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Figure 1: Color naming precision varies dramatically across systems. When shown blue
color strips, GLM4.1V demonstrates limited color vocabulary, labeling diverse hues with
the single term ’blue’, while Qwen2.5 shows moderate discrimination using modifiers like
’light blue’ and ’dark blue’. In contrast, humans exhibit rich color vocabularies with distinct
names for each perceptual variation.Human terms from Lindner et al. (2012).

Abstract

Color serves as a fundamental dimension of human visual perception and a
primary means of communicating about objects and scenes. As vision-
language models (VLMs) become increasingly prevalent, understanding
whether they name colors like humans is crucial for effective human-AI
interaction. We present the first systematic evaluation of color naming
capabilities across VLMs, replicating classic color naming methodologies
using 957 color samples across five representative models. Our results show
that while VLMs achieve high accuracy on prototypical colors from classi-
cal studies, performance drops significantly on expanded, non-prototypical
color sets. We identify 21 common color terms that consistently emerge
across all models, revealing two distinct approaches: constrained models
using predominantly basic terms versus expansive models employing sys-
tematic lightness modifiers. Cross-linguistic analysis across nine languages
demonstrates severe training imbalances favoring English and Chinese, with
hue serving as the primary driver of color naming decisions. Finally, abla-
tion studies reveal that language model architecture significantly influences
color naming independent of visual processing capabilities.

1 Introduction

Vision-language models (VLMs) have rapidly evolved from tasks like image captioning and
visual question answering (VQA) to becoming core tools for evaluating multimodal AI sys-
tems (Huang et al., 2025). Their integration into commercial large language models (LLMs)
such as ChatGPT and Claude has democratized access to multimodal capabilities, enabling
millions to use them for everyday visual queries.
To support this widespread use, the VLM community has developed benchmarks for general
tasks (e.g., VQA, OCR, image captioning (Li et al., 2025).) and more specialized ones
targeting failure modes like hallucination (Guan et al., 2024; Li et al., 2023) or spatial
awareness (Zhang et al., 2025). Yet, color remains underexplored—existing evaluations
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focus only on broad color categories, lacking systematic analysis of color vocabulary and
naming consistency.
This oversight is critical, as users often expect accurate color descriptions in image-based
interactions (Chatterji et al., 2025). Color is a core aspect of human visual perception and
communication (Berlin & Kay, 1991; Witzel & Gegenfurtner, 2018), making its evaluation
essential for effective human-AI interaction.
In this work, we present the first systematic study of color naming in VLMs. Rather
than assessing precise color metrics, we adopt a categorical naming approach rooted in
color perception research (Witzel & Gegenfurtner, 2018), reflecting how humans naturally
describe color (e.g., light red, pink, yellow). This aligns with the linguistic interface VLMs
must navigate when describing visual scenes.
Following cross-linguistic color studies (Berlin & Kay, 1991), we evaluate VLMs using uni-
form color samples to isolate intrinsic color naming capabilities. While this abstracts away
real-world complexity, it avoids confounds like object identity and lighting, establishing a
clear baseline for future, context-rich evaluations.
Our contributions are the following:

• We perform the first color naming anaysis in VLMs replicating classic color name
methodology: while VLMs achieve high accuracy (94-98%) on prototypical colors
from classical studies, their performance drops significantly when evaluated on ex-
panded, non-prototypical color sets.

• Interestingly, 21 common color terms emerge consistently across all evaluated VLMs
and reveal two distinct approaches: constrained models using predominantly basic
terms versus expansive models employing systematic lightness modifiers for fine-
grained color discrimination.

• Mutual information analysis reveals that hue serves as the primary driver of color
naming decisions across all models. However, the percentage of hue, saturation and
value explains color names in different proportions for different models, suggesting
different encoding strategies.

2 Motivation: Basic color categories

Classic color naming studies (Berlin & Kay, 1991; Sturges & Whitfield, 1995) established
that humans universally organize color space using eleven basic categories (black, white,
red, green, yellow, blue, brown, purple, pink, orange, gray). To test whether VLMs exhibit
similar categorization, we replicated Berlin and Kay’s experiment using their 330 Mun-
sell chips on five representative VLMs (full experimental details, including prompt, are in
supplementary material).
Table 1 shows that VLMs achieve high accuracy (94- 98%) when compared to human focal
color data (Sturges-Whitfield), suggesting strong alignment with universal color categories.
However, this high performance reflects evaluation only on a subset (111 chips) of highly
saturated, prototypical colors, which are precisely the conditions where human agreement
is strongest.
When evaluated against the complete 330-chip Munsell set using computational color models
(NICE(Parraga & Akbarinia, 2016) and Benavente(Benavente et al., 2008)), accuracy drops
to 70-83%, revealing systematic deviations from optimal color naming on non-prototypical
colors. This limitation becomes critical when we consider that real-world color naming must
handle the full perceptual spectrum, including desaturated, intermediate, and atypical colors
where systematic naming patterns are less established. Berlin and Kay’s focal approach,
while foundational, cannot reveal whether VLMs develop coherent color vocabularies across
the complete range of perceivable colors.
Nevertheless, the previous analysis on Berlin and Kay’s approach already gives a hint at
how problematic color naming becomes when considering non-prototypical colors. Thus, to
perform a more in-depth analysis of color naming in current VLMs, in the remainder of
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Table 1: Model Accuracy Across Human Color Boundary Datasets. Sturges-Whitfield is
computed on only 111 chips. NICE and Benavente use the full 330-chip set.

Model Sturges-Whitfield NICE Benavente
InternVL2.5 8B 0.942 0.738 0.700
Qwen2.5 7B 0.827 0.647 0.647
Molmo 7B 0.981 0.816 0.831
JanusPro 7B 0.981 0.809 0.812
GLM4.1V 9B 1.00 0.775 0.762
MiniCPM V4.5 0.875 0.637 0.656

the paper, we follow an experimental setup that considers a 3× larger set of color samples.
This expanded dataset enables a more comprehensive investigation of naming consistency,
coverage, and sensitivity to non-prototypical colors.

3 Experimental Setup

3.1 Dataset

For systematic evaluation of VLM color naming, we utilize the 957 color samples employed
by Lindner et al. (2012) in their large-scale multi-lingual color analysis. This dataset
provides comprehensive coverage of perceivable color space, spanning both common and
uncommon color variations across the full spectrum of human color perception. The color
samples were originally derived from the XKCD color survey Munroe (2010) and have been
validated through cross-linguistic color naming studies Lindner et al. (2012).

3.2 Models

We evaluate color naming behavior across six representative vision-language models from
different architectural families: GLM4.1V 9B (GLM-V-Team et al., 2025), MiniCPM-V4.5
8B (Yu et al., 2025), Molmo 7B (Deitke et al., 2025), JanusPro 7B (Chen et al., 2025),
Qwen2.5 7B (Qwen-Team, 2024), and InternVL3 8B (Chen et al., 2024). These models were
selected to represent diverse training methodologies and architectural approaches rather
than to provide exhaustive coverage of all available VLMs.
Our selection encompasses a diverse set of models to explore architectural influences on color
naming behavior. JanusPro uses a unified multimodal design; Molmo is optimized for rich
image captioning; GLM4.1V integrates SigLIP with tailored cross-modal fusion; Qwen2.5
advances multilingual (Chinese-English) modeling; InternVL3 applies progressive training
for hierarchical vision understanding; and MiniCPM-V 4.5 deliver strong vision-language
and video understanding with efficient parameter use. This variety enables us to assess
whether color naming reflects model-specific traits or converges across architectures. As the
first systematic study of color naming in VLMs, our goal is to uncover fundamental patterns
rather than rank models. All selected models fall within a similar parameter range (7–9B),
ensuring fair comparison while minimizing scale-related confounds.
Additionally, we conduct an ablation study examining intra-family parameter scaling effects
by comparing models of different sizes within the same architectural family (see Section 7.2
and Appendix E). This analysis helps distinguish whether observed color naming patterns
stem from training methodologies and architectural choices, or simply model capacity.

3.3 Methodology

Following the open-ended methodology established in seminal color naming studies of Berlin
& Kay (1991), we present each of the 957 color Color theaurus chips and prompt the models
with ”What would you call this color?” using additinal rules to avoid verbose responses (see
Appendix A for the complete prompt).

3
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Figure 2: Common and shared color vocabularies across VLMs. Bottom: The 21 common
terms consistently used by all five models, including basic terms like green, blue, purple,
yellow, and pink, which collectively account for 67.7% of all naming responses across mod-
els. Top: UpSet plot showing the distribution of non-common color terms shared between
subsets of models. The intersections reveal which additional color names are used by specific
model combinations, highlighting vocabulary overlap patterns beyond the common core set.

Note that we employed a free-response paradigm that contrasts with usual closed-set eval-
uations in VLMs. The reasons are twofold: first, as stated before classic color naming
experiments in humans follow the same methodology (not impose color names, but rather
find them in the open ended questios). Second, that allows models to express their natural
color terminology without constraining responses to predefined categories. This approach
enables discovery of the full spectrum of color names that VLMs employ, from basic color
terms to complex descriptive phrases.
To capture the stochastic nature of VLM responses and ensure robust sampling of each
model’s color naming behavior, we collected 100 independent responses per color sample
using different random seeds.
Each color sample was presented as a plain RGB image (512×512 pixels) displaying the
uniform color value from the dataset. Images contained no additional visual elements, text,
or contextual cues that might influence color naming decisions. All models were evaluated
using their default vision processing pipelines with default model temperature to encourage
natural response variation while maintaining coherent outputs.

4 Color Names Beyond Basic Categories

We analyzed the distribution of color terms to identify patterns of convergence and diver-
gence in color vocabularies. Our analysis proceeds hierarchically, beginning with common
terms shared across all models before examining model-specific variations.
Common Color Terms Across Architectures. Despite diverse training methodologies
and architectural approaches, all five models consistently employ a core set of 21 common
color terms (Figure 2, bottom). These shared terms—including green, blue, purple, yellow,
and pink—account for 67.7% of all naming responses across models. This convergence
suggests these terms represent perceptual categories that emerge naturally from vision-
language training rather than being explicitly programmed, echoing findings from cross-
linguistic studies of human color naming (Berlin & Kay, 1991).
Model-Specific Vocabulary Distributions. While all models share this common core,
they exhibit differences in vocabulary specificity. As shown in Figure 3, GLM4.1V and
MiniCPM demonstrate highly constrained color vocabularies, with more than 88% of their
responses corresponding to the 21 shared terms. In contrast, Qwen2.5 and JanusPro employ
substantially more diverse color vocabularies, with roughly 50% of their responses using
terms beyond the common set.
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Modifier Usage vs. Lexical Diversity. To understand the nature of this vocabulary
expansion, we analyzed whether models achieve specificity through modifiers (e.g., light
blue, dark red) or through distinct lexical items (e.g., crimson, turquoise). We find evidence
that models like Qwen2.5, Molmo, InternVL, and JanusPro expand basic color terms by
systematically applying modifiers related to brightness, saturation, and hue (Figure 2, top.
See Appendix B for more details).
This distinction has important perceptual implications. As illustrated in Figure 1, where
GLM4.1V classifies a wide range of blue variations simply as blue, Qwen2.5 demonstrates
the ability to make finer distinctions, using terms like light blue, dark blue, and blue to
capture perceptual nuances within the blue spectrum.
Perceptual Drivers of Color Naming To understand which visual features guide color
categorization across different vocabulary strategies, we quantify how each HSV component
(Hue, Saturation, Value) contributes to color naming decisions. Using the three previous
groups three groups: common colors (terms used by all models), colors with modifiers (e.g.,
light blue, dark red), and non-common colors without modifiers. Within each category,
we discretize HSV values into bins (20 bins for Hue spanning 0-360°, 10 bins each for
Saturation and Value spanning 0-100%), and encode color names using label encoding.
We then calculate the mutual information score between each HSV component and the
encoded color names using sklearn’s mutual_info_score. The values in Table 2 represent
the percentage contribution of each HSV component to the total mutual information (HMI

+ SMI + VMI) within each category, indicating the relative importance of hue, saturation,
and brightness information for different types of color naming patterns across VLMs.
Table 2 reveals systematic patterns across the three vocabulary categories. For common
colors, hue dominates across all models (57-74% of total mutual information), confirming
that basic color categories are primarily organized around chromatic distinctions. How-
ever, Qwen2.5 shows notably greater reliance on value (brightness) at 31% compared to
other models (13-16%), suggesting a distinct perceptual weighting strategy even for com-
mon color terms. When models employ modifiers, the perceptual landscape shifts. While
hue remains dominant (50-53%), both value and saturation components gain importance,
reflecting the increased discriminative demands of fine-grained color naming. Qwen2.5 con-
tinues its value-centric approach with 33% contribution from brightness information, while
GLM4.1V shows the highest saturation weighting (27%) among models with sufficient mod-
ifier usage. For non-common colors, hue generally maintains dominance (50-60%), but in-
dividual model strategies diverge more sharply. GLM4.1V emphasizes a relatively balanced
weighting between saturation (31%) and hue (50%), while MiniCPM exhibits the most even
distribution, with nearly equal reliance on hue (36%) and saturation (36%)—a unique pat-
tern suggesting this model’s non-common color decisions are driven equally by color purity
and chromaticity rather than by brightness distinction. These divergent strategies indicate
that vocabulary expansion beyond the common modifier framework involves model-specific
perceptual mappings shaped by distinct training methodologies.

Key Findings

• All VLMs agree on 21 basic color terms despite diverse training methodolo-
gies (constrained vocabularies).

• Modifiers to the constrained set are mostly introduced as lightness modifiers
rather than distinct lexical alternatives (e.g. crimson, turquoise).

• Hue consistently dominates color naming decisions across all models, but its
relative importance decreases as vocabulary complexity increases—dropping
for modified and non-common colors as saturation and brightness gain dis-
criminative relevance.
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Figure 3: Distribution of common versus non-common color terms across VLMs. Each bar
shows the proportion of responses using the 21 common terms (shared across all models)
versus model-specific terms. GLM4.1V and MiniCPM display highly constrained vocabular-
ies with over 88% of responses using common terms, while others exhibit greater vocabulary
diversity with less than 60% of responses employing terms beyond the common set.

Table 2: Mutual Information Analysis: HSV Contributions by Color Category (%). Values
represent the percentage of total mutual information contributed by each HSV component.
Mutual information measures how much each component contributes to distinguishing color
categories. Dashes (–) indicate insufficient data for reliable MI calculation.

Model InternVL3 Qwen2.5 JanusPro Molmo GLM4.1V MiniCPM-V-4.5

C
om

m
on

C
ol

or
s Hue 70.5 57.8 72.2 74.2 72.3 72.7

Saturation 13.6 11.7 13.4 10.9 12.2 13.6
Value 15.8 30.5 14.4 14.9 15.5 13.8

C
ol

or
s

w
it

h
M

od
ifi

er
s Hue 50.9 52.6 52.4 53.3 53.4 –

Saturation 24.9 14.6 24.1 22.8 27.2 –
Value 24.3 32.7 23.5 23.9 19.3 –

N
on

-
co

m
m

on
C

ol
or

s Hue 57.9 55.2 59.8 59.1 50.3 36.1
Saturation 14.0 19.7 15.5 17.5 30.7 36.0
Value 28.0 25.1 24.8 23.5 19.0 27.9

5 How consistent are VLMs in color naming?

Having established the vocabulary diversity across models, we now examine the consistency
with which VLMs apply these color terms. This analysis addresses three fundamental ques-
tions about color naming reliability: How similar are the colors that receive identical names
within each model? Which colors serve as clear prototypical examples (foci) that models
name with high confidence?

5.1 Color Consistency

To measure color naming consistency, we employ a voting-based methodology that captures
both the dominant color term assignments and their perceptual coherence. Since for each
of the 957 color chips we collect 100 independent responses from each model, we assign each
chip to the color name that receives the majority vote, a common practive in classic color
naming (Sturges & Whitfield, 1995)) works. We then calculate consistency by measuring
pairwise distances between all chips assigned to the same color name within each model’s
color space representation. Specifically, we convert chip RGB values to HSV coordinates
and compute the mean pairwise distance for each HSV component across all chips sharing
the same color label.
Figure 4 presents mean hue distance consistency across models, focusing on this HSV compo-
nent as it provides the strongest explanatory power for color naming decisions. The analysis
displays only 9 colors from the original 21 common terms, as we restrict the visualization

6
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Figure 4: Hue consistency in common colors (less is more consistent), bubble size indicates
usage frequency.

to colors with at least 2 assigned chips per model through majority voting, while excluding
achromatic colors (black, white, gray) that lack meaningful hue information. Green con-
sistently exhibits the largest hue distance between assigned chips across all models, which
aligns with expectations given that it serves as the most frequently used color name in the
common set. Conversely, yellow and orange demonstrate consistently tight hue cluster-
ing across all models, indicating more precise categorical boundaries for these color terms.
Among the models, Qwen2.5 shows the lowest overall consistency in the common color set,
with systematically higher hue distances across most color categories, suggesting that its
expanded vocabulary comes at the cost of less precise application of basic color terms.

5.2 Focal Colors (Foci)

Color foci represent the most prototypical examples of each color category—the chips that
consistently evoke the same color name across multiple naming trials (Berlin & Kay, 1991).
In the context of VLMs, we measure foci by analyzing the stability of color term assign-
ments across repeated responses. As before, for each of the 957 color chips, we collect 100
independent naming responses and calculate the proportion stability as the fraction of trials
that produced the most common color term for that chip. A chip qualifies as a foci for a
particular color name when its stability meets or exceeds a specified threshold (ranging from
0.5 to 1.0). Table 3 presents two complementary metrics across different stability thresholds:
the number of unique color categories that achieve at least one foci (indicating vocabulary
breadth), and the mean hue distance in degrees between all chips sharing the same color
label (measuring the tightness of color clustering, where lower values indicate more precise
categorical boundaries).
The results in Table 3 show that GLM4.1V and MiniCPM have the most consistent foci,
maintaining 24-30 unique color categories even at the strictest threshold (1.0), while Qwen2.5
shows the most dramatic decline, dropping from 14 foci at threshold 0.5 to only 2 at threshold
1.0. This pattern aligns with our earlier finding that Qwen2.5 employs a more diverse but

Table 3: Foci Analysis: Number of Foci and Mean Hue Distance by Model and Threshold

Model 0.5 0.6 0.7 0.8 0.9 1.0
Foci Dist Foci Dist Foci Dist Foci Dist Foci Dist Foci Dist

GLM4.1V 30 17.4 29 17.9 27 17.2 25 16.9 24 17.4 24 17.4
InternVL3 48 19.5 45 20.0 45 19.6 39 17.0 34 17.3 29 17.9
JanusPro 37 13.5 26 13.7 22 13.9 16 19.2 8 2.4 2 9.5
MiniCPM-V-4.5 24 18.5 23 19.3 22 19.3 22 18.1 20 19.0 20 18.3
Molmo 34 19.2 29 18.7 19 21.0 15 13.0 12 10.6 8 5.4
Qwen2.5 14 31.2 13 21.5 12 22.2 9 21.8 5 12.1 2 0.0

7
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less consistent vocabulary. Regarding clustering quality, most models maintain relatively
stable hue distances (15-20) across thresholds, suggesting that their color categories have
consistent internal coherence regardless of strictness level. However, Qwen2.5 again stands
out with notably higher hue distances at lower thresholds (31.2° at 0.5), indicating that its
expanded vocabulary comes at the cost of less precise color boundaries.

Key Findings

• Vocabulary diversity comes at a consistency cost: Models achieving greater
descriptive specificity sacrifice categorical precision.

• Yellow and orange show the tightest categorical boundaries in all models,
while green has the largest within-category variance due to its frequent use.

• GLM4.1V, MiniCPM, and InternVL3—to a lesser extend, have more consis-
tent foci at the different threshold levels.

6 The role of language

Color naming in humans exhibits significant cultural and linguistic variation (Lindner et al.,
2012). To investigate how language influences color naming consistency in VLMs, we ex-
tended our analysis to nine additional languages present in the color thesaurus dataset:
Chinese, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish.
This multilingual approach enables us to examine whether the cross-model convergence
patterns observed in English generalize across linguistic boundaries, or whether language-
specific factors introduce systematic variations in VLM color naming behavior.
Following our previous methodology, we prompted the selected VLMs with the same prompt
as Section 3.3, translating it to each language (see supplementary material for each trans-
lation). We identified “common colors” for each language—those color terms used by all
models within that language. Table 4 presents these shared vocabularies, revealing the
core color terms that emerge across different VLM architectures when operating in each
respective language.
The distribution of common color terms across languages reveals imbalances that likely re-
flect training data disparities rather than inherent linguistic differences. Chinese (22 terms)
and English (21 terms) dominate the vocabulary space, while all other languages cluster
substantially lower, with most maintaining fewer than half the color vocabulary available in
the dominant languages. This disparity becomes particularly evident when examining lan-
guages from shared linguistic families, where expected similarities are conspicuously absent.
Romance languages show surprising variation, with Spanish maintaining 13 common terms
while Italian, Portuguese, and French cluster at only 6-7 terms. This pattern suggests that
shared linguistic heritage does not predict similar VLM color naming, pointing instead to
training-specific factors—such as dataset composition and language representation during
model development—as the primary drivers of cross-linguistic color vocabulary differences.
It is important to note that the number of common color names depends on both the number
and language specialization of the selected models. Some models demonstrate greater profi-
ciency in specific languages, and when less specialized models are included in the intersection
analysis, the number of common colors decreases accordingly (see Fig. 14 in appendix).

Key Findings

• Data bias drives cross-linguistic differences: English and Chinese models use
over 20 common terms, while most other languages fall below 10, suggesting
disparities in training data coverage rather than linguistic limitations.

• Language family does not predict color naming similarity: Romance lan-
guages show wide internal variation (Spanish: 13 terms vs. Italian/French
6-7), indicating that linguistic lineage is not a reliable predictor.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

7 Ablations

7.1 Color-object binding

Object recognition significantly influences color perception, both in humans and in vision-
language models (VLMs), where training data can bias the association between objects and
color names. To examine this effect, we conducted a controlled experiment using 3D rendered
objects presented in 957 distinct colors under multiple conditions. This setup allowed us to
isolate the impact of object identity on color naming. The results reveal substantial object-
dependent variation in color naming and modifier usage across models. These patterns
demonstrate that evaluations based solely on uniform color chips, while useful as baselines,
do not fully capture VLM behavior in more naturalistic contexts. Full experimental details
and results are provided in Appendix D.

7.2 Scaling the Language Models

To isolate the role of language modeling in color naming, we conducted a controlled ex-
periment using the InternVL family across four scales (1B, 2B, 8B, and 14B parameters),
keeping the visual encoder and training strategy constant. This design ensures that any
observed differences stem from the language model component alone. The results show
that language model architecture significantly affects color vocabulary usage, with notable
shifts in both common color frequency and individual color preferences across scales. These
findings highlight that multimodal color understanding depends not only on visual percep-
tion but also critically on the language model’s ability to map visual features to linguistic
categories. Full results and experimental details are provided in Appendix E.

8 Related Work

Recent research on color understanding in vision systems has taken several approaches.
Alabau-Bosque et al. (Alabau-Bosque et al., 2025) explored human-model color-word align-
ment using a gamified concept-to-color CLIP mapping. Other works, such as Akbarinia et
al. (Akbarinia, 2025) and Arias et al. (Arias et al., 2024), investigate internal color repre-
sentations through linear probes and mechanistic analysis of models like CLIP, focusing on
how networks encode color categories rather than linguistic output. Other work evaluates
color robustness using Ishihara color blindness tests (Samin et al., 2024; Ye et al., 2025;
Ling et al., 2025; Hayashi et al., 2025) or examines color-language associations through
prompted language models with hexadecimal codes (Mukherjee et al., 2024). ColorBench
(Liang et al., 2025) provides the most comprehensive evaluation of VLM color capabilities
across 1,400+ instances spanning 11 task types, but employs multiple-choice formats that
constrain responses to predefined categories. In contrast, our work examines the natural
color vocabularies that emerge from VLMs through unconstrained naming tasks, replicating
classic psycholinguistic methodologies to understand what color terms VLMs actually use
and how naming patterns vary across architectures, languages, and contexts.

9 Conclusions

In this work, we perform a systematic evaluation of color naming across vision-language
models. Our analysis reveals that while VLMs align well with human naming for proto-
typical colors, they diverge significantly on expanded, non-prototypical color sets. Rather
than the 11 basic categories found in human studies, VLMs converge on 21 common color
terms through two distinct strategies: constrained models using only core terms versus ex-
pansive models employing lightness modifiers for finer discrimination. Cross-linguistic and
object-specific experiments reveal severe training imbalances favoring English and Chinese,
alongside context-sensitive color naming where identical colors receive different labels based
on object identity. Finally, ablation studies demonstrate that language model architecture
significantly influences color naming independent of visual processing capabilities.

9
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