Map
for SLAM to estimate the camera pose [6].

C. Graph Constructor

Given the current RGBD observation Ot , the correspond-
ing camera pose Tt , and the graph from the previous frame
Gt−1, we construct the graph Gt at time t. We first seg-
ment the objects using YOLO-World and SAM and obtain
corresponding 3D point clouds [4, 5]. Next, we associate
the segmented objects with previous object nodes based on



geometric information and fuse the current observation to
obtain the current object nodes. Finally, we establish object
relationships by jointly considering geometric, semantic, and
action-related information.

D. Task Planner

We input the serialized object graph into the LLM to plan
skills. For serialization, we perform a depth-first search over
the object graph and serialize it based on the object label
and index. Specifically, we start at the root node and find all
child nodes connected to it. We then put these nodes into
a stack, which stores the nodes we plan to visit. Next, we
pop the top node from the stack and check its children. If
it has no children, it is a leaf node; otherwise, we repeat
this operation until the stack is empty. Additionally, we
keep track of information such as depth, object name, node
ID, and related action details to build the serialized graph.
Additionally, we provide the LLM with several prompts for
planning. Our appendix provides more details regarding the
method, including search algorithm details and prompts.

E. Low-Level Skills

In our work, we implement several primitive skills, includ-
ing opening, lifting, pushing, collecting objects, sitting, and
flipping. The skill output by the task planner consists of the
skill name from our skill library and the target object index.
Given this skill information, we execute the corresponding
skill to explore the environment.

Specifically, we construct the following manipulation
skills using heuristics, including open, flip, lift, push,
sit, and collect, with more details in the appendix.

III. EXPERIMENT

In our experiments, we aim to answer the following
questions: (1) What kinds of tasks can be enabled by our
system, and what scenarios can our robot explore? (2) How
does each component perform, and what are the common
failure patterns? (3) How will the whole system perform with
different design choices?

A. Experiment Setup

We conduct experiments using the Boston Dynamics Spot
as the mobile manipulator. An additional RealSense 455
camera is installed at the front to enhance environmental
observation, as shown in Figure 5. For computation, we use
a desktop equipped with an Nvidia RTX A6000 GPU and an
AMD CPU with 128GB of memory. Our system is evaluated
on diverse daily objects, as shown in Figure 5. We set up
the environment in a 3m × 4m room.

B. Mobile Exploration in Various Scenes

We qualitatively evaluate our system on diverse scenes, as
shown in Figure 3 and Figure 6. We would like to highlight
the following aspects of our system’s capabilities:

Diverse Object Categories. Our system operates in sce-
narios containing various types of objects, such as articulated
objects, deformable objects, and rigid objects, demonstrating
its generalization capabilities across different object types.

Various Object Relations. Our system encodes five types
of object relations commonly observed in the real world,
including behind, of, inside, on, and under. For
instance, the robot understands that there is unknown space
behind the chair, requiring it to push the chair away to reveal
the space behind, as shown in Figure 3.

Different Layouts. The test scenarios include scenes of
varying scales and layouts, from small setups like piles of
cloth to larger household environments, which demonstrate
that our system can generalize to various scenes.

Diverse Interactions. The robot interacts with the en-
vironment and explores the scene in multiple ways. For
example, the robot can grasp an object rigidly, such as
opening a cabinet shown in Figure 3. It can also interact with
objects nonprehensilely using its arm instead of the gripper,
such as pushing the chair shown in Figure 3. Additionally,
the robot can actively move the camera around without
manipulating objects, such as sitting down to check the space
under a table, as shown in Figure 6.

C. Failure Breakdown

We conduct experiments involving tasks such as flip-
ping boxes, opening drawers, checking underneath objects,
pushing boxes, and lifting cloth. Each task is repeated ten
times under different initial conditions, with the success rate
recorded, and the failure breakdown is shown in Figure 4.
A rollout is considered successful if the robot successfully
completes all exploration skills.

The overall success rate is 82%. For the failure cases,
we categorize the primary reasons into perception failure,
decision failure, and action failure. Perception failure occurs
when inaccurate perception results lead to unreasonable plans
in downstream task planning or incorrect action execution.
Decision failure happens when, despite having a correct se-
rialized graph, the task planner makes an incorrect decision.
Action failure occurs when, despite having a correct task
plan and an accurate object graph, the skill execution fails.

In cases of perception failure, two major causes are an
inaccurate object graph due to imprecise SLAM and errors
from the open-vocabulary object detector. For decision fail-
ure, the task planner can fail in predicting the correct skills
for the corresponding object nodes. Regarding action fail-
ures, we highlight the complexity of real-world manipulation,
such as the early release of the gripper, loose grasping, and
unexpected interference between the robot and the object.

D. Comparisons with Baselines

To study the effectiveness of our method, we compare our
system with the following baselines on the same five tasks
as in Section III-C:

• LLaVa: We directly feed the current RGB observation
and the same text prompt as our LLM task planner into
LLaVa, the state-of-the-art open-source Vision Language
Model (VLM) [7, 8]. Because VLM does not equip
manipulation skills, a human operator will help VLM
finish manipulation.
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Fig. 3: Diverse Scenes and Skills. We evaluate our system’s exploration capabilities across various tasks, including pushing the chair
aside to reveal space behind it, lifting cloth to check underneath, flipping open boxes to inspect the contents, and exploring a household
scene. These tasks showcase the system’s ability to generalize across different object types, scenarios, and object relations. Additional
tasks can be found on the project page.
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Fig. 4: Failure Breakdown. We analyze the failure modes of
our system during exploration tasks, identifying three main causes:
perception failure, decision failure, and action failure.

• Gemini: Similar to the LLaVa baseline, with the only
change being the substitution of LLaVa with Gemini, a
state-of-the-art closed-source VLM [9].

• GPT-4o: Similarly, we replace the VLM with GPT-4o,
another state-of-the-art VLM [10].

• Heuristics: We implement a heuristic exploration policy
where the robot will open all handles.

We evaluate performance using three metrics: 1) Success
Rate: A rollout is considered successful if all exploration
skills are correctly executed. 2) Object Recovery (OR):
Assuming the ground truth object nodes are Vgt and the
discovered object nodes are V , object discovery is defined
as |Vgt∩V |/|Vgt|. 3) Graph Editing Distance (GED): If the
cost of adding, deleting, or moving one edge or node is 1,
GED is defined as the total cost of editing the final graph G

to match the ground truth graph Ggt.
Table I summarizes our quantitative results. We found our

3D relational object graph is more effective than feeding
RGB observations into a VLM. This is because our repre-
sentation explicitly represents the topological relationships
of object nodes, leading to more effective task planning
compared to requiring VLM to memorize observations and
reason object relations implicitly. Additionally, our action-
able object graph grounds actions within the representation,
while RGB observations alone do not provide sufficient
information for low-level skill selection. Additionally, while
simple exploration heuristics may yield comparable perfor-
mance in certain tasks, they do not generalize to other tasks.

IV. CONCLUSION

Interactive mobile exploration has been a longstanding and
essential problem in robotics. However, existing approaches
to mobile exploration primarily focus on active perception
rather than active interaction, which limits the robot’s abil-
ity to fully explore the environment. Current methods for
robotic exploration via active interaction are mainly focused
on tabletop scenes, overlooking the unique challenges of
mobile settings, such as expansive exploration spaces, large
action spaces, and diverse object relations. We introduce the
3D relational object graph, which encodes diverse object
relations, and build a system capable of exploration through
active interaction based on this representation. We evaluate
our system in diverse scenes, demonstrating its effectiveness
and generalization capabilities qualitatively. Our quantitative
results further underscore its effectiveness compared to di-
rectly using VLMs.
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APPENDIX

A. RELATED WORK

1) Robotic Exploration: Robotic exploration is crucial
for many applications, including search and rescue [11–
13], object search [14–32], and mobile manipulation [33–
37]. The typical objective of exploration is to minimize the
unknown areas in the environment [1, 2, 14, 15, 30, 38–
52]. Recently, curiosity-driven methods have emerged as
another promising approach to guide robotic exploration [53–
56]. However, these methods generally focus on exploration
through active perception, neglecting exploration via active
interaction, which limits the robot’s ability to fully explore
environments, such as finding objects inside cabinets.

The work most closely related to ours is RoboEXP [3],
where the robot interacts with the environment to build a
complete 3D object graph of the scene. However, their focus
is on tabletop scenes, while our mobile setting poses different
challenges. In contrast, our approach emphasizes mobile ex-
ploration through active interaction, which introduces unique
challenges such as larger exploration areas, more complex
object relationships, and a broader action space.

Fabian, et. al. also explores mobile exploration via active
interaction [57]. However, they only consider a subset of the
diverse object relationships, which are essential for complex
exploration behaviors. On the contrary, our 3D relational
object graph can encode five types of object relations.
Additionally, they only consider opening as a manipulation
skill and rely on AR markers in the real world to guide
manipulation. In contrast, we incorporate more skills, in-
cluding pushing, opening, lifting, flipping, and more, without
requiring additional markers.

2) 3D Scene Graph for Robotics: 3D scene graph repre-
sentation is widely used in robotic manipulation and navi-
gation [3, 58–74]. These representations often leverage 2D
VFMs such as SAM, CLIP, or DINO [5, 75–78] to extract
2D visual information, which is then fused into 3D space.
However, existing methods tend to focus on the semantic un-
derstanding of objects, rather than encoding complex object
relations like on, inside, or behind. Understanding such
occlusion relations is crucial for making informed decisions
about where to explore and how to manipulate objects. In
contrast, our representation encodes various types of occlu-
sion relations in real-world environments, allowing the mo-
bile robot to actively decide how to explore the environment.
Although works like ConceptGraph and SceneGPT [79, 80]
account for spatial relationships, they do not consider active
interactions with the environment, such as opening drawers.
In contrast, our representation considers how different ac-
tions can modify the environment (e.g., opening a drawer to
retrieve a toy inside), allowing the system to choose the
appropriate exploration and manipulation skills.

3) Foundational Model for Robotics: Many previous stud-
ies have used the generalization capabilities, common sense
reasoning, and long-horizon planning abilities of VFMs
and LLMs for robotic tasks such as manipulation [81–85],
navigation [31, 67, 79, 86], and planning [87, 88]. However,

these studies did not explore the potential of using VFMs
and LLMs for active mobile exploration. In our work, we
leverage VFMs to build 3D relational object graphs [4, 5].
We then employ an LLM for decision-making based on an
explicit 3D object graph representation of the environment,
which our experiments demonstrate to be more efficient
and effective than relying on memorizing 2D observation
history [10].

B. Method

1) Graph Constructor: Specifically, we first detect ob-
jects and obtain the corresponding 3D point clouds Pt =
{p1

t , ..., pK
t }, where pi

t is the point cloud of the ith object. We
then associate these with previous object point clouds Pt−1 =
{p1

t−1, ..., pN
t−1}. The association is resolved by checking

detection label consistency and calculating the Intersection
over Union (IoU) between Pt−1 and Pt , as defined in the
appendix. Specifically, we create a value matrix C ∈ RK×N ,
where each element is defined as follows:

Ci j =

{
IoU(pi

t , p j
t−1), if they have the same label

0, otherwise.
(1)

For the ith detected object pi
t , if max j∈{1,...,N}Ci j is below

a threshold, it is considered a newly detected object. Other-
wise, the ith detected object is associated with the existing
object that has the highest Ci j value. After associating the
current detection with the existing object graph, we could
update the existing object nodes with the current observation.

We construct rules that jointly consider geometric in-
formation, semantic information, and action information to
construct object relations. For example, we use geometric
information, such as the bounding boxes of two objects, to
determine whether one object is on top of another. Semantic
information, like object labels, is also used. For instance, if
half of the handle points are within 0.03m of cabinet points,
the handle is considered part of the cabinet. Lastly, action
information is helpful in determining object relations. For
example, when lifting an object to reveal a hidden space, the
newly found object is located beneath the lifted object. In
summary, our graph encodes five rule-based object relations,
including behind, of, inside, on, and under, as shown
in Figure 3. Details regarding the rules to construct object
relations can be found on the project page.

C. Low-Level Skills

• open: To open a cabinet, we first detect the handle
object node and the cabinet object node. Using Principal
Component Analysis (PCA), we determine the axis of
the handle and the normal axis of the cabinet. Then we
can command the end-effector to approach the handle and
grasp it. Since the cabinet’s articulation is unknown, we
initially open the door using impedance control and adjust
the target end-effector position and orientation according
to manipulation feedback.
In addition, to make the skill more robust, we take in the
grasping feedback. If the grasping fails, we will retry the
grasping with different action parameters.

https://bdaiinstitute.github.io/curiousbot/


• flip: We assume that the robot only flips boxes that are
open. The end-effector first approaches the open box from
above in a top-down pose, then pushes the box down on
its side to flip it over.

• lift: We assume that the robot only lifts clothes. The
end-effector first approaches the cloth and grasps its center
of mass using the top-down pose.

• push: In our experiments, the robot will push large
objects aside. It will first walk to the front of the object,
then move aside. To push the object, it will extend its
arm and move sideways while maintaining the arm in an
extended position.

• sit: In our experiments, the robot will walk to the front
of the object and then sit down to check the space beneath
it. This sitting action can be executed using the Spot API.

• collect: To collect the object, we will first use an off-
the-shelf grasping planner or heuristics to grasp it. Then,
we command the end-effector to move to the designated
position and place the object onto the blanket.
1) IoU Computation: To compute the IoU of two point

clouds, we first compute the distance between each point
from two point clouds. If a point’s minimum distance to
another point cloud is smaller than the predefined threshold
τ , this point is considered an “intersection”. After counting
all intersections, we can compute IoU by dividing the inter-
sections by the total point number. The detailed algorithm is
shown in Algorithm 1.

2) Unknown Space: Using depth image and camera pa-
rameters, we could create a voxel representation of the space.
For each voxel, we can have labels, such as unexplored,
free, unknown, and outside. The definition of each
label is listed below:
• unexplored: If a voxel is never viewed by a se-

quence of camera observations, the voxel is labeled as
unexplored.

• free: If a voxel is viewed by a sequence of camera
observations and it is in the free space, the voxel is
labeled as free.

• unknown: If a voxel is viewed by a sequence of camera
observations and it is occluded, the voxel is labeled as
unknown.

• outside: If a voxel is viewed by a sequence of camera
observations and it is outside of the room, the voxel is
labeled as outside.

Such a voxel representation is critical for VLM decision. For
example, when there are a lot unknown voxels inside the
cabinet or behind the box, VLM will utilize such information
regarding the unknown space to decide where to interact.

3) Relation Detection: Given such voxel representation,
we can define the following object relations:
• of: If a child object can be possibly a part of the parent

object, such as a handle is possibly a part of a cabinet,
and their point cloud centroids are close enough, the
child object node is of the parent object node.

• inside: If a child object is found after opening or
flipping a parent object, the child object is inside the

Algorithm 1 IoU Between Point Clouds
Input: Two point clouds A ∈ RN×3, B ∈ RM×3; threshold τ

Output: IoU matrix IoU
1: if |A|= 0 or |B|= 0 then return 0
2: Compute distances D between all points in A and B:

Dk,l = ∥A[k]−B[l]∥ , ∀k = 1, . . . ,N; l = 1, . . . ,M

3: Compute minimum distances for each point:

d(A)
k = min

l
Dk,l , ∀k = 1, . . . ,N

d(B)
l = min

k
Dk,l , ∀l = 1, . . . ,M

4: Create masks based on threshold τ:

maskA[k] =

{
1, if d(A)

k < τ

0, otherwise

maskB[l] =

{
1, if d(B)

l < τ

0, otherwise

5: Compute sums of masks:

SA =
N

∑
k=1

maskA[k], SB =
M

∑
l=1

maskB[l]

6: Compute IoU:

IoU =
SA +SB

N +M+ ε

7: return IoU

(a) Robot (b) Objects
Fig. 5: Experiment Setup. (a) illustrates the use of a Spot robot
equipped with an external RealSense 455. (b) showcases the diverse
objects used, emphasizing the system’s generalization capabilities
across various object types, scenes, and object relations.

parent object node.
• on: If a child object’s bounding box is within the parent

object’s bounding box in the x-y plane, and the child
object’s lowest z value is close to the parent object’s
highest z value, the child object is on the parent object
node.

• under: If a child object is found after sitting down
or lifting, the child object is under the parent object
node.

• behind: If a child object is found after pushing a
parent object aside, the child object node is behind
the parent object node.

4) Graph Serialization: We serialize the graph using the
depth-first search. The detailed algorithm is presented in



Algorithm 2.

Algorithm 2 Serialize Graph
Input: A graph G with nodes V and edges E
Output: A string texts representing the serialized graph

1: Initialize texts← “root\n”
2: Initialize to visit← empty stack
3: Add root node to to visit
4: while to visit is not empty do
5: // Append the text of the current node to final texts
6: Pop first node curr node from to visit
7: Obtain text curr text of curr node
8: Append curr text to return texts
9:

10: // Find children nodes and add to to visit
11: child nodes← curr node.get children()
12: for all child node in child nodes do
13: Add child node to to visit
14: return return texts

5) Prompts Examples: Here are all the prompt examples
we use. We provide minimal prompt examples to the robot
for task planning.

# explore one cabinet with one handle
graph:
root
\---cabinet_0

\---handle_1 [obstruction]

# answer
action:
open handle_1 # affected_objects:
cabinet_0, handle_1

# explore one cabinet with multiple
handles
graph:
root
\---cabinet_0

|---handle_2 [obstruction]
\---handle_1 [obstruction]

# answer
action:
open handle_2 # affected_objects:
cabinet_0, handle_2
open handle_1 # affected_objects:
cabinet_0, handle_1

# explore one cabinet with multiple
handles, while some handles are opened
graph:
root
|---chair_3 [obstruction]
|---box_4 [obstruction]
|---cloth_5 [obstruction]

\---cabinet_0
|---handle_1 (opened)
\---handle_2 [obstruction]

# answer
action:
push chair_3 # affected_objects: chair_3
push box_4 # affected_objects: box_4
lift cloth_5 # affected_objects: cloth_5
open handle_2 # affected_objects:
cabinet_0, handle_2

# explore several cabinets and
obstruction objects
graph:
root
|---cabinet_0
| |---handle_1 (opened)
| | \---object_3
| \---handle_2 (opened)
| \---object_5
|---object_7
|---box_9 [obstruction]
\---cabinet_6

\---handle_4 [obstruction]

# answer
action:
open handle_4 # affected_objects:
cabinet_6, handle_4
push box_9 # affected_objects: box_9

# explore several cabinets and
obstruction objects
graph:
root
|---cabinet_0
| |---handle_1 (opened)
| | \---object_3 (moved)
| | \---object_8
| \---handle_2 (opened)
| \---object_5 (moved)
|---object_7
|---box_9
\---cabinet_6

\---handle_4 (opened)

# answer
action:
none

# explore several cabinets and
obstruction objects
graph:
root
|---cabinet_0
| |---handle_1 (opened)
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Fig. 6: Qualitative Results. We evaluate our system’s exploration capabilities across various tasks, including pushing the chair aside to
reveal space behind it, lifting cloth to check underneath, flipping open boxes to inspect the contents, and exploring a household scene.
These tasks showcase the system’s ability to generalize across different object types, scenarios, and object relations. Additional tasks can
be found on the project page.
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| | \---object_3 (moved)
| | \---object_9 (moved)
| \---handle_2 (opened)
| \---object_5 (moved)
|---object_7
\---cabinet_6

\---handle_4 (opened)

# answer
action:
none

# explore several cabinets and
obstruction objects
graph:
root
|---sealed_box_1
|---sealed_box_2
\---open_box_3 [obstruction]

# answer
action:
flip open_box_3 # affected_objects:
open_box_3

D. Experiments

1) Full Qualitative Results: Due to the page limitation,
we only show partial results in our main paper. Here we list
more complete qualitative results in Figure 6.

2) Comparisons with Baselines: Table I shows the quan-
titative results of comparisons with baselines.

3) Ablation Study: We also study how our system’s per-
formance varies with the number of examples provided to
the LLM. We reduce the number of examples from 7 to 1
and evaluate the performance on three tasks: flipping boxes,
pushing boxes, and lifting cloth, with each task repeated three
times. Table II shows performance decreases as the number
of examples decreases, underscoring that the examples we
provided to the LLM are both minimal and necessary for
task planning.

LLaVa Gemini GPT-4o Heuristics Ours

Flipping Boxes

Success ↑ 0% 0% 0% 0% 80%
OR ↑ 0% 0% 0% 0% 70%
GED ↓ 2.3 2.3 2.1 2 1

Opening Drawers

Success ↑ 40% 80% 60% 60% 80%
OR ↑ 60% 90% 80% 72% 88%
GED ↓ 7.5 5.9 6.1 3 2.4

Checking Underneath

Success ↑ 60% 40% 0% 0% 90%
OR ↑ 60% 40% 0% 0% 90%
GED ↓ 2.2 2.7 3.2 3.1 1.5

Pushing Boxes

Success ↑ 0% 0% 0% 0% 70%
OR ↑ 0% 0% 0% 0% 70%
GED ↓ 4.1 4.3 4 4 1.2

Lifting Cloth

Success ↑ 10% 40% 100% 0% 90%
OR ↑ 10% 40% 100% 0% 90%
GED ↓ 2 1.9 1.2 2.2 0.3

Average

Success ↑ 22% 32% 32% 12% 82%
OR ↑ 26% 34% 36% 14.4% 81.6%
GED ↓ 3.62 3.42 3.32 2.86 1.28

TABLE I: Quantitative Results. We quantitatively evaluate our
system on five tasks, each repeated ten times, and compare it
with four baselines: LLaVa, Gemini, GPT-4o, and heuristics. The
evaluation metrics include success rate, Object Recovery (OR),
and Graph Editing Distance (GED), and metrics are defined in
Section III-D. Our results show that our approach is more effective
at accomplishing exploration tasks and is capable of constructing
more accurate object graphs.

Number of Examples 7 (Ours) 5 3 1

Success Rate 89% 67% 56% 11%
Object Recovery 89% 67% 56% 11%

GED 0.33 0.89 1.00 2.67

TABLE II: Ablation Study. We examine how our system’s
performance changes based on the number of examples fed into the
LLM. This figure shows that performance worsens as the number
of examples decreases, demonstrating that the examples we provide
are both minimal and necessary.
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