
PyTorch Geometric Signed Directed: A Software Package on
Graph Neural Networks for Signed and Directed Graphs

Yixuan He
University of Oxford

yixuan.he@balliol.ox.ac.uk

Xitong Zhang
Michigan State University

zhangxit@msu.edu

Junjie Huang
Southwest University

junjiehuang@swu.edu.cn

Benedek Rozemberczki
Isomorphic Labs

benedek.rozemberczki@gmail.com

Mihai Cucuringu & Gesine Reinert
Univerisity of Oxford & The Alan Turing Institute

{mihai.cucuringu, reinert}@stats.ox.ac.uk

Abstract
Networks are ubiquitous in many real-world applications (e.g., social networks
encoding trust/distrust relationships, correlation networks arising from time se-
ries data). While many networks are signed or directed, or both, there is a lack of
unified software packages on graph neural networks (GNNs) specially designed
for signed and directed networks. In this paper, we present PyTorch Geometric
Signed Directed (PyGSD), a software package which fills this gap. Along the
way, we evaluate the implemented methods with experiments with a view to pro-
viding insights into which method to choose for a given task. The deep learning
framework consists of easy-to-use GNN models, synthetic and real-world data, as
well as task-specific evaluation metrics and loss functions for signed and directed
networks. As an extension library for PyG, our proposed software is maintained
with open-source releases, detailed documentation, continuous integration, unit
tests and code coverage checks. The GitHub repository of the library is https:
//github.com/SherylHYX/pytorch_geometric_signed_directed.

1 Introduction
Graph data arise in many areas, such as social networks, citation networks, and biochemical graphs.
Such data are related to many learning problems [85, 92]. To tackle network inference tasks, graph
neural networks (GNNs) are a useful tool. Based on deep learning techniques such as network
architecture, optimization approaches and parallel computation, GNNs can be trained just like
standard neural networks. By leveraging the network structure, GNNs are able to retain information
from the nodes’ neighborhood and incorporate long-range dependencies [92]. GNNs have a wide
range of applications, such as social network analysis [36], traffic predictions [51], biological
applications [48], recommender systems, computer vision, and natural language processing [85].

Although traditional network analysis usually focuses on a single fixed simple network, which could
often be represented by a symmetric adjacency matrix with nonnegative entries, intricate network
types are often more realistic. Signed networks, which have positive or negative edge weights, have
been of interest in social network analysis [41, 69], with signs indicating positive or negative sen-
timents. The development of signed network algorithms has been motivated for example by the task
of clustering time series with regards to correlations [3], including economic time series that capture
macroeconomic variables [22], and financial applications [63, 94]. The empirical correlation matrix
can be constructed as a weighted signed network, with signs indicating correlations, potentially sparsi-
fied after thresholding. Thresholds can be obtained for example as p-values of statistical tests of signif-
icance for individual correlations. Many signed networks are also directed, in that they have asymmet-
ric sending and receiving patterns. Indeed, edge directionality could play an integral role in processing
and learning from network data [55]; directed networks, even unsigned, have many applications such

Y. He et al., PyTorch Geometric Signed Directed: A Software Package on Graph Neural Networks for Signed
and Directed Graphs. Proceedings of the Second Learning on Graphs Conference (LoG 2023), PMLR 231,
Virtual Event, November 27–30, 2023.

https://github.com/SherylHYX/pytorch_geometric_signed_directed
https://github.com/SherylHYX/pytorch_geometric_signed_directed

PyTorch Geometric Signed Directed

as clustering time-series data with lead-lag relationships [4], detecting influential groups in social
networks [7, 35, 88], ranking [33], angular synchronization [37], and biological applications [55].

We note that there have been several GNNs [71, 80, 89] introduced for multi-relational graphs, i.e.,
graphs with different types of edges. There is typically a linear relationship between the number of
parameters that can be learned in such networks and the number of edge types. In general, weighted
signed graphs with real-valued edge weights are not just special cases of multi-relational graphs. If
the graph is unweighted or the weighting function takes a finite number of values, however, we could
view signed graphs as special multi-relational graphs. Nevertheless, there is an implicit relationship
between the different edge types in signed graphs (possibly weighted), namely that edges with large
weights are considered more important than edges with small weights and that negative edges are
interpreted as the opposite of positive edges. As a result, if we consider an arbitrary multi-relational
graph, we would have much more trainable parameters than using these relationships. Instead, GNN
methods which are tailored for signed and directed networks, as presented in this library, are a useful
addition to the tool set of GNNs for network analysis.

Moreover, deep learning frameworks [1, 8, 11, 62] have facilitated the emergence of open-source
software on deep learning on graphs [17, 21, 26, 39, 68, 90]. Such open-source libraries are essential
to the practical success and large-scale deployment of graph machine learning systems [68]. However,
despite the popularity of signed and directed networks, there does not exist an open-source library to in-
clude GNNs as well as related data processing methods on them. This motivates the design of our open-
source library, called PyTorch Geometric Signed Directed (PyGSD), which is an extension library of
the popular PyTorch Geometric (PyG) [21], but is specially designed for signed and directed networks.

Main contributions. •(1) We present PyTorch Geometric Signed Directed (PyGSD), the first deep
learning library for graph neural networks in signed and directed networks. This is an open-source
library equipped with public releases, documentation, code examples, continuous integration, unit
tests and code coverage checks. •(2) We provide easy-to-use GNN models, synthetic data generators
and real-world data loaders, as well as task-specific evaluation metrics and loss functions for signed
and directed networks in PyGSD. •(3) We evaluate task performance of GNNs available in PyGSD
and provide insights into which methods to choose for which tasks.

2 Background
In this paper, let G = (V, E , w,XV) denote a (possibly signed, directed and weighted) network
with node attributes, where V is the set of nodes, E is the set of (directed) edges or links, and w ∈
(−∞,∞)|E| is the set of weights of the edges. The network G has adjacency matrix A = (Aij)i,j∈V ,
where Aij = wij , the edge weight, if there is an edge from node vi to node vj ; otherwise Aij = 0.
Here, G could have self-loops, but no multiple edges. The total number of nodes is n = |V|, and
XV ∈ Rn×din is an attribute matrix whose rows are node attributes (which could be generated from
A), where din denotes the input attribute dimension. For a signed network, we split the edge set
into positive and negative subsets E = E+ ∪ E−, where the weights for the edges in E+ and E− are
positive and negative, respectively. Here we use network and graph interchangeably.

2.1 Insights from Social Network Analysis: Social Balance Theory and Status Theory
Signed and possibly directed social networks are addressed by structural balance theory [38] and status
theory [47] from sociology. A network is called balanced if all cycles have an even number of negative
edges; otherwise it is unbalanced. Structural balance theory, proposed by Heider in 1946 [38], hypoth-
esizes how humans are motivated to change their attitudes when their social networks are unbalanced.
Its most famous example is the principle that the friend of my friend is my friend and the enemy of my
enemy is my friend. Unlike balance theory, which is usually applied to undirected signed networks, sta-
tus theory [27] considers the direction in signed directed networks. It supposes that a positive directed
link “+” from A to B indicates that target node B has higher status than source node A; a negative
directed link “-” from A to B indicates that source node A has higher status than target node B.

Incorporating such insights from social network analysis into GNNs requires specific tailoring and
hence the development of particular tools. In particular, both sociological theories can be associated
with signed triangles [12, 41]. Related works on graph representation learning which model the
sociological theory described above include for example SGCN [19], SiGAT [40], SNEA [49], and
SDGNN [41]. In PyGSD, these models are implemented, together with their loss functions (e.g.,
Structural Balance Loss in SGCN [19] and Signed Direction Loss in SDGNN [41]).

2

PyTorch Geometric Signed Directed

2.2 Spatial Graph Neural Networks
Spatial GNNs utilize information propagation among nodes to define convolutions on
graphs [85]. The Message Passing Neural Network (MPNN) by [24] outlines a general
framework of spatial GNNs, treating graph convolutions as a message-passing procedure
among nodes and edges. The general form of message passing is defined as h

(l)
i =

UPDATE(l−1)
(
h
(l−1)
i ,AGGREGATE(l−1)({hj : Ai,j ̸= 0})

)
where UPDATE and AGGREGATE

are arbitrary differentiable functions. However, these spatial methods naturally are not tailored to the
analysis of signed and directed networks. In particular they do not take the specific insights from
social network analysis into account, but can be adapted to do so. Some examples of such spatial
GNNs for signed/directed graphs that could be viewed as instantiations of MPNNs are [35] and [19].
For signed networks, the aggregation function AGGREGATE provides the option to consider positive
and negative neighbors separately, such as in [19] and [36]. The attention mechanism, which assigns
an attention weight or importance to each neighbor, is also considered in signed directed GNNs under
the MPNN framework [40, 41, 49]. Indeed, spectral GNNs could be implemented in a spatial way, as
a special form of MPNN, as validated by [88] and [34].

2.3 Some Tools from Spectral Analysis: Graph Convolution and Laplacian Matrices
For a graph signal x ∈ R|V| on an undirected graph G, the conventional graph convolution is defined as
gθ ⋆ x = UgθU

⊤x, where gθ = diag(θ), θ ∈ R|V|, and U is obtained from the eigendecomposition
of the normalized Laplacian matrix: L = I|V| − D− 1

2AD− 1
2 = UΛU⊤, where Dii =

∑
j Aij

and U⊤x is the graph Fourier transform. [18] and [44] proposed related convolutional networks
based on L, but both of them theoretically require a symmetric adjacency matrix to have a complete
set of eigenvectors, which is not usually satisfied for directed graphs, whose edges often have
asymmetric sending and receiving patterns. [77] and [76] proposed symmetric matrices to incorporate
the direction. [88] uses a complex-valued Laplacian matrix, encoding direction in the phase matrix
and weights in the magnitude matrix.

3 Tasks and Evaluation Metrics
In this section, we review the typical problem setup, discuss typical tasks and loss functions as well as
evaluation metrics, for signed and directed graphs. Typical machine learning tasks in signed/directed
graphs include: 1) link prediction, 2) node classification, 3) node clustering. These tasks can be carried
out in a supervised (a large proportion of the data are training data with label supervision), semi-
supervised (label supervision on a small proportion of data), or unsupervised (no label supervision)
setting. Here we do not include tasks relating to groups of graphs or to synthetic graph generation.

3.1 Link Prediction
For signed networks, a typical task is to predict the sign of an existing edge, i.e., link sign prediction
(SP). One typical GNN pipeline first learns node embeddings based on some loss function dependent
on, for example, node embeddings and edge signs [19, 41], and then applies a binary classifier such
as the logistic regression classifier to output the final predictions. Another GNN pipeline conducts
end-to-end training using a differentiable loss function such as the binary cross entropy loss [34].

For directed networks, the three typical link prediction tasks are: 1) Direction prediction (DP): predict
the edge direction of pairs of vertices vi, vj for which either (vi, vj) ∈ E or (vj , vi) ∈ E . 2) Existence
prediction: predict if (vi, vj) ∈ E by considering ordered pairs of vertices (vi, vj). 3) Three-class
classification (3C): classify an edge (vi, vj) ∈ E , (vj , vi) ∈ E , or (vi, vj), (vj , vi) /∈ E .

The link prediction tasks mentioned above could be conducted on signed and directed networks, but
the task focus is on either link sign or directionality but not both. In this library, we also provide
more general tasks with edge splitting tools related to both link signs and directionality: 4) Four-class
classification (4C): classify an edge (vi, vj) ∈ E+, (vj , vi) ∈ E+, (vi, vj) ∈ E−, or (vj , vi) ∈ E−;
5) Five-class classification (5C): in addition to the classes in 4), add a class (vi, vj), (vj , vi) /∈ E .

For splitting edges into training/test sets, for training and evaluation we discard edges of the input net-
work that fall into more than one classification category, but we keep these edges for the GNN during
training. When treated as a classification problem, the cross-entropy loss function can be employed
[88]. Results are typically evaluated with accuracy. The Area Under the Receiver Operating Char-
acteristic Curve (AUC) [9] and the F1 score [72] are also employed in binary classification scenarios.

3

PyTorch Geometric Signed Directed

3.2 Node Classification
Node classification classifies each node in a graph into one of K classes. The cross-entropy loss func-
tion is usually applied for training, and performance is often evaluated via accuracy. The training setup
is usually either fully-supervised, with a high proportion of training nodes, or semi-supervised, where
only a small proportion of nodes in each class are provided with label information during training.

3.3 Node Clustering
A clustering into K clusters is a partition of the node set into disjoint sets V = C0 ∪ C1 ∪ · · · ∪ CK−1.
Intuitively, nodes within a cluster should be similar to each other, while nodes across clusters should
be dissimilar. In a semi-supervised setting, for each of the K clusters, a fraction of training nodes are
selected as seed nodes, for which the cluster membership labels are known before training. The set
of seed nodes is denoted as V seed ⊆ V train ⊂ V, where V train is the set of all training nodes. For this
task, the goal is to use the embedding for assigning each node vi ∈ V to a cluster containing known
seed nodes. When no seeds are given, we are in a self-supervised setting, where only the number
of clusters, K, is given. The quality of a clustering partition is often assessed through a modularity
objective function [78] comparing the partition to that expected under a null model for the network,
with the assumption that nodes within a cluster are relatively more densely connected than nodes
across clusters. However, depending on the task at hand, similarity could have different meanings
[32]. In a signed network with positive and negative edges, similarity may relate to the neighorhood
of a node such as the proportion of shared friends or enemies. In a directed network, nodes could
also be clustered with regard to their position within a directed flow on the network, see [35].

Table 1: Summary statistics for the real-world net-
works that can be loaded by PyTorch Geometric Signed
Directed (PyGSD). Here n is the number of nodes,
|E+| and |E−| denote the number of positive and neg-
ative edges, respectively. For an unsigned network,
|E−| = 0. For an unweighted graph |E−| = 0 means
that the set of edge weights only contains one value if
we disregard signs. “Labeled" denotes whether node
labels are provided. Note that for labeled data sets,
all nodes are labeled. We can conduct link prediction
and node clustering tasks on all data sets, while node
classification is only possible on labeled data sets. In
the last two columns we report whether the network
is directed or weighted. Note that statistics for Fin-
YNet, FiLL-pvCLCL, FiLL-OPCL, and Lead-Lag are
averaged over 21, 21, 21 and 19 financial networks,
respectively.
Data set n |E+| |E−| Labeled Directed Weighted

Sampson 25 148 182 ✔ ✘ ✔
Cornell 183 298 0 ✔ ✔ ✘
Texas 183 325 0 ✔ ✔ ✘
Telegram 245 8,912 0 ✔ ✔ ✔
Wisconsin 251 515 0 ✔ ✔ ✘
Lead-Lag 269 29,159 0 ✘ ✔ ✔
Rainfall 306 64,408 29,228 ✘ ✘ ✔
FiLL-OPCL 430 84,467 100,013 ✘ ✔ ✔
FiLL-pvCLCL 444 84,677 112,015 ✘ ✔ ✔
Fin-YNet 451 148,527 54,313 ✘ ✘ ✔
S&P 1500 1,193 1,069,319 353,930 ✔ ✘ ✔
Blog 1,222 19,024 0 ✘ ✔ ✔
Chameleon 2,277 36,101 0 ✔ ✔ ✘
Cora-ML 2,995 8,416 0 ✔ ✔ ✘
PPI 3,058 7,996 3,864 ✘ ✘ ✔
Migration 3,075 721,432 0 ✘ ✔ ✔
CiteSeer 3,312 4,715 0 ✔ ✔ ✘
BitCoin-Alpha 3,783 22,650 1,536 ✘ ✔ ✔
Squirrel 5,201 222,134 0 ✔ ✔ ✔
BitCoin-OTC 5,881 32,029 3,563 ✘ ✔ ✔
Wiki-Rfa 7,634 135,753 37,579 ✘ ✔ ✔
WikiCS 11,701 297,110 0 ✔ ✔ ✘
Slashdot 82,140 380,933 119,548 ✘ ✔ ✘
Epinions 131,580 589,888 121,322 ✘ ✔ ✘
WikiTalk 2,388,953 5,018,445 0 ✘ ✔ ✘

A GNN’s objective plays an essential role
in guiding the GNN to learn. In a node
clustering task, when seed nodes with
known cluster labels are available, the cross
entropy loss function is usually applied. In
[36], a contrastive loss function based on
triplets of the nodes is used to push embed-
dings of nodes within clusters to be closer
to each other than to nodes in other clusters.
For unsupervised tasks, however, objectives
which are independent of known labels
are required. Differentiable objectives can
then be defined based on the tasks at hand.
A probabilistic version of the balanced
normalized cut [13] loss is proposed in
[36], while a probabilistic version of flow
imbalance loss is introduced in [35].

For a node clustering problem, as cluster
indices could be permuted, accuracy would
not be an appropriate evaluation measure.
Instead, the Adjusted Rand Index (ARI) [42]
is often chosen, which is invariant to label
permutation. Depending on the downstream
task, other measures could be used, such as
the unhappy ratio by [36], and the imbal-
ance scores by [35].

4 Data Sets
Synthetic Data. PyGSD provides syn-
thetic data generators for Signed Stochastic
Block Models(SSBMs) and Polarized SS-
BMs from [36], Directed Stochastic Block
Models (DSBMs) from [35], as well as
Signed Directed Stochastic Block Models
(SDSBMs) from [34], which are typical syn-
thetic signed and directed networks used in
related research papers. Details of these syn-
thetic models can be found in Appendix C.

4

PyTorch Geometric Signed Directed

Real-world Data Sets. Table 1 summarizes real-world data sets for which PyGSD provides data
loaders. These are real-world data sets used in related research papers, with network size ranging
from 25 to 2,388,953 nodes. Details of these data sets are given in Appendix D.

5 Methods Currently in PyGSD
In this section, we review GNNs which are currently implemented in PyGSD and which will be
used in our experiments in Sec. 8. GNNs can be broadly classified into spatial or spectral, depending
on whether or not they utilize the spectral theory outlined in Sec. 2.3. Table 2 lists whether the
implemented GNNs can deal with signed edges or directed edges, together with the tasks they are
concerned with, and whether the method is spatial or spectral. Note that non-GNN baselines are
not implemented in our library, but we refer readers to [36] and [35] for their implementations.

Directed Unsigned Networks. Research on directed network analysis has been mainly spectral in
nature, and centered around symmetrization-based techniques [52, 61, 70], but edge directionality
itself can contain important information [16, 55]. Imbalanced flows in directed networks have been
uncovered via Hermitian clustering [16] and motif-based techniques [79]. Recently, researchers have
started applying GNNs to extract essential information from directed edges.

DGCN [77] uses first and second order proximity, and constructs three Laplacians, but can be
space and speed-inefficient. DiGCN [76] simplifies DGCN, builds a directed Laplacian based on
PageRank, and aggregates information dependent on higher-order proximity. We denote the variant
with the so-called “inception blocks" as DiGCNIB, and the variant without “inception blocks" as
DiGCN. MagNet [88] constructs a Hermitian matrix that encodes undirected geometric structure
in the magnitude of its entries, and directional information in their phase. The Laplacian matrices
proposed by [76, 77] and [88] are based on the spectral theory sketched in Sec. 2.3. DiGCL [75]
introduces a directed network data augmentation method called Laplacian perturbation and conducts
directed network contrastive learning. DIGRAC [35] conducts directed network clustering based on
flow imbalance measures, with novel imbalance objectives and evaluation metrics.

Table 2: Signed/directed GNNs implemented in PyGSD

Model Signed
Edges

Directed
Edges

Node-Level
Tasks

Edge-Level
Tasks

Spatial or
Spectral

DGCN [77] ✘ ✔ ✔ ✔ Spectral
DiGCN [76] ✘ ✔ ✔ ✔ Spectral
DiGCNIB [76] ✘ ✔ ✔ ✔ Spectral
MagNet [88] ✘ ✔ ✔ ✔ Spectral
DiGCL [75] ✘ ✔ ✔ ✘ Spectral
DIGRAC [35] ✘ ✔ ✔ ✘ Spatial
SGCN [19] ✔ ✘ ✘ ✔ Spatial
SiGAT [40] ✔ ✔ ✘ ✔ Spatial
SNEA [49] ✔ ✔ ✘ ✔ Spatial
SDGNN [41] ✔ ✔ ✘ ✔ Spatial
SSSNET [36] ✔ ✔ ✔ ✘ Spatial
MSGNN [34] ✔ ✔ ✔ ✔ Spectral

Signed Undirected and Signed Di-
rected Networks. Within the last
decade, the landscape of signed net-
work analysis has been dominated by
non-GNN methods (in particular spec-
tral methods), such as those based on
the (potentially normalized) Signed
Laplacian matrix [46] and its varia-
tions [57, 91], Balanced Normalized
Cut and Balanced Ratio Cut [13], and
many others [15, 83, 87].

More recently, GNNs for signed net-
works emerged. SGCN [19] proposes
an information aggregation and propagation mechanism with the mean-pooling strategy for signed
undirected networks based on social balance theory [31]. SiGAT [40] utilizes graph attention network
GAT [81] in embedding learning for signed directed networks and devises a motif-based GNN archi-
tecture based on balance theory and status theory. SNEA [49] proposes another graph attentional layer,
which uses a masked self-attention mechanism, and designs an objective function for both framework
optimization and node representation learning. SDGNN [41], though also using graph attention, is
more efficient than SiGAT, and its objective functions can model not only the edge sign, but in addition
other vital features such as edge directions and triangles. SSSNET [36] conducts the semi-supervised
node clustering task in signed networks, with a novel aggregation scheme that is not based on the popu-
lar social balance theory [31] that many previous signed GNNs rely on. The very recent MSGNN [34]
introduces a novel magnetic signed Laplacian as a natural generalization of both the signed Laplacian
on signed graphs and the magnetic Laplacian on directed graphs, and proposes a spectral GNN via
this magnetic Laplacian matrix, extending the ideas from Sec. 2.3 to signed directed networks.

6 Framework Design of PyGSD
6.1 Neural Network Layers and Methods
PyGSD is built on the existing high-level neural network layer classes from the PyTorch and PyG
ecosystems. We define neural network layers for signed and directed networks based on more

5

PyTorch Geometric Signed Directed

than 10 architectures. The constructors of these layers use type hinting to enable the setup of the
hyperparameters. Users can build upon these layers and construct their own model, depending on the
task at hand. Besides, our various auxiliary layers could be helpful in building new layers.

Building upon the layers, we also implement the full methods from various research papers, so that
end-users can directly utilize the full models. For example, users can either employ the MagNetConv
layer and construct their own full architecture, or they can directly call MagNet_node_classification
or MagNet_link_prediction if they are interested in applying MagNet [88] to the node classification or
the link prediction task, respectively. A framework diagram is provided in Fig. 3 with a logo in Fig. 2.

6.2 Data Structures

6.2.1 Network Generators and Data Classes
PyGSD includes synthetic network generators for models described in Sec. 4, i.e., SSBMs and Pol-
SSBMs from [36], DSBMs from [35], as well as SDSBMs from [34]. To accommodate the distinct
features of signed and directed networks, based on the Data class from PyG [21], our library intro-
duces two data classes for signed and directed networks, respectively. These classes (called Signed-
Data and DirectedData, respectively) provide properties for checking whether a network is signed
(or directed, respectively), and can be initialized to obtain custom data objects with either edge_index
only, edge_index together with edge_weight, or the sparse adjacency matrix. Such a data object can
also inherit attributes from another data object, where edge attributes are stored in COO format.

We also provide class functions to construct node features based on edge information. For instance,
we can set the node feature matrix as the stacked leading eigenvectors of the regularized adjacency
matrix for a signed network as in [36], or as the stacked real and imaginary parts of top eigenvectors
for a Hermitian matrix [16] constructed from the directed network adjacency matrix as in [35].

6.2.2 Data Loaders and Splitters

Our library provides easy-to-use data loaders for real-world data sets for signed and directed networks.
The loaded data set is then transformed into a custom data object designed in this library. To facilitate
downstream tasks, we also provide splitters on the data objects, with only the training set required to
be nonempty. Our node splitter generates masks for training, validation, test and seed nodes, where
seed nodes are a portion of the training set; such masks can be useful in e.g., the semi-supervised
setting of [36]. Our link split utility function divides edges into training, validation and test groups,
depending on the specific downstream task. The link splitter could be applied to any task mentioned
in Sec. 3.1, and includes an option to keep all edges in the minimum spanning tree in the training set
to maintain connectivity for message passing. It also produces more general tools for tasks related to
both signs and directionality. The splitters can either be called separately or as a data class function.

6.3 Task-Specific Evaluations and Utilities
Tasks on signed and directed networks may have custom loss functions and evaluation metrics, such
as the probabilistic normalized cut loss and the unhappy ratio introduced in [36], as well as the prob-
abilistic imbalance objectives introduced in [35]. Therefore, PyGSD implements these custom loss
functions and evaluation metrics to enable researchers to utilize these functionalities easily. Our library
also provides some utility functions tailored to our implemented research papers, so that end-users are
able to reproduce the whole process of a paper including data preprocessing, training, and testing.

6.4 Maintaining the Library
We maintain our library via open-source code, public releases, automatically updated documentation,
code examples, continuous integration, and unit tests with almost 100% test coverage. Since its first
release in February 2022, the GitHub repository has to date attracted 100+ stars.

Open-Source library and Public Releases. The source code of our library is publicly available on
GitHub under the MIT license. The code repository provides contributing guidelines, issue templates
and test instructions, which enables the public to contribute to the library and report any problems.
The public releases of the library are also made available on the Python Package Index (PyPI).
Installation is thus possible via the pip command using the terminal.

Documentation. We release our software with publicly available documentation at https://
pytorch-geometric-signed-directed.readthedocs.io/, which is automatically built and
updated as we modify the main branch of the GitHub repository. Our documentation covers signed and

6

https://pytorch-geometric-signed-directed.readthedocs.io/
https://pytorch-geometric-signed-directed.readthedocs.io/

PyTorch Geometric Signed Directed

directed GNN layers and the full methods in various research papers, data classes specifically designed
for signed and directed networks, synthetic data generators, data loaders for real-world data sets, node-
level and edge-level splitters, as well as task-specific evaluation metrics, loss and utility functions.
The documentation also includes an in-depth installation guide and a tour of external resources.

Code Examples. In our GitHub repository, we present code examples for all papers whose methods
have been implemented in our library. Our documentation also introduces examples on data structures,
data loaders, and splitters. Some case study examples are provided in Appendix B.

Continuous Integration. We use the freely available GitHub Actions to provide continuous integra-
tion for our library. When the code is updated on the main branch of the GitHub repository or there is
a pull request to the main branch, the build process is triggered and the library is deployed on Linux,
Windows, and macOS virtual machines, for Python versions 3.7, 3.8 and 3.9.

Unit Tests and Code Coverage. We provide unit tests for all signed and directed graph neural
network layers, task-specific loss functions, evaluation metrics, utility functions, data classes and data
loaders. These unit tests can either be executed locally using the source code, or executed through
GitHub Actions when the continuous integration process is triggered. When unit tests are running a
coverage report by CodeCov is generated. We maintain a high test coverage rate of almost 100%.

7 Comparison with Existing Software
Similar to existing deep learning software on graphs, which are usually based on machine learning
frameworks such as TensorFlow (TF) [1], PyTorch (PT) [62], MxNet (MX) [11] and JAX [8], PyGSD
is built on the PyTorch ecosystem. We summarize the characteristics of related deep learning libraries
on graphs in Table 3, comparing frameworks based on the backend, the purpose, whether to contain
synthetic data generators, whether to contain dedicated data splitters like our edge or node splitters,
and whether to contain dedicated objective functions and evaluation metrics. All libraries listed
except OpenNE [30] provide GPU support. Compared to existing libraries, PyGSD contains various
signed GNNs, while PyG [21] contains only one signed GNN implementation for SGCN [19], and the
other comparison libraries do not contain signed GNNs. To the best of our knowledge, the proposed
software is the first deep learning library which consists of GNN methods specifically designed for
general signed and directed networks with GPU acceleration. Our directed network GNNs are not
simple extension to existing GNNs that could be applied to directed networks. In contrast, the directed
network method [74] contained in CogDL [10] requires the directed network to be acyclic, which
is not generally satisfied. StellarGraph [17] has a GraphSAGE [29] version for directed networks,
which is an extension to the original GraphSAGE where in-node and out-node neighborhoods are
separately sampled and have different weights.

While based on PyG, PyGSD contains many new ideas. In addition to signed and directed GNNs
PyGSD introduces novel data classes, data loaders, as well as data splitters which are specific to tasks
in signed and directed networks. PyGSD also includes objective functions and evaluation metrics that
are designed for signed and directed graphs, which are not included in PyG. Also our novel synthetic
data generators for signed and directed networks are not available in PyG.

Table 3: Comparison of related open-source libraries for deep learning on graphs.
Library Backend Purpose Synthetic Data Generators Dedicated Data Splitters Dedicated Objectives/Evaluation Metrics

OpenNE [30] Custom General Network Embedding ✘ ✘ ✘
CogDL [10] PT General GNN Tools ✘ ✘ ✘
Spektral [26] TF General GNN Tools ✘ ✘ ✘
TF Geometric [39] TF General GNN Tools & Methods ✘ ✘ ✘
StellarGraph [17] TF General Graph Algorithms ✘ ✔ ✘
DGL [90] TF/PT/MX General GNN Tools & Methods ✘ ✘ ✘
DIG [50] PT General GNN Tools & Methods ✘ ✘ ✘
Jraph [25] JAX General GNN Tools & Methods ✘ ✘ ✘
Graph-Learn [93] TF/PT Large-Scale GNN Tools & Methods ✘ ✘ ✔
PyG Temporal [68] PT Temporal GNN Tools & Methods ✘ ✔ ✘
PyG [21] PT General GNN Tools & Methods ✘ ✘ ✘
Our Work PT Signed/ Directed GNN Tools & Methods ✔ ✔ ✔

There are related open-source Python libraries for signed/directed networks that do not contain
GNN methods. Python-igraph [14] contains network analysis tools; NetworkX [28] is a package
for complex networks; NetworkKit [73] is a open-source toolkit for large-scale network analysis;
SigNet1 [15] contains spectral analysis methods on signed networks; CDLIB [66] allows to extract,
compare and evaluate communities from complex networks; EvalNE [54] is designed for assessing
and comparing the performance of network embedding methods on various downstream tasks.

1https://github.com/alan-turing-institute/signet

7

https://github.com/alan-turing-institute/signet

PyTorch Geometric Signed Directed

8 Experimental Evaluation
To demonstrate that the implemented methods can reproduce the performance in the original papers
we evaluate the task performance of all GNNs implemented in the library. We report the mean and one
standard deviation for each result, where ±0.0 indicates that the standard deviation is less than 0.05%.
Implementation details and average runtime are provided in Appendix E. Our implementations
generally reproduce the results in the original papers, but slight differences (negligible considering
standard deviations) may occur due to data splits or random seeds. The runtime reports also validate
our implementation efficiency, showing that our implementations consume comparable or shorter
runtime compared to the original implementations. In addition, we provide insights into which
methods are preferred for various tasks.

0.0 0.1 0.2 0.3

η

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

DSBM N=1000.p=0.02.K=3.ρ=1.5.ambient=False.F style=cyclic.

DiGCL

Herm

Herm rw

MagNet

DGCN

DiGCN

DiGCNIB

DIGRAC

(a) A DSBM model with 3 clusters and edge density 0.02.

0.0 0.1 0.2
η

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

polarized SSBM/1000p100K2100eta4010rho15N500total n5000num com5

MSGNN

SSSNET

L

L sym

sns

dns

BRC

BNC

SPONGE

SPONGE sym

(b) A polarized SSBM model with 5 SSBM blocks.

0.00 0.05 0.10 0.15 0.20 0.25
γ

0.6

0.7

0.8

0.9

1.0

1.1

A
R

I

SDSBM/3c/1000p100K3100eta0100gamma2510rho15N1000

MSGNN

SSSNET

(c) An SDSBM model with meta-graph F1(γ).

0.00 0.05 0.10 0.15 0.20 0.25
γ

0.5

0.6

0.7

0.8

0.9

1.0

A
R

I
SDSBM/4c/1000p100K4100eta0100gamma2510rho15N1000

MSGNN

SSSNET

(d) An SDSBM model with meta-graph F2(γ).

Figure 1: Test ARI results averaged over 10 runs. Error bars indicate one standard deviation.

Node Clustering. Figure 1a reproduces test ARI for the directed unsigned GNNs together with
two Hermitian variants mentioned in Sec. 5 on a DSBM(“cyclic", F, n = 1000,K = 3, p =
0.02, ρ = 1.5) model for three loss variants. Figure 1b illustrates test ARI for SSSNET [36],
MSGNN [34] and some spectral methods mentioned in Sec. 5 on a polarized SSBM model POL-
SSBM(n = 5000, r = 5, p = 0.1, ρ = 1.5), which is similar to the performance in the original
paper. Figure 1c and Figure 1d reproduce results from [34] on SSSNET and MSGNN for SDSBM
(F1(γ), n = 1000, p = 0.1, ρ = 1.5, η = 0.1) and SDSBM (F2(γ), n = 1000, p = 0.1, ρ =
1.5, η = 0.1) models, respectively, with varying γ where F1 and F2 are given in Appendix E. These
methods are all efficient in runtime, and are recommended for relative network clustering tasks.

Table 4: Link sign prediction results (AUC, Macro-F1) for signed networks (%).
Method Bitcoin-Alpha Bitcoin-OTC Wikirfa Slashdot Epinions

SGCN (87.5±0.9, 68.9±0.9) (88.8±0.7, 74.1±1.4) (84.7±0.4, 71.7±0.6) (79.8±0.2, 68.2±0.4) (87.5±0.4, 79.6±0.2)
SiGAT (86.5±2.4, 68.6±2.2) (88.9±0.5, 73.8±0.8) (87.6±0.3, 75.3±0.6) (87.4±0.3, 75.5±0.4) (92.4±0.6, 83.6±0.3)
SNEA (91.0±1.1, 73.3±1.6) (91.6±0.4, 78.6±0.6) (87.8±1.1, 74.8±1.6) (90.5±0.2, 79.1±0.2) (94.8±0.1, 86.3±0.2)

SDGNN (88.3±1.4, 73.7±1.0) (90.8±0.8, 79.6±0.4) (89.5±0.1, 78.3±0.2) (89.4±0.3, 78.8±0.4) (94.3±0.2, 86.6±0.2)

Link Sign Prediction on Signed Graphs. We use the five real-world data sets to do link
sign prediction on SGCN, SiGAT, SNEA, and SDGNN. Table 4 reproduces link sign predic-
tion performance for these four methods on the five real-world data sets. Considering also
the runtime comparison given in Table 7, as well as the data set statistics provided in Ta-
ble 1, we recommend employing SGCN on smaller networks and SiGAT on networks with
larger scales, if speed is the main concern. If performance is the main concern, then we
would choose SNEA concerning AUC, while we would pick SDGNN regarding Macro-F1.

8

PyTorch Geometric Signed Directed

Table 5: Evaluation results for directed unsigned graphs (%).
Task Method Cornell Texas Wisconsin CoraML CiteSeer Telegram

Node classification

DGCN 62.2±7.8 72.2±5.7 66.7±5.4 80.1±2.1 65.5±1.4 89.4±3.2
DiGCN 52.4±7.3 64.9±5.1 61.6±3.3 79.7±1.1 63.0±2.7 70.2±2.9

DiGCNIB 46.2±6.0 56.2±4.6 56.3±5.0 81.2±1.8 63.8±2.3 65.4±5.1
MagNet 70.3±5.1 82.4±4.9 82.4±4.4 70.0±1.5 60.4±1.4 91.3±4.1
DiGCL 33.5±7.6 55.1±9.7 44.3±5.1 74.7±2.0 55.2±3.2 77.9±3.7

Direction prediction

DGCN 82.6±6.1 79.8±7.3 84.8±4.7 85.0±0.8 84.4±0.9 96.4±0.6
DiGCN 75.2±8.9 78.3±12.5 81.1±6.5 79.0±1.8 77.6±2.6 79.1±1.9

DiGCNIB 86.1±5.4 80.6±8.2 85.0±5.2 86.0±0.5 85.6±0.7 96.5±0.5
MagNet 79.8±9.4 78.9±8.8 84.1±4.7 86.8±0.7 84.6±0.7 97.4±0.5

Existence link prediction

DGCN 61.6±4.8 59.3±5.0 66.3±5.4 76.8±2.0 65.6±2.3 86.3±0.9
DiGCN 59.9±5.4 60.8±7.3 60.1±4.7 74.5±1.0 68.5±1.3 73.9±2.0

DiGCNIB 66.7±3.5 68.9±3.9 71.0±4.1 77.8±0.6 73.0±1.2 84.2±1.1
MagNet 66.9±4.2 59.9±7.4 68.4±4.2 77.0±0.9 65.9±2.3 86.9±0.6

Three classes link prediction

DGCN 60.6±6.8 61.5±8.6 69.2±4.6 69.3±1.5 62.2±3.9 81.6±0.7
DiGCN 51.8±6.7 56.5±7.2 49.6±4.2 65.0±1.4 54.0±1.4 63.6±5.4

DiGCNIB 60.6±5.2 67.2±5.9 66.8±5.8 70.3±0.8 68.5±1.1 79.9±0.6
MagNet 56.0±10.4 63.2±6.6 67.5±4.1 70.5±1.1 58.9±3.3 83.3±0.6

Node Classification
and Edge-Level Tasks
on Directed Unsigned
Graphs. Table 5
present results on node
classification and three
link prediction tasks
for directed unsigned
graphs, for five directed
graph methods (DGCN,
DiGCN, DiGCNIB,
MagNet, and DiGCL),
where DiGCNIB is the
“inception block" version
of DiGCN introduced in [76]. Given also the runtime comparison in Table 8, and the data set
statistics detailed in Table 1, we suggest using DiGCN, when speed is the main concern. If task
performance is more important, then we would recommend DiGCNIB as the method of choice for
data sets where directionality is largely emphasized (such as the data sets here except CoraML and
CiteSeer). On CoraML and CiteSeer, the best-performing method varies case by case.

Table 6: Link prediction test accuracy (%) comparison for directions (and
signs). The link prediction tasks are introduced in Sec. 3.1.

Data Set Link Task GCN SGCN SDGNN SiGAT SNEA SSSNET MSGNN

BitCoin-Alpha

SP 58.0±2.0 64.7±0.9 64.5±1.1 62.9±0.9 64.1±1.3 67.4±1.1 71.3±1.2
DP 59.6±1.3 60.4±1.7 61.5±1.0 61.9±1.9 60.9±1.7 68.1±2.3 72.5±1.5
3C 82.0±0.4 81.4±0.5 79.2±0.9 77.1±0.7 83.2±0.5 78.3±4.7 84.4±0.6
4C 42.4±2.2 51.1±0.8 52.5±1.1 49.3±0.7 52.4±1.8 54.3±2.9 58.5±0.7
5C 80.0±0.4 79.5±0.3 78.2±0.5 76.5±0.3 81.1±0.3 77.9±0.3 81.9±0.9

BitCoin-OTC

SP 55.3±1.2 65.6±0.9 65.3±1.2 62.8±1.3 67.7±0.5 70.1±1.2 73.0±1.4
DP 55.3±2.3 63.8±1.2 63.2±1.5 64.0±2.0 65.3±1.2 69.6±1.0 71.8±1.1
3C 78.8±0.8 79.0±0.7 77.3±0.7 73.6±0.7 82.2±0.4 76.9±1.1 83.3±0.7
4C 42.2±1.2 51.5±0.4 55.3±0.8 51.2±1.8 56.9±0.7 57.0±2.0 59.8±0.7
5C 75.8±0.5 77.4±0.7 77.3±0.8 74.1±0.5 80.5±0.5 74.0±1.6 80.9±0.9

Slashdot

SP 78.3±1.1 74.7±0.5 74.1±0.7 64.0±1.3 70.6±1.0 86.6±2.2 92.4±0.2
DP 79.1±0.2 74.8±0.9 74.2±1.4 62.8±0.9 71.1±1.1 87.8±1.0 93.1±0.1
3C 74.7±1.0 69.7±0.3 66.3±1.8 49.1±1.2 72.5±0.7 79.3±1.2 86.1±0.3
4C 60.0±1.1 63.2±0.3 64.0±0.7 53.4±0.2 60.5±0.6 72.7±0.6 78.2±0.3
5C 65.3±0.2 64.4±0.3 62.6±2.0 44.4±1.4 66.4±0.5 70.4±0.7 76.8±0.6

Epinions

SP 68.6±1.2 62.9±0.5 67.7±0.8 63.6±0.5 66.5±1.0 78.5±2.1 85.4±0.5
DP 67.6±1.0 61.7±0.5 67.9±0.6 63.6±0.8 66.4±1.2 73.9±6.2 86.3±0.3
3C 73.6±1.1 70.3±0.8 73.2±0.8 52.3±1.3 72.8±0.2 72.7±2.0 83.1±0.5
4C 61.3±1.2 66.7±1.2 71.0±0.6 62.3±0.5 69.5±0.7 70.2±5.2 78.7±0.9
5C 70.0±0.7 73.5±0.8 76.6±0.7 52.9±0.7 74.2±0.1 70.3±4.6 80.5±0.5

FiLL (avg.)

SP 87.7±0.0 88.4±0.0 82.0±0.3 76.9±0.1 90.0±0.0 88.7±0.3 90.8±0.0
DP 87.7±0.0 88.5±0.1 82.0±0.2 76.9±0.1 90.0±0.0 88.8±0.3 90.9±0.0
3C 61.7±0.1 63.0±0.1 59.3±0.0 55.3±0.1 64.3±0.1 62.2±0.3 66.1±0.1
4C 71.6±0.1 81.7±0.0 78.8±0.1 70.5±0.1 83.2±0.1 80.0±0.3 83.3±0.0
5C 54.6±0.1 63.8±0.0 61.1±0.1 55.5±0.1 64.8±0.1 60.4±0.4 64.8±0.1

Link Prediction on
Signed Directed
Graphs. Table 6 re-
produces the results on
five link prediction tasks
introduced in Sec. 3.1,
on the six signed meth-
ods implemented in
the library (SGCN,
SDGNN, SiGAT, SNEA,
SSSNET, and MSGNN)
and an unsigned baseline
GCN, on five real-world
signed directed data sets.
Taking in addition the
runtime comparison in
Table 9 into account,
as well as the data
set statistics given by
Table 1, we recommend
MSGNN as the method
of choice. Note that SSSNET is also quite competitive in terms of performance while being fast for
large networks. The GCN employed here replaces MSConv in MSGNN with GCNConv from PyG,
and additionally inputs absolute values of edge weights for message passing to avoid getting NAN
values. We conclude that signed information is indeed helpful when comparing GCN and MSGNN.
GCN is generally faster but not by a large margin, while MSGNN is considerably more accurate.

9 Conclusion and Outlook
We present PyTorch Geometric Signed Directed (PyGSD), an easy-to-use and easy-to-adapt end-
to-end software package which uses GNNs to address three main tasks in the analysis of signed
and directed networks: link prediction, node classification, and node clustering. Our evaluation and
discussion of the implemented methods provide insights for users on which methods to pick for
various tasks. As an extension library to PyG, our proposed PyGSD is open source and comes with an
invitation to contribute new methods, data sets, utilities, and case studies. In the future, we envisage
contributions in the area of scalability and metrics for assessing specific tasks. Our library is related
to PyTorch Geometric Temporal, another extension library to PyG developed for the analysis of
temporal networks. In future works, these two software packages are likely to grow closer together.

9

PyTorch Geometric Signed Directed

Author Contributions
Y.H.: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Method-
ology, Project administration, Software, Visualization, Writing - original draft; X.Z.: Data curation,
Software, Writing - review & editing; J.H: Data curation, Software, Writing - review & editing;
B.R.: Writing - review & editing; M.C.: Conceptualization, Data curation, Formal analysis, Funding
acquisition, Methodology, Project administration, Resources, Supervision, Visualization, Writing
- review & editing; G.R.: Conceptualization, Formal analysis, Funding acquisition, Methodology,
Project administration, Supervision, Validation, Writing - review & editing.

Acknowledgements
Y.H. is supported by a Clarendon scholarship. G.R. is supported in part by EPSRC
grants EP/T018445/1, EP/W037211/1 and EP/R018472/1. M.C. acknowledges support
from the EPSRC grants EP/N510129/1 and EP/W037211/1 at The Alan Turing Institute.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 265–283, 2016. 2, 7

[2] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 US election:
divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, pages
36–43, 2005. 22

[3] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series clustering–a
decade review. Information Systems, 53:16–38, 2015. 1

[4] Stefanos Bennett, Mihai Cucuringu, and Gesine Reinert. Detection and clustering of lead-lag
networks for multivariate time series with an application to financial markets. 7th SIGKDD
Workshop on Mining and Learning from Time Series (MiLeTS), 2021. 2, 22

[5] Michael Bertolacci, Edward Cripps, Ori Rosen, John W Lau, Sally Cripps, et al. Climate
inference on daily rainfall across the australian continent, 1876–2015. Annals of Applied
Statistics, 13(2):683–712, 2019. 23

[6] Aleksandar Bojchevski and Stephan Günnemann. Deep Gaussian embedding of graphs: Un-
supervised inductive learning via ranking. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2017. 22

[7] Alexandre Bovet and Peter Grindrod. The Activity of the Far Right on Tele-
gram. https://www.researchgate.net/publication/346968575_The_Activity_
of_the_Far_Right_on_Telegram_v21, 2020. 2, 22

[8] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018. 2, 7

[9] Andrew P Bradley. The use of the area under the roc curve in the evaluation of machine learning
algorithms. Pattern Recognition, 30(7):1145–1159, 1997. 3

[10] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu, Hengrui Zhang,
Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yuxiao Dong, Yang Yang, Peng Zhang, Guohao
Dai, Yu Wang, Chang Zhou, Hongxia Yang, and Jie Tang. CogDL: A comprehensive library for
graph deep learning. In Proceedings of the ACM Web Conference 2023 (WWW’23), 2023. 7

[11] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. MXNet: A flexible and efficient machine learning library
for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015. 2, 7

[12] Yiqi Chen, Tieyun Qian, Huan Liu, and Ke Sun. " bridge" enhanced signed directed network
embedding. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, pages 773–782, 2018. 2

10

https://www.researchgate.net/publication/346968575_The_Activity_of_the_Far_Right_on_Telegram_v21
https://www.researchgate.net/publication/346968575_The_Activity_of_the_Far_Right_on_Telegram_v21

PyTorch Geometric Signed Directed

[13] Kai-Yang Chiang, Joyce Whang, and Inderjit Dhillon. Scalable clustering of signed networks
using balance normalized cut. In Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, CIKM ’12, pages 615–624, New York, United States,
2012. Association for Computing Machinery. 4, 5, 25

[14] Gabor Csardi, Tamas Nepusz, et al. The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5):1–9, 2006. 7

[15] Mihai Cucuringu, Peter Davies, Aldo Glielmo, and Hemant Tyagi. Sponge: a generalized
eigenproblem for clustering signed networks. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1088–1098. PMLR, 2019. 5, 7, 25

[16] Mihai Cucuringu, Huan Li, He Sun, and Luca Zanetti. Hermitian matrices for clustering directed
graphs: insights and applications. In International Conference on Artificial Intelligence and
Statistics, pages 983–992. PMLR, 2020. 5, 6, 22, 25

[17] CSIRO’s Data61. StellarGraph machine learning library. https://github.com/
stellargraph/stellargraph, 2018. 2, 7

[18] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
pages 3844–3852. Neural Information Processing Systems Foundation, 2016. 3

[19] Tyler Derr, Yao Ma, and Jiliang Tang. Signed graph convolutional networks. In 2018 IEEE
International Conference on Data Mining (ICDM), pages 929–934, Singapore, 2018. IEEE,
IEEE. 2, 3, 5, 7, 26

[20] Andrew Elliott, Paul Reidy Milton Martinez Luaces, Mihai Cucuringu, and Gesine Reinert.
Anomaly detection in networks using spectral methods and network comparison approaches.
arXiv preprint arXiv:1901.00402, 2019. 21

[21] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 2, 6, 7

[22] Sergio M Focardi. Clustering economic and financial time series: Exploring the existence of
stable correlation conditions. The Intertek Group, 2005. 1

[23] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pages 89–98, 1998.
22

[24] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
pages 1263–1272. PMLR, 2017. 3

[25] Jonathan Godwin, Thomas Keck, Peter Battaglia, Victor Bapst, Thomas Kipf, Yujia Li, Kimberly
Stachenfeld, Petar Velickovic, and Alvaro Sanchez-Gonzalez. Jraph: A library for graph neural
networks in jax., 2020. URL http://github. com/deepmind/jraph, 5. 7

[26] Daniele Grattarola and Cesare Alippi. Graph neural networks in tensorflow and keras with
spektral [application notes]. IEEE Computational Intelligence Magazine, 16(1):99–106, 2021.
2, 7

[27] Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Propagation of
trust and distrust. In Proceedings of the 13th International Conference on World Wide Web,
pages 403–412, 2004. 2

[28] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008. 7

[29] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems, 30, 2017. 7

[30] X Han, S Cao, X Lv, Y Lin, Z Liu, and M Sun. OpenNE: An open source toolkit for network
embedding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (System Demonstrations), Brussels, Belgium, pages 139–144, 2018. 7

[31] Frank Harary. On the notion of balance of a signed graph. Michigan Mathematical Journal,
2(2):143–146, 1953. 5

11

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

PyTorch Geometric Signed Directed

[32] Yixuan He. GNNs for node clustering in signed and directed networks. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining, pages 1547–1548,
2022. 4

[33] Yixuan He, Quan Gan, David Wipf, Gesine D Reinert, Junchi Yan, and Mihai Cucuringu.
GNNRank: Learning global rankings from pairwise comparisons via directed graph neural
networks. In International Conference on Machine Learning, pages 8581–8612. PMLR, 2022.
2

[34] Yixuan He, Michael Perlmutter, Gesine Reinert, and Mihai Cucuringu. MSGNN: a spectral
graph neural network based on a novel magnetic signed Laplacian. In Learning on Graphs
Conference, pages 40–1. PMLR, 2022. 3, 4, 5, 6, 8, 21, 24, 26

[35] Yixuan He, Gesine Reinert, and Mihai Cucuringu. DIGRAC: digraph clustering based on flow
imbalance. In Learning on Graphs Conference, pages 21–1. PMLR, 2022. 2, 3, 4, 5, 6, 24, 25

[36] Yixuan He, Gesine Reinert, Songchao Wang, and Mihai Cucuringu. SSSNET: Semi-supervised
signed network clustering. In Proceedings of the 2022 SIAM International Conference on Data
Mining (SDM), pages 244–252. SIAM, 2022. 1, 3, 4, 5, 6, 8, 20, 21, 23, 24, 26

[37] Yixuan He, Gesine Reinert, David Wipf, and Mihai Cucuringu. Robust angular synchronization
via directed graph neural networks. arXiv preprint arXiv:2310.05842, 2023. 2

[38] Fritz Heider. Attitudes and cognitive organization. The Journal of Psychology, 21(1):107–112,
1946. 2

[39] Jun Hu, Shengsheng Qian, Quan Fang, Youze Wang, Quan Zhao, Huaiwen Zhang, and Chang-
sheng Xu. Efficient graph deep learning in Tensorflow with TF_Geometric. In Proceedings of
the 29th ACM International Conference on Multimedia, pages 3775–3778, 2021. 2, 7

[40] Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. Signed graph attention networks.
In International Conference on Artificial Neural Networks, pages 566–577. Springer, 2019. 2,
3, 5, 26

[41] Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. SDGNN: Learning node repre-
sentation for signed directed networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 196–203, 2021. 1, 2, 3, 5, 26

[42] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193–
218, 1985. 4

[43] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Proceedings
of the 3rd International Conference on Learning Representations, 2015. 19, 24

[44] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. 3

[45] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. Edge weight
prediction in weighted signed networks. In Data Mining (ICDM), 2016 IEEE 16th International
Conference on, pages 221–230, Barcelona, Spain, 2016. IEEE, IEEE. 23

[46] Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto W De Luca,
and Sahin Albayrak. Spectral analysis of signed graphs for clustering, prediction and visual-
ization. In Proceedings of the 2010 SIAM International Conference on Data Mining, pages
559–570, Sydney, Australia, 2010. SIAM, IEEE. 5, 25

[47] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social media.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
1361–1370. Association for Computing Machinery, 2010. 2, 22

[48] Rui Li, Xin Yuan, Mohsen Radfar, Peter Marendy, Wei Ni, Terence J O’Brien, and Pablo M
Casillas-Espinosa. Graph signal processing, graph neural network and graph learning on
biological data: a systematic review. IEEE Reviews in Biomedical Engineering, 2021. 1

[49] Yu Li, Yuan Tian, Jiawei Zhang, and Yi Chang. Learning signed network embedding via graph
attention. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
4772–4779, 2020. 2, 3, 5, 26

[50] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao
Xu, Jingtun Zhang, Yi Liu, et al. DIG: a turnkey library for diving into graph deep learning
research. Journal of Machine Learning Research, 22(240):1–9, 2021. 7

12

PyTorch Geometric Signed Directed

[51] Zhanghui Liu and Huachun Tan. Traffic prediction with graph neural network: A survey. In
CICTP 2021, pages 467–474. 2021. 1

[52] Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-based
graph convolutional network for directed graphs. arXiv preprint arXiv:1907.08990, 2019. 5

[53] Fragkiskos D Malliaros and Michalis Vazirgiannis. Clustering and community detection in
directed networks: A survey. Physics Reports, 533(4):95–142, 2013. 21

[54] Alexandru Mara, Jefrey Lijffijt, and Tijl De Bie. EvalNE: A framework for network embedding
evaluation. SoftwareX, 17:100997, 2022. 7

[55] Antonio G Marques, Santiago Segarra, and Gonzalo Mateos. Signal processing on directed
graphs: The role of edge directionality when processing and learning from network data. IEEE
Signal Processing Magazine, 37(6):99–116, 2020. 1, 2, 5

[56] Paolo Massa and Paolo Avesani. Controversial users demand local trust metrics: An experimen-
tal study on epinions.com community. In AAAI, pages 121–126, 2005. 23

[57] Pedro Mercado, Francesco Tudisco, and Matthias Hein. Clustering signed networks with the
geometric mean of Laplacians. Advances in Neural Information Processing System, 29, 2016.
5, 25

[58] Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020. 22

[59] Tyler Moore and Nicolas Christin. Beware the middleman: Empirical analysis of bitcoin-
exchange risk. In Financial Cryptography and Data Security: 17th International Conference,
FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers 17, pages 25–33. Springer,
2013. 23

[60] Bruno Ordozgoiti, Antonis Matakos, and Aristides Gionis. Finding large balanced subgraphs in
signed networks. In Proceedings of The Web Conference 2020, WWW ’20, page 1378–1388,
New York, NY, USA, 2020. Association for Computing Machinery. 23

[61] William R. Palmer and Tian Zheng. Spectral clustering for directed networks. In Rosa M.
Benito, Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis Mateus Rocha, and Marta Sales-
Pardo, editors, Complex Networks & Their Applications IX, pages 87–99, Cham, 2021. Springer
International Publishing. 5

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024–8035, 2019. 2, 7

[63] Nicos G Pavlidis, Vassilis P Plagianakos, Dimitris K Tasoulis, and Michael N Vrahatis. Financial
forecasting through unsupervised clustering and neural networks. Operational Research,
6(2):103–127, 2006. 1

[64] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: geo-
metric graph convolutional networks. In International Conference on Learning Representations,
2020. 22

[65] Marc J Perry. State-to-state migration Flows, 1995 to 2000. US Department of Commerce,
Economics and Statistics Administration, US . . . , 2003. 22

[66] Giulio Rossetti, Letizia Milli, and Rémy Cazabet. CDLIB: a python library to extract, compare
and evaluate communities from complex networks. Applied Network Science, 4(1):1–26, 2019.
7

[67] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 9(2):cnab014, 2021. 22

[68] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,
Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzmán López, Nicolas Collignon, and Rik
Sarkar. PyTorch Geometric Temporal: spatiotemporal signal processing with neural machine
learning models. In Proceedings of the 30th ACM International Conference on Information and
Knowledge Management, CIKM ’21, page 4564–4573, New York, NY, USA, 2021. Association
for Computing Machinery. 2, 7

13

PyTorch Geometric Signed Directed

[69] Samuel Franklin Sampson. A novitiate in a period of change: An experimental and case study
of social relationships. Cornell University, Ithaca, NY 14850, USA, 1968. 1, 23

[70] Venu Satuluri and Srinivasan Parthasarathy. Symmetrizations for clustering directed graphs. In
Proceedings of the 14th International Conference on Extending Database Technology, pages
343–354, 2011. 5

[71] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic
Web Conference, pages 593–607. Springer, 2018. 2

[72] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for
classification tasks. Information Processing & Management, 45(4):427–437, 2009. 3

[73] Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. NetworKit: A tool suite for
large-scale complex network analysis. Network Science, 4(4):508–530, 2016. 7

[74] Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In International
Conference on Learning Representations, 2021. 7

[75] Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, and Changhu Wang.
Directed graph contrastive learning. Advances in Neural Information Processing Systems, 34,
2021. 5, 25

[76] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim.
Digraph inception convolutional networks. Advances in Neural Information Processing Systems,
33:17907–17918, 2020. 3, 5, 9

[77] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew Lim. Directed
graph convolutional network. arXiv preprint arXiv:2004.13970, 2020. 3, 5

[78] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From Louvain to Leiden: guaranteeing
well-connected communities. Scientific Reports, 9(1):1–12, 2019. 4

[79] William George Underwood, Andrew Elliott, and Mihai Cucuringu. Motif-based spectral
clustering of weighted directed networks. Applied Network Science, 5(62), September 2020. 5

[80] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. In International Conference on Learning Repre-
sentations, 2020. 2

[81] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 5

[82] Arunachalam Vinayagam, Jonathan Zirin, Charles Roesel, Yanhui Hu, Bahar Yilmazel, Anasta-
sia A Samsonova, Ralph A Neumüller, Stephanie E Mohr, and Norbert Perrimon. Integrating
protein-protein interaction networks with phenotypes reveals signs of interactions. Nature
methods, 11(1):94–99, 2014. 23

[83] Suhang Wang, Charu Aggarwal, Jiliang Tang, and Huan Liu. Attributed signed network
embedding. In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pages 137–146, 2017. 5

[84] Robert West, Hristo S Paskov, Jure Leskovec, and Christopher Potts. Exploiting social net-
work structure for person-to-person sentiment analysis. Transactions of the Association for
Computational Linguistics, 2:297–310, 2014. 23

[85] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020. 1, 3

[86] yahoo! finance. S&p 1500 data set link. https://finance.yahoo.com/, 2021. [Online;
accessed 19-January-2021]. 23

[87] S. Yuan, X. Wu, and Y. Xiang. SNE: signed network embedding. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 10235, pages 183–195. Springer Verlag, 2017. 5

[88] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. MagNet:
a neural network for directed graphs. Advances in Neural Information Processing Systems,
34:27003–27015, 2021. 2, 3, 5, 6, 25, 26

14

https://finance.yahoo.com/

PyTorch Geometric Signed Directed

[89] Zhao Zhang, Fuzhen Zhuang, Hengshu Zhu, Zhiping Shi, Hui Xiong, and Qing He. Relational
graph neural network with hierarchical attention for knowledge graph completion. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 34, pages 9612–9619, 2020.
2

[90] Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and George Karypis. Learning graph neural
networks with Deep Graph Library. In Companion Proceedings of the Web Conference 2020,
WWW ’20, page 305–306, 2020. 2, 7

[91] Quan Zheng and David B Skillicorn. Spectral embedding of signed networks. In Proceedings
of the 2015 SIAM International Conference on Data Mining, pages 55–63. SIAM, 2015. 5

[92] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020. 1

[93] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren
Zhou. Aligraph: a comprehensive graph neural network platform. Proceedings of the VLDB
Endowment, 12(12):2094–2105, 2019. 7

[94] Hartmut Ziegler, Marco Jenny, Tino Gruse, and Daniel A Keim. Visual market sector analysis
for financial time series data. In Visual Analytics Science and Technology (VAST), 2010 IEEE
Symposium on, pages 83–90. IEEE, 2010. 1

15

PyTorch Geometric Signed Directed

A Logo and Diagram

PyTorch Geometric
Signed Directed

Figure 2: PyGSD Logo.

Data
Loader

GNN
Architecture

(Dedicated)
Loss
Function

Output &
Evaluation

Synthetic

Real-
World

Signed:
SSSNET_node_clustering (SIMPA),
SSSNET_link_prediction (SIMPA),
MSGNN_node_classification (MSConv),
MSGNN_link_prediction (MSConv),
SNEA (SNEAConv), SGCN (SGCNConv),
 SiGAT

Directed:
 DIGRAC_node_clustering (DIMPA),
 MagNet_link_prediction (MagNetConv),
MagNet_node_classification (MagNetConv),
DiGCN_Inception_Block_node_classification
(DiGCN_Inception_Block),

 DiGCN_Inception_Block_link_prediction
(DiGCN_Inception_Block),

 DGCN_link_prediction (DGCNConv),
DiGCN_node_classification (DiGCNConv),
 DiGCN_link_prediction (DiGCNConv),
 DiGCL

Signed:
 Prob_Balanced_Ratio_Loss,
 Prob_Balanced_Normalized_Loss,
link_sign_direction_prediction_logistic_function,
link_sign_prediction_logistic_function,
 triplet_loss_node_classification,
Sign_Triangle_Loss, Sign_Direction_Loss ,
 Sign_Product_Entropy_Loss,
 Link_Sign_Product_Loss,
 Link_Sign_Entropy_Loss,
 Sign_Structure_Loss

Signed:
Unhappy_Ratio

Directed:
Prob_Imbalance_Objective

Pre-
processing

Figure 3: PyGSD framework overview: starting from our data loaders, input data is loaded into the
GNN architecture (where the layers inside brackets could be treated individually to construct new
architectures), then (dedicated) loss functions are employed, and finally we test the performance.

B Case Study Examples
Here we first provide a case study for clustering in signed networks, and then a case study for link
prediction in directed networks.

B.1 Case Study on Signed Networks

In this subsection, we overview a simple end-to-end machine learning pipeline for signed networks
designed with PyTorch Geometric Signed Directed (PyGSD). These three code snippets – Listings

16

PyTorch Geometric Signed Directed

1, 2 and 3 – solve the signed clustering problem on a Signed Stochastic Block Model of clustering
the nodes in the signed network into five groups. The pipeline consists of data preparation (Listing
1), model definition, training, and evaluation phases (Listing 2). Listing 3 illustrates how to run
experiments and output results. We explain the three listings in turn.

1 from sklearn.metrics import adjusted_rand_score
2 import scipy.sparse as sp
3 import torch
4 from torch_geometric_signed_directed.nn import \
5 SSSNET_node_clustering as SSSNET
6 from torch_geometric_signed_directed.data import \
7 SignedData, SSBM
8 from torch_geometric_signed_directed.utils import \
9 (Prob_Balanced_Normalized_Loss,

10 extract_network, triplet_loss_node_classification)
11

12 device = torch.device('cuda' if \
13 torch.cuda.is_available() else 'cpu')
14

15 num_classes = 5
16 num_nodes = 1000
17 (A_p_scipy, A_n_scipy), labels = SSBM(num_nodes, \
18 num_classes, 0.1, 0.1)
19 A = A_p_scipy - A_n_scipy
20 A, labels = extract_network(A=A, labels=labels)
21 data = SignedData(A=A, y=torch.LongTensor(labels))
22 data.set_spectral_adjacency_reg_features(num_classes)
23 data.node_split(train_size_per_class=0.8, \
24 val_size_per_class=0.1, \
25 test_size_per_class=0.1, seed_size_per_class=0.1)
26 data.separate_positive_negative()
27 data = data.to(device)
28 loss_func_ce = torch.nn.NLLLoss()
29 model = SSSNET(nfeat=data.x.shape[1], dropout=0.5,
30 hop=2, fill_value=0.5, hidden=32, nclass=num_classes).to(device)

Listing 1: Preparation, data loading, node splitting, as well as loss and model initialization.

B.1.1 Preparation, Data Loading and Splitting, Loss and Model Initialization

In Listing 1, as a first step, we import the essentials (lines 1-10). We then define the device to
be used (lines 12-13). After that, we define default values to be used in the network generation
process, generate a synthetic network and extract its largest connected component (lines 15-20);
we use the SignedData class (line 21). As no node features are available initially, we use the
data.set_spectral_adjacency_reg_features() class method to set up the node feature matrix (line 22).

We then create a train-validation-test-seed split of the node set by using the node splitting function
and calculate separate positive and negative parts of the signed network to be stored inside the data
object (lines 23-26). We then move the data object to the device (line 27). Finally, we initialize the
cross-entropy loss function (line 28), construct the GNN model and map it to the device (lines 29-30).

1 def train(features, edge_index_p, edge_weight_p,
2 edge_index_n, edge_weight_n, mask, seed_mask,
3 loss_func_pbnc, y):
4 model.train()
5 Z, log_prob, _, prob = model(edge_index_p, edge_weight_p,
6 edge_index_n, edge_weight_n, features)
7 loss_pbnc = loss_func_pbnc(prob[mask])
8 loss_triplet = triplet_loss_node_classification(

17

PyTorch Geometric Signed Directed

9 y=y[seed_mask], Z=Z[seed_mask], n_sample=500, thre=0.1)
10 loss_ce = loss_func_ce(log_prob[seed_mask], y[seed_mask])
11 loss = 50*(loss_ce + 0.1*loss_triplet) + loss_pbnc
12 optimizer.zero_grad()
13 loss.backward()
14 optimizer.step()
15 train_ari = adjusted_rand_score(y[mask].cpu(),
16 (torch.argmax(prob, dim=1)).cpu()[mask])
17 return loss.detach().item(), train_ari
18

19 def test(features, edge_index_p, edge_weight_p,
20 edge_index_n, edge_weight_n, mask, y):
21 model.eval()
22 with torch.no_grad():
23 _, _, _, prob = model(edge_index_p, edge_weight_p,
24 edge_index_n, edge_weight_n, features)
25 test_ari = adjusted_rand_score(y[mask].cpu(),
26 (torch.argmax(prob, dim=1)).cpu()[mask])
27 return test_ari

Listing 2: Defining the training and evaluation functions.

B.1.2 Defining Functions for Training and Evaluation

In Listing 2, we define the training and evaluation functions. Setting the model to be trainable (line 4),
we obtain the node embedding matrix Z and cluster assignment probabilities prob and its logarithm
log_prob with a forward pass of the model instance (lines 5-6). We then obtain the probabilistic
balanced normalized cut loss (line 7), triplet loss (lines 8-9), and cross entropy loss (line 10) values.
The weighted sum of the three losses serves as the training loss value (line 11).

We then backpropagate and update the model parameters (lines 12-14). After that, we calculate the
ARI of the training nodes (lines 15-16). Finally, we return the loss value and training ARI (line 17).

For evaluation (function test()), we do not set the model to be trainable (lines 21-22). With a forward
pass (lines 23-24), we obtain the probability assignment matrix. Taking argmax for the probabilities,
we obtain test ARI (lines 25-26) and return the result (line 27).

1 for split in range(data.train_mask.shape[1]):
2 optimizer = torch.optim.Adam(model.parameters(),
3 lr=0.01, weight_decay=0.0005)
4 train_index = data.train_mask[:, split].cpu().numpy()
5 val_index = data.val_mask[:, split]
6 test_index = data.test_mask[:, split]
7 seed_index = data.seed_mask[:, split]
8 loss_func_pbnc = Prob_Balanced_Normalized_Loss(
9 A_p=sp.csr_matrix(data.A_p)[train_index][:, train_index],

10 A_n=sp.csr_matrix(data.A_n)[train_index][:, train_index])
11 for epoch in range(300):
12 train_loss, train_ari = train(data.x,
13 data.edge_index_p,
14 data.edge_weight_p, data.edge_index_n,
15 data.edge_weight_n, train_index,
16 seed_index, loss_func_pbnc, data.y)
17 Val_ari = test(data.x, data.edge_index_p,
18 data.edge_weight_p, data.edge_index_n,
19 data.edge_weight_n, val_index, data.y)
20 print(f'Split: {split:02d}, Epoch: {epoch:03d},
21 Train_Loss: {train_loss:.4f},
22 Train_ARI: {train_ari:.4f},
23 Val_ARI: {Val_ari:.4f}')
24

18

PyTorch Geometric Signed Directed

25 test_ari = test(data.x, data.edge_index_p,
26 data.edge_weight_p, data.edge_index_n,
27 data.edge_weight_n, test_index, data.y)
28 print(f'Split: {split:02d}, Test_ARI: {test_ari:.4f}')
29 model._reset_parameters_undirected()

Listing 3: Running the experiment and printing the results.

B.1.3 Running the Experiment

We run the actual experiments in Listing 3. For each of the data splits (line 1), we first initialize
the Adam optimizer [43] (lines 2-3). We then obtain the data split indices (lines 4-7), initialize the
self-supervised loss function (lines 8-10), and start the training process (line 11).

For each epoch, we apply the training function to obtain training loss and ARI score (lines 12-16),
then evaluate with the test() function on validation nodes (lines 17-19). We then print the training and
validation results (lines 20-23). After training, we obtain the test performance (lines 25-27) and print
some logs (line 28). Finally, we reset the model parameters (line 29) and iterate to the next data split
loop.

B.2 Case Study on Directed Networks

In this subsection, we overview a simple end-to-end machine learning pipeline for directed networks
designed with PyGSD. These code snippets solve a link direction prediction problem on a real-world
data set. We skip the actual training loop here; full examples can be found in the code repository.

1 from sklearn.metrics import accuracy_score
2 import torch
3

4 from torch_geometric_signed_directed.utils import \
5 link_class_split, in_out_degree
6 from torch_geometric_signed_directed.nn.directed import \
7 MagNet_link_prediction
8 from torch_geometric_signed_directed.data import \
9 load_directed_real_data

10

11 device = torch.device('cuda' if \
12 torch.cuda.is_available() else 'cpu')
13

14 data = load_directed_real_data(dataset='webkb',
15 root=path, name='cornell').to(device)
16 link_data = link_class_split(data, prob_val=0.15,
17 prob_test=0.05, task = 'direction', device=device)
18 model = MagNet_link_prediction(q=0.25, K=1, num_features=2,
19 hidden=16, label_dim=2).to(device)
20 criterion = torch.nn.NLLLoss()

Listing 4: Preparation, data loading, link splitting, as well as loss and model initialization.

B.2.1 Preparation, Data Loading and Splitting, Loss and Model Initialization

In Listing 4, after importing and defining the device (lines 1-12), we load the DirectedData object for
the selected data set and map it to the device (lines 14-15). We then create a train-validation-test split
of the edge set by using the directed link splitting function (lines 16-17). Finally, we construct the
model instance (lines 18-19), and initialize the cross-entropy loss function (line 20).

1 def train(X_real, X_img, y, edge_index,
2 edge_weight, query_edges):
3 model.train()
4 out = model(X_real, X_img, edge_index=edge_index,

19

PyTorch Geometric Signed Directed

5 query_edges=query_edges,
6 edge_weight=edge_weight)
7 loss = criterion(out, y)
8 optimizer.zero_grad()
9 loss.backward()

10 optimizer.step()
11 train_acc = accuracy_score(y.cpu(),
12 out.max(dim=1)[1].cpu())
13 return loss.detach().item(), train_acc
14

15 def test(X_real, X_img, y, edge_index, edge_weight,
16 query_edges):
17 model.eval()
18 with torch.no_grad():
19 out = model(X_real, X_img, edge_index=edge_index,
20 query_edges=query_edges,
21 edge_weight=edge_weight)
22 test_acc = accuracy_score(y.cpu(),
23 out.max(dim=1)[1].cpu())
24 return test_acc

Listing 5: Defining the training and evaluation functions.

B.2.2 Defining Functions for Training and Evaluation

In Listing 5, we define the training and evaluation functions. Setting the model to be trainable (line
3), we obtain edge class assignment probablities with a forward pass of the model instance (lines
4-6). We then obtain the training loss value (line 7). After that, we backpropagate and update the
model parameters (lines 8-10). Then, we calculate the accuracy of the training samples (lines 11-12).
Finally, we return the loss value as well as the training accuracy (line 13).

For the evaluation function (function test()), we do not set the model to be trainable (lines 17-18).
With a forward pass (lines 19-21), we obtain the probability assignment matrix. We then obtain test
accuracy (line 22) and return the result (line 23).

C Synthetic Data Description

C.1 Signed Stochastic Block Model (SSBM)

A Signed Stochastic Block Model (SSBM) [36] for a network on n nodes with K blocks (clusters), is
constructed as follows:

1) Assign block sizes n0 ≤ n1 ≤ · · · ≤ nK−1 with size ratio ρ ≥ 1, as follows. If ρ = 1,
then the first K − 1 blocks have the same size ⌊n/K⌋, and the last block has size n − (K −
1)⌊n/K⌋. If ρ > 1, we set ρ0 = ρ

1
K−1 . Solving

∑K−1
i=0 ρi0n0 = n and taking integer value gives

n0 =
⌊
n(1− ρ0)/(1− ρK0)

⌋
. Further, set ni = ⌊ρ0ni−1⌋, for i = 1, · · · ,K − 2 if K ≥ 3, and

nK−1 = n −
∑K−2

i=0 ni. Then, the ratio of the size of the largest to the smallest block is roughly
ρK−1
0 = ρ.

2) Assign each node to one of K blocks, so that each block has the allocated size.

3) For each pair of nodes in the same block, with probability pin, create an edge with +1 as weight
between them, independently of the other potential edges.

4) For each pair of nodes in different blocks, with probability pout, create an edge with −1 as weight
between them, independently of the other potential edges.

5) Flip the sign of the across-cluster edges from the previous stage with sign flip probability ηin, and
ηout for edges within and across clusters, respectively.

20

PyTorch Geometric Signed Directed

C.2 Polarized SSBMs (POL-SSBM)

In a polarized SSBM model [36], SSBMs are planted in an ambient network; each block of each
SSBM is a cluster, and the nodes not assigned to any SSBM form an ambient cluster. The polarized
SSBM model that creates communities of SSBMs, is generated as follows:

1) Generate an Erdős-Rényi graph with n nodes and edge probability p, whose sign is set to ±1 with
equal probability 0.5.

2) Fix nc as the number of SSBM communities, and calculate community sizes N1 ≤ N2 ≤ · · · ≤
Nr, for each of the r communities as in Sec. C.1, such that the ratio of the largest block size to the
smallest block size is approximately ρ, and the total number of nodes in these SSBMs is N × nc.

3) Generate r SSBM models, each with Ki = 2, i = 1, . . . , r blocks, number of nodes according to
its community size, with the same edge probability p, size ratio ρ, and flip probability η.

4) Place the SSBM models on disjoint subsets of the whole network; the remaining nodes not part
of any SSBM are dubbed as ambient nodes. The resulting polarized SSBM model is denoted as
POL-SSBM (n, r, p, ρ, η,N).

C.3 Directed Stochastic Block Model (DSBM)

A standard directed stochastic blockmodel (DSBM) is often used to represent a network cluster
structure, see for example [53]. A DSBM model relies on a meta-graph adjacency matrix F =

(Fk,l)k,l=0,...,K−1 and a filled version of it, F̃ = (F̃k,l)k,l=0,...,K−1, and on a noise level parameter
η ≤ 0.5. The meta-graph adjacency matrix F is generated from the given meta-graph structure, called
M. To include an ambient background, the filled meta-graph adjacency matrix F̃ replaces every zero
in F that is not part of the imbalance structure by 0.5. The filled meta-graph thus creates a number
of ambient nodes which correspond to entries which are not part of M and thus are not part of a
meaningful cluster; this set of ambient nodes is also called the ambient cluster. First, we provide
examples of structures of F without any ambient nodes, where 1 denotes the indicator function:

1) “cycle": Fk,l = (1− η)1(l = ((k + 1) mod K)) + η1(l = ((k − 1) mod K)) + 1
21(l = k).

2) “path": Fk,l = (1− η)1(l = k + 1) + η1(l = k − 1) + 1
21(l = k).

3) “complete": assign diagonal entries 1
2 . For each pair (k, l) with k < l, let Fk,l be η and 1− η with

equal probability, then assign Fl,k = 1− Fk,l.

4) “star", following [20]: select the center node as ω = ⌊K−1
2 ⌋ and set Fk,l = (1 − η)1(k =

ω, l odd) + η1(k = ω, l even) + (1− η)1(l = ω, k odd) + η1(l = ω, l even).

When ambient nodes are present, the construction involves two steps, with the first step the same as the
above, but for “cycle" meta-graph structure, Fk,l = (1−η)1(l = ((k+1) mod (K−1)))+η1(l =
((k − 1) mod (K − 1))) + 0.51(l = k). The second step is to assign 0 (0.5, resp.) to the last row
and the last column of F (F̃, resp.).

A DSBM model, denoted by DSBM (M,1(ambient), n,K, p, ρ, η), is built as follows:

1)-2) Same as 1)-2) in Sec. C.1.

3) For nodes vi, vj ∈ Ck, independently sample an edge from vi to vj with probability p · F̃k,k.

4) For each pair of different clusters Ck, Cl with k ̸= l, for each node vi ∈ Ck, and each node vj ∈ Cl,
independently sample an edge from vi to vj with probability p · F̃k,l.

C.3.1 Signed Directed Stochastic Block Model (SDSBM)

A signed directed stochastic block model (SDSBM) [34] relies on a meta-graph adjacency matrix
F = (Fk,l)k,l=0,...,C−1, edge sparsity level p, the number of nodes n, and on a sign flip noise level
parameter 0 ≤ η ≤ 0.5. An SDSBM model, denoted by SDSBM (F, n, p, ρ, η), is built as follows:

1)-2) same as 1)-2) in Sec. C.1.

3) For nodes vi ∈ Ck, and vj ∈ Cl, independently sample an edge from vi to vj with probability
p · |Fk,l|. Give this edge weight 1 if Fk,l ≥ 0 and weight −1 if Fk,l < 0.

21

PyTorch Geometric Signed Directed

4) Flip the sign of all the edges in the generated graph with sign flip probability η.

D Real-World Data Set Description
D.1 Directed Unsigned Networks

As real-world directed, unsigned networks we include the following data sets.

• Blog [2] records |E| = 19, 024 directed edges between n = 1, 212 political blogs from the 2004
US presidential election.

• Migration [65] reports the number of people that migrated between pairs of counties in the US
during 1995-2000. It involves n = 3, 075 countries and |E| = 721, 432 directed edges after
obtaining the largest weakly connected component. Since the original directed network has
a few extremely large entries, to cope with these outliers we preprocess the input network by
Ai,j =

Ai,j

Ai,j+Aj,i
1(Ai,j > 0),∀i, j ∈ {1, · · · , n}, which follows the preprocessing of [16].

• WikiTalk [47] contains all users and discussions from the inception of Wikipedia until Jan. 2008.
The n = 2, 388, 953 nodes in the network represent Wikipedia users and a directed edge from
node vi to node vj denotes that user i edited at least once a talk page of user j. We extract the
largest weakly connected component.

• Telegram [7] is a pairwise influence network between 245 Telegram channels with 8, 912 edges.
Labels are generated from the method discussed in [7], with a total of four classes.

• Cora-ML [6] is a popular citation network with node labels based on paper topics with seven
classes. In this citation network, nodes represent papers, edges denote citations of one paper by
another, and node features are the bag-of-words representation of papers. The resulting network
has 2,995 nodes and 8,416 edges.

• CiteSeer [23] is a citation data set from an automatic citation indexing system. In this citation
network, nodes represent papers, and edges denote citations of one paper by another. Node
features are the bag-of-words representation of papers, and node labels are determined by the
academic topic of a paper. The resulting network has 3,312 nodes and 4,715 edges.

• Texas, Wisconsin, and Cornell are WebKB data sets extracted from the CMU World Wide
Knowledge Base (Web->KB) project2. They record hyperlinks between websites at different
universities. WebKB is a webpage data set collected from computer science departments
of various universities by Carnegie Mellon University. In these networks, nodes represent
web pages, and edges are hyperlinks between them. Node features are the bag-of-words
representation of web pages. The web pages are manually classified into the five categories,
student, project, course, staff, and faculty [64]. The resulting networks have 183, 251, and 183
nodes respectively, along with 325, 515, and 298 edges, respectively.

• Chameleon and Squirrel [67] represent links between Wikipedia pages related to chameleons
and squirrels. In these networks, nodes denote web pages and edges represent mutual links
between them. Node features correspond to several informative nouns in the Wikipedia pages.
The nodes are classified by [64] into five categories in terms of the number of the average
monthly traffic of the web page. The resulting networks have 2,277 and 5,201 nodes respectively,
along with 36,101 and 222,134 edges, respectively.

• WikiCS [58] is a directed network whose nodes correspond to Computer Science articles, and
edges are based on hyperlinks. This network has 10 classes resenting different branches of the
field. The resulting network has 11,701 nodes and 297,110 edges.

• Lead-Lag [4] contains yearly lead-lag matrices from 269 stocks from 2001 to 2019. Each
lead-lag matrix is built from a time series of daily price log returns, as detailed in [4]. The
lead-lag metric for entry (i, j) in the network encodes a measure of the extent to which stock i
leads stock j, and is obtained by applying a functional that computes the signed normalized area
under the curve (auc) of the standard cross-correlation function (ccf). The resulting matrix is
skew-symmetric, and entry (i, j) quantifies the extent to which stock i leads or lags stocks j,
thus leading to a directed network interpretation. Starting from the skew-symmetric matrix, we
further convert negative entries to zero, so that the resulting directed network can be directly fed

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

22

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

PyTorch Geometric Signed Directed

into other methods; note that this step does not throw away any information, and is pursued only
to render the representation of the directed network consistent with the format expected by all
methods compared. The average number of edges is 29,159.

D.2 Signed Undirected and Signed Directed Networks

For signed networks, we provide data loaders for the following data sets.

• The Sampson monastery data [69] covers 4 social relationships, each of which could be positive
or negative. We combine these relationships into a network of 25 nodes. For this data set, we
use as node attribute whether or not they attended the minor seminary of "Cloisterville". As
ground truth we take Sampson’s division of the novices into four groups: Young Turks, Loyal
Opposition, Outcasts, and an interstitial group. The number of positive and negative edges are
148 and 182, respectively.

• Rainfall [5] contains Australian rainfalls pairwise correlations. This data set is based on the
analysis over 294 million daily rainfall measurements since 1876, spanning 17,606 sites across
continental Australia. The data set is further processed in [36]. The resulting network has 306
nodes, and the number of positive and negative edges are 64,408 and 29,228, respectively.

• Fin-YNet [36, 86] consists of yearly correlation matrices for n = 451 stocks for 2000-2020 (21
distinct networks), using so-called market excess returns; that is, we compute each correlation
matrix from overnight (previous close to open) and intraday (open-to-close) price daily returns,
from which we subtract the market return of the S&P500 index. The resulting networks have on
average 148,527 positive edges and 54,313 negative edges.

• S&P1500 [86] considers daily prices for n = 1, 193 stocks, in the S&P 1500 Index, between
2003 and 2015, and builds correlation matrices also from market excess returns. The result is a
fully-connected weighted network, with stocks as nodes and correlations as edge weights. The
resulting network has 1,069,319 positive edges and 353,930 negative edges.

• PPI [82] is a signed protein-protein interaction (PPI) network. The edge signs represent
activation-inhibition relationships. This is a Drosophila melanogaster signed PPI network
consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive
and negative regulators of signaling pathways and protein complexes. The data set is further
processed to keep the largest connected component. The resulting network has 3,058 nodes,
7,996 positive edges, and 3,864 negative edges.

• Wiki-Rfa [84] is a signed network describing voting information for electing Wikipedia managers.
Positive edges represent supporting votes, while negative edges represent opposing votes. The
data set is further processed in [36] to keep only the largest weakly connected component and to
remove nodes with very low degrees. The resulting network has 7,634 nodes, 135,753 positive
edges, and 37,579 negative edges.

• BitCoin-Alpha and BitCoin-OTC [45] describe bitcoin trading. As a cryptocurrency, Bitcoin is
used to trade anonymously over the web, whose counterparty risk [59] has led to the emergence
of several exchanges where Bitcoin users rate the level of trust they have in other users. Two
such exchanges are OTC (for short) and Alpha (for short). Both exchanges enable users to
rate others on a scale of -10 to 10 (excluding zero), where a rating of -10 should be given to
fraudsters while 10 means to trust the person as trusting oneself. The rating values in between
have intermediate meanings. The resulting networks have 3,783 and 5,881 nodes respectively.
BitCoin-Alpha has 22,650 positive edges and 1,536 negative edges, while BitCoin-OTC has
32,029 positive edges and 3,563 negative edges.

• Slashdot [60] relates to a technology-related news website. This network contains friend/foe
links between the users of Slashdot. The resulting network has 82,140 nodes, 380,933 positive
edges, and 119,548 negative edges.

• Epinions [56] describes trust-distrust consumer reviews on epinions.com. epinions.com
is a website in which users can write reviews about products and assign them a rating. This
website also allows the users to express their Web of Trust, i.e. “reviewers whose reviews and
ratings they have consistently found to be valuable" and their Block list, i.e. a list of authors
whose reviews they find consistently offensive, inaccurate, or in general not valuable. Inserting
a user in the Web of Trust is the same as issuing a trust statement which is recorded as a positive
edge between the user and the reviewer, while inserting them in the Block List means issuing

23

epinions.com
epinions.com

PyTorch Geometric Signed Directed

a distrust statement which is recorded as a negative edge. The resulting network has 131,580
nodes, 589,888 positive edges, and 121,322 negative edges.

• Financial Lead-Lag (FiLL) data sets. For each year in the data set, [34] builds a signed
directed graph (FiLL-pvCLCL) based on the price return of 444 stocks at market close times
on consecutive days. [34] also builds another graph (FiLL-OPCL), based on the price return of
430 stocks from market open to close. The lead-lag metric that is captured by the entry Ai,j

in each network encodes a measure that quantifies the extent to which stock vi leads stock vj ,
and is obtained by computing the linear regression coefficient when regressing the time series
(of length 245) of daily returns of stock vi against the lag-one version of the time series (of
length 245) of the daily returns of stock vj . Specifically, [34] uses the beta coefficient of the
corresponding simple linear regression as the one-day lead-lag metric. The resulting matrix is
asymmetric and signed, rendering it amenable to a signed directed network interpretation. The
data matrices stored in PyGSD are dense but there is a sparsification parameter provided for the
data loader; [34] uses a parameter value of 0.2. The resulting annual graphs FiLL-OPCL have
on average 84,467 positive edges and 100,013 negative edges, while the resulting annual graphs
FiLL-pvCLCL have on average 84,677 positive edges and 112,015 negative edges.

E Implementation Details
The original signed GNN implementations for SGCN3, SNEA4, SiGAT, and SDGNN5 are based on
the code of GraphSAGE6. In our implementations, we inherit the class of MessagePassing in PyG and
add new GraphConv operators (e.g., SNEAConv) for signed networks, because this combination is
more efficient and unified than the original implementations, which is conducive to the generalization
of the code. Tables 7, 8 and 9 report average runtime of our implemented methods on various tasks,
showing that we have efficient implementations, with at least as short a runtime as the original
implementations. For the other models, the original implementations are based on PyG, so there is
not much an efficiency change compared to them. Note that as SSSNET, DIGRAC, and MagNet
are not originally written with the MessagePassing class in PyG, we have transformed the model
classes accordingly. We observe comparable (SGCN, SSSNET, DIGRAC, and MSGNN) or even
better (SiGAT, SDGNN, SNEA, and MagNet) runtime efficiency for these GNN implementations.
For the other GNN implementations (DGCN, DiGCN, DiGCNIB, and DiGCL), we clean up the
original codes, add documentation for them, unify some functions, split up some auxiliary layers, add
unit tests and provide examples.

Node Clustering. We use the same settings as in [36], [35], and [34] respectively for the node
clustering task on signed undirected, unsigned directed, and signed directed graphs, respectively.
For all the experiments, we use Adam [43] as our optimizer with learning rate 0.01 and employ ℓ2
regularization with weight decay parameter 5 · 10−4 to avoid overfitting. For SSSNET [36] and
DIGRAC [35], we use hidden size 16, 2 hops, and τ = 0.5. For MSGNN [34], we take a hidden
size of 16 and use two layers of convolution. For all synthetic models, we train the GNNs with a
maximum of 1000 epochs, and stop training when no gain in validation performance is achieved for
200 epochs (early-stopping). Note that we adapt SSSNET and DIGRAC from matrix multiplication
implementations to MessagePassing (from PyG) implementations for their models, and we observe
comparable runtime efficiency for our implementations and the original implementations. Specially,
for the node clustering results reported in Figures 1a and 1b, both implementations of DIGRAC
consume roughly 0.05 seconds for each epoch, while both implementations of SSSNET consume
roughly 0.4 seconds per epoch. Experiments were conducted on a compute node with 8 Nvidia Tesla
T4, 96 Intel Xeon Platinum 8259CL CPUs @ 2.50GHz and 378GB RAM.

For all node clustering tasks, we set 10% of all nodes from each cluster as test nodes, 10% as
validation nodes to select the model, and the remaining 80% as training nodes. For signed networks,
we are in a semi-supervised setting, where 10% of the training nodes are set to be seed nodes. Note
that label supervision is not provided for all training nodes but only for seed nodes in SSSNET,
DIGRAC, and MSGNN, while the subgraph induced by the set of training nodes is the graph to

3https://github.com/benedekrozemberczki/SGCN
4https://github.com/liyu1990/snea
5https://github.com/huangjunjie-cs/SiGAT
6https://github.com/williamleif/graphsage-simple

24

PyTorch Geometric Signed Directed

which the self-supervised loss function is applied. The other GNNs compared here (DiGCL, DiGCN,
DiGCNIB, MagNet and DGCN) are trained in a fully-supervised manner, meaning that labels for all
training nodes are used during training, and also the self-supervised loss function is not applied to
them, see [35] for more details. For the DSBM experiments, we generate 5 DSBM networks under
each parameter setting and use 10 different data splits for each network, then average over the 50
runs. For the remaining synthetic models, we first generate five different networks, each with two
different data splits, then conduct experiments on them and report average performance over these 10
runs. The meta-graph adjacency matrices for the SDSBM models are defined as

F1(γ) =

[
0.5 γ −γ

1− γ 0.5 −0.5
−1 + γ −0.5 0.5

]
,F2(γ) =

 0.5 γ −γ −γ
1− γ 0.5 −0.5 −γ
−1 + γ −0.5 0.5 −γ
−1 + γ −1 + γ −1 + γ 0.5

 .

In Sec. 5 also some non-GNN methods are mentioned, and they are included in the experiments in
Sec. 8. In detail,

Herm and Herm_sym are two variants from [16], L and L_sym are two Signed Laplacian variants
from [46], sns and dns are two Laplacian variations from [57], BNC and BRC are abbreviations for
Balanced Normalized Cut and Balanced Ratio Cut from [13], and finally SPONGE and SPONGE_sym
are two variants from [15].

Link Sign Prediction on Signed Graphs. Link Sign Prediction on Signed Graphs is the task to
predict the sign of given edges in a network, which is a binary classification task. Considering the
label imbalance, F1 and AUC are used to evaluate the performance. Past signed GNNs on this task
adopt a two-stage process, first using signed network embedding methods to learn representations
from the train set, and then using a downstream classifier to predict the signs of edges in the test
set. However, the setting is not conducive to searching hyper-parameters. In this paper, we split
80% edges for training, 10% edges for validation, and the remaining edges constitute the test set.
We run such train/validation/test splits five times to report the mean and standard deviation over the
five runs. The downstream classifier is a logistic regression classifier with 80% train edges. The
dimension number of node representations Z is set to 20 for all the methods, which is widely used in
related works. We use Adam optimizer to optimize all the models (The learning rate is set to 0.01
and the weight decay is set to 1e-3). We run 500 epochs (200 epochs as warming up) with 10 epoch
evaluations on the AUC metric on the test set and adopt early stopping with the patience of 10 epochs
to prevent overfitting. For other parameters, we follow the authors’ suggestions and the released
codes. Experiments were conducted on a compute node with an NVIDIA Tesla V100S GPU (32GB)
and Intel(R) Xeon(R) Silver 4310 CPUs (250GB). Table 7 reports the average runtime per epoch for
both our implementations and the original ones, where we observe a huge improvement in runtime
efficiency over the original implementations for SiGAT, SNEA and SDGNN. For SGCN, the original
and our implementations consume comparable runtime, and hence we omit the runtime report for the
original implementation here.

Table 7: Link sign prediction average runtime per epoch (in seconds) for signed networks, where
"ours" denotes our implementation, and "original" denotes the original implementation. The fastest is
marked in bold.

Method Bitcoin-Alpha Bitcoin-OTC Wikirfa Slashdot Epinions

SGCN(ours) 0.08 0.08 0.26 0.80 1.27
SiGAT(ours) 0.10 0.11 0.11 0.14 0.19

SiGAT(original) 2.93 4.71 51.83 121.56 236.53
SDGNN(ours) 0.08 0.07 0.12 0.25 0.41

SDGNN(original) 7.30 12.06 93.21 359.57 out of memory
SNEA(ours) 0.09 0.16 0.38 0.91 1.41

SNEA(original) 0.92 2.16 10.11 220.15 431.42

Node Classification and Edge-Level Tasks on Directed Unsigned Graphs. We adopt the settings
in [88] for MagNet, DGCN, DiGCN, and DiGCNIB, for directed network node classification and
edge-level tasks. For DiGCL results, we use the settings in [75] for Cora_ML and CiteSeer for node

25

PyTorch Geometric Signed Directed

classification and search parameters for the other data sets. For link prediction tasks, we follow the
settings from [88], training all GNNs for each link prediction task for 3000 epochs and set the early
stopping as 500. We tune the number of filters in [16, 32, 64] for MagNet, DGCN, DiGCN, and
search the number of filters of DiGCNIB in [6, 11, 21]. The coefficient α of DiGCN and DiGCNIB is
searched in [0.05, 0.1, 0.15, 0.2]. The q parameter in MagNet is tuned in [0.05, 0.1, 0.15, 0.2, 0.25].
Table 8 reports the total runtime for the node classification and link prediction tasks on directed
unsigned networks with 2 layers of different directed graph convolution, training with 10 folds ×
500 epochs per fold. 32 filters are used in DGCN, DiGCN, DiGCNIB and MagNet. For DiGCL,
128 filters are used for GCNs and 64 filters are used for the projection. As shown in the table,
our implementations are efficient. The running time of directed unsigned graphs is evaluated on a
compute node with 16 threads of i9-11900KF CPU, RTX3090 GPU, and 32GB memory. We adopted
the original implementation for directed graph convolution layers except for MagNet. We developed
MagNet with MessagePassing from PyG in our package. The comparison of the MagNet runtimes
validates our efficiency improvement.

Table 8: Runtime (seconds) comparison on link tasks. The fastest is marked in bold. MagNet
(original) denotes the original implementation and MagNet (ours) denotes the implementation of our
package.

Task Method Cornell Texas Wisconsin CoraML CiteSeer Telegram

Node classification

DGCN 16 17 17 43 43 17
DiGCN 9 9 9 32 37 10

DiGCNIB 19 19 19 42 46 20
DiGCL 28 29 30 63 57 37

MagNet (original) 73 74 81 215 173 54
MagNet (ours) 21 21 21 96 94 20

Direction prediction

DGCN 30 30 31 56 55 34
DiGCN 10 10 10 31 34 11

DiGCNIB 19 19 19 41 42 21
Magnet(original) 53 52 52 61 57 56

MagNet(ours) 36 36 36 40 39 43

Existence link prediction

DGCN 29 29 30 58 56 35
DiGCN 10 9 10 31 34 13

DiGCNIB 19 20 19 40 43 22
Magnet(original) 51 52 53 63 59 60

MagNet(ours) 36 37 37 42 40 43

Three classes link prediction

DGCN 30 30 31 59 55 36
DiGCN 10 10 10 33 34 13

DiGCNIB 19 19 19 42 44 22
Magnet(original) 52 52 52 61 57 59

MagNet(ours) 36 37 37 41 39 41

Link Prediction on Signed Directed Graphs. We follow the settings from [34], training all GNNs
for each link prediction task for 300 epochs. We use the proposed loss functions from their original
papers for SGCN [19], SNEA [49], SiGAT [40], and SDGNN [41], and we use the cross-entropy loss
for SSSNET [36] and MSGNN [34]. For all link prediction experiments in Table 6, we sample 20%
edges as test edges, and use the rest of the edges for training. Five splits were generated randomly for
each input graph. We calculate the in- and out-degrees based on both signs from the observed input
graph (removing test edges) to obtain a four-dimensional feature vector for each node for training
SSSNET [36], and MSGNN [34], and we use the default settings from relative papers for SGCN
[19], SNEA [49], SiGAT [40], and SDGNN [41]. Note that the “avg." results for FiLL first average
the accuracy values across all individual networks (a total of 42 networks), then report the mean
and standard deviation over the five runs. Table 9 reports average runtimes for the experiments.
Experiments were conducted on a compute node with 8 Nvidia Tesla T4, 96 Intel Xeon Platinum
8259CL CPUs @ 2.50GHz and 378GB RAM.

26

PyTorch Geometric Signed Directed

Table 9: Runtime (seconds) comparison on link tasks. The fastest is marked in bold.

Data Set Task GCN SGCN SDGNN SiGAT SNEA SSSNET MSGNN

BitCoin-Alpha

SP 23 352 124 277 438 59 29
DP 24 328 196 432 498 78 37
3C 32 403 150 288 446 77 37
4C 30 385 133 293 471 57 36
5C 31 350 373 468 570 82 37

BitCoin-OTC

SP 27 340 140 397 584 68 30
DP 26 471 243 426 941 80 38
3C 37 292 252 502 551 92 37
4C 31 347 143 487 607 68 37
5C 37 460 507 500 959 86 38

Slashdot

SP 167 4218 3282 1159 5792 342 227
DP 171 4231 3129 1200 5773 311 222
3C 208 3686 6517 1117 6628 263 322
4C 133 4038 5296 948 7349 202 232
5C 212 4269 7394 904 8246 424 327

Epinions

SP 272 6436 4725 2527 8734 300 370
DP 273 6437 4605 2381 8662 404 369
3C 322 6555 8746 2779 10536 471 510
4C 214 6466 6923 2483 10380 272 384
5C 329 7974 9310 2719 11780 460 517

FiLL (avg.)

SP 29 591 320 367 617 61 32
DP 30 387 316 363 386 53 36
3C 36 542 471 298 657 79 43
4C 27 608 384 343 642 56 35
5C 38 318 534 266 521 63 44

27

	1 Introduction
	2 Background
	2.1 Insights from Social Network Analysis: Social Balance Theory and Status Theory
	2.2 Spatial Graph Neural Networks
	2.3 Some Tools from Spectral Analysis: Graph Convolution and Laplacian Matrices

	3 Tasks and Evaluation Metrics
	3.1 Link Prediction
	3.2 Node Classification
	3.3 Node Clustering

	4 Data Sets
	5 Methods Currently in PyGSD
	6 Framework Design of PyGSD
	6.1 Neural Network Layers and Methods
	6.2 Data Structures
	6.2.1 Network Generators and Data Classes
	6.2.2 Data Loaders and Splitters

	6.3 Task-Specific Evaluations and Utilities
	6.4 Maintaining the Library

	7 Comparison with Existing Software
	8 Experimental Evaluation
	9 Conclusion and Outlook
	A Logo and Diagram
	B Case Study Examples
	B.1 Case Study on Signed Networks
	B.1.1 Preparation, Data Loading and Splitting, Loss and Model Initialization
	B.1.2 Defining Functions for Training and Evaluation
	B.1.3 Running the Experiment

	B.2 Case Study on Directed Networks
	B.2.1 Preparation, Data Loading and Splitting, Loss and Model Initialization
	B.2.2 Defining Functions for Training and Evaluation

	C Synthetic Data Description
	C.1 Signed Stochastic Block Model (SSBM)
	C.2 Polarized SSBMs (POL-SSBM)
	C.3 Directed Stochastic Block Model (DSBM)
	C.3.1 Signed Directed Stochastic Block Model (SDSBM)

	D Real-World Data Set Description
	D.1 Directed Unsigned Networks
	D.2 Signed Undirected and Signed Directed Networks

	E Implementation Details

