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Abstract

Large language models (LLMs) are increasingly used to simulate human1

behavior in online environments, yet existing evaluation methods, e.g., sim-2

plified Turing tests with human annotators, fall short of capturing the subtle3

stylistic and affective features that distinguish human- from AI-generated4

text. In this study, we introduce a human-likeness evaluation framework5

that systematically quantifies how closely LLM-generated social media6

replies resemble those written by real users. Our framework leverages a7

suite of interpretable textual features capturing stylistic, tonal, and emo-8

tional dimensions of online conversation. We apply this framework to9

evaluate five commonly used open-weight LLMs across a variety of gener-10

ation configurations, including fine-tuning, stylistic few-shot prompting,11

and context retrieval. To benchmark and enhance realism, we incorporate a12

machine learning–based judge that ranks candidate AI responses according13

to their similarity to human replies. Our results reveal persistent diver-14

gences between human and LLM-generated replies, especially in affective15

and stylistic dimensions. Nonetheless, we identify clear gains in realism16

from stylistic conditioning, context-aware prompting, and fine-tuning, with17

models such as Gemma, Llama, and Mistral performing best.18

1 Introduction19

Large Language Models (LLMs) have rapidly become key tools in the social sciences, sup-20

porting tasks ranging from data annotation and synthetic data generation to survey design21

(Törnberg et al., 2023; Gilardi et al., 2023; Ziems et al., 2024). Increasingly, researchers are22

leveraging LLMs to simulate human behavior, drawing on their capacity to mimic conversa-23

tional patterns and decision-making processes. This role-playing unlocks new possibilities:24

LLMs can serve as controllable, consistent, and scalable confederates in experiments with25

human participants (Argyle et al., 2023a; Flamino et al., 2024), or power new forms of26

social simulation that move beyond the constraints of conventional agent-based models27

(Park et al., 2023; Guo et al., 2024; Liu et al., 2025). By generating discourse and imitating28

human-like decisions while conditioning on demographic attributes or past conversations,29

LLMs promise to capture nuance that traditional approaches miss (Argyle et al., 2023b).30

Social media has become a key application area for these methods (e.g., Törnberg et al.31

(2023)). A growing body of work uses generative simulations to study emergent phenomena32

on social networks or explore counterfactual scenarios (Orlando et al., 2025; De Marzo et al.,33

2023). However, for both experiments and simulations, the believability of LLM-generated34

dialogue is crucial. If the language fails to convincingly mimic human discourse, it can bias35

participant reactions or lead simulations to produce misleading results. For example, studies36

have found that, when using LLMs in experiments, participants perceive LLM confederates37

as less convincing than real humans (Flamino et al., 2024), and researchers have highlighted38

validation and calibration as core challenges for generative social simulation (Larooij &39

Törnberg, 2025; Bail, 2024; Anthis et al., 2025; Grossmann et al., 2023).40

This raises an important question: how human-like is LLM-generated discourse, and how41

can we enhance its realism? Current evaluations typically rely on human judgments of42

“believability” — testing whether people can distinguish between human- and machine-43
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generated text (Park et al., 2023). Yet this approach has serious limitations (Larooij &44

Törnberg, 2025). Humans often fail to detect flaws, setting a low bar for human-likeness.45

Moreover, such tests overlook the subtle linguistic, emotional, and social cues that charac-46

terize authentic human communication. This is especially problematic for social science47

applications that seek to model phenomena like toxic behavior, polarization, or emotional48

contagion: it is not enough for LLM outputs to appear superficially human—they must49

faithfully reproduce the tone, structure, and affective texture of real social media discourse.50

Furthermore, on the calibration side, most research has relied on prompt engineering rather51

than more advanced fine-tuning techniques, suggesting room for significant improvement.52

In this paper, we investigate the extent to which LLMs can generate replies that resemble53

real-world social media discourse. We focus on X/Twitter reply threads, where we compare54

human-authored responses to alternatives generated by different LLMs. Our contributions55

are threefold. First, we introduce a human-likeness evaluation framework that goes beyond56

traditional human-judgment tests: we finetune a BERT-based classifier to distinguish be-57

tween human- and AI-generated replies. Second, we benchmark a range of open-weight58

LLMs under various configurations — including finetuning, few-shot prompting, and con-59

text retrieval — on their ability to produce replies that evade detection. We further propose60

a machine learning–based ranking mechanism (ML-judge) to select the most human-like61

output for each prompt, offering a scalable path toward enhancing stylistic realism. Third,62

we conduct a detailed feature analysis to identify the linguistic and psychological markers63

that differentiate human from machine-generated text, examining both style metrics and64

psychological attributes such as sentiment, toxicity, and emotional content.65

Our analysis reveals persistent stylistic disparities between human- and AI-generated66

text. We find that while fine-tuning, stylistic examples, and context retrieval can reduce67

detectability, especially in models like Google-gemma-3-4B-Instruct, no configuration fully68

evades classification. Even when responses are optimized through ML-based selection,69

AI-generated text remains less toxic, more positive, and stylistically distinct from human-70

authored content. These results highlight that genuine human-likeness in generative text71

depends not only on model architecture but also on sophisticated output selection and finer72

control over stylistic markers. This analysis sheds light on the persistent gaps that limit73

current LLMs’ ability to mimic authentic human behavior.74

2 Related Work75

A growing body of research explores how generative AI, particularly large language models76

(LLMs), can simulate human behavior for social science applications (Guo et al., 2024; Xi77

et al., 2023). This literature spans efforts to model individuals and groups, evaluate the78

fidelity of generated content, and use generative agents in multi-agent simulations. Our79

work builds on this foundation, with a focus on benchmarking the stylistic human-likeness80

of LLM-generated responses in social media environments.81

LLMs have shown promise in mimicking human behavior when prompted with social or82

psychological context. Argyle et al. (2023b) demonstrated that LLMs can generate survey-83

style responses reflective of different demographic groups, sparking interest in using these84

models as stand-ins for human participants. Bail (2024), Ziems et al. (2024), and Davidson85

(2024) articulate broader arguments for the role of generative AI in advancing empirical86

research, while also noting the need for methodological safeguards.87

LLMs have also been used to simulate populations of interacting agents. Park et al. (2023)88

introduced generative agents that emulate human-like memory, planning, and interaction.89

This line of work has expanded to large-scale simulations of civic life (Park et al., 2024),90

social networks (Gao et al., 2023), and online communities (Liu et al., 2025), where the91

realism of agent behavior is increasingly critical.92

A compelling application of this paradigm is shown by Törnberg et al. (2023), who use93

LLM-driven personas to study the impact of news feed algorithms on political discourse.94

Using survey data from the American National Election Studies (ANES), they simulate95

a Twitter-like platform where agents interact under three feed designs: an echo chamber,96
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a global popularity feed, and a novel “bridging” algorithm. The bridging feed, which97

promotes cross-partisan engagement, leads to more ideologically diverse exposure and98

reduced toxicity. This work illustrates how generative agents can test interventions in99

complex social systems in a controlled, reproducible setting.100

Despite their fluency, LLMs raise concerns about whether their outputs truly resemble101

human language – especially in informal, dynamic settings like social media. Several102

studies have assessed this “human-likeness,” with Wang et al. (2024); Bisbee et al. (2024);103

Santurkar et al. (2023) warning that LLMs may flatten or misrepresent group-specific104

linguistic patterns, posing ethical and methodological risks. Others argue that LLMs’105

ability to produce convincing dialogue limits their use as confederates in human-subject106

experiments (Flamino et al., 2024). Thus the validity of such simulations depends crucially107

on the degree to which LLM-generated interactions resemble real human behavior, not just108

in content, but in linguistic style, tone, and sentiment.109

Scholars have argued that the two central current challenges of generative social simulations110

is validation – how to show that the LLMs are reproducing realistic behavior – and calibration111

– how to align the LLMs with human behavior (Larooij & Törnberg, 2025). To contribute112

to these central aims for enabling realistic agent-based simulations, this paper provides a113

foundation for evaluating and improving the stylistic fidelity of LLM-generated responses,114

focusing on the case of social media dialogue. We focus on reproducing social media115

dialogue as it represents a relatively simple form of human dialogue, and hence provides116

a minimal competency task -— if the model fails here, its broader utility for mimicking117

realistic dialogue in social simulation is questionable.118

3 Data & Methods119

Our dataset builds on a set of social media users previously collected by Cerina (2025) and120

comprises Twitter/X conversations with tweet-reply pairs, tweet metadata, and user-level121

information. Each data point includes a tweet, its parent tweet, and the replying user’s122

identity. We split the dataset into training and test sets, focusing our evaluation on 250 users123

with at least 20 replies in the test set (for each user, we randomly sampled 20 reply tweets).124

Our goal is to simulate how each user might respond to a tweet using large language125

models (LLMs) and to evaluate the likelihood that AI-generated replies are stylistically126

similar to those of humans. To this end, we prompted LLMs to produce one-sentence127

responses, emulating each user’s linguistic style and conversational behavior. We tested128

five families of open-weight LLMs, namely DeepSeek, Gemma, Llama, Mistral, and129

Qwen. More specifically we used: DeepSeek-R1-Distill-Llama 8B (DeepSeek-AI, 2025),130

Meta-Llama 3.1 8B (Meta Llama, 2024a), Mistral v-0.1 7B (Jiang et al., 2023), Google-Gemma131

3 4B Instruct (Team, 2025), Meta-Llama 3.1 8B Instruct (Meta Llama, 2024b), Mistral v-0.1 7B132

Instruct (Jiang et al., 2023), Qwen 2.5 7B Instruct (Yang et al., 2024). Each model was used133

with temperature set to 0.8, and we tested four increasingly advanced configurations:134

• Baseline (BL) configuration consisting of a simple prompt like:135

prompt = "[Instruction] You are @{username}. Continue the conversation naturally136

adding a concise (one sentence) tweet reply.\n"137

prompt+= "[Conversation] " + "\n".join(reply_to_message) + f"\n {username}:"138

• Stylistic Examples (SE): The prompt included 10 examples of the user’s prior139

replies drawn from the training set.140

• (SE) + Context Retrieval (CR): The prompt was augmented with user-specific con-141

textual information retrieved from prior tweets, using a similarity-based retrieval142

method similar to the one proposed in (Tan et al., 2024).143

• (SE) + (CR) + Fine-tuning (FT): The baseline model was fine-tuned on the full144

training set using the PEFT library (Mangrulkar et al., 2022).145

For each of the 250 users and each of their 20 test tweets, we generated a candidate reply,146

totaling 5, 000 generated replies for each of the four configurations, for each model. The full147

prompt is reported in the Appendix .1.148
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4 Results149

Our objective is to assess how effectively different LLM configurations can generate re-150

sponses that are indistinguishable from human-authored content. In this section, we report151

(1) overall differences in stylistic and affective features between human and AI text, (2)152

model-level differences in stylistic fidelity, and (3) the impact of few-shot prompting, context153

retrieval, and fine-tuning on the realism of generated responses.154

4.1 BERT-Based Turing Test Analysis155

To evaluate each model configuration, we train a BERT-based classifier to distinguish be-156

tween human- and AI-generated tweets, reporting two metrics: overall accuracy and accu-157

racy on AI-generated text only. The ideal case is when the classifier performs at chance level158

(50% accuracy), indicating indistinguishability. As shown in Fig.1a, Google-gemma-3-4B-159

Instruct outperforms all other models by achieving lower classification accuracy, suggesting160

a greater ability to “fool” the classifier. Notably, achieving low accuracy is typically harder161

when focusing solely on AI-generated text.162

(a) (b)

Figure 1: (a) Trade-off between overall classification accuracy and class-0 accuracy (i.e.,
accuracy restricted to AI-generated text). (b) Accuracies scores for different models, configu-
rations, and metric. For the same model, configurations are ordered left to right: (BL), (SE),
(SE) + (CR), (SE) + (CR) + (FT).

Additionally, performance varies within each model family depending on specific con-163

figuration choices, as shown in Fig. 1b: Adding stylistic examples (SE) and context (CT)164

consistently improves human-likeness, while the impact of fine-tuning (FT) is generally165

positive, with the except of Deepseek Model-R1-Distill-Llama 8B model.166

4.2 Style and tone differences167

We further examine which textual and stylistic features most influence the distinguishability168

of AI-generated content. We compare human- and AI-generated tweets across several met-169

rics, including average word count, number of links and mentions, word length, punctuation,170

uppercase ratio, hashtag frequency, quotes, sentiment (via NLTK’s SentimentIntensityAna-171

lyzer (Hutto & Gilbert, 2014)), and toxicity (using the unitary/toxic-bert model (Hanu &172

team, 2024) based on the Detoxify approach (Hanu & the Unitary team, 2020)).173

Results on the differences between the average values of these features computed among AI-174

generated tweets and among human-generate ones are shown in Fig. 2a. Notably, finetuned175

DeepSeek model exhibits excessive use of links, punctuation, and hashtags, correlating176

with increased average word length. This is likely the cause of its poor performances177

in the previous accuracy analysis. Conversely, AI-text generations from non-finetuned178
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Mistral-Instruct models exhibit high frequencies of hashtags, which are then corrected in179

the finetuned model. More broadly, quotation marks, mentions, and hashtags are more180

prevalent in AI-generated text in all model configurations (differences between the averages181

in AI-generated text vs human-generated ones are consistently positive). Similarly, AI-182

generated tweets tend to exhibit more positive sentiment and lower toxicity (with some183

exceptions) than their human-written counterparts.184

(a) Average differences per model configuration and feature. Numbers show the difference between
the average value among AI-generated text and the average value among human-generated one, with
positive values in red and negative values in blue; cell color indicates z-score (normalized per feature).

(b) Results of the analysis on the feature importance when using a random forest model to classify AI-
vs human-generated tweets. Columns are ordered by overall importance (across all the models), with
word count, average word length, and toxicity score being the most predictive features.

Figure 2
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Figure 3: Results of the statistically significantly different features analysis through the
Empath library. Columns are sorted according to decreasing average importance across the
different model configurations.

4.3 Impact of stylistic features on BERT-predictions185

To further investigate how specific stylistic attributes affect BERT’s classification of AI-186

versus human-generated text, we trained a random forest classifier to perform the same task.187

We then analyzed feature importances across different model configurations. As shown188

in Fig. 2b, features such as word count, average word length, toxicity score, punctuation189

count, uppercase ratio, and sentiment consistently emerge as the most influential predictors.190

Some exceptions include: the finetuned DeepSeek model, where the number of links191

dominates, suggesting that this model tends to generate an unusually high number of links192

(as previously observed); the non-finetuned Mistral-Instruct and baseline Qwen models,193

where the number of hashtags is the most predictive feature; the non-finetuned Qwen model194

whose excessive usage of emojis makes AI-generated text easily detectable.195

4.4 Empath analysis196

To further understand the differences between AI- and human-generated text, we used the197

Empath library (Fast et al., 2016) and collected all the features that were measured to be198

statistically significantly different. According to the analysis reported in Fig. 3, baseline199

models are those that exhibit major differences, with negative and positive emotion, as well200

as strength and optimism being the most frequent features. Overall, baseline Gemma-3-4B-201

Instruct model is the one that exhibit the maximum number of different features.202

5 ML-judge and Optimal selection203

Given the high predictability of AI-generated tweets, we leveraged the feature importances204

identified in the classification task to improve the ability to fool the BERT classifier. To205

this end, we repeated the reply generation process, this time producing 20 candidate206

replies per tweet. This yielded a dataset of 250 users times 20 tweet prompts times 20207

generated replies, totaling 100, 000 AI-generated responses per model-configuration. For208

each model-configuration, we then built a machine learning–based judge (ML-judge) to209

rank the generated replies from most to least likely to be misclassified as human, thereby210

identifying responses that are stylistically closer to authentic tweets. To prevent data leakage,211

we first removed duplicate replies (as some models frequently produced identical outputs)212
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and then partitioned the dataset into five user-based folds. For each fold, we trained213

a random forest classifier on the remaining four folds and predicted, for each of the 20214

candidate replies in the held-out fold, the probability of being classified as human.215

The reply with the highest such probability was selected as the optimal response (in stylistic216

terms), and later compared to the previous generation, sometimes referred as “random”.217

This procedure resulted in a dataset of 5, 000 optimal AI-generated replies, which we218

combined with the 5, 000 human-generated replies from the original dataset. We then219

applied the same analytical pipeline as in the previous step to compare the stylistic properties220

of optimal and human responses.221

(a) (b)

Figure 4: Accuracy results for optimal responses. (a) Trade-off between overall classification
accuracy and class-0 accuracy (i.e., accuracy restricted to AI-generated text). (b) Improve-
ment in the class-0 accuracy score for different models and configurations. For the same
model, configurations are ordered left to right: (BL), (SE), (SE) + (CR), (SE) + (CR) + (FT).

Results in Fig. 4 show that across all the model-configurations the use of an ML-judge to se-222

lect an optimal response does improve in both accuracy metrics. In particular, even baseline223

models are not fully detectable, and the majority of the more refined model configurations224

have an overall accuracy of around 70% and a class-0 (i.e., AI-generated text restricted)225

accuracy of around 75%. Notably, google-gemma3-4B-instruct model does not lead the226

ranking anymore: Mistral-7B-v0.1 as well as Llama-3.1-8B do perform equally well, also227

under different (mostly more refined) configurations.228

Furthermore, we analyze the effect of ML-judge optimal selection by comparing the average229

value of each feature in the optimal and random response approaches. As shown in Fig. 5a,230

optimal responses tend to be longer (in word count) and include more links. Punctuation and231

uppercase ratios also generally increase, with a few exceptions. Most model configurations232

consistently reduce sentiment and increase toxicity, suggesting that, to make AI-generated233

text less detectable, it is optimal to select responses that are slightly more toxic and less234

positive. Finally, non-baseline Google-gemma models are less prone to sentiment reduction,235

hinting at stronger guardrails toward generating positive content across all 20 candidates.236

Lastly, Fig. 5b shows the importance of stylistic features in a random forest classification237

task using the ML-judge’s optimal responses. Compared to Fig. 2b, toxicity score is now238

the most predictive feature for most models, suggesting the ML-judge fails to fully align239

responses with human text. Average word length also ranks highly, along with uppercase240

ratio, word count, and sentiment. Quote usage remains distinctive for many baseline models241

(DeepSeek, Llama-Instruct, and Google-gemma), while hashtag and link frequency are the242

top predictors for the Mistral baseline and DeepSeek fine-tuned models, respectively.243

7



Under review as a conference paper at COLM 2025

5.1 Empath analysis244

Finally, we repeated the analysis through the Empath library for the optimal response245

scenario. Comparison between the results shown in Fig. 6 (in Appendix .2) as well as those246

previously reported in Fig. 3 indicate that there is no significant improvement, except for the247

fact that the difference in positive emotions is now more dominant (across different model248

configurations) than the difference in negative emotions.249

(a) Average difference between the ML-judge optimal response and the first implementation (random
response) per model configuration and feature. Positive values in red and negative values in blue.

(b) Results of the analysis on the feature importance when using a Random Forest model to classify
AI- vs human-generated tweets in the ML-judge optimal response scenario. Columns are ordered by
decreasing overall importance (across all the models).

Figure 5
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6 Discussion250

Our findings offer a multifaceted view of how various LLM configurations perform when251

subjected to a BERT-based Turing test, as well as which linguistic and stylistic features are252

most instrumental in distinguishing AI- from human-generated content.253

First, we observe that model architecture and configuration choices (e.g., fine-tuning, context254

injection, stylistic examples) significantly influence a model’s ability to produce human-255

indistinguishable text. The Google-gemma-3-4B-Instruct model performs particularly well256

in the random response setting, consistently achieving the lowest classification accuracy by257

the BERT judge. However, once optimal responses are selected via an ML-based classifier258

(ML-judge), other models such as Mistral-7B and Llama-3.1-8B rise to the top.259

Second, our feature-level analysis reveals persistent stylistic disparities between human and260

AI-generated text. Across nearly all models, AI-generated tweets contain more punctuation,261

links, and hashtags, and exhibit higher positivity and lower toxicity. These stylistic patterns262

tend to be amplified in certain configurations (e.g., DeepSeek fine-tuned models), rendering263

them easier for BERT to detect. Even after optimization with the ML-judge, complete264

alignment with human style is not achieved. While some features (e.g., average word265

count, punctuation usage) get closer to human baselines in optimal responses, others (e.g.,266

sentiment and toxicity) do not exhibit significant improvements.267

Importantly, our feature importance analysis shows that attributes like toxicity, sentiment,268

and formatting (uppercase ratio, word length, punctuation) dominate classifier decisions,269

both in the random and optimal response settings. The shift in dominant features from270

random to optimal responses (e.g., increase in toxicity’s predictive power) indicates that271

ML-based selection does not equally neutralize the key indicators of artificiality.272

Lastly, Empath analyses confirm that despite some emotional refinement by the ML-judge,273

major gaps in affective and psychological markers remain, highlighting the challenge of274

true semantic and affective alignment.275

7 Conclusion276

This study has provided a systematic and detailed assessment of the stylistic indistinguisha-277

bility of LLM-generated text from human-authored tweets, using a BERT-based classifier278

as a Turing test proxy. Our results demonstrate that while certain LLMs – particularly279

when enhanced through stylistic examples, context retrieval, and fine-tuning – can reduce280

their detectability, no configuration fully escapes classification. Even with the aid of a281

machine learning–based judge for selecting optimal outputs, LLM-generated text retains282

detectable stylistic and affective signatures that set it apart from genuine human discourse.283

In particular, AI-generated replies consistently exhibit higher positivity, lower toxicity, and284

subtle divergences in structure, sentiment, and formatting.285

These findings point to two critical insights. First, achieving human-like generative text286

goes beyond increasing model size or architectural sophistication. It requires fine-grained287

conditioning and intelligent output selection that capture deeper psychological and affective288

patterns, not just surface-level style. Second, even sophisticated selection mechanisms, such289

as our ML-judge, are insufficient to eliminate persistent signals of artificiality.290

This has important implications for researchers using LLMs in simulations and experimental291

studies. Our analysis suggests that current models often fall short of producing text that292

is fully realistic in tone and style, raising concerns about the validity of social simulations293

based on generative agents. Prompt-based calibration alone is unlikely to achieve the294

necessary stylistic fidelity. Instead, progress will depend on more advanced methods that295

combine architectural innovations, nuanced control over affective dimensions, and robust296

output selection. Addressing these challenges is essential for building generative agents297

that can serve as credible proxies for human behavior in computational social science.298
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Figure 6: Analysis of the statistically significantly different features results of the Empath
library analysis for the optimal response.

Appendix420

.1 Prompt421

The full input to the LLMs was a structured prompt designed to simulate a realistic conver-422

sational setup.423

def build_prompt(username, persona_examples, conversation_history, retrieved_context=""):424

prompt = "[Instruction] You are @{username}. Continue the conversation naturally425

adding a concise (one sentence) tweet reply.\n"426

if persona_examples:427

examples = "\n".join(f"- {ex}" for ex in persona_examples)428

prompt += f"[Writing Style] These are some tweets that represent how429

@{username} writes:\n{examples}\n\n"430

if retrieved_context:431

prompt += f"[User Retrieved Context] This is some useful context retrieved432

from @{username}'s history \n" + retrieved_context + "\n\n"433

if conversation_history:434

prompt += "[Conversation] " + "\n".join(conversation_history) + f"\n{username}:"435

return prompt436

.2 Empath analysis437

For completeness, in Fig. 6 we report the results of the Empath analysis in the optimal438

response scenario. Similarly to the random response scenario, Google-gemma-3-4B-Instruct439

baseline model is the one with the highest number of statistically significant different440

features, followed by Mistral-7B-Instruct-v0.2 baseline. Positive and negative emotion, as441

well as strength and optimism are the features that are more frequently found to be different.442
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