
Published as a conference paper at ICLR 2024

OPEN THE BLACK BOX: STEP-BASED POLICY
UPDATES FOR TEMPORALLY-CORRELATED EPISODIC

REINFORCEMENT LEARNING

Ge Li1,∗ Hongyi Zhou1 Dominik Roth1 Serge Thilges1 Fabian Otto2,3

Rudolf Lioutikov1 Gerhard Neumann1

1Karlsruhe Institute of Technology, Germany 2University of Tübingen, Germany
3Bosch Center for Artificial Intelligence, Germany

ABSTRACT

Current advancements in reinforcement learning (RL) have predominantly fo-
cused on learning step-based policies that generate actions for each perceived
state. While these methods efficiently leverage step information from environ-
mental interaction, they often ignore the temporal correlation between actions,
resulting in inefficient exploration and unsmooth trajectories that are challeng-
ing to implement on real hardware. Episodic RL (ERL) seeks to overcome these
challenges by exploring in parameters space that capture the correlation of ac-
tions. However, these approaches typically compromise data efficiency, as they
treat trajectories as opaque black boxes. In this work, we introduce a novel ERL
algorithm, Temporally-Correlated Episodic RL (TCE), which effectively utilizes
step information in episodic policy updates, opening the ’black box’ in existing
ERL methods while retaining the smooth and consistent exploration in parameter
space. TCE synergistically combines the advantages of step-based and episodic
RL, achieving comparable performance to recent ERL methods while maintaining
data efficiency akin to state-of-the-art (SoTA) step-based RL. Our code is available
at https://github.com/BruceGeLi/TCE_RL.

1 INTRODUCTION

By considering how policies interact with the environment, reinforcement learning (RL) methodolo-
gies can be classified into two distinct categories: step-based RL (SRL) and episodic RL (ERL). SRL
predicts actions for each perceived state, while ERL selects an entire behavioral sequence at the start
of an episode. Most predominant deep RL methods, such as PPO (Schulman et al., 2017) and SAC
(Haarnoja et al., 2018a), fall into the category of SRL. In these methods, the step information —
comprising state, action, reward, subsequent state, and done signal received by the RL agent at each
discrete time step — is pivotal for policy updates. This granular data aids in estimating the policy
gradient (Williams, 1992; Sutton et al., 1999), approximating state or state-action value functions
(Haarnoja et al., 2018a), and assessing advantages (Schulman et al., 2015b). Although SRL methods
have achieved great success in various domains, they often face significant exploration challenges.
Exploration in SRL, often based on a stochastic policy like a factorized Gaussian, typically lacks
temporal and cross-DoF (degrees of freedom) correlations. This deficiency leads to inconsistent
and inefficient exploration across state and action spaces (Raffin et al., 2022; Schumacher et al.,
2023), as shown in Fig. 1a. Furthermore, the high variance in trajectories generated through such
exploration can cause suboptimal convergence and training instability, a phenomenon highlighted
by considerable performance differences across various random seeds (Agarwal et al., 2021).

Episodic RL, in contrast to SRL, represents a distinct branch of RL that emphasizes the maximiza-
tion of returns over entire episodes (Whitley et al., 1993; Igel, 2003; Peters & Schaal, 2008), rather
than focusing on the internal evolution of the environment interaction. This approach shifts the so-
lution search from per-step actions to a parameterized trajectory space, employing techniques like

∗Corresponding author. Email to <geli.bruce.ai@gmail.com, ge.li@kit.edu>

1

https://github.com/BruceGeLi/TCE_RL

Published as a conference paper at ICLR 2024

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

0.2

0.4

Time [s]

A
ct

io
n

Mean
Mean + Noise

(a) Step-based RL

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

0.2

0.4

Time [s]

A
ct

io
n

(b) Traj.-based, Episodic RL

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

0.2

0.4

Time [s]

A
ct

io
n

(c) TCE (ours)

Figure 1: Illustration of exploration strategies: (a) SRL samples actions by adding noise to the
predicted mean, resulting in inconsistent exploration and jerky actions. However, their leverage of
step-based information leads to efficient policy updates. (b) ERL samples complete trajectories in a
parameter space and generate consistent control signals. Yet, they often treat trajectories as single
data points and overlook the step-based information during the interaction, causing inefficient policy
update. (c) TCE combines the benefits of both, using per-step information for policy update while
sampling complete trajectories with broader exploration and high smoothness.

Movement Primitives (MPs) (Schaal, 2006; Paraschos et al., 2013). Such exploration strategy allows
for broader exploration horizons and ensures consistent trajectory smoothness across task episodes,
as illustrated in Fig. 1b. Additionally, it is theoretically capable of capturing temporal correlations
and interdependencies among DoF. ERL typically treats entire trajectories as single data points, of-
ten overlooking the internal changes in the environment and state transitions. This approach leads
to training predominantly using black-box optimization methods (Salimans et al., 2017; Tangkaratt
et al., 2017; Celik et al., 2022; Otto et al., 2022). The term black box in our title reflects this reliance
on black-box optimization, which tends to overlook detailed step-based information acquired dur-
ing environmental interactions. However, this often results in a lack of attention to the individual
contributions of each segment of the trajectory to the overall task success. Consequently, while ERL
excels in expansive exploration and maintaining trajectory smoothness, it typically requires a larger
volume of samples for effective policy training. In contrast, step-based RL methods have demon-
strated notable advancements in learning efficiency by utilizing this detailed step-based information.
Open the Black Box. In this paper, our goal is to integrate step-based information into the policy
update process of ERL. Our proposed method, Temporally-Correlated Episodic RL (TCE), moves
beyond the traditional approach of treating an entire trajectory as a single data point. Instead,
we transform trajectory-wide elements, such as reproducing likelihood and advantage, into their
segment-wise counterparts. This enables us to leverage the step-based information to recognize and
accentuate the unique contributions of each trajectory segment to overall task success. Through this
innovative approach, we have opened the black box of ERL, making it more effective while retain-
ing its strength. As a further step, we explore the benefits of fully-correlated trajectory exploration
in deep ERL. We demonstrate that leveraging full covariance matrices for trajectory distributions
significantly improves policy quality in existing black-box ERL methods like Otto et al. (2022).
Our contributions are summarized as: (a) We propose TCE, a novel RL framework that integrates
step-based information into the policy updates of ERL, while preserving the broad exploration scope
and trajectory smoothness characteristic of ERL. (b) We provide an in-depth analysis of exploration
strategies that effectively capture both temporal and degrees of freedom (DoF) correlations, demon-
strating their beneficial impact on policy quality and trajectory smoothness. (c) We conduct a com-
prehensive evaluation of our approach on multiple simulated robotic manipulation tasks, comparing
its performance against other baseline methods.

2 PRELIMINARIES

2.1 EPISODIC REINFORCEMENT LEARNING

Markov Decision Process (MDP). We consider a MDP problem of a policy search defined by a
tuple (S,A, T ,R,P0, γ). We assume the state space S and action space A are continuous and the
transition probabilities T : S×S×A → [0, 1] describe the state transition probability to st+1, given
the current state st ∈ S and action at ∈ A. The initial state distribution is denoted as P0 : S →

2

Published as a conference paper at ICLR 2024

[0, 1]. The reward rt(st,at) returned by the environment is given by a function R : S × A → R
and γ ∈ [0, 1] describes the discount factor. The goal of RL in general is to find a policy π that
maximizes the expected accumulated reward, namely return, as R = ET ,P0,π[

∑∞
t=0 γ

trt].

Episodic RL (Whitley et al., 1993) focuses on maximizing the return R =
∑T

t=0[γ
trt] over a task

episode of length T , irrespective of the state transitions within the episode. This approach typically
employs a parameterized trajectory generator, like MPs (Schaal, 2006), to predict a trajectory param-
eter vector w. This vector is then used to generate a complete reference trajectory y(w) = [yt]t=0:T .
The resulting trajectory is executed using a trajectory tracking controller to accomplish the task. In
this context, yt ∈ RD denotes the trajectory value at time t for a system with D DoF, differentiating
it from the per-step action a used in SRL. It is important to note that, although ERL predicts an
entire action trajectory, it still maintains the Markov Property, where the state transition probabil-
ity depends only on the given current state and action (Sutton & Barto, 2018). In this respect, the
action selection process in ERL is fundamentally similar to techniques like action repeat (Braylan
et al., 2015) and temporally correlated action selection (Raffin et al., 2022; Eberhard et al., 2022). In
contrast to SRL, ERL predicts the trajectory parameters as π(w|s), which shifts the solution search
from the per-step action space A to the parameter space W . Therefore, a trajectory parameterized by
a vector w is typically treated as a single data point in W . Consequently, ERL commonly employs
black-box optimization methods for problem-solving (Salimans et al., 2017; Otto et al., 2022). The
general learning objective of ERL is formally expressed as

J =

∫
πθ(w|s)[R(s,w)− V π(s)]dw = Ew∼πθ(w|s)[A(s,w)], (1)

where πθ represents the policy, parameterized by θ, e. g. using NNs. The initial state s ∈ S
characterizes the starting configuration of the environment and the task goal, serving as the input
to the policy. The πθ(w|s) indicates the likelihood of selecting the trajectory parameter w. The
term R(s,w) =

∑T
t=0[γ

trt] represents the return obtained from executing the trajectory, while
V π(s) = Ew∼πθ(w|s)[R(s,w)] denotes the expected return across all possible trajectories under
policy πθ. Their subtraction is defined as the advantage function A(s,w), which quantifies the ben-
efit of selecting a specific trajectory. By using parameterized trajectory generators like MPs, ERL
benefits from consistent exploration, smooth trajectories, and robustness against local optima, as
noted by Otto et al. (2022). However, its policy update strategy incurs a trade-off in terms of learn-
ing efficiency, as valuable step-based information is overlooked during policy updates. Furthermore,
existing method like Bahl et al. (2020); Otto et al. (2022) commonly use factorized Gaussian poli-
cies, which inherently limits their capacity to capture all relevant movement correlations.

2.2 USING MOVEMENT PRIMITIVES FOR TRAJECTORY REPRESENTATION

The Movement Primitives (MP), as a parameterized trajectory generator, play an important role
in ERL and robot learning. This section highlights key MP methodologies and their mathemat-
ical foundations, deferring a more detailed discussion to Appendix B. Schaal (2006) introduced
the Dynamic Movement Primitives (DMPs) method, incorporating a force signal into a dynamical
system to produce smooth trajectories from given initial robot states. Following this, Paraschos
et al. (2013) developed Probabilistic Movement Primitives (ProMPs), which leverages a linear basis
function representation to map parameter vectors to trajectories and their corresponding distribu-
tions. The probability of observing a trajectory [yt]t=0:T given a specific weight vector distribution
p(w) ∼ N (w|µw,Σw) is represented as a linear basis function model:

[yt]t=0:T = Φ⊺
0:Tw + ϵy, (2)

p([yt]t=0:T ; µy,Σy) = N (Φ⊺
0:Tµw, Φ⊺

0:TΣwΦ0:T + σ2
yI). (3)

Here, ϵy is zero-mean white noise with variance σ2
y . The matrix Φ0:T houses the basis functions

for each time step t. Additionally, p([yt]t=0:T ; µy,Σy) defines the trajectory distribution coupling
the DoF and time steps, mapped from p(w). For a D-DoF system with N parameters per DoF
and T time steps, the dimensions of the variables in Eq. (2) and 3 are as follows: w,µw : D · N ;
Σw : D ·N ×D ·N ; Φ0:T : D ·N ×D · T ; y,µy : D · T ; Σy : D · T ×D · T .

Recently, Li et al. (2023) introduced Probabilistic Dynamic Movement Primitives (ProDMPs), a hy-
brid approach that blends the pros of both methods. Similar to ProMP, ProDMPs defines a trajectory

3

Published as a conference paper at ICLR 2024

µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

Mean

DoF 1

DoF 2

t1

t2

t3

t4

t1

t2

t3

t4

σ1,1 σ1,2 σ1,3 σ1,4 σ1,5 σ1,6 σ1,7 σ1,8

σ2,1 σ2,2 σ2,3 σ2,4 σ2,5 σ2,6 σ2,7 σ2,8

σ3,1 σ3,2 σ3,3 σ3,4 σ3,5 σ3,6 σ3,7 σ3,8

σ4,1 σ4,2 σ4,3 σ4,4 σ4,5 σ4,6 σ4,7 σ4,8

σ5,1 σ5,2 σ5,3 σ5,4 σ5,5 σ5,6 σ5,7 σ5,8

σ6,1 σ6,2 σ6,3 σ6,4 σ6,5 σ6,6 σ6,7 σ6,8

σ7,1 σ7,2 σ7,3 σ7,4 σ7,5 σ7,6 σ7,7 σ7,8

σ8,1 σ8,2 σ8,3 σ8,4 σ8,5 σ8,6 σ8,7 σ8,8

Covariance Matrix (8 × 8)

DoF 1 DoF 2

t1 t2 t3 t4 t1 t2 t3 t4

µ1

µ3

µ5

µ7

Sub-Mean

σ1,1 σ1,3 σ1,5 σ1,7

σ3,1 σ3,3 σ3,5 σ3,7

σ5,1 σ5,3 σ5,5 σ5,7

σ7,1 σ7,3 σ7,5 σ7,7

Sub-Covariance (4 × 4)

Select
t1 and t3

Figure 2: Reduce the trajectory distribution dimensions using two time steps (Li et al., 2023), shown
in an element-wise format. Here, the trajectory has two DoF and four time steps, with D · T = 8.
Left: The 8-dim mean vector and the 8 × 8-dim covariance matrix of the original trajectory distri-
bution, capture correlations across both DoF and time steps. Right: Randomly selecting two time
points, e. g. t1 and t3, yields a reduced distribution while still capturing the movement correlations.

as y(t) = Φ(t)⊺w + c1y1(t) + c2y2(t). The added terms c1y1(t) + c2y2(t) are included to ensure
accurate trajectory initialization. This formulation combines the distributional modeling benefits of
ProMP with the precision in trajectory initiation offered by DMP.

2.3 REPRESENTATION OF TRAJECTORY DISTRIBUTION AND LIKELIHOOD

Computing the trajectory distribution and reconstruction likelihood is crucial for policy updates in
ERL. Previous methods like Bahl et al. (2020); Otto et al. (2022) represented the trajectory distri-
bution using the parameter distribution p(w) and the likelihood of a sampled trajectory y∗ with its
parameter vector as p(w∗|µw, σ2

w). However, this approach treats an entire trajectory as a singular
data point and fails to efficiently utilize step-based information. In contrast, research in imitation
learning, including works by Paraschos et al. (2013); Gomez-Gonzalez et al. (2016), maps parameter
distributions to trajectory space and allows the exploitation of trajectory-specific information. Yet,
the likelihood computation in this space is computationally intensive, primarily due to the need to
invert a high-dimensional covariance matrix, a process with an O((D ·T)3) time complexity. Recent
studies, like those by (Seker et al., 2019; Akbulut et al., 2021; Przystupa et al., 2023), advocates for
directly modeling the trajectory distribution using neural networks. These methods typically employ
a factorized Gaussian distribution N (y|µy, σ

2
y), instead of a full Gaussian distribution N (y|µy,Σy)

that accounts for both the DoF and time steps. This choice mitigates the computational burden of
likelihood calculations, but comes at the cost of neglecting key temporal correlations and interactions
between different DoF. To address these challenges, Li et al. (2023) introduced a novel approach for
estimating the trajectory likelihood with a set of paired time points (tk, t′k), k = 1, ...,K, as

log p([yt]t=0:T) ≈
1

K

K∑
k=1

logN (y(tk,t′k)
|µ(tk,t′k)

,Σ(tk,t′k)
), (4)

As shown in Fig. 2, this method scales down the dimensions of a trajectory distribution from D ·T to
a more manageable D · 2. Through the use of batched, randomly selected time pairs during training,
the method is proved to efficiently capture correlations while reducing computational cost.

2.4 USING TRUST REGIONS FOR STABLE POLICY UPDATE

In ERL, the parameter space W typically exhibits higher dimensionality compared to the action
space A. This complexity presents unique challenges in maintaining stable policy updates. Trust
regions methods (Schulman et al., 2015a; 2017) has long been recognized as an effective technique
for ensuring the stability and convergence of policy gradient methods. While popular methods such
as PPO approximate trust regions using surrogate cost functions, they lack the capacity for exact
enforcement. To tackle this issue, Otto et al. (2021) introduced trust region projection layer (TRPL),
a mathematically rigorous and scalable technique that precisely enforces trust regions in deep RL

4

Published as a conference paper at ICLR 2024

Observation

Task RL Policy πθ for Trajectory Parameter Selection

Policy Nets

µw

Σw

Predict

w∗ ∼ N (µw,Σw)

Sample Traj. Parameter

Robot Initial State yb, ẏb

ProDMPs

Compute Traj.

[yt]t=0:T

[ẏt]t=0:T

Environment

Interaction

Segment states

and rewards

stk , st′
k

[rt]t=tk:t
′
k

Segment Evaluation

V-func. Net

Segment return Rk =
∑t′k−1

t=tk
γt−tkrt

V (stk), V (st′
k
)

Segment Values

ProDMPs
Compute Segment

Mean and Cov.

µ(tk,t
′
k
),Σ(tk,t

′
k
)

Traj. to Segments
tk

t′k

tk, t′k
ytk

,yt′
k

Policy Update

Likelihood, Eq. (7)
Compute Segment

p([yt]t=tk:t
′
k
)

Advantage, Eq. (8)
Compute Segment

A([yt]t=tk:t
′
k
)

Maximize Segment
Advantage-weighted

Likelihood J , Eq. (9).

Policy Gradient Update

θ ← θ + α∇θJ ,

Constraint to Trust Region
of µw and Σw

Figure 3: The TCE framework. The entire learning framework can be divided into three main
parts. The first part, shown in green arrows, involves trajectory sampling, generation, and execu-
tion, detailing how the robot is controlled to complete a given task. The second part, indicated in
blue arrows, focuses on estimating the likelihood of selecting a particular segment of the sampled
trajectory. The third part, marked by red arrows, deals with segment evaluation and advantage com-
putation, assessing how much each segment contributes to the successful task completion.

algorithms. By incorporating differentiable convex optimization layers (Agrawal et al., 2019), this
method not only allows for trust region enforcement for each input state, but also demonstrates
significant effectiveness and stability in high-dim parameter space, as validated in method like BBRL
Otto et al. (2022). The TRPL takes standard outputs of a Gaussian policy—namely, the mean vector
µ and covariance matrix Σ —and applies a state-specific projection operation to maintain trust
regions. The adjusted Gaussian policy, parameterized by µ̃ and Σ̃, forms the basis for subsequent
computations. Let dmean and dcov be the dissimilarity measures, e. g. KL-divergence, for mean and
covariance, bounded by ϵµ and ϵΣ respectively. The optimization for each state s is formulated as:

argmin
µ̃s

dmean (µ̃s,µ(s)) , s. t. dmean (µ̃s,µold(s)) ≤ ϵµ, and

argmin
Σ̃s

dcov

(
Σ̃s,Σ(s)

)
, s. t. dcov

(
Σ̃s,Σold(s)

)
≤ ϵΣ.

(5)

3 USE STEP-BASED INFORMATION FOR ERL POLICY UPDATES

tk, t′k

k

ytk

yt′
k

Figure 4: Divide a trajec-
tory into K segments

We introduce an innovative framework of ERL that builds on traditional
ERL foundations, aiming to facilitate an efficient policy update mecha-
nism while preserving the intrinsic benefits of ERL. The key innovation
lies in redefining the role of trajectories in the policy update process. In
contrast to previous methods which consider an entire trajectory as a sin-
gle data point, our approach breaks down the trajectory into individual
segments. Each segment is evaluated and weighted based on its distinct
contribution to the task success. This method allows for a more effective
use of step-based information in ERL. The comprehensive structure of
this framework is depicted in Figure 3.

Trajectory Prediction and Generation. As highlighted by green arrows in Fig. 3, we adopt a struc-
ture similar to previous ERL works, such as the one described by Otto et al. (2022). However, this
part distinguish itself by using the most recent ProDMPs for trajectory generation and distribution

5

Published as a conference paper at ICLR 2024

modeling, due to the improved support for trajectory initialization. Additionally, we enhance the
previous framework by using a full covariance matrix policy π(w|s) = N (w|µw,Σw) as opposed
to a factorized Gaussian policy, to capture a broader range of movement correlations.

Trajectory Likelihood Representation. In RL, the likelihood of previously sampled actions, along
with their associated returns, is often used to adjust the chance of these actions being selected in fu-
ture policies. In previous ERL methods, this process typically involves the probability of choosing
an entire trajectory. However, our framework adopts a different strategy, as shown in blue arrows
in Fig. 3. Using the techniques in Sections 2.2 and 2.3, our approach begins by selecting K paired
time steps. We then transform the parameter likelihood into a trajectory likelihood, which is cal-
culated using these K pairwise likelihoods. This approach, depicted in Figure 4, effectively divides
the whole trajectory into K distinct segments, with each segment defined by a pair of time steps.
In essence, this method allows us to break down the overall trajectory likelihood into individual
segment likelihoods, offering a more detailed view of the trajectory’s contribution to task success.

Trajectory to Segments: p([yt]t=0:T |s) ≜ {p([yt]t=tk:t′k
|s)}k=1...K , (6)

Local Representation: p([yt]t=tk:t′k
|s) ≜ p([ytk ,yt′k

]|µ(tk,t′k)
(s),Σ(tk,t′k)

(s)). (7)

Definition of Segment Advantages. Similar to standard SRL methods, we leverage the advantage
function to evaluate the benefits of executing individual segments within a sampled trajectory. When
being at state stk and following the trajectory segment [yt]t=tk:t′k

, the segment-wise advantage
function A(stk , [yt]t=tk:t′k

) quantifies the difference between the actual return obtained by executing
this sampled trajectory segment and the expected return from a randomly chosen segment, as

A(stk , [yt]t=tk:t′k
) =

t=t′k−1∑
t=tk

γt−tkrt + γt′k−tkV πold(st′k)− V πold(stk), (8)

where V πold(stk) denotes the value function of the current policy. In our method, the estimation
of V πold(stk) is consistent with the approaches commonly used in SRL and is independent of the
design choice of segment selections. We use NNs to estimate V π(s) ≈ V π

ϕ (s) which is fitted on
targets of true return or obtained by general advantage estimation (GAE) (Schulman et al., 2015b).

Learning Objective. By replacing the trajectory likelihood and advantage with their segment-based
counterparts in the original ERL learning objective as stated in Eq. (1), we propose the learning
objective of our method as follows

J(θ) = Eπold

[
1

K

K∑
k=1

pπnew([yt]t=tk:t′k
|s)

pπold([yt]t=tk:t′k
|s)

Aπold(stk , [yt]t=tk:t′k
)

]
. (9)

Here, s denotes the initial state of the episode, used for selecting the parameter vector w, and stk is
the state of the system at time tk. The learning objective takes the Importance Sampling to update
policies using data from previous policies (Schulman et al., 2015a; 2017; Otto et al., 2021). Our
method retains the advantages of exploration in parameter space and generating smooth trajectories.
This enables us to enhance the likelihood of segments with high advantage and reduce the likelihood
of less rewarding ones during policy updates. To ensure a stable update for the full covariance
Gaussian policy πθ(w|s) = N (µw,Σw), we deploy a differentiable Trust Region Projection step
(Otto et al., 2021) after each policy update iteration as previously discussed in Section 2.4.

4 RELATED WORKS

Improve Exploration and Smoothness in Step-based RL. SRL methods, such as PPO and SAC,
interact with the environment by performing a sampled action at each time-step. This strategy often
results in a control signal with high-frequency noise, making it unsuitable for direct use in robotic
systems (Raffin et al., 2022). A prevalent solution is to reduce the sampling frequency, a technique
commonly known as frame skip (Braylan et al., 2015). Here, the agent only samples actions every
k-th time step and replicates this action for the skipped steps. Similar approaches decide whether
to repeat the last action or to sample a new action in every time step (Biedenkapp et al., 2021; Yu
et al., 2021). This concept is also echoed in works such as general State Dependent Exploration

6

Published as a conference paper at ICLR 2024

(gSDE) (Raffin et al., 2022; Rückstieß et al., 2008; Chiappa et al., 2023), where the applied noise
is sampled in a state-dependent fashion; leading to smooth changes of the disturbance between
consecutive steps. However, while these methods improved the smoothness in small segments, they
struggled to model long-horizon correlations. Another area of concern is the utilization of white
noise during sampling, which fails to consider the temporal correlations between time steps and
results in a random walk with suboptimal exploration. To mitigate this, previous research, such
as Lillicrap et al. (2015) and Eberhard et al. (2022), have integrated colored noise into the RL
policy, aiming to foster exploration that is correlated across time steps. While these methods have
shown advantages over white noise approaches, they neither improve the trajectory’s smoothness,
nor adequately capture the cross-DoF correlations.

Episodic RL. The early ERL approaches used black-box optimization to evolve parameterized poli-
cies, e.g., small NN (Whitley et al., 1993; Igel, 2003; Gomez et al., 2008). However, these early
works were limited to tasks with low-dimensional action space, for instance, the Cart Pole. Although
recent works (Salimans et al., 2017; Mania et al., 2018) have shown that, with more computing, these
methods can achieve comparable asymptotic performance with step-based algorithms in some lo-
comotion tasks, none of these methods can deal with tasks with context variations (e.g., changing
goals). Another research line in ERL works with more compact policy representation. Peters &
Schaal (2008); Kober & Peters (2008) first combined ERL with MPs, reducing the dimension of
searching space from NN parameter space to MPs parameter space with the extra benefits of smooth
trajectories generation. Abdolmaleki et al. (2015) proposed a model-based method to improve the
sample efficiency. Notably, although those methods can already handle some complex manipulation
tasks such as robot baseball (Peters & Schaal, 2008), none of them can deal with contextual tasks.
To deal with that problem, (Abdolmaleki et al., 2017) further extends that utilizes linear policy con-
ditioned on the context. Another recent work from this research line (Celik et al., 2022) proposed
using a Mixture of Experts (MoE) to learn versatile skills under the ERL framework.

BBRL. As the first method that utilizes non-linear adaptation to contextual ERL, Deep Black Box
Reinforcement Learning (BBRL) (Otto et al., 2022) is the most related work to our method. BBRL
applies trust-region-constrained policy optimization to learn a weight adaptation policy for MPs.
Despite demonstrating great success in learning tasks with sparse and non-Markovian rewards, it
requires significantly more samples to converge compared to SoTA SRL methods. This could be
attributed to its black-box nature, where the trajectory from the entire episode is treated as a single
data point, and the trajectory return is calculated by summing up all step rewards within the episode.

5 EXPERIMENTS

We evaluate the effectiveness of our model through experiments on a variety of simulated robot ma-
nipulation tasks. The performance of TCE is compared against well-known deep RL algorithms as
well as methods specifically designed for correlated actions and consistent trajectories. The evalu-
ation is designed to answer the following questions: (a) Can our model effectively train the policy
across diverse tasks, incorporating various robot types, control paradigms (task and joint space),
and reward configurations? (b) Does the incorporation of movement correlations lead to higher task
success rates? (c) Are there limitations or trade-offs when adopting our proposed learning strategy?

For the comparative evaluation, we select the following methods: PPO, SAC, TRPL, gSDE, PINK
(Eberhard et al., 2022) and BBRL. Descriptions, hyper-parameters, and references to the used code
bases of these methods can be found in Appendix C.1.We use step-based methods (PPO, SAC,
TRPL, gSDE, and PINK) to predict the lower-level actions for each task. On the other hand, for
episodic methods like BBRL and TCE, we predict position and velocity trajectories and then employ
a PD controller to compute the lower-level control commands. Across all experiments, we measure
task success in terms of the number of environment interactions required. Each algorithm is evalu-
ated using 20 distinct random seeds. Results are quantified using the Interquartile Mean (IQM) and
are accompanied by a 95% stratified bootstrap confidence interval (Agarwal et al., 2021).

5.1 LARGE SCALE ROBOT MANIPULATION BENCHMARK USING METAWORLD

We begin our evaluation using the Metaworld benchmark (Yu et al., 2020), a comprehensive testbed
that includes 50 manipulation tasks of varying complexity. Control is executed in a 3-DOF task

7

Published as a conference paper at ICLR 2024

space along with the finger closeness, and a dense reward signal is employed. In contrast to the
original evaluation protocol, we introduce a more stringent framework. Specifically, each episode is
initialized with a randomly generated context, rather than a fixed one. Additionally, we tighten the
success criteria to only consider a task successfully completed if the objective is maintained until
the final time step. This adjustment mitigates scenarios where transient successes are followed by
erratic agent behavior. While we train separate policies for each task, the hyperparameters remain
constant across all 50 tasks. For each method, we report the overall success rate as measured by the
IQM across the 50 sub-tasks in Fig. 5a. The performance profiles are presented in Fig. 5b.

TCE (ours) BBRL PPO TRPL SAC gSDE PINK

0 1 2 3 4

0.4

0.6

0.8

1

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(a) Success Rate

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Success Rate τ

R
un

s
w

ith
Su

cc
es

s
R

at
e
>

τ

(b) Performance Profile

Figure 5: Metaworld Evaluation. (a) Overall Success Rate across
all 50 tasks, reported using Interquartile Mean (IQM) (Agarwal
et al., 2021). (b) Performance profile, illustrating the fraction of
runs that exceed the threshold specified on the x-axis.

In both metrics, our method sig-
nificantly outperforms the base-
lines in achieving task success.
BBRL exhibits the second-best
performance in terms of over-
all consistency across tasks but
lags in training speed compared
to step-based methods. We
attribute this difference to the
use of per-step dense rewards,
which enables faster policy up-
dates in step-based approaches.
TCE leverages the advantages
of both paradigms, surpassing
other algorithms after approxi-
mately 107 environment interac-
tions. Notably, the off-policy
methods SAC and PINK were trained with fewer samples than used for on-policy methods due
to their limitations in parallel environment utilization. PINK achieved superior final performance
but at the expense of sample efficiency compared to SAC. In Appendices C.2 and C.3, we provide
the results for 50 tasks and a performance profile analysis of TCE.

5.2 JOINT SPACE CONTROL WITH MULTI TASK OBJECTIVES

Next, we investigate the advantages of modeling complete movement correlations and the utility
of intermediate feedback for policy optimization. To this end, we enhance the BBRL algorithm
by expanding its factorized Gaussian policy to accommodate full covariance (BBRL Cov.), thereby
capturing movement correlations. Both the original and augmented versions of BBRL are included
in the subsequent task evaluations. We evaluate the methods on a customized Hopper Jump task,
sourced from OpenAI Gym (Brockman et al., 2016). This 3-DoF task primarily focuses on maxi-
mizing jump height while also accounting for precise landing at a designated location. Control is
executed in joint space. We report the max jump height as the main metric of success in Fig. 6a.
Our method exhibits quick learning and excels in maximizing jump height. Both BBRL versions
exhibit similar performance, while BBRL Cov. demonstrates marginal improvements over the orig-
inal. However, they both fall behind TCE in training speed, highlighting the efficiency gains we
achieve through intermediate state-based policy updates. Step-based methods like PPO and TRPL
tend to converge to sub-optimal policies. The only exception is gSDE. As an augmented step-based
method, it enables smoother and more consistent exploration but exhibits significant sensitivity to
model initialization (random seeds), evident from the wide confidence intervals.

5.3 CONTACT-RICH MANIPULATION WITH DENSE AND SPARSE REWARD SETTINGS

We further turn to a 7-DoF robot box-pushing task adapted from (Otto et al., 2022). The task requires
the robot’s end-effector, equipped with a rod, to maneuver a box to a specified target position and
orientation. The difficulty lies in the need for continuous, correlated movements to both position and
orient the box accurately. To amplify the complexity, the initial pose of the box is randomized. We
test two reward settings: dense and sparse. The dense setting offers intermediate rewards inversely
proportional to the current distance between the box and its target pose, while the sparse setting only
allocates rewards at the episode’s end based on the final task state. Performance metrics for both
settings are shown in Fig. 6b and 6c. In either case, TCE and gSDE exhibit superior performance but

8

Published as a conference paper at ICLR 2024

TCE (ours) BBRL Cov. BBRL PPO TRPL SAC gSDE PINK

0 0.2 0.4 0.6 0.8 1

·107

1.5

1.6

1.7

1.8

1.9

Iteration

M
ax

Ju
m

p
H

ei
gh

t,
IQ

M
[m

]

(a) Hopper Jump, Max Height

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(b) Box Pushing, Dense

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(c) Box Pushing, Sparse

Figure 6: Task Evaluation of (a) Hopper Jump Max Height. (b) Box Pushing success rate in dense
reward, and (c) Box Pushing success rate in sparse reward setting.

with TCE demonstrating greater consistency across different random seeds. The augmented BBRL
version outperforms its original counterpart, emphasizing the need for fully correlated movements
in tasks that demand consistent object manipulation. The other step-based methods struggle to learn
the task effectively, even when dense rewards are provided. This further highlights the advantages
of modeling the movement trajectory as a unified action, as opposed to a step-by-step approach.

5.4 HITTING TASK WITH HIGH SPARSITY REWARD SETTING

TCE (ours) BBRL PPO
TRPL BBRL Cov. SAC
gSDE PINK

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×108)

Su
cc

es
s

R
at

e

Figure 7: Table Tennis with High
reward sparsity.

In our last experiment, we assess the limitations of our method
using a 7-DoF robot table tennis task, originally from (Celik
et al., 2022). The robot aims to return a randomly incoming ball
to a desired target on the opponent’s court. To enhance the task’s
realism, we randomize the robot’s initial state instead of using a
fixed starting pose. This task is distinct due to its one-shot na-
ture: the robot has only one chance to hit the ball and loses con-
trol over the ball’s trajectory thereafter. The need for diverse hit-
ting strategies like forehand and backhand adds complexity and
increases the number of samples required for training. Perfor-
mance metrics are presented in Fig. 7. The BBRL Cov. emerges
as the leader, achieving a 20% higher success rate than other
methods. It is followed by TCE and the original BBRL, with
TCE displaying intermediate learning speeds between the two
BBRL versions. Step-based methods, led by TRPL at a mere
15% task success, struggle notably in this setting. We attribute
the underperformance of TCE and step-based methods to the task’s reward sparsity, which compli-
cates the value function learning of SRL and TCE. Despite these challenges, TCE maintains its edge
over other baselines, further attesting to its robustness, even under stringent conditions.

6 CONCLUSION

We introduced TCE that synergizes the exploration advantages of ERL with the sample efficiency of
SRL. Empirical evaluation showcases that TCE matches the sample efficiency of SRL and consis-
tently delivers competitive asymptotic performance across various tasks. Furthermore, we demon-
strated both the sample efficiency and policy performance of episodic policies can be further im-
proved by incorporating proper correlation modeling. Despite the promise, several opening ques-
tions remain for future work. Firstly, TCE yields moderate results for tasks characterized by partic-
ularly sparse reward settings, as observed in scenarios like table tennis. Secondly, ERL approaches
often need a low-level tracking controller, which might not be feasible for certain task types, such
as locomotion. Additionally, the current open-loop control setup lacks the adaptability needed for
complex control problems in dynamic environments where immediate feedback and swift adaptation
are crucial. These issues will be at the forefront of our future work.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We thank our colleagues Onur Celik, Maximilian Xiling Li, Vaisakh Kumar Shaj, and Balázs Gyenes
at KIT for the valuable discussion, technical support and proofreading. We thank the anonymous
reviewers for their insightful feedback which greatly improved the quality of this paper.

The research presented in this paper was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 448648559, and was supported in part by the Helmholtz Associa-
tion of German Research Centers. Gerhard Neumann was supported in part by Carl Zeiss Foundation
through the Project JuBot (Jung Bleiben mit Robotern). The authors acknowledge support by the
state of Baden-Württemberg through bwHPC, and the HoreKa supercomputer.

REFERENCES

Abbas Abdolmaleki, Rudolf Lioutikov, Jan R Peters, Nuno Lau, Luis Pualo Reis, and Gerhard
Neumann. Model-based relative entropy stochastic search. Advances in Neural Information Pro-
cessing Systems, 28, 2015.

Abbas Abdolmaleki, Bob Price, Nuno Lau, Luis Paulo Reis, and Gerhard Neumann. Contextual
covariance matrix adaptation evolutionary strategies. International Joint Conferences on Artificial
Intelligence Organization (IJCAI), 2017.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Mete Akbulut, Erhan Oztop, Muhammet Yunus Seker, X Hh, Ahmet Tekden, and Emre Ugur. Ac-
nmp: Skill transfer and task extrapolation through learning from demonstration and reinforcement
learning via representation sharing. In Conference on Robot Learning, pp. 1896–1907. PMLR,
2021.

Heni Ben Amor, Gerhard Neumann, Sanket Kamthe, Oliver Kroemer, and Jan Peters. Interaction
primitives for human-robot cooperation tasks. In 2014 IEEE international conference on robotics
and automation (ICRA), pp. 2831–2837. IEEE, 2014.

Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, and Deepak Pathak. Neural dynamic policies
for end-to-end sensorimotor learning. Advances in Neural Information Processing Systems, 33:
5058–5069, 2020.

Lars Berscheid and Torsten Kröger. Jerk-limited real-time trajectory generation with arbitrary target
states. arXiv preprint arXiv:2105.04830, 2021.

André Biedenkapp, Raghu Rajan, Frank Hutter, and Marius Lindauer. Temporl: Learning when to
act. In International Conference on Machine Learning, pp. 914–924. PMLR, 2021.

Alex Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is a pow-
erful parameter for learning to play atari. In Workshops at the twenty-ninth AAAI conference on
artificial intelligence, 2015.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Sylvain Calinon. A tutorial on task-parameterized movement learning and retrieval. Intelligent
service robotics, 9:1–29, 2016.

Sylvain Calinon, Zhibin Li, Tohid Alizadeh, Nikos G Tsagarakis, and Darwin G Caldwell. Statistical
dynamical systems for skills acquisition in humanoids. In 2012 12th IEEE-RAS International
Conference on Humanoid Robots (Humanoids 2012), pp. 323–329. IEEE, 2012.

10

Published as a conference paper at ICLR 2024

Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, and Gerhard Neumann. Specializing ver-
satile skill libraries using local mixture of experts. In Conference on Robot Learning, pp. 1423–
1433. PMLR, 2022.

Alberto Silvio Chiappa, Alessandro Marin Vargas, Ann Zixiang Huang, and Alexander Mathis. La-
tent exploration for reinforcement learning. Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink noise is all you
need: Colored noise exploration in deep reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2022.

Faustino Gomez, Jürgen Schmidhuber, Risto Miikkulainen, and Melanie Mitchell. Accelerated neu-
ral evolution through cooperatively coevolved synapses. Journal of Machine Learning Research,
9(5), 2008.

Sebastian Gomez-Gonzalez, Gerhard Neumann, Bernhard Schölkopf, and Jan Peters. Using prob-
abilistic movement primitives for striking movements. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pp. 502–508. IEEE, 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Neville Hogan and Dagmar Sternad. Sensitivity of smoothness measures to movement duration,
amplitude, and arrests. Journal of motor behavior, 41(6):529–534, 2009.

Christian Igel. Neuroevolution for reinforcement learning using evolution strategies. In The 2003
Congress on Evolutionary Computation, 2003. CEC’03., volume 4, pp. 2588–2595. IEEE, 2003.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
movement primitives: learning attractor models for motor behaviors. Neural computation, 25(2):
328–373, 2013.

Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Advances in neural
information processing systems, 21, 2008.

Friedrich Lange and Michael Suppa. Trajectory generation for immediate path-accurate jerk-limited
stopping of industrial robots. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2021–2026. IEEE, 2015.

Ge Li, Zeqi Jin, Michael Volpp, Fabian Otto, Rudolf Lioutikov, and Gerhard Neumann. Prodmp:
A unified perspective on dynamic and probabilistic movement primitives. IEEE Robotics and
Automation Letters, 8(4):2325–2332, 2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Guilherme Maeda, Marco Ewerton, Rudolf Lioutikov, Heni Ben Amor, Jan Peters, and Gerhard
Neumann. Learning interaction for collaborative tasks with probabilistic movement primitives.
In 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 527–534. IEEE, 2014.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. Advances in Neural Information Processing Systems, 31,
2018.

Franziska Meier and Stefan Schaal. A probabilistic representation for dynamic movement primi-
tives. arXiv preprint arXiv:1612.05932, 2016.

11

Published as a conference paper at ICLR 2024

Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Ziesche, and Gerhard Neumann. Differ-
entiable trust region layers for deep reinforcement learning. International Conference on Learning
Representations, 2021.

Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Vien Anh Ngo, and Gerhard Neumann.
Deep black-box reinforcement learning with movement primitives. In Conference on Robot
Learning, pp. 1244–1265. PMLR, 2022.

Fabian Otto, Hongyi Zhou, Onur Celik, Ge Li, Rudolf Lioutikov, and Gerhard Neumann. Mp3:
Movement primitive-based (re-) planning policy. arXiv preprint arXiv:2306.12729, 2023.

Rok Pahič, Barry Ridge, Andrej Gams, Jun Morimoto, and Aleš Ude. Training of deep neural
networks for the generation of dynamic movement primitives. Neural Networks, 2020.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Probabilistic movement
primitives. Advances in neural information processing systems, 26, 2013.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

Michael Przystupa, Faezeh Haghverd, Martin Jagersand, and Samuele Tosatto. Deep probabilistic
movement primitives with a bayesian aggregator. arXiv preprint arXiv:2307.05141, 2023.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning.
In Conference on Robot Learning, pp. 1634–1644. PMLR, 2022.

Leonel Rozo and Vedant Dave. Orientation probabilistic movement primitives on riemannian man-
ifolds. In Conference on Robot Learning, pp. 373–383. PMLR, 2022.

Thomas Rückstieß, Martin Felder, and Jürgen Schmidhuber. State-dependent exploration for pol-
icy gradient methods. In Walter Daelemans, Bart Goethals, and Katharina Morik (eds.), Ma-
chine Learning and Knowledge Discovery in Databases, pp. 234–249, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-87481-2.

Thomas Rückstiess, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and Jürgen Schmidhuber.
Exploring parameter space in reinforcement learning. Paladyn, 1:14–24, 2010.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Stefan Schaal. Dynamic movement primitives-a framework for motor control in humans and hu-
manoid robotics. In Adaptive motion of animals and machines, pp. 261–280. Springer, 2006.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pierre Schumacher, Daniel F.B. Haeufle, Dieter Büchler, Syn Schmitt, and Georg Martius. Dep-rl:
Embodied exploration for reinforcement learning in overactuated and musculoskeletal systems.
In Proceedings of the Eleventh International Conference on Learning Representations (ICLR),
May 2023. URL https://openreview.net/forum?id=C-xa_D3oTj6.

12

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=C-xa_D3oTj6

Published as a conference paper at ICLR 2024

Muhammet Yunus Seker, Mert Imre, Justus H Piater, and Emre Ugur. Conditional neural movement
primitives. In Robotics: Science and Systems, volume 10, 2019.

RB Ashith Shyam, Peter Lightbody, Gautham Das, Pengcheng Liu, Sebastian Gomez-Gonzalez,
and Gerhard Neumann. Improving local trajectory optimisation using probabilistic movement
primitives. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2666–2671. IEEE, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Voot Tangkaratt, Herke Van Hoof, Simone Parisi, Gerhard Neumann, Jan Peters, and Masashi
Sugiyama. Policy search with high-dimensional context variables. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Jens Timmer and Michel Koenig. On generating power law noise. Astronomy and Astrophysics,
300:707, 1995.

Darrell Whitley, Stephen Dominic, Rajarshi Das, and Charles W Anderson. Genetic reinforcement
learning for neurocontrol problems. Machine Learning, 13:259–284, 1993.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Michael Wininger, Nam-Hun Kim, and William Craelius. Spatial resolution of spontaneous accel-
erations in reaching tasks. Journal of Biomechanics, 42(1):29–34, 2009.

Chenguang Yang, Chuize Chen, Wei He, Rongxin Cui, and Zhijun Li. Robot learning system
based on adaptive neural control and dynamic movement primitives. IEEE transactions on neural
networks and learning systems, 30(3):777–787, 2018.

Haonan Yu, Wei Xu, and Haichao Zhang. Taac: Temporally abstract actor-critic for continuous
control. Advances in Neural Information Processing Systems, 34:29021–29033, 2021.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

You Zhou, Jianfeng Gao, and Tamim Asfour. Learning via-point movement primitives with inter-
and extrapolation capabilities. In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4301–4308. IEEE, 2019.

13

Published as a conference paper at ICLR 2024

List of Content in Appendix

A. Algorithm box as a complementary to Fig. 3.
B. Mathematical formulations of MP methods used for trajectory generation.
C. Experiment settings as a complementary to Section 5.
D. Additional evaluation and metrics to prove the effectiveness of TCE.
E. Hyper-parameters selection and sweeping.

A ALGORITHM BOX

Algorithm 1 Temporally-Correlated Episodic RL (TCE)

1: Initialize policy parameters θ and value function parameters ϕ
2: for iteration = 1, 2, ... do
3: Get the initial state s0
4: Predict the mean µw, covariance Σw, and sample w∗
5: Generate the trajectory y∗ using Eq. (2) and execute it in the environment
6: Collect step-based information through the execution
7: Update ϕ, use true return or GAE style return (Schulman et al., 2015b)
8:
9: Select K time-pairs, e.g. choose every 10 steps along the trajectory

10: Compute the segment-wise likelihood {pold
k }k=1:K using Eq. (6) and 7 under πold

11: for update epoch = 1, 2, ... do
12: Make prediction of the mean µnew

w , covariance Σnew
w under the latest policy πnew

13: Enforce Trust Region by projecting µnew
w and Σnew

w through TRPL using Eq. (5)
14: Get projected policy π̃new, represented by µ̃new

w and Σ̃new
w

15: Compute the segment-wise likelihood {pnew
k }k=1:K using Eq. (6) and 7 under π̃new

16: Update θ by taking a gradient step w.r.t. J(θ) in Eq. (9)
17: end for
18: end for

14

Published as a conference paper at ICLR 2024

B MATHEMATICAL FORMULATIONS OF MOVEMENT PRIMITIVES.

In this section, we provide a concise overview of the mathematical formulations of movement prim-
itives utilized in this paper. We begin with the fundamentals of DMPs and ProMPs, followed by a
detailed presentation of ProDMPs. This includes a focus on trajectory computation and the mapping
between parameter distributions and trajectory distributions. For clarity, we begin with a single DoF
system and then present the full trajectory distribution using a multi-DoF systems.

B.1 DYNAMIC MOVEMENT PRIMITIVES (DMPS)

Schaal (2006); Ijspeert et al. (2013) describe a single movement as a trajectory [yt]t=0:T , which
is governed by a second-order linear dynamical system with a non-linear forcing function f . The
mathematical representation is given by

τ2ÿ = α(β(g − y)− τ ẏ) + f(x), f(x) = x

∑
φi(x)wi∑
φi(x)

= xφ⊺
xw, (10)

where y = y(t), ẏ = dy/dt, ÿ = d2y/dt2 denote the position, velocity, and acceleration of
the system at a specific time t, respectively. Constants α and β are spring-damper parameters, g
signifies a goal attractor, and τ is a time constant that modulates the speed of trajectory execution. To
ensure convergence towards the goal, DMPs employ a forcing function governed by an exponentially
decaying phase variable x(t) = exp(−αx/τ ; t). Here, φi(x) represents the basis functions for the
forcing term. The trajectory’s shape as it approaches the goal is determined by the weight parameters
wi ∈ w, for i = 1, ..., N . The trajectory [yt]t=0:T is typically computed by numerically integrating
the dynamical system from the start to the end point (Pahič et al., 2020; Bahl et al., 2020). However,
this numerical process is computationally intensive, and complicates a directly translation between
a parameter distribution p(w) to its corresponding trajectory distribution p(y) (Amor et al., 2014;
Meier & Schaal, 2016). Previous method, such as GMM/GMR (Calinon et al., 2012; Calinon, 2016;
Yang et al., 2018) used Gaussian Mixture Models to cover the trajectories’ domain. However, this
neither captures temporal correlation nor provide a generative model for the trajectories.

B.2 PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

Paraschos et al. (2013) introduced a framework for modeling MPs using trajectory distributions,
capturing both temporal and inter-dimensional correlations. Unlike DMPs that use a forcing term,
ProMPs directly model the intended trajectory. The probability of observing a 1-DoF trajectory
[yt]t=0:T given a specific weight vector distribution p(w) ∼ N (w|µw,Σw) is represented as a
linear basis function model:

Linear basis function: [yt]t=0:T = Φ⊺
0:Tw + ϵy, (11)

Mapping distribution: p([yt]t=0:T ; µy,Σy) = N (Φ⊺
0:Tµw, Φ⊺

0:TΣwΦ0:T + σ2
yI). (12)

Here, ϵy is zero-mean white noise with variance σ2
y . The matrix Φ0:T houses the basis functions for

each time step t. Similar to DMPs, these basis functions can be defined in terms of a phase variable
instead of time. ProMPs allows for flexible manipulation of MP trajectories through probabilistic
operators applied to p(w), such as conditioning, combination, and blending (Maeda et al., 2014;
Gomez-Gonzalez et al., 2016; Shyam et al., 2019; Rozo & Dave, 2022; Zhou et al., 2019). However,
ProMPs lack an intrinsic dynamic system, which means they cannot guarantee a smooth transition
from the robot’s initial state or between different generated trajectories.

B.3 PROBABILISTIC DYNAMIC MOVEMENT PRIMITIVES (PRODMPS)

Solving the ODE underlying DMPs Li et al. (2023) noted that the governing equation of DMPs,
as specified in Eq. (10), admits an analytical solution. This is because it is a second-order linear non-
homogeneous ODE with constant coefficients. The original ODE and its homogeneous counterpart
can be expressed in standard form as follows:

Non-homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y =

f(x)

τ2
+

αβ

τ2
g ≡ F (x, g), (13)

Homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y = 0. (14)

15

Published as a conference paper at ICLR 2024

The solution to this ODE is essentially the position trajectory, and its time derivative yields the
velocity trajectory. These are formulated as:

y = [y2p2 − y1p1 y2q2 − y1q1]

[
w
g

]
+ c1y1 + c2y2 (15)

ẏ = [ẏ2p2 − ẏ1p1 ẏ2q2 − ẏ1q1]

[
w
g

]
+ c1ẏ1 + c2ẏ2. (16)

Here, the learnable parameters w and g which control the shape of the trajectory, are separable from
the remaining terms. Time-dependent functions y1, y2,p1, p2, q1, q2 in the remaining terms offer
the basic support to generate the trajectory. The functions y1, y2 are the complementary solutions to
the homogeneous ODE presented in Eq. (14), and ẏ1, ẏ2 their time derivatives respectively. These
time-dependent functions take the form as:

y1(t) = exp
(
− α

2τ
t
)
, y2(t) = t exp

(
− α

2τ
t
)
, (17)

p1(t) =
1

τ2

∫ t

0

t′ exp
(α

2τ
t′
)
x(t′)φ⊺

xdt
′, p2(t) =

1

τ2

∫ t

0

exp
(α

2τ
t′
)
x(t′)φ⊺

xdt
′, (18)

q1(t) =
(α

2τ
t− 1

)
exp

(α

2τ
t
)
+ 1, q2(t) =

α

2τ

[
exp

(α

2τ
t
)
− 1

]
. (19)

It’s worth noting that the p1 and p2 cannot be analytically derived due to the complex nature of the
forcing basis terms φx. As a result, they need to be computed numerically. Despite this, isolating
the learnable parameters, namely w and g, allows for the reuse of the remaining terms across all
generated trajectories. These residual terms can be more specifically identified as the position and
velocity basis functions, denoted as Φ(t) and Φ̇(t), respectively. When both w and g are included
in a concatenated vector, represented as wg , the expressions for position and velocity trajectories
can be formulated in a manner akin to that employed by ProMPs:

Position: y(t) = Φ(t)⊺wg + c1y1(t) + c2y2(t), (20)

Velocity: ẏ(t) = Φ̇(t)⊺wg + c1ẏ1(t) + c2ẏ2(t). (21)

In the main paper, for simplicity and notation convenience, we use w instead of wg to describe
the parameters and goal of ProDMPs.

Smooth trajectory transition The coefficients c1 and c2 serve as solutions to the initial value
problem delineated by the Eq.(20)(21). Li et al. propose utilizing the robot’s initial state or the
replanning state, characterized by the robot’s position and velocity (yb, ẏb) to ensure a smooth com-
mencement or transition from a previously generated trajectory. Denote the values of the comple-
mentary functions and their derivatives at the condition time tb as y1b , y2b , ẏ1b and ẏ2b . Similarly,
denote the values of the position and velocity basis functions at this time as Φb and Φ̇b respectively.
Using these notations, c1 and c2 can be calculated as follows:

[
c1
c2

]
=

 ẏ2b
yb−y2b

ẏb

y1b
ẏ2b

−y2b
ẏ1b

+
y2b

Φ̇⊺
b−ẏ2b

Φ⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

y1b
ẏb−ẏ1b

yb

y1b
ẏ2b

−y2b
ẏ1b

+
ẏ1b

Φ⊺
b−y1b

Φ̇⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

 . (22)

Substituting Eq. (22) into Eq. (20) and Eq. (21), the position and velocity trajectories take the form
as

y = ξ1yb + ξ2ẏb + [ξ3Φb + ξ4Φ̇b +Φ]⊺wg, (23)

ẏ = ξ̇1yb + ξ̇2ẏb + [ξ̇3Φb + ξ̇4Φ̇b + Φ̇]⊺wg (24)

Here, ξk for k ∈ {1, 2, 3, 4} serve as intermediate terms that are derived from the complementary
functions and the initial conditions. The formations of these terms are elaborated below. To find
their derivatives ξ̇k, one can simply replace y1, y2 with their time derivatives ẏ1, ẏ2 in the equations.

ξ1(t) =
ẏ2by1 − ẏ1by2
y1b ẏ2b − y2b ẏ1b

, ξ2(t) =
y1by2 − y2by1
y1b ẏ2b − y2b ẏ1b

,

ξ3(t) =
ẏ1by2 − ẏ2by1
y1b ẏ2b − y2b ẏ1b

, ξ4(t) =
y2by1 − y1by2
y1b ẏ2b − y2b ẏ1b

.

16

Published as a conference paper at ICLR 2024

Extend to a High DoF system Both ProMPs and ProDMPs can be generalized to accommodate
high-DoF systems. This allows for the capture of both temporal correlations and interactions among
various DoF. Such generalization is implemented through modifications to matrix structures and
vector concatenations, as illustrated in Paraschos et al. (2013); Li et al. (2023). To be specific, the
basis functions Φ, Φ̇, along with their values at the condition time Φb, Φ̇b, are extended to block-
diagonal matrices Ψ, Ψ̇, Ψb and Ψ̇b respectively. This extension is executed by tiling the existing
basis function matrices D times along their diagonal, where D is the number of DoF. Additionally,
the robot initial conditions for each DoF are concatenated into one vectors. For instance, the initial
positions y1b , ..., y

D
b are unified into a single vector yb = [y1b , ..., y

D
b]⊺. In this way, the position

and velocity trajectories are extended as

y = ξ1yb + ξ2ẏb + [ξ3Ψb + ξ4Ψ̇b +Ψ]⊺wg, (25)

ẏ = ξ̇1yb + ξ̇2ẏb + [ξ̇3Ψb + ξ̇4Ψ̇b + Ψ̇]⊺wg. (26)

Parameter distribution to trajectory distribution In a manner analogous to the description pro-
vided for ProMPs from Equation Eq. (2) to Equation Eq. (3), ProDMPs also exhibits a comparable
architecture framework. This similarity is particularly evident in the structure of the learnable pa-
rameters, denoted as wg , which follow a linear basis function format. Consequently, it is reasonable
to delineate the trajectory distribution for ProDMPs in fashion akin to that of ProMPs. Given that the
parameter distribution wg follows a Gaussian distribution wg ∼ N (wg|µwg ,Σwg) and adhering to
the probabilistic formulation analogous to ProMPs as indicated in Eq. (3), the trajectory distribution
for ProDMPs can be expressed as:

p([yt]t=0:T ; µy,Σy) = N ([yt]t=0:T | µy,Σy), (27)

where

µy = ξ1yb + ξ2ẏb +H⊺
0:Tµwg

, Σy = H⊺
0:TΣwg

H0:T + σ2
nI,

H0:T = ξ3Ψb + ξ4Ψ̇b +Ψ0:T , ξk = [ξk(t)]t=0:T .

In this context, the trajectory mean, denoted as µy constitutes a vector of dimension DT , whereas
the trajectory covariance, represented by Σy is a DT × DT dimensional matrix. These quantities
serve to integrate the trajectory values across all degrees of freedom (DoF) and temporal steps,
encapsulating them within a single distribution. This multi-DoF ProDMPs representation can be
seen as an enhancement of the ProMPs framework, augmented by the inclusion of initial condition
terms. This ensures that the trajectories sampled under this distribution start from the specified
initial state. Additionally, the time range t = 0 : T is flexible and can be replaced by any
set of discrete time points. For instance, in the TCE method, a pair of time points tk and t′k
can define a trajectory segment, allowing for down-sampling of the trajectory distribution to
specific trajectroy segment.

17

Published as a conference paper at ICLR 2024

C EXPERIMENT DETAILS

C.1 DETAILS OF METHODS IMPLEMENTATION

PPO Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a prominent on-policy step-
based RL algorithm that refines the policy gradient objective, ensuring policy updates remain close
to the behavior policy. PPO branches into two main variants: PPO-Penalty, which incorporates a
KL-divergence term into the objective for regularization, and PPO-Clip, which employs a clipped
surrogate objective. In this study, we focus our comparisons on PPO-Clip due to its prevalent use in
the field. Our implementation of PPO is based on the implementation of Raffin et al. (2021).

SAC Soft Actor-Critic (SAC) (Haarnoja et al., 2018a;b) employs a stochastic step-based policy
in an off-policy setting and utilizes double Q-networks to mitigate the overestimation of Q-values
for stable updates. By integrating entropy regularization into the learning objective, SAC balances
between expected returns and policy entropy, preventing the policy from premature convergence.
Our implementation of SAC is based on the implementation of Raffin et al. (2021).

TRPL Trust Region Projection Layers (TRPL) (Otto et al., 2021), akin to PPO, addresses the
problem of stabilizing the on-policy policy gradient by constraining the learning policy staying
close to the behavior policy. TRPL formulates the constrained optimization problem as a projection
problem, providing a mathematically rigorous and scalable technique that precisely enforces trust
regions on each state, leading to stable and efficient on-policy updates. We evaluated its performance
based on the implementation of the original work.

gSDE Generalized State Dependent Exploration (gSDE) (Raffin et al., 2022; Rückstieß et al.,
2008; Rückstiess et al., 2010) is an exploration method designed to address issues with traditional
step-based exploration techniques and aims to provide smoother and more efficient exploration in
the context of robotic reinforcement learning, reducing jerky motion patterns and potential damage
to robot motors while maintaining competitive performance in learning tasks.

To achieve this, gSDE replaces the traditional approach of independently sampling from a Gaussian
noise at each time step with a more structured exploration strategy, that samples in a state-dependent
manner. The generated samples not only depend on parameter of the Gaussian distribution µ & Σ,
but also on the activations of the policy network’s last hidden layer (s). We generate disturbances ϵt
using the equation

ϵt = θϵs, where θϵ ∼ N d (0,Σ) .

The exploration matrix θϵ is composed of vectors of length Dim(a) that were drawn from the Gaus-
sian distribution we want gSDE to follow. The vector s describes how this set of pre-computed
exploration vectors are mixed. The exploration matrix is resampled at regular intervals, as guided
by the ’sde sampling frequency’ (ssf), occurring every n-th step if n is our ssf.

gSDE is versatile, applicable as a substitute for the Gaussian Noise source in numerous on- and
off-policy algorithms. We evaluated its performance in an on-policy setting using PPO by utilizing
the reference implementation for gSDE from Raffin et al. (2022). In order for training with gSDE to
remain stable and reach high performance the usage of a linear schedule over the clip range had to
be used for some environments.

PINK We utilize SAC to evaluate the effectiveness of pink noise for efficient exploration. Eber-
hard et al. (2022) propose to replace the independent action noise ϵt of

at = µt + σt · ϵt
with correlated noise from particular random processes, whose power spectral density fol-
low a power law. In particular, the use of pink noise, with the exponent β = 1 in
S(f) = |F [ϵ](f)|2 ∝ f−β , should be considered (Eberhard et al., 2022).

We follow the reference implementation and sample chunks of Gaussian pink noise using the in-
verse Fast Fourier Transform method proposed by Timmer & Koenig (1995). These noise variables
are used for SAC’s exploration but the the actor and critic updates sample the independent action
distribution without pink noise. Each action dimension uses an independent noise process which

18

Published as a conference paper at ICLR 2024

causes temporal correlation within each dimension but not across dimensions. Furthermore, we fix
the chunk size and maximum period to 10000 which avoids frequent jumps of chunk borders and
increases relative power of low frequencies.

BBRL-Cov/Std Black-Box Reinforcement Learning (BBRL) (Otto et al., 2022; 2023) is a recent
developed episodic reinforcement learning method. By utilizing ProMPs (Paraschos et al., 2013) as
the trajectory generator, BBRL learns a policy that explores at the trajectory level. The method can
effectively handle sparse and non-Markovian rewards by perceiving an entire trajectory as a unified
data point, neglecting the temporal structure within sampled trajectories. However, on the other
hand, BBRL suffers from relatively low sample efficiency due to its black-box nature. Moreover,
the original BBRL employs a degenerate Gaussian policy with diagonal covariance. In this study,
we extend BBRL to learn Gaussian policy with full covariance to build a more competitive baseline.
For clarity, we refer to the original method as BBRL-Std and the full covariance version as BBRL-
Cov. We integrate BBRL with ProDMPs (Li et al., 2023), aiming to isolate the effects attributable
to different MP approaches.

C.2 METAWORLD PERFORMANCE PROFILE ANALYSIS

The distribution of success rates, reported in the performance profile in Fig. 5b, may seem to contra-
dict the nearly perfect IQM of TCE but in reality provide insight into the consistency of TCE. Nearly
two thirds of runs exceed 99% success rate and are therefore able to perfectly solve the task with
this seed. The individual performances reported in Appendix C.3 show that only very few tasks,
e.g., Disassemble and Hammer, have a significant fraction of unsuccessful seeds. This consistency
per task is also visible in the profile, as only two percent of runs fall between zero and sixty percent
success rate which is visible by the near zero slope in this range. All methods are entirely unable to
solve a small set of tasks and therefore show a gap in the profile. This does not contradict the very
high IQM success rate of TCE, as the IQM trims the upper and lower 25% of results. The commonly
reported median effectively trims 50% and would result in even higher values. Due to the smaller
and later decline in the profile compared to the other methods, the intersection between 75% of runs
and the profile is located at a success rate of 90%. Therefore, only a small fraction of runs, roughly
ten percent, fall within the 25% trim but only slightly decrease the value of the IQM due their high
success rate. Other methods have a larger fraction of imperfect runs with lower success rate within
the quartiles.

19

Published as a conference paper at ICLR 2024

C.3 PERFORMANCE ON INDIVIDUAL METAWORLD TASKS

We report the Interquartile Mean (IQM) of success rates for each Metaworld task. The plots clearly
illustrate the varying levels of difficulty across different tasks.

TCE (ours) BBRL PPO TRPL SAC gSDE PINK

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Assembly

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
ra

te
 IQ

M

PickOutOfHole

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PlateSlide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PlateSlideBack

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PlateSlideSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PlateSlideBackSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

BinPicking

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Hammer

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

SweepInto

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

BoxClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ButtonPress

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ButtonPressWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ButtonPressTopdown

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ButtonPressTopdownWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

CoffeeButton

Figure 8: Success Rate IQM of each individual Metaworld tasks.

20

Published as a conference paper at ICLR 2024

TCE (ours) BBRL PPO TRPL SAC gSDE PINK

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
ra

te
 IQ

M
CoffeePull

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

CoffeePush

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DialTurn

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Disassemble

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DoorClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DoorLock

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DoorOpen

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DoorUnlock

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandInsert

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DrawerClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DrawerOpen

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

FaucetOpen

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

FaucetClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandlePressSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandlePress

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandlePullSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandlePull

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

LeverPull

Figure 9: Success Rate IQM of each individual Metaworld tasks.

21

Published as a conference paper at ICLR 2024

TCE (ours) BBRL PPO TRPL SAC gSDE PINK

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
ra

te
 IQ

M
PegInsertSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PickPlaceWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Reach

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PushBack

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Push

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PickPlace

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PegUnplugSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Soccer

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

StickPush

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

StickPull

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PushWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ReachWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ShelfPlace

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Sweep

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

WindowOpen

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

WindowClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Basketball

Figure 10: Success Rate IQM of each individual Metaworld tasks.

22

Published as a conference paper at ICLR 2024

C.4 HOPPER JUMP

TCE (ours) BBRL Cov. BBRL PPO TRPL SAC gSDE PINK

0 0.2 0.4 0.6 0.8 1

·107

1.5

1.6

1.7

1.8

1.9

Iteration

M
ax

Ju
m

p
H

ei
gh

t,
IQ

M
[m

]

(a) Max Jump Height

0 0.2 0.4 0.6 0.8 1

·107

0

0.2

0.4

0.6

0.8

1

Iteration

D
is

ta
nc

e
to

G
oa

l,
IQ

M
[m

]

(b) Distance to Goal

0 0.2 0.4 0.6 0.8 1

·107

5

10

15

Iteration

E
pi

so
de

R
ew

ar
d,

IQ
M

(c) Overall, Height + Dist.

Figure 11: Hopper Jump

As an addition to the main paper, we provide more details on the Hopper
Jump task. We look at both the main goal of maximizing jump height and the
secondary goal of landing on a desired position. These are shown along with
the overall episode reward in Fig. 11. Our method shows quick learning and
does well in achieving high jump height, consistent with what we reported
earlier. While it’s not as strong in landing accuracy, it still ranks high in
overall performance. Both versions of BBRL have similar results. However,
they train more slowly compared to TCE, highlighting the speed advantage of
our method due to the use of intermediate states for policy updates. Looking at other methods, step-
based ones like PPO and TRPL focus too much on landing distance and miss out on jump height,
leading to less effective policies. On the other hand, gSDE performs well but is sensitive to the
initial setup, as shown by the wide confidence ranges in the results. Lastly, SAC and PINK shows
inconsistent results in jump height, indicating the limitations of using pink noise for exploration,
especially when compared to gSDE.

C.5 BOX PUSHING

The goal of the box-pushing task is to move a box to a specified goal location
and orientation using the 7-DoFs Franka Emika Panda (Otto et al., 2022). To
make the environment more challenging, we extend the environment from a
fixed initial box position and orientation to a randomized initial position and
orientation. The range of both initial and target box pose varies from x ∈
[0.3, 0.6], y ∈ [−0.45, 0.45], θz ∈ [0, 2π]. Success is defined as a positional
distance error of less than 5 cm and a z-axis orientation error of less than
0.5 rad. We refer to the original paper for the observation and action spaces
definition and the reward function.

C.6 TABLE TENNIS

The goal of table tennis environment to use the 7-DoFs robotic arm to hit
the incoming ball and return it as close as possible to the specified goal
location. We adapt the table tennis environment from Celik et al. (2022);
Otto et al. (2022) and extend it to a randomized initial robot joint configura-
tion. As context space we consider the initial ball position x ∈ [−1,−0.2],
y ∈ [−0.65, 0.65] and the goal position x ∈ [−1.2,−0.2], y ∈ [−0.6, 0.6].
The task is considered successful if the returned ball lands on the opponent’s
side of the table and within ≤ 0.2m to the goal location. We refer to the
original paper for the observation and action spaces definition and the reward function.

23

Published as a conference paper at ICLR 2024

TCE (ours) BBRL Cov. BBRL PPO TRPL SAC gSDE PINK

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×108)

Su
cc

es
s

R
at

e

(a) Success Rate

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×108)

H
it

R
at

e

(b) Hit Rate

0 0.5 1 1.5 2

0

2

4

6

8

Number Environment Interactions (×108)

E
pi

so
de

To
ta

lR
ew

ar
d

(c) Episode Reward

Figure 14: Robot Table Tennis Rand2Rand

D ADDITIONAL EVALUATION AND ABLATION STUDY

D.1 TRAJECTORY SMOOTHNESS METRIC

We compared the trajectory smoothness of all methods in Table 1. To ensure a fair comparison, all
methods were trained using the fixed start box pushing dense reward setting as originally reported
in Otto et al. (2022), where each method achieved a minimum 50% success rate. Trajectories for
evaluation were generated using the mean prediction of the policy. The smoothness was assessed
using three metrics: maximum jerk, mean squared jerk (Wininger et al., 2009), and dimensionless
jerk (Hogan & Sternad, 2009). The first two metrics are standard in robot trajectory generation
(Berscheid & Kröger, 2021; Lange & Suppa, 2015), while the last is proposed as a more equitable
measure of smoothness, eliminating the effects of motion magnitude and time scaling. TCE and
BBRL Cov outperformed all other methods in smoothness, followed by the original BBRL. This
performance disparity likely stems from the original BBRL’s inability to model inter-DoF movement
correlations. In contrast, all step-based methods exhibited lower smoothness, attributable to their
inherent per-step action selection approach.

Table 1: Trajectory Smoothness, Mean (Std) of Three Metrics over 400 Trajectories.

Metric TCE BBRL Cov BBRL PPO TRPL gSDE SAC PINK

Maximum Jerk, ×103rad/s3 3.4 (1.9) 3.5 (1.5) 4.3 (1.4) 9.1 (3.3) 12.9 (4.8) 6.9 (2.2) 9.3 (4.2) 6.5 (1.7)

Mean Sq. Jerk, ×106rad2/s6 0.2 (0.2) 0.2 (0.3) 0.6 (0.6) 1.3 (0.9) 5.5 (8.6) 0.8 (0.6) 3.9 (1.1) 1.7 (0.7)

Dimensionless Jerk, ×106 61 (73) 64 (56) 128 (49) 141 (67) 555 (472) 122 (83) 506 (262) 311 (127)

24

Published as a conference paper at ICLR 2024

D.2 ACTION CORRELATIONS PREDICTED BY TRAINED POLICIES

We plot the action correlation coupling DoF and time steps in Fig. 16. All policies were trained
under the box-pushing task with a dense reward setting. The action outputs for TCE, BBRL,
and BBRL Cov are the positions of the robot joints, while step-based methods, such as PPO,
predict actions in the torque space. TCE and BBRL Cov demonstrate the ability to predict actions
correlated both temporally and across DoF, as indicated by the non-zero off-diagonal elements in
their correlation matrices. In contrast, the original BBRL translates a factorized weight distribution
into a block-diagonal action correlation matrix, capturing variance within individual DoF but not
between them. Similarly, PINK is constrained to modeling intra-DoF correlations, which depend
solely on the time difference. This limitation arises from the wide-sense stationarity of the noise,
resulting in a constant value along each diagonal. gSDE, however, models temporal correlation but
only over a few consecutive time steps, observable along the diagonal elements. Actions predicted
by PPO, TRPL, and SAC lack both temporal and DoF correlation, resulting in correlation matrices
resembling identity matrices. Interestingly, for methods that only capture intra-DoF correlations,
these correlations are uniformly positive. This trend may relate to the control cost in the reward
function, promoting consistent movement within each DoF over time. On the other hand, TCE and
BBRL Cov are unique in their ability to capture negative correlations, both between and within
DoF, enhancing their flexibility in trajectory sampling.

(a) TCE (b) BBRL Cov (c) BBRL (Original, Std)

(d) PINK (e) gSDE (f) PPO / TRPL / SAC

Figure 16: This figure presents predicted actions’ correlation across 7 DoF and 100 time steps, visualized in
a 700x700 correlation matrix. Each 100 × 100 square tile demonstrates the movement correlation between
two DoF during these steps. Correlation values range from -1 (negative correlation, depicted in blue) to 1
(positive correlation, depicted in red), with white areas indicating no correlation. The action outputs for TCE,
BBRL, and BBRL Cov are the positions of the robot joints, whereas step-based methods predict actions in the
torque space. TCE and BBRL Cov exhibit to a higher capacity of movement correlations. The original BBRL
and PINK only model correlations within each DoF. gSDE models correlations over a few consecutive time
steps. We show only one representative matrix for PPO, TRPL, and SAC, as their results are visually identical,
typically resulting in matrices resembling the identity matrix.

25

Published as a conference paper at ICLR 2024

D.3 ABLATION: SAC + MOTION PRIMITIVES-BASED METHOD

Training movement primitive-based methods using standard RL techniques, such as PPO and SAC,
generally poses challenges due to the complex, higher-dimensional trajectory parameter space. In
the study by Otto et al. (2022), an ablation study employing a PPO-style trust region (likelihood clip-
ping) for training BBRL demonstrated inferior performance compared to the use of a differentiable
trust region projection layer.

In Figure 17, we present an additional ablation study where SAC is used to learn the trajectory
parameters of movement primitives. This study compares the performance of SAC with that of the
original BBRL and BBRL Cov, leading to relatively poorer performance. The SAC model selected
for reporting was the best performer among 40 different combinations of hyperparameters. The
hyperparameters adjusted include the output action scaling factor (necessary because the SAC action
space is bounded by [−1, 1]), policy/critic learning rate, batch size, and the size of the policy/critic
network. The relatively shorter training curve of SAC can be attributed to its higher computational
cost in policy update (Haarnoja et al., 2018b).

BBRL Cov. BBRL SAC + MP

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

Figure 17: By employing the standard SAC method to learn trajectory parameters w, we compared its perfor-
mance with that of the original BBRL and BBRL Cov methods under the box pushing dense reward setting.
The ablated method, using SAC, showed relatively poorer performance.

D.4 ABLATION: USING PPO STYLE TRUST REGIONS FOR TCE METHOD

We developed an ablated version of our method, incorporating the PPO-style trust region via likeli-
hood clipping. We tuned the clipping ratio ϵ between 0.05 and 0.2. As illustrated in Figure 18, this
version’s performance falls between the original TCE and the standard PPO. The movement primi-
tives’ high-dimensional parameter space limits the effectiveness of likelihood clipping in precisely
maintaining the trust region during policy updates. This limitation likely accounts for the perfor-
mance gap between TCE and its PPO variant. Nonetheless, the ablated model still demonstrates a
notable advantage over standard PPO, further substantiating our model’s effectiveness in temporally
correlated trajectory prediction.

TCE (ours) TCE (PPO) PPO

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

Figure 18: Training TCE with a PPO-style trust region, employing likelihood clipping with ϵ = 0.1, yields
suboptimal performance in the box pushing dense reward setting. Nevertheless, its superior performance com-
pared to standard PPO underscores our method’s effectiveness in episodic trajectory modeling.

26

Published as a conference paper at ICLR 2024

D.5 ABLATION: SELECTION OF THE AMOUNT OF SEGMENTS K

We conducted an ablation study to evaluate the effect of varying the number of segments (k) on
model performance. The number of segments tested ranged from 2 to 100. Our experiments in-
volved training in both dense and sparse box-pushing environments. The results revealed a greater
sensitivity to the number of segments in the sparse reward environment compared to the dense envi-
ronment. We attribute this to the challenges associated with the value function approximation under
sparse reward settings. However, within an optimal range, such as 10-25 segments, this parameter is
not overly sensitive compared to other hyper-parameters. Consequently, we have adopted k=25 for
all experiments in this paper.

segments=2 segments=5 segments=10 segments=25 segments=50 segments=100

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(a) Box Pushing, Dense

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M
(b) Box Pushing, Sparse

Figure 19: Study of the number of segment per trajectory.

D.6 TCE COV VS. STD

We conducted an ablation study to assess the impact of employing a full covariance policy in the
TCE framework. This involved comparing the standard TCE with its variant, TCE Std, which
utilizes a factorized Gaussian policy N (w|µw,σ2

w). The comparison was conducted in scenarios
involving both dense and sparse reward settings in box pushing tasks. The findings revealed that
the ablated version, TCE Std, consistently underperformed compared to the full covariance version.
This underperformance is attributed to the limited correlation capacity of the factorized Gaussian
policy.

Furthermore, it is important to note that while the factorized Gaussian distribution results in a rela-
tively lower computational load in the parameter space, it does not offer a marked advantage when
translated into trajectory space. As illustrated in Fig. 16(c) of Section D.2, a factorized parame-
ter distribution ultimately converts into a blocked diagonal trajectory distribution. Although this
format is visually simpler compared to a full trajectory covariance matrix, both share same time
complexity in terms of likelihood computation. This computational process is significantly more
resource-intensive than that for a purely diagonal matrix. Therefore, we utilize the techniques in Li
et al. (2023) to apply a likelihood estimation and reduce the computational cost.

TCE Cov (ours) TCE Std (ablation)

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(a) Box Pushing, Dense

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(b) Box Pushing, Sparse

Figure 20: Study of the TCE Cov vs. TCE Std.

27

Published as a conference paper at ICLR 2024

E HYPER PARAMETERS

We executed a large-scale grid search to fine-tune key hyperparameters for each baseline method.
For other hyperparameters, we relied on the values specified in their respective original papers.
Below is a list summarizing the parameters we swept through during this process.

BBRL: Policy net size, critic net size, policy learning rate, critic learning rate, samples per itera-
tion, trust region dissimilarity bounds, number of parameters per movement DoF.

TCE: Same types of hyper-parameters listed in BBRL, plus the number of segments per trajectory.
A learning rate decaying scheduler is applied to stabilize the training in the end.

PPO: Policy network size, critic network size, policy learning rate, critic learning rate, batch size,
samples per iteration.

TRPL: Policy network size, critic network size, policy learning rate, critic learning rate, batch
size, samples per iteration, trust region dissimilarity bounds.

gSDE: Same types of hyper-parameters listed in PPO, together with the state dependent explo-
ration sampling frequency (Raffin et al., 2022).

SAC: Policy network size, critic network size, policy learning rate, critic learning rate, alpha learn-
ing rate, batch size, Update-To-Data (UTD) ratio.

PINK: Same types of hyper-parameters listed in SAC.

The detailed hyper parameters used are listed in the following tables. Unless stated other-
wise, the notation lin x refers to a linear schedule. It interpolates linearly from x to 0 during
training. The ERL methods (TCE, BBRL) take an entire trajectory as a sample where the SRL
methods take one time step as a sample. In this way, one sample in ERL is equivlent to T sample of
SRL, where T is the length of one task episode.

28

Published as a conference paper at ICLR 2024

Table 2: Hyperparameters for the Meta-World experiments. Episode Length T = 500

PPO gSDE TRPL SAC PINK TCE BBRL

number samples 16000 16000 16000 1000 4 16 16

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a.

discount factor 0.99 0.99 0.99 0.99 0.99 1 1

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.005 0.005

ϵΣ n.a. n.a. 0.0005 n.a. n.a. 0.0005 0.0005

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 10

optimizer adam adam adam adam adam adam adam

epochs 10 10 20 1000 1 50 100

learning rate 3e-4 1e-3 5e-5 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True

epochs critic 10 10 10 1000 1 50 100

learning rate critic 3e-4 1e-3 3e-4 3e-4 3e-4 3e-4 3e-4

number minibatches 32 n.a. 64 n.a. n.a. n.a. n.a.

batch size n.a. 500 n.a. 256 512 n.a. n.a.

buffer size n.a. n.a. n.a. 1e6 2e6 n.a. n.a.

learning starts 0 0 0 10000 1e5 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a.

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0 0 auto auto 0 0

normalized observations True True True False False True False

normalized rewards True True False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 lin 0.31 n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 lin 0.31 n.a. n.a. n.a. n.a. n.a.

hidden layers [128, 128] [128, 128] [128, 128] [256, 256] [256, 256] [128, 128] [32, 32]

hidden layers critic [128, 128] [128, 128] [128, 128] [256, 256] [256, 256] [128, 128] [32, 32]

hidden activation tanh tanh tanh relu relu relu relu

orthogonal initialization Yes No Yes fanin fanin Yes Yes

initial std 1.0 0.5 1.0 1.0 1.0 1.0 1.0

Movement Primitive (MP) type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 8 5

weight scale n.a. n.a. n.a. n.a. n.a. 0.1 0.1

goal scale n.a. n.a. n.a. n.a. n.a. 0.1 0.1

1Linear Schedule from 0.3 to 0.01 during the first 25% of the training. Then continued with 0.01.

29

Published as a conference paper at ICLR 2024

Table 3: Hyperparameters for the Box Pushing Dense, Episode Length T = 100

PPO gSDE TRPL SAC PINK TCE BBRL BBRL Cov.

number samples 48000 80000 48000 8 8 152 152 152

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.05 0.1 0.05

ϵΣ n.a. n.a. 0.00005 n.a. n.a. 0.0005 0.00025 0.0005

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 10 10

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 20 1 1 50 20 20

learning rate 5e-5 1e-4 5e-5 3e-4 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True True

epochs critic 10 10 10 1 1 50 10 10

learning rate critic 1e-4 1e-4 1e-4 3e-4 3e-4 1e-3 3e-4 3e-4

number minibatches 40 n.a. 40 n.a. n.a. n.a. n.a. n.a.

batch size n.a. 2000 n.a. 512 512 n.a. n.a. n.a.

buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. n.a.

learning starts 0 0 0 1e5 1e5 0 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. n.a.

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.01 0 auto auto 0 0 0

normalized observations True True True False False True False False

normalized rewards True True False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [128, 128] [128, 128] [128, 128]

hidden layers critic [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]

hidden activation tanh tanh tanh tanh tanh leaky relu leaky relu leaky relu

orthogonal initialization Yes No Yes fanin fanin Yes Yes Yes

initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 8 8 8

weight scale n.a. n.a. n.a. n.a. n.a. 0.3 0.3 0.3

goal scale n.a. n.a. n.a. n.a. n.a. 0.3 0.3 0.3

30

Published as a conference paper at ICLR 2024

Table 4: Hyperparameters for the Box Pushing Sparse, Episode Length T = 100

PPO gSDE TRPL SAC PINK TCE BBRL BBRL Cov.

number samples 48000 80000 48000 8 8 76 76 76

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.05 0.1 0.05

ϵΣ n.a. n.a. 0.00005 n.a. n.a. 0.0005 0.00025 0.001

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 10 10

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 20 1 1 50 20 20

learning rate 5e-4 1e-4 5e-5 3e-4 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True True

epochs critic 10 10 10 1 1 50 10 10

learning rate critic 1e-4 1e-4 1e-4 3e-4 3e-4 3e-4 3e-4 3e-4

number minibatches 40 n.a. 40 n.a. n.a. n.a. n.a. n.a.

batch size n.a. 2000 n.a. 512 512 n.a. n.a. n.a.

buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. n.a.

learning starts 0 0 0 1e5 1e5 0 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. n.a.

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.01 0 auto auto 0 0 0

normalized observations True True True False False True False False

normalized rewards True True False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [128, 128] [128, 128] [128, 128]

hidden layers critic [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]

hidden activation tanh tanh tanh tanh tanh leaky relu leaky relu leaky relu

orthogonal initialization Yes No Yes fanin fanin Yes Yes Yes

initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 8 8 8

weight scale n.a. n.a. n.a. n.a. n.a. 0.3 0.3 0.3

goal scale n.a. n.a. n.a. n.a. n.a. 0.3 0.3 0.3

31

Published as a conference paper at ICLR 2024

Table 5: Hyperparameters for the Hopper Jump, Episode Length T = 250

PPO gSDE TRPL SAC PINK TCE BBRL BBRL Cov.

number samples 8000 8192 8000 1000 1 64 64 64

GAE λ 0.95 0.99 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 0.999 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. 0.05 n.a. n.a. 0.1 n.a. 0.005

ϵΣ n.a. n.a. 0.0005 n.a. n.a. 0.02 n.a. 0.00005

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 n.a. 10

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 20 1000 1 50 100 100

learning rate 3e-4 9.5e-5 3e-4 1e-4 2e-4 1e-4 1e-4 1e-4

use critic True True True True True True True True

epochs critic 10 10 10 1000 1 50 100 100

learning rate critic 3e-4 9.5e-5 3e-4 1e-4 2e-4 1e-4 1e-4 1e-4

number minibatches 40 n.a. 40 n.a. n.a. n.a. n.a. n.a.

batch size n.a. 128 n.a. 256 256 n.a. n.a. n.a.

buffer size n.a. n.a. n.a. 1e6 1e6 n.a. n.a. n.a.

learning starts 0 0 0 10000 1e5 0 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. n.a.

SDE sampling frequency n.a. 8 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.0025 0 auto auto 0 0 0

normalized observations True False True False False True False False

normalized rewards True False False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 lin 0.4 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 lin 0.4 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [32, 32] [256, 256] [32, 32] [256, 256] [32, 32] [128, 128] [32, 32] [32, 32]

hidden layers critic [32, 32] [256, 256] [32, 32] [256, 256] [32, 32] [128, 128] [32, 32] [32, 32]

hidden activation tanh tanh tanh relu relu leaky relu tanh tanh

orthogonal initialization Yes No Yes fanin fanin Yes Yes Yes

initial std 1.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 3 3 3

weight scale n.a. n.a. n.a. n.a. n.a. 1 1 1

goal scale n.a. n.a. n.a. n.a. n.a. 1 1 1

32

Published as a conference paper at ICLR 2024

Table 6: Hyperparameters for the Table Tennis, Episode Length T = 300

PPO gSDE TRPL SAC PINK TCE BBRL BBRL Cov.

number samples 48000 24000 48000 8 8 76 76 76

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.005 0.004 0.005

ϵΣ n.a. n.a. 0.0005 n.a. n.a. 0.00025 0.000025 0.001

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 25 25

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 20 1 1 50 100 100

learning rate 5e-5 1e-4 5e-5 3e-4 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True True

epochs critic 10 10 10 1 1 50 100 100

learning rate critic 1e-4 1e-4 1e-4 3e-4 3e-4 3e-4 3e-4 3e-4

number minibatches 40 n.a. 40 n.a. n.a. n.a. n.a. n.a.

batch size n.a. 4000 n.a. 512 512 n.a. n.a. n.a.

buffer size n.a. n.a. n.a. 4e6 4e6 n.a. n.a. n.a.

learning starts 0 0 0 1e5 1e5 0 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. n.a.

SDE sampling frequency n.a. 8 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0 0 auto auto 0 0 0

normalized observations True True True False False True False False

normalized rewards True True False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] [256, 256] [256, 256] [256, 256] [256] [256] [256]

hidden layers critic [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [256, 256] [256] [256]

hidden activation tanh tanh tanh tanh tanh tanh tanh tanh

orthogonal initialization Yes Yes Yes fanin fanin Yes Yes Yes

initial std 1.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 3 3 3

weight scale n.a. n.a. n.a. n.a. n.a. 0.7 0.7 0.7

goal scale n.a. n.a. n.a. n.a. n.a. 0.1 0.1 0.1

33

	Introduction
	Preliminaries
	Episodic rl
	Using Movement Primitives for Trajectory Representation
	Representation of Trajectory Distribution and Likelihood
	Using Trust Regions for stable policy update

	Use Step-based Information for ERL Policy Updates
	Related Works
	Experiments
	Large Scale Robot Manipulation Benchmark using Metaworld
	Joint Space Control with Multi Task Objectives
	Contact-rich Manipulation with Dense and Sparse Reward Settings
	Hitting Task with High Sparsity Reward Setting

	Conclusion
	Algorithm Box
	Mathematical formulations of mp.
	dmp
	promp
	pdmp

	Experiment Details
	Details of Methods Implementation
	Metaworld Performance Profile Analysis
	Performance on Individual Metaworld Tasks
	Hopper Jump
	Box Pushing
	Table Tennis

	Additional Evaluation and Ablation Study
	Trajectory Smoothness Metric
	Action Correlations Predicted by Trained Policies
	Ablation: SAC + Motion Primitives-based Method
	Ablation: Using PPO Style Trust Regions for TCE Method
	Ablation: Selection of the Amount of Segments K
	TCE Cov vs. STD

	Hyper Parameters

