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Abstract

The challenge in combined task and motion planning (TAMP)
is the effective integration of a search over a combinatorial
space, usually carried out by a task planner, and a search over
a continuous configuration space, carried out by a motion
planner. Using motion planners for testing the feasibility of5

task plans and filling out the details is not effective because
it makes the geometrical constraints play a passive role. This
work introduces a new interleaved approach for integrating
the two dimensions of TAMP that makes use of sketches, a re-
cent simple but powerful language for expressing the decom-10

position of problems into subproblems. A sketch has width 1
if it decomposes the problem into subproblems that can be
solved greedily in linear time. In the paper, a general sketch is
introduced for several classes of TAMP problems which has
width 1 under suitable assumptions. While sketch decompo-15

sitions have been developed for classical planning, they offer
two important benefits in the context of TAMP. First, when a
task plan is found to be unfeasible due to the geometric con-
straints, the combinatorial search resumes in a specific sub-
problem. Second, the sampling of object configurations is not20

done once, globally, at the start of the search, but locally, at
the start of each subproblem. Optimizations of this basic set-
ting are also considered and experimental results over exist-
ing and new pick-and-place benchmarks are reported.

Introduction25

Combined task and motion planning (Garrett et al. 2021;
Lozano-Pérez and Kaelbling 2014), refers to planning prob-
lems where a robot manipulates objects in an environment in
order to achieve a given goal (Figure 1). The main challenge
in TAMP is to integrate planning at two levels effectively:30

1) task planning, which requires searching over a combi-
natorial space to find a sequence of “high-level” symbolic
actions; and 2) motion planning, which requires searching
for “low-level” paths through the robot’s continuous state
space. There are two basic approaches for TAMP (Garrett35

et al. 2021): 1) to search for high-level plans which are
subsequently checked for geometric and kinematic feasibil-
ity using a low-level solver; and 2) to iteratively generate,
typically by sampling, feasible configurations (robot poses,
grasps, etc.) which are then used to generate a global se-40

quence of high-level actions.
In this work, we present a novel interleaved TAMP ap-

proach to integrate task and motion planning that takes ad-

vantage of the powerful language of sketches developed re-
cently in classical planning for decomposing problems into 45

subproblems (Bonet and Geffner 2021) which can then be
solved by means of effective width-based search algorithms
(Lipovetzky 2021). Sketches are collections of rules over
state features that can be crafted by hand, expressing do-
main knowledge (Drexler, Seipp, and Geffner 2021), or can 50

be learned automatically (Drexler, Seipp, and Geffner 2022).
The use of sketches for TAMP has two advantages: 1) when
a task plan is found to be unfeasible due to geometric con-
straints, the combinatorial search resumes in a specific sub-
problem; and 2) the sampling of configurations is performed 55

locally, at the start of each subproblem instead of globally, at
preprocessing. While sketches and width-based search have
been developed for classical planning, neither one requires
declarative action models in PDDL or the like, and only re-
quire suitable state features to be defined over the states ob- 60

tained from a simulator. When the subproblems have a width
bounded by k, a simple SIWR procedure solves the prob-
lems in time exponential in k (Bonet and Geffner 2021). For
our TAMP tasks, we craft a sketch that yields subproblems
of width 1 under suitable assumptions that are discussed. 65

The paper is organized as follows. We describe first the
tasks, review the notions of sketches and width, present the
TAMP formulation and the sketches for dealing with three
families of pick-and-place tasks, the experimental results,
related work, and conclusions. 70

Benchmarking TAMP tasks
All the tasks considered as benchmark in this work, depicted
in Figure 1, require object manipulations through pick-and-
place actions in cluttered scenarios and have the same high-
level goal of ensuring that no object remains misplaced, 75

which is a goal that fits to many robotic manipulation tasks.
The first two tasks are taken from a TAMP benchmark (La-
griffoul et al. 2018) that aims to be a standard on this field.
The third task is inspired in the classical Blocks World.

Sorting Objects— A robot must arrange different blocks 80

standing on different tables, based on their color. The goal
constraints are that all N blue blocks must be on the left ta-
ble and all N green blocks must be on the right table. There
are also 2N red blocks, acting as obstacles for reaching blue
and green blocks, whose goal position is free. The robot is 85

allowed to freely navigate around the tables, while keeping



Figure 1: Examples of TAMP considered in this work: Sorting Objects (left), Non-Monotonic (middle), and Words (right).

within the arena, picking and placing the blocks at the tables.
The proximity between the blocks forces the planner to care-
fully order the operations, as well as to move red blocks out
of the way without creating new obstructions, i.e., blocking90

objects. Thus, this problem requires to move many objects,
sometimes multiple times.

Non-Monotonic— A robot must move three green blocks
standing on a table to their corresponding goal position on
another table. At the initial state, there are four red blocks95

obstructing the direct grasp of the green blocks and there
are also four blue blocks obstructing the direct placement
of the green blocks at their target position. In any case, the
red and blue blocks must end up being at the same initial
locations. The robot is allowed to freely navigate around the100

tables, while keeping within the arena, picking and placing
the blocks at the tables. The goal condition on blue and red
blocks requires to temporarily move them away and bring
them back later on (non-monotonicity), to solve the task.

Words— A robot must arrange anywhere on a table some105

blocks, each one labelled with a letter (possibly repeated), to
build a target word, e.g., TAMP and ROBOT. Then, the goal
positions of each block are not absolute but relative to the
positions of other blocks, and blocks can share goal posi-
tions if a letter is repeated in the goal sequence. Besides, the110

available free space on the table is limited, and thus there are
obstructions between blocks. This modification is intended
to make the coupling of the geometric and symbolic reason-
ing more challenging. Thus, a block is well-placed if, in a
given state, it belongs to the largest valid sequence (by valid115

we mean that the sequence is within the goal sequence and
located far enough away from the edges of the table to allow
the whole sequence to be completed).

Combined Task and Motion Planning
We assume the reader is familiarized with the framework of120

width-based planning and sketches. A background section,
providing a review of these concepts, is available in the sup-
plementary material.

We consider pick-and-place problems where, at a high-
level, a mobile robot with an arm can perform three actions:125

picking up an object from a surface, leaving it on a sur-
face, and moving to another place (dragging any grasped ob-
ject). Underlying this action-space there is a complex, lower-
level problem involving a continuous state-space (position
values of robot joints, robot and object locations and spa-130

tial constraints). The formulation exploits a particular width-
based task-planner based on the SIWR algorithm (Bonet and
Geffner 2021) guided by a simple and general sketch R with

a handful of chosen state-features that decompose the prob-
lems into subproblems solved by a linear-time search guided 135

by IW(1) (Lipovetzky and Geffner 2012). This task-planner
calls a motion planner for checking the feasibility of high-
level actions and for driving the joints. Two characteristics
of the proposed integration is that the sampling required for
mapping the high-level action schemas into ground actions 140

is done at the level of subproblems, and that “backtracking”,
namely failure of high-level subplans, is carried out also at
the subproblem level. There is no “deep backtracking”, the
SIWR search proceeds forward from the goal, one subgoal
at a time by means of the linear-time IW(1) procedure, and it 145

is the width w of the sketch over the family Q of pick-and-
place tasks that ensures that this search will be complete;
namely, when w = 1.

Problem Formulation
The class of TAMP tasks that we address can be character- 150

ized as a tuple T = (S, s0, G,Act, A,X,N) where:

• S represents the continuous states with all relevant infor-
mation, s0 the initial state and G the set of goal states;

• Act is the set of high-level action schemas;
• A is the sampling function that given a state s and the 155

set of action schemas Act produces the set of sampled
grounded actions A(s) that are relevant in s (although
not necessarily executable in s). Thus, A(s) limits the set
of states S that the planner can potentially visit given s;

• X is an executability function that maps ground actions 160

a ∈ A(s) and states s ∈ S into motion plans X(a, s) = ρ
that implement the action a in s at the low level, if the
ground action is feasible; if not, X(a, s) = ⊥;

• N is the state-transition function that yields the next
state s′ when the motion plan X(a, s) = ρ ̸= ⊥, is exe- 165

cuted in s; i.e. s′ = N(s, ρ) when ρ ̸= ⊥.

A plan or solution for a tuple T is a sequence of ground
actions a0, . . . , an such that: 1) ai ∈ A(si), i = 0, . . . , n;
2) si+1=N(si, ρi) for ρi=X(ai, si), ρi ̸=⊥, i = 0, . . . , n;
and 3) sn+1 ∈ G. Starting with s0, the state progresses ac- 170

cording to low-level motion plans and the given dynamics,
and this progress must end in a goal state.

In the search, the main bottleneck is in the execution func-
tion X(a, s) that is expensive as it involves run-time calls
to a motion planner. Note also that one special case of the 175

above formulation arises when the configuration sampling
that leads to the finite set A(s) of ground actions is done
only once at pre-processing. In such a case, A(s) = A(s0)
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Figure 2: Different grasps (a), SOPs (b), and calls to InArmWorkspace (c), InverseKinematics (d), and MotionPlan (e) functions.

for all states. Other variations do one sampling per subprob-
lem; in such a cases s “borrows” the set of ground actions180

from other states s′ considered before as A(s) = A(s′).

State-Space S, start state s0 and goal states G
On the one hand, the state space S is continuous and com-
prises the robot configuration-space (i.e. the position value
of the robot joints), the robot pose (i.e. position and orienta-185

tion in Cartesian space) together with the pose of the mov-
able objects. Formally, S ∈ Rd × SE(3) × · · · × SE(3),
where d is the number of degrees of freedom of the robot and
SE(3) is the group of homogeneous transformations, one for
the robot and as many as objects. Note that S is what the190

motion-planner “sees” and that low-level discrete informa-
tion can be inferred from it (e.g. knowing that an object is
grasped by checking that its position coordinates are within
the gripper fingers). On the other hand, the initial state s0
involves the starting configuration of the robot and the ob-195

jects and the set G is the set of states s that imply that all
misplaced objects are in their goal positions/regions.

Action Schemas Act
Three high-level action schemas in Act are considered in T :

• Pick(b, o, g) actions that, when valid, allow the robot to200

pick up, from a given robot location b, a specific object o
using a specific grasp g (see Figure 2a), as long as the
robot is not already holding any object.

• Place(b, o, p, σ) actions that, when valid, allow the
robot to place, from a given robot location b, a particu-205

lar object o (if it is the one being held), in a given place-
ment p using a given SOP σ (Stable Object Pose, see
Figure 2b).

• Move-Base(b, b′) actions that, when valid, allow the
robot to navigate from its current position b to a differ-210

ent one b′, dragging the held object in case there is one.

Note that actions are grounded when all the related parame-
ters are fully specified. Thus, the action space comprises all
the possible actions that could be obtained by the combina-
tion of the possible values of these parameters.215

Ground Actions A(s) through Sampling
Given a state s, the sampling function A produces a set A(s)
of sampled grounded actions by sampling values for all the

Act parameters. Note that the size of A(s) increases expo-
nentially with the number of movable objects and polynomi- 220

ally with the sampled parameters. The parameter values are
randomly sampled seeking both a uniform density and max-
imum coverage of the parameter-space, taking into account
that: 1) the set of sampled placements p must contain the
poses of the movable objects at s and their goal position(s) 225

in G(s); 2) the placements p can only be on the tables; and,
3) the robot locations b must be at distance from a table less
than the radius of the arm’s reach (outside this region the
robot cannot manipulate any object and, besides, this use-
less base location increases the problem complexity). This 230

promotes richness of representation and the sampled A(s)
potentially generate (if executed) states where objects are
spaced and, thus, geometric constraints are easier to satisfy.

Executability and Transition Functions X , N
In a given state s, the executability function X maps a 235

grounded action a ∈ A(s) to a motion plan ρ = X(a, s), i.e.
a trajectory in the robot joint-space that respects its capabil-
ities and does not involve self-collisions or collisions with
the environment. The action is not be feasible if ρ = ⊥. For
these operations and checks, the motion planner MoveIt! is 240

used (Coleman et al. 2014) to compute the following three
functions sequentially:
1. InArmWorkspace: Returns true when a given target

(e.g. an object to interact with) is within the robot arm’s
reach, and false otherwise (see Figure 2c). 245

2. InverseKinematics: Returns true only when a valid
non-collision robot joint configuration is found, to place
the robot gripper at a target (see Figure 2d), using a
general robot-agnostic iterative Inverse Kinematics (IK)
solver algorithm (Chiaverini, Siciliano, and Egeland 250

1994). Notice that if the target is not within the arm
workspace, i.e. InArmWorkspace fails, an IK solution
does not exist, and InverseKinematics will fail too.

3. MotionPlan: Returns true only when a valid motion
plan ρ ̸= ⊥ is found, to place the robot gripper in a tar- 255

get and perform the corresponding action (see Figure 2e),
using a motion-planning algorithm. Here, RRT-Connect
is used (Kuffner and LaValle 2000), which is probabilis-
tically complete (if there exists a motion plan, it will find
it provided sufficient time). Note that if there is no valid 260

robot configuration to grasp an object, i.e. InverseKine-
matics fails, a motion-plan solution does not exist and,
hence, MotionPlan will fail after a timeout.



The state-transition function N returns the last state s′ of
the motion plan ρ ̸= ⊥.265

Solving TAMP: Sketch Decompositions
We will search for plans that solve a given TAMP task
T = (S, s0, G,Act, A,X,N) by means of the the SIWR al-
gorithm that uses a domain-dependent sketch R to decom-
pose the problem into subproblems, and the IW search al-270

gorithm for solving the subproblems. If the width of the
sketch R for the target class of problems Q is bounded,
then SIWR will solve the problems in polynomial time, and
moreover, if the sketch width is 1, SIWR will solve the sub-
problems, greedily with the IW(1) algorithm, in linear time.275

For making this possible, the features used in the sketch R,
and the features used in the IW algorithm, need to be cho-
sen carefully, assuming that the class of problems Q can be
solved in polynomial time. For the TAMP setting, we pro-
vide the sketch and the features by hand, although they could280

be learned from small instances (Drexler, Seipp, and Geffner
2022), provided suitable state languages (in planning, the
state languages is given by the domain predicates).

The set of features F is given by two sets F = (FH , FD)
of Boolean and numerical state features (functions): the first285

set FH is used only in the IW searches invoked by the SIWR

algorithm and they are just Boolean features; the second
set FD is used in the sketch R for expressing the decom-
position of a CMTP problem T into subproblems, and uses
both Boolean and numerical features. The numerical fea-290

tures counters take non-negative integer values. The abstract
state space that is searched is actually given by the possi-
ble values of the features. It is assumed that the features for
the class of problems T are rich enough to distinguish goal
states from non-goal states.295

Features FH for Searching Subproblems
Given a sketch with rules C 7→ E, the subproblem to be
solved at a state s is given by a problem that is like T but
with initial state s and goal states GR(s) given by the orig-
inal goal states of the problem T , along with the “subgoal”300

states s′ such that the state pair [s, s′] satisfies a sketch rule
C 7→ E in R; namely, s makes the condition C true, and
the transition from s to s′ makes the effect expression E
true (for instance, a feature is decremented). These sub-
problems, denoted as T [s,GR(s)], are solved by an IW(1)305

search where the “atoms” in a state s are given by the
Boolean search features FH . The IW(1) search over the sub-
problem T [s,GR(s)] thus proceeds as a breadth-first search
from s where newly generated states that do not make a fea-
ture in FH true for the first time. The search succeeds when310

a state s′ in GR(s) is found, else it fails. The applicability of
an action a ∈ A(s) is checked by evaluating the executabil-
ity function X(a, s): if it results in a motion plan ρ, the state
resulting from the action a in s is set to s′ = N(s, ρ).

The set FH of search features considered capture the315

robot and objects poses and they are called robot-at-p
and object-o-at-p, for poses p and objects o. It can be
shown that if the subproblems T [s,GR(s)] generated by the
sketch R can all be solved by moving an object from some

original pose to another pose, the width of the subproblems 320

with these features FH is 1, and thus they can be solved effi-
ciently by IW(1), while generating a number of nodes that is
linear in the number of objects, sampled configurations, and
number of features in FH .

Sketch, SIWR and Problem Decomposition 325

Starting with a state s, the SIWR algorithm carries an IW
search from s until a state subgoal state s′ in GR(s) is found.
If s′ is a goal state of the problem, the SIWR exits success-
fully, else it repeats the process from s := s′. The role of the
sketch R is to define the set of subgoal states s′ ∈ GR(s) as 330

the goal states of the problem, and the subgoal states s′ that
along with s satisfy a sketch rule.

For the different types of pick-and-place tasks to be ad-
dressed, a hand-made sketch R with four rules involving five
features is used. The five features are: 335

• H: a Boolean feature that is true if the robot is holding
an object, and false otherwise.

• I: a Boolean feature that is true if there exists a goal
pose of the grasped object not blocking the pick/place of
any other misplaced object, and false otherwise. 340

• m: the number of misplaced objects, defined as the ob-
jects that are standing (i.e. not held) outside their goal
position/region (if the object has no associated goal,
it is never misplaced) or are held and their goal posi-
tion/region is blocked. The goal positions/regions depend 345

on the problem and they can be defined in absolute coor-
dinates (e.g. Sorting) or relative coordinates (e.g. Words).

• u and v: respectively min(αi+βi) and
∑

αi, with αi

being the minimum number of objects blocking the i-th
misplaced object (i.e. preventing it from being picked up 350

from its current position and put down in its goal posi-
tion/region) and βi the minimum number of misplaced
objects blocked by the goal position(s) of the i-th mis-
placed object. During the search for such a minimum
value, it is considered the best robot location and grasp 355

for the pick action and the best robot location, object
placement and SOP for the place action in the goal zone,
while maintaining consistency (i.e. using the same grasp
for the considered pick and place pair).

Using these features, the goal in all the tasks is expressed as 360

¬H and m = 0 (no misplaced objects and no held object).
The sketch R used is made up of four sketch rules ex-

plained below. Recall that m? indicates that it does not mat-
ter how m changes, and a non-mentioned feature must pre-
serve its value. 365

• {¬H, m > 0, u = 0} 7→ {H, F, m↓, u?, ¬ v↑}: if
there is some misplaced object that can be picked up
and placed down directly, pick it up. The expression ¬ v↑
means that v can change but not increase.

• {¬H, m > 0, u > 0} 7→ {H, I?, m?, u?, v↓}: if 370

there are misplaced objects but they cannot be picked
up directly, pick up an obstructing object. Notice that,
even when u were inaccurately estimated, picking an
unexpectedly-accessible misplaced object would also
satisfy this rule (which is not an inconvenience at all). 375



• {H, ¬I} 7→ {¬H, I?, m?}: if robot is holding an object
that cannot be placed in goal without blocking misplaced
objects, place it somewhere else without creating new in-
terferences with the objects that are still misplaced.

• {H, I} 7→ {¬H, I?}: if the robot is holding an ob-380

ject, which would not block other misplaced object once
placed if it had a goal associated with it, enforcing to put
it down but not in a wrong position and without disturb-
ing the access to the pending misplaced objects.

The sketch structures the problem into subproblems but it is385

not a policy; the subproblems need to be solved by search,
but this is a search that is done efficiently by IW(1) in SIWR.
For example, the rules do not say how the base of the robot
should move, or which grasp to use. Part of these details
are filled in by the search (e.g. robot base moves) and the390

others by the motion planner (e.g. grasps). Besides, note that
while the approach is general, the given sketch is suited for
(a large class of) pick-and-place tasks. In particular, TAMP
problems involving other ”high-level actions” would require
different sketches, e.g. a robot-cook will need actions for395

heating ingredients.

Formal Properties. The effectiveness of the SIWR proce-
dure on the TAMP tasks T considered below depends on
the problem decomposition that follows the choice of the
sketch R (and its features FD), and the power of the sub-400

problem search by means of IW(1) with the given search fea-
tures FH . Two properties that would guarantee that SIWR

using IW(1) solves the problem T are: 1) sketch termina-
tion (Bonet and Geffner 2021), and 2) sketch width of 1 for
this family of tasks. We prove the first and provide a ratio-405

nale for the second, that in the TAMP setting involves con-
ditions that cannot be captured with precision.

Sketch termination. It must ensure that moves from state s
to subgoal state s′ ∈GR(s) cannot go on for ever. For this,
we show that the four sketch rules can be used to generate410

subgoals a finite number of times only. First, note that fea-
ture v, that captures roughly total number of “interferences”
towards the goal, is decreased in the second sketch rule r2
but is not increased in any of the four rules (no expression
effects v↑ or v?). This means that rule r2 can be used for415

subgoaling a finite number of times only as counters cannot
become negative. Once that rule r2 is excluded from those
that can be “followed” an infinite number of times, a similar
argument can be made about rule r1 where the counter m is
decreased. In this case, rule r3 may increase m as it contains420

the effect expression m?, yet this rule cannot be followed af-
ter r1 because r1 makes I true and r3 requires I false.
So infinite “executions” of rule r1 can only involve infinite
executions of rule r4, as rule r2 cannot be executed infinitely
often, and since r4 cannot increase the value of m, r1 cannot425

be executed infinitely often, but then neither r3 nor r4 that
make H false but require H true in the antecedent.

Sketch width 1. The width of the presented sketch for the
class of pick-and-place problems T with search features FH

can be shown to have width 1 under the following condi-430

tions: 1) the counters m, u, and v represent all interferences
affecting misplaced objects; 2) there is reachable space for

placing objects without causing new interferences (increases
in u and v); 3) every object can be reached, possibly after
moving other objects out of the way, 4) the ground param- 435

eters (sampling) of the relevant ground actions in the sub-
problem are sampled. These are strong assumptions but they
are needed for explaining the power and scope of the pro-
posed method. It is important that the sampling is done in
the context of a simple subproblem, and does not need to be 440

done once for the whole problem. We show then that in ev-
ery state s, the problem of reaching a subgoal state s′ GR(s)
has width 1. The four sketch rules ri : Ci 7→ Ei have dis-
joint antecedents Ci, so we just need to consider four cases,
where s makes Ci true, and s′ ∈ Gri(s) where the set of 445

rules R is replaced by the single rule ri, i = 1, . . . , 4.

Rule 1. If s satisfies C1, the subproblem T [s,Gr1(s)] in-
volves picking up a misplaced object with no obstructions,
whose goal is free and can be occupied without causing ob-
structions. The rule ensures that there is one such object 450

and that picking up an object that does not comply with
these conditions will not lead a state s′ in Gr1(s). There-
fore, there is a plan to solve this subproblem in which the
robot moves certain times and the object is picked up. If
this plan is optimal, the sequence of robot base positions, 455

until the pick up, captured by robot-at-p features, fol-
lowed by the object configuration after the pick up, captured
by the object-o-at-p features, yields chain of “atoms”
t0, . . . , tk that is admissible; namely, t0 is true in s, opti-
mal plans for ti can all be extended into optimal plans for 460

ti+1, and optimal plans for tk are optimal solutions to the
subproblem T [s,Gr1(s)]. Hence, IW(1) running with the
proposed FH will solve this subproblem optimally (Lipovet-
zky and Geffner 2012; Bonet and Geffner 2021).

Rule 2. If s satisfies C2, the subproblem T [s,Gr2(s)] in- 465

volves picking up an object that is obstructing misplaced
objects, for moving it “out of the way”. The subproblem
can be solved in the same way by Move-Base actions, fol-
lowed by a Pick, giving rise to a similar admissible chain
of atoms that establishes that the subproblem has width 1 470

and is solved optimally by IW(1).

Rule 3. If s satisfies C3, the subproblem T [s,Gr3(s)] in-
volves placing the object held “out of the way”, without in-
creasing the number of interferences. The optimal plan for
the subproblem may involve a number of robot moves fol- 475

lowed by placing down the held object. In this case, the
“atoms” object-o-at-p that are made true in an op-
timal plan for the subproblem constitute an admissible chain
that proves that the subproblem has width 1.

Rule 4. If s satisfies C4, the subproblem T [s,Gr4(s)] in- 480

volves placing the object held, that appears in the goal,
whose target is not obstructed and that placed in that tar-
get will not cause obstructions to misplaced objects. Once
again, the conditions ensure that the subproblem has a solu-
tion, and potentially involves Move-Base actions followed 485

by a Place action as well. The “atoms” object-o-at-p
that are made true in an optimal plan for the subproblem
constitute an admissible chain, that proves that the subprob-
lem has width 1 (under the above, general conditions).



Optimizations490

Here, we introduce implementation details, including used
approximations and optimizations. There are two sources
of approximation: 1) Representation of continuous variables
through sampling and, 2) Relaxing the Sketch-Features
computation. Furthermore, two search optimization mech-495

anisms are introduced that focus on minimizing the efforts
on geometric validation of the actions.

Adaptive sampling and Probabilistic completeness. Since
the sketches allows decomposing the problem into subprob-
lems, we use a different state-space adapted to each sub-500

problem. This enables working with reduced tractable state-
spaces that represent well each subproblem scenario. Note
that any of these specific discretizations is not sufficiently-
rich to represent well the whole problem world and yet,
combined, they allow finding a solution to the overall prob-505

lem. Besides, the sampling density of the Act parameters is
increased (and the search is restarted) when an attempt to
reach a subgoal fails, to obtain new values that can help to
find a subproblem solution. Thus, the full approach is proba-
bilistically complete in the sense that (a) all object locations510

and configurations are susceptible to be sampled; (b) when a
subsearch fails, the same subsearch is reattempted but with
more sampled object locations.

Sketch-Features computation. The computation of the fea-
tures I , u and v would imply complex inverse-kinematics515

and collision-checking computations. To speed up the pro-
cess, these type of computations are avoided and approxi-
mations are used instead in the approach implementation.
In particular, instead of finding the robot configuration that
causes the fewest collisions for a given pick/place of a mis-520

placed object, we overestimate this number by looking at
how many objects have their center of mass within a 3D
region containing all possible inverse kinematics solutions.
This region is easy to compute and is implicitly defined con-
sidering the object and robot poses and the grasp to be used.525

Lazy action-validation. To speed-up the search, the action
validation is relaxed until a subplan is found. In particular,
the third step of the executability function X (i.e. Motion-
Plan) is only checked for the actions in a potential subplan.
Hence, graph edges are “provisional” until complete check-530

ing and we must keep all the discovered edges. Thus, a node
may have more than one parent node (although the one im-
plying a lowest cost to reach the start is the one acting as
the parent). With this lazy approach, the most time consum-
ing action-validation step is performed only on those actions535

that are part of a potential solution plan. If all the plan ac-
tions are successfully validated, a completely valid subplan
is returned. Else, the unfeasible action is discarded and the
corresponding graph edge is removed. However, the child
node is kept as long as there is an edge supporting it.540

Incremental IW(k). Instead of restarting completely the
IW(k) subsearch when a potential subplan is invalidated
by the motion planner, we save the search done until then
and resume the search. For this, the novelty management is
adapted such: 1) All the features associated to each gener-545

ated node are recorded (it could still be pruned, if it does not

introduce the required novelty); 2) A feature is supported by
one main node but it may have newer nodes as backup can-
didates; 3) When a node has to be discarded because it has
been disconnected from the root node during a final action- 550

validation, this node is removed as support of its related fea-
tures; 4) If a feature loses all of its supporters it is removed
from the novelty table; and, 5) A pruned node (because of
not passing the novelty check) could be recovered if it is the
next backup candidate after removing a support node. 555

The resulting algorithm after applying the explained opti-
mization is named in this work Lazy Serialized Incremental
Iterated Width with Sketches (Lazy-SIIWR).

Related Work
Our approach to TAMP interleaves task and motion plans 560

like (Garrett et al. 2021). Two other related approaches are
sequence-before-satisfy, that first obtain fully-symbolic po-
tential plans and then solve the geometric constraints (Gar-
rett, Lozano-Pérez, and Kaelbling 2020), and satisfy-before-
sequence (Akbari, Muhayyuddin, and Rosell 2016), that first 565

solve the geometric problem and then find action sequences
that use those values.

Our work is also related to Planet (Thomason and
Knepper 2022), which interleaves task and motion plan-
ning through a flexible sampling-based approach. Similarly, 570

Planet avoids sampling in the full Cartesian space. However,
Planet uses a composite space including symbolic and con-
tinuous components, and defines an explicit embedding of
the symbolic state into the continuous space. Furthermore,
Planet uses a heuristic to guide the sampling. Instead, we 575

consider a blind but focused search, IW(1), to solve each
subproblem, and the subproblem to solve next follows from
the sketch. An interleaved approach using sampling mecha-
nism of predefined primitives to obtain (only valid) contin-
uous values in the node expansion is proposed in (Ajanović 580

et al. 2023), where a feasibility map is proposed to enable
approximated models for motion primitives generation.

Most related to our approach is the work of Ferrer-
Mestres, Francès, and Geffner (2017) which uses Best-First
Width-Search (BFWS) on a pre-discretized state-space and 585

restricts the sampling to a template-grid (kept for the whole
search). BFWS uses an extension of PDDL that accommo-
dates procedures and state constraints (Geffner 2000). State
constraints represent implicit action preconditions to discard
spatial overlaps. Procedures are used for testing and up- 590

dating robot and object configurations. Other works extend
PDDL in different ways. For example, PDDLStream (Gar-
rett, Lozano-Pérez, and Kaelbling 2020) incorporates sam-
pling procedures in PDDL that allow a planner to reason
about conditions on the inputs and outputs of a conditional 595

generator while treating its implementation as a black box.
Using sketches to address a collection of tasks have paral-

lelisms with generalized planning (Srivastava, Immerman,
and Zilberstein 2008). Like general policies (Bonet and
Geffner 2018), sketches are general and not tailored to spe- 600

cific instances of a domain, but unlike policies, the feature
changes expressed by sketch rules represent sub-goals that
do not need to be achieved in a single step. A methodol-
ogy for learning sketches in classical planning tasks has been



introduced in (Drexler, Seipp, and Geffner 2022). Learning605

features, abstractions, and generalized plans from a few ex-
amples in continuous TAMP problems has been proposed
by Curtis et al. (2022).

The idea of lazy evaluation is known to reduce planning
time for search-based planners and has been applied recently610

in several works, e.g, by postponing applicability checks
for successor states performing geometric queries (Dorn-
hege, Hertle, and Nebel 2013), by deferring motion sam-
pling until an action skeleton is found (Khodeir, Sonwane,
and Shkurti 2022), or by solving shortest path problems as615

needed (Dellin and Srinivasa 2016).
An alternative formulation leverages nonlinear optimiza-

tion to jointly compute a motion that satisfies geometric and
physical constraints (Ortiz-Haro et al. 2022). Contrary to
our approach, these methods operate on the full planning se-620

quence and do not explicitly exploit the subproblem decom-
position. Direct comparison with our approach is difficult,
as they require the formulation of the optimization problem,
e.g. the logic-geometric program, and a full PDDL problem-
description.625

Hierarchical planning approaches also express and exploit
problem decompositions (Wolfe, Marthi, and Russell 2010;
Kaelbling and Lozano-Pérez 2011). In this cases, the de-
composition is expressed in hierarchical manner and not by
means of sketches. The key difference between these hierar-630

chical approaches and the sketch-based approach is the role
and scope of the search. In the proposed sketch-based ap-
proach, the subproblem search is done in linear time, by
means of the IW(1) algorithm, and this guaranteed to be
complete if the sketch width is 1. The role and scope of the635

search in hierarchical approaches in both robotics and plan-
ning is less clear: either the domain knowledge must express
a full strategy for solving the problems which does not re-
quire any search, or else, the search can easily get lost. More
recent works make use of hierarchical models and combine640

them with learning (Patra et al. 2020).
Other related methods make flexible use of external pred-

icates and functions for feasibility checks (Erdem, Patoglu,
and Saribatur 2015; Erdem et al. 2011). These methods
strongly rely on the problem description, which is modi-645

fied during the search integrating additional domain spe-
cific information from the motion-level. Learning-driven
approaches can be used to guide the solution of TAMP
problems. (Kim and Shimanuki 2020) proposed learning
action-value functions for speeding up the discrete part of650

the search in TAMP problem. Another learning approach,
introduced in (McDonald and Hadfield-Menell 2022), con-
sists on training a policy to imitate a TAMP solver’s output.
The obtained feed-forward policy is used to solve tasks from
sensory data and to supervise the training an asynchronous655

distributed TAMP solver for imitation learning is used.

Experimental Results
We evaluate our method in the three tasks1 presented ini-
tially with the following objectives in mind: to provide em-
pirical evidence of the theoretical results, to analyze how the660

1Supplementary material includes accompanying videos.

method scales with the problem complexity, to quantify the
impact of the lazy action-validation, and to compare it with
related approaches. We compare the following methods:

• Lazy-SIIWR: our approach with lazy action-evaluation,
called Lazy Serialized Incremental IW with Sketches. 665

• SIWR: our approach without lazy action-evaluation.
• BFWS (Ferrer-Mestres, Francès, and Geffner 2017).
• Planet (Thomason and Knepper 2022).
• PDDLStream (Garrett, Lozano-Pérez, and Kaelbling

2020). We extended the existing implementation of 670

PDDLStream planners. Details of these extensions are
provided in the supplementary material.

Table 1 shows the results. Both Lazy-SIIWR and SIWR

are able to solve all problem instances. This confirms that
the assumptions regarding sketch termination and sketch 675

width are satisfied for these benchmarks, and shows that the
method remains complete even in the presence of approx-
imations. Unlike all other methods, Lazy-SIIWR requires
less time for computing the plans than for executing them,
which shows the benefits of the lazy action-evaluation. 680

Lazy-SIIWR and SIWR also scale up well, despite the ex-
ponential increase in the state-space due to an increase in
the number of objects. Compared to BFWS, Lazy-SIIWR is
always more efficient both in planning and execution time.
Without the lazy evaluation of constraints, SIWR only per- 685

forms comparably to BFWS. PDDLStream planners and
Planet are only comparable to Lazy-SIIWR for simple prob-
lems, but they exceed the time limit as soon as the complex-
ity of the problems increases.

To understand better how the lazy action-evaluation af- 690

fects the performance, we analyze how the computation is
distributed between the different steps involved in the geo-
metric validation of each action. Table 2 shows illustrative
profiling values for the three steps. Note that they act in in-
creasing order of computational load and decreasing order 695

of relative discriminative power (i.e., rejection ratio over the
non-filtered actions in the previous step). This permits to ef-
ficiently discard most of unfeasible actions. Decomposing
the action-validation enables delaying the computation of
the most expensive step (MotionPlan). Thus, the complete 700

validation is only computed on those actions that are part
of a potential plan. Note that satisfying the first two steps
almost ensures that the action is valid.

Another important metric is the quality of the produced
plans. Although optimality can not be guaranteed, the pro- 705

posed algorithm performs well in avoiding unhelpful actions
(i.e. obtaining near-optimal solutions). This follows from the
rules in the sketch that discourage moving objects that are
not misplaced and do not block misplaced objects. Hence,
after moving these objects, often other goal objects became 710

accessible without needing to move non-goal objects. In-
deed, when comparing the results with the other approaches,
plans containing fewer actions are obtained for the same
problems with the proposed approach.

High-cluttered problems are the most challenging. On 715

these problems, the goal objects can be obstructed by many
objects, which must be moved away, and there is a limited



Table 1: Average results over ten runs in the benchmarking problems in an Intel® Core™ i7-10610U CPU at 1.80 GHz, with
16 Gb of RAM, on Ubuntu 20.04.4 and ROS Noetic. †Within 30 min maximum planning time or maximum memory ex-
ceeded. ⊥Considering that the path execution does not start until the path has been completely planned. ∗Including also the
pre-processing time, for a fair comparison.

Prob. #Tables #Objects #Goal
objects

Clutter
level Planner

Success
ratio†

Planning
time

Execution
time

Total
time⊥

#Expanded
nodes

#Sub
plans

So
rt

in
g

O
bj

ec
ts

1 20 2 High
Lazy-SIIWR 100% 3.16 min 3.67 min 6.83 min 60 14

SIWR 100% 13.05 min 3.73 min 16.78 min 54 14
BFWS 100% 5.25 min∗ 5.91 min 11.16 min 63.3k 1

3

2 2 Low

Lazy-SIIWR 100% 0.26 min 1.21 min 1.47 min 28 4
PDDLStream Adaptive 100% 0.03 min 1.24 min 1.27 min N/A 1
PDDLStream Binding 100% 0.21 min 1.20 min 1.41 min N/A 1

PDDLStream Incremental 100% 12.01 min 1.22 min 13.23 min N/A 1
PDDLStream Focused 0% N/A N/A N/A N/A N/A

25 5 Med.

Lazy-SIIWR 100% 3.36 min 3.95 min 7.31 min 235 10
SIWR 100% 21.60 min 4.02 min 25.62 min 198 10
BFWS 100% 13.47 min∗ 7.61 min 21.08 min 3.5k 1

PDDLStream (Any) 0% N/A N/A N/A N/A N/A

4
7 7 Low

Lazy-SIIWR 100% 2.35 min 4.45 min 6.80 min 185 14
Planet 100% 3.22 min N/A N/A N/A 1

PDDLStream Adaptive 100% 7.47 min 5,72 min 13.19 min N/A 1
PDDLStream (Others) 0% N/A N/A N/A N/A N/A

28 14 Med.
Lazy-SIIWR 100% 6.52 min 9.24 min 15.76 min 630 34

Planet 0% N/A N/A N/A N/A N/A
PDDLStream (Any) 0% N/A N/A N/A N/A N/A

Non-
Mono.

2 10 10 Low Lazy-SIIWR 100% 3.53 min 8.10 min 11.63 min 565 30
SIWR 100% 17.69 min 7.96 min 25.65 min 534 30

Words 1 11 4-5 Low Lazy-SIIWR 100% 2.26 min 3.49 min 5.75 min 243 13
SIWR 100% 8.07 min 3.58 min 11.65 min 216 13

Table 2: Profiling of the action-validation pipeline.

Step / Function Success Timeout Rel. succ. Cum. succ.
1. InArmWorkspace 35 µs N/A 5-30% 5-30%
2. InverseKinematics 9 ms 0.15 s 20-40% 1-10%
3. MotionPlan 0.38 s 5 s 80-100% 0.5-10%

space where the obstructing objects can be set aside with-
out blocking misplaced objects. In this scenario, most of the
inverse-kinematic (IK) computations, which are an iterative720

process, reach the IK user-provided timeout without finding
a solution. Thus, the action is marked as unfeasible (even
when it is valid, simply because it has not had time to find a
motion that implements it). This implies a slower node ex-
pansion (it is more probable to spend the whole IK time-725

budget in an expansion since there is not an actual solution)
and a higher difficulty to find valid actions (i.e. longer total
planning time). Note that the selection of the IK time-budget
is not trivial: If its extremely low, IW(1) could discard all the
possible grounded actions that can lead to the goal (risking730

not being able to find a solution plan even when one exists)
and, on the contrary, being too high implies non-affordable
computational times. In this approach, 5 seconds has exper-
imentally been found to keep a trade-off between finding
solutions even in cluttered environments maintaining a rea-735

sonable computational-time. In addition, as there are so few
gaps, the proposed approach samples the placements more
densely to ensure that there exists an accessible placement.
On the contrary, PDDLStream planners and Planet do not
scale well with the number of objects. The BFWS search740

also scales well but at the cost of a rigid precompilation that
forces the objects to be in a fixed set of grid configurations

only during the search. This precompilation is expensive and
does not scale up that well, but when it does so, the planner
does not need to invoke the motion planner at plan time. 745

Conclusions
We have presented an approach for TAMP that makes use
of the notions of width and sketches developed in classical
planning for decomposing problems into subproblems. For
this, a general sketch of width 1 has been crafted that ensures 750

that the families of pick-and-place problems considered are
decomposed into subproblems that can be solved greedily
in linear time, under suitable assumptions. The same sketch
has been used for the three types of tasks considered; the
only change being in the definition and computation of one 755

of the features (number of misplaced objects). The value
of sketches is that they allow to specify the subgoal struc-
ture of the problems at a high-level, without having to spec-
ify unnecessary details that are handled by the polynomial,
and in our case, linear search. The language of sketches is 760

very flexible and offers two clear benefits in the context of
TAMP. First, when a task plan is found to be unfeasible
due to the geometric constraints, the combinatorial search
resumes in the specific subproblem where unfeasible sub-
plan was found. Second, the sampling of object poses is 765

not done once, globally, at the start of the search, but lo-
cally, at the start of each subproblem. The bounded width of
the sketch provides a bound on the complexity of the sub-
problems and an (approximate) guarantee that only shallow
backtracks will be needed (in subproblems but not across 770

subproblems). The proposed approach has been integrated
within the ROS environment, and will be made available.
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