
Under review as a conference paper at ICLR 2021

DEEP ADAPTIVE SEMANTIC LOGIC (DASL): COMPIL-
ING DECLARATIVE KNOWLEDGE INTO DEEP NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Deep Adaptive Semantic Logic (DASL), a novel framework for
automating the generation of deep neural networks that incorporates user-provided
formal knowledge to improve learning from data. We provide formal semantics
that demonstrate that our knowledge representation captures all of first order logic
and that finite sampling from infinite domains converges to correct truth values.
DASL’s representation improves on prior neuro-symbolic work by avoiding vanish-
ing gradients, allowing deeper logical structure, and enabling richer interactions
between the knowledge and learning components. We illustrate DASL through a
toy problem in which we add structure to an image classification task and demon-
strate that knowledge of that structure reduces data requirements by a factor of
1000. We apply DASL on a visual relationship detection task and demonstrate
that the addition of commonsense knowledge improves performance by 10.7% in
conditions of data scarcity.

1 INTRODUCTION

Early work on Artificial Intelligence focused on Knowledge Representation and Reasoning (KRR)
through the application of techniques from mathematical logic [Genesereth & Nilsson (1987)]. The
compositionality of KRR techniques provides expressive power for capturing expert knowledge in
the form of rules or assertions (declarative knowledge), but they are brittle and unable to generalize
or scale. Recent work has focused on Deep Learning (DL), in which the parameters of complex
functions are estimated from data [LeCun et al. (2015)]. DL techniques learn to recognize patterns not
easily captured by rules and generalize well from data, but they often require large amounts of data
for learning and in most cases do not reason at all [Yang et al. (2017); Garcez et al. (2012); Marcus
(2018); Weiss et al. (2016)]. In this paper we present [Deep Adaptive Semantic Logic (DASL)], a
framework that attempts to take advantage of the complementary strengths of KRR and DL by fitting
a model simultaneously to data and declarative knowledge. DASL enables robust abstract reasoning
and application of domain knowledge to reduce data requirements and control model generalization.

DASL represents declarative knowledge as assertions in first order logic. The relations and functions
that make up the vocabulary of the domain are implemented by neural networks that can have arbitrary
structure. The logical connectives in the assertions compose these networks into a single deep network
that is trained to maximize their truth. Figure 1 provides an example network that implements a
simple rule set through composition of network components performing image classification. Logical
quantifiers “for all” and “there exists” generate subsamples of the data on which the network is trained.
DASL treats labels like assertions about data, removing any distinction between knowledge and
data. This provides a mechanism by which supervised, semi-supervised, unsupervised, and distantly
supervised learning can take place simultaneously in a single network under a single training regime.

The field of neuro-symbolic computing [Garcez et al. (2019)] focuses on combining logical and neural
network techniques in general, and the approach of [Serafini & Garcez (2016)] may be the closest
of any prior work to DASL. To generate differentiable functions to support backpropagation, these
approaches replace pure Boolean values of 0 and 1 for True and False with continuous values from
[0, 1] and select fuzzy logic operators for implementing the Boolean connectives. These operators
generally employ maximum or minimum functions, removing all gradient information at the limits,
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Figure 1: DASL integrates user-provided expert knowledge with training data to learn DNNs. It achieves this by
compiling a DNN from knowledge, expressed in first order logic, and domain-specific neural components. This
DNN is trained using backpropagation, fitting both the data and knowledge. Here DASL applies commonsense
knowledge to the visual relationship detection task. ∧ and→ refer to ‘and’ and ‘implies’ connectives respectively.

or else they use a product, which drives derivatives toward 0 so that there is very little gradient for
learning (see subsection A.7). DASL circumvents these issues by using a logit representation of truth
values, for which the range is all real numbers.

Approaches to knowledge representation, both in classical AI and in neuro-symbolic computing,
often restrict the language to fragments of first order logic (FOL) in order to reduce computational
complexity. We demonstrate that DASL captures full FOL with arbitrary nested quantifiers, function
symbols, and equality by providing a single formal semantics that unifies DASL models with classical
Tarski-style model theory [Chang & Keisler (1973)]. We show that DASL is sound and complete for
full FOL. FOL requires infinite models in general, but we show that iterated finite sampling converges
to correct truth values in the limit.

In this paper we show an application of DASL to learning from small amounts of data for two computer
vision problems. The first problem is an illustrative toy problem based on the MNIST handwritten
digit classification problem. The second is a well-known challenge problem of detecting visual
relationships in images. In both cases, we demonstrate that the addition of declarative knowledge
improves the performance of a vanilla DL model. This paper makes the following contributions:

1. The novel framework DASL, which compiles a network from declarative knowledge and
bespoke domain-specific reusable component networks, enabling gradient-based learning of
model components;

2. Grounding of the proposed framework in model theory, formally proving its soundness and
completeness for full first order logic;

3. A logit representation of truth values that avoids vanishing gradients and allows deep logical
structures for neural-symbolic systems;

4. Syntactic extensions that allow (i) restricted quantification over predicates and functions
without violating first order logic constraints, and (ii) novel hybrid network architectures;

5. Evaluation on two computer vision problems with limited training data, demonstrating that
knowledge reduces data requirements for learning deep models e.g. factor of 1000 for the
MNIST toy problem and 10.7% improvement in accuracy for visual relationship detection
in conditions of data scarcity.

2



Under review as a conference paper at ICLR 2021

2 RELATED WORK

Neuro-Symbolic Computing: Early efforts to augment DNNs with logic focused on propositional
logic, which supports only logical connectives between (atomic) propositions [Garcez et al. (2012;
2019)]. For example, KBANN [Towell & Shavlik (1994)] maps a set of propositions into a graph,
constructs a neural network, and then trains it. DASL follows this basic idea but fully supports full
first order logic (FOL) as well as arithmetic expressions.

Similar to several prior efforts [Hu et al. (2016); Rocktäschel et al. (2015); Li & Srikumar (2019)],
DASL replaces Booleans with real-valued pseudo-probabilities to make the logical operations
differentiable. This circumstance has motivated the invention of a collection of ad hoc aggregation
operators for representing logical connectives [Detyniecki (2001)]. These include the t-norm, used
by Logic Tensor Networks (LTNs) [Serafini & Garcez (2016)] and the above works. Instead, DASL
uses a logit representation for truth values, which avoids vanishing gradients more comprehensively
than the logarithmic representations of [Giannini et al. (2019); Rocktäschel et al. (2015)], enabling
learning in deeper logical structures. DASL also differs in supporting multiple entity types, arithmetic,
and non-traditional operations such as softmax that enable richer interaction between the NN and
knowledge (Section 4).

Prior neuro-symbolic work has demonstrated the ability to represent predicate relations as neural
networks, generally for formulas without any nested quantifiers. Full first-order logic allows arbitrary
nesting of quantifiers and connectives, and allows function symbols and equality under “open world”
semantics. DASL represents the first time that soundness and completeness have been established for
a FOL system applied to neural networks, demonstrating that we can accommodate full first-order
logic. There is also a body of work on tensor representations of logic over finite domains that is
focused on efficient evaluation of formulas but is not concerned with learning [Sato (2017); Nguyen
et al. (2018)].

Compositional DL: DASL is related to works that execute a task by composing trainable neural
modules by parsing a query (in natural language) [Andreas et al. (2016); Yi et al. (2018a); Mao et al.
(2019); Yi et al. (2018b)]. For example, [Yi et al. (2018b)] focuses on visual question answering and
employs a differentiable tree-structured logic representation, similar to DASL. However, it only does
so to learn to translate questions, whereas DASL learns the semantics of the application domain and
can also integrate useful domain knowledge.

Structured Learning: Other work exploits underlying structure in the data or the label space to learn
DNNs using techniques such conditional random fields, graph neural networks, attention models, etc.,
including [Belanger et al. (2017); Kim et al. (2017); Battaglia et al. (2018); Peng et al. (2018); Zheng
et al. (2015)]. These methods impose structure by either adapting the DNN architecture Battaglia
et al. (2018) or the loss function [Zheng et al. (2015)]. DASL instead imposes soft constraints by
compiling DNNs based on rules that can be stated in a flexible manner using FOL.

Semantic Reasoning: By the semantics of a logical language we mean an interpretation of its
symbols (which do not include logical connectives and quantifiers); a model in the sense of model
theory [Weiss & D’Mello (1997)]. In common with several methods [Xie et al. (2019)], DASL
grounds its entities in vector spaces (embeddings) and its predicates and functions in trainable
modules. DASL builds on prior works on semantic representation techniques Pennington et al.
(2014); Mikolov et al. (2013); Deerwester et al. (1990) by enabling logical statements to modify the
entity embeddings so as to mirror semantic similarity in the application. Another research direction
[Rocktäschel & Riedel (2017); Cohen et al. (2017); de Jong & Sha (2019)] is to structure DNNs
and embedding spaces around proof trees to reduce the brittleness of theorem provers [Siekmann &
Wrightson (1983)].

An alternative to representing predicates by networks is to restrict oneself to propositional knowledge
[Xu et al. (2018)] which can be applied to the outputs of a neural network. Propositional logic cannot
represent the rules in Figure 1, for example, but can be useful for placing restrictions on fixed outputs.

Bayesian Belief Networks: Substitution of pseudo-probabilities for Booleans fails to capture uncer-
tainty the way fully Bayesian methods do [Jaynes (2003)]. Bayesian Belief networks [Pearl (2009)]
accurately represent probabilities but lack expressivity and face computability challenges. Bayes
nets are most comfortably confined to propositional logic. Efforts to extend them to first-order logic
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include Markov Logic Networks [Richardson & Domingos (2006)], which use an undirected network
to represent a distribution over a set of models, i.e., groundings or worlds that can interpret a theory.
The lifted inference approach [Kimmig et al. (2004)] reasons over populations of entities to render the
grounded theory computationally tractable. These methods generally do not support the concept of
(continuous) soft semantics through the use of semantic embedding spaces, as DASL does, although
DeepProbLog Manhaeve et al. (2018) uses semantic embeddings and neural predicate representations
within Bayesian Prolog rather than full FOL.

3 APPROACH

In this section we describe our approach to integrate data with relevant expert knowledge. Consider
the task, depicted in Figure 1, of predicting the relationship between bounding boxes containing a
subject and an object. In addition to learning from labeled training samples, we want to incorporate
the commonsense knowledge that if the predicted relationship is “Riding” then the subject must be
able to ride, the object must be ridable, and the subject must be above the object. Incorporating such
knowledge results in a more robust model that uses high-level semantics to improve generalization and
learn from a small number of examples. DASL achieves integration of the continuous representations
in DNNs with the discrete representations typically used for knowledge representation by compiling
a DNN from the knowledge assertions and grounding the vocabulary of the domain in component
networks, enabling gradient-based learning of the model parameters.

We begin by providing the theoretic underpinning of DASL in first-order logic. Full FOL with
equality, as defined for example by the use of Tarski models, is more expressive than SQL, SPARQL,
Datalog, Prolog, and OWL, all of which can be recognized as “fragments” of FOL. We demonstrate
here that DASL captures the full power of FOL with equality (i.e., that it reasons correctly over all
assertions expressible in FOL when ’=’ is taken to be defined as equality rather than an interpretable
relation) by proving that DASL models are equivalent to Tarski models.

3.1 DASL MODEL THEORY

We follow a standard treatment of first order logic, starting with a language L consisting of variables,
constants, function symbols, and relation symbols. We use standard connectives¬ (‘not’), ∧ (‘and’), ∨
(‘or’),→ (‘implies’), and quantifiers ∀ (‘for all’) and ∃ (‘there exists’). For simplicity, we assume that
no variable occurs bound twice, meaning that we would always need to rewrite (∀x)ϕ(x)∧ (∃x)ψ(x)
as (∀x)ϕ(x) ∧ (∃y)ψ(y). We treat = (‘equals’) as a logical relation symbol. Terms are built up from
variables, constants, and function symbols. Formulas are build up from terms, realtion symbols, and
connectives. We restrict our attention to finite languages L and only consider finite formulas over L.

Terms and formulas provide the syntax of first order logic. The semantics for classical logic is provided
by boolean Tarski models [Chang & Keisler (1973), Weiss & D’Mello (1997)], a special case of
infinite-valued Tarski models in which truth values range over the closed interval T = [0, 1] [Hájek
(1998)]. A Tarski model A with domain A consists of a function I which maps constants to elements
of A, an n-ary function If : An → A for each n-ary function symbol f , and an n-ary function
IR : An → T for each n-ary relation symbol R. We write A = 〈A; I, If1 , . . . , Ifm , IR1

, . . . , IRr
〉

and |A| = A. A sample function maps variables to A; a model A and set S of sample functions
together map terms to A and formulas to T, written (A,S)[s] and (A,S)[ϕ].

The logical symbols need a fixed interpretation in order to specify a full semantics. We define
(A,S)[¬ϕ] = 1 − (A,S)[ϕ]; (A,S)[ϕ ∧ ψ] = (A,S)[ϕ] ∗ (A,S)[ψ]; and (A,S)[(∀x)ϕ] =∏

u∈A(A,S � u/x)[ϕ] where S � u/x = {S | S ∈ S,S(x) = u}, so we are interpreting universal
statements as (possibly infinite) conjunctions over all possible instantiations of the bound variable.
→, ∨, and ∃ are defined in terms of ¬, ∧, and ∀. An interpretation of ’=’ is said to preserve equality
if for any terms t and s, (A,S)[t = s] = 1 if and only if (A,S)[t] = (A,S)[s] for every A and S.
For now, we assume an equality-preserving interpretation, and we specify a particular interpretation
below. We write S∗(A) for the class of all sample functions over A and A[ϕ] for (A,S∗(|A|))[ϕ].
(A,S)[ϕ] is well-defined whenever every S ∈ S is defined over every (bound and free) variable of ϕ
and is consistent over every free variable of ϕ, and in particular A[ϕ] is well-defined if and only if ϕ
is closed (meaning that every variable of ϕ is bound by a quantifier).
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Proposition 1 Let ϕ be a closed formula. Every infinite-valued Tarski model A such that A[ϕ] = 1
defines a classical boolean Tarski model of ϕ, and every boolean Tarski model of ϕ defines an
infinite-valued Tarski model mapping ϕ to 1.

This establishes that infinite-valued Tarski models fully capture the semantics of classical first order
logic. While such models are not novel, their definitions vary significantly, and our use of sample
functions instead of the usual variable interpretations is customized for our purposes below.

3.2 FINITARY COMPUTATION

DASL unifies machine learning and logical inference by generating infinite-valued Tarski models as
described above which best fit both training data and logical formulas. A finite theory Γ is represented
in DASL by the conjunction of its formulas, so we can focus on operation over a single formula ϕ.
An embedding architecture is specified for the interpretation function I , and a network architecture is
specified for each IF . The arithmetic semantic operators described above are applied as specified by
the structure of ϕ, composing the interpretation networks into a single network, and this network is
trained with a target output of 1.

We would like to prove that this technique completely captures full first order logic, but of course we
know that some logical theories are only satisfied by infinite domains, and that all of our computation
will be done over a finite number of finite samples. The constructed DASL network together with
assigned parameter values specifies a unique model A, so any optimization technique that moves from
one set of parameter assignments to another defines a sequence of models A0,A1, . . ., each of which is
evaluated over some finite set of samples, usually a “mini-batch” consisting of a relatively small subset
of the domain. In order to relate this approach to infinitary models, we need to consider convergence
in the limit. We begin by fixing a domain A ⊆ RN for some N . If each Ai is 〈A; Ii, I1,i, . . . , Im,i〉
then we define limi→∞ Ai = 〈A; limi→∞ Ii, limi→∞ I1,i, . . . , limi→∞ Im,i〉.

Proposition 2 (Soundness) Let A0, . . . be a model sequence such that limi→∞ Ai = A∗ and S =⋃∞
i=0 Si be a sample set such that every S ∈ S occurs in infinitely many of the Si. For any formula

ϕ, if limi→∞(Ai,Si)[ϕ] = 1 then (A∗,S)[ϕ] = 1.

The above proposition assumes that all possible samples are continually revisited, but makes no other
assumptions about sampling. It makes no assumptions about how we train models or whether training
converges. Together with proposition 1, this shows that when DASL models do converge on finite
sampling, they converge to a boolean Tarski model.

Proposition 3 (Completeness) For any boolean model A and formula ϕ such that A[ϕ] = 1, there is
a family of finite sample sets S0, . . . such that

⋃∞
i=0 Si = S∗(|A|) and (A,Si)[ϕ] = 1 for all i.

The above proposition is proved by including in each set the sample function which contains a witness
for each existentially bound variable whenever one exists. Details are in section A.1.1.This tells us
that for any satisfiable formula, we can find the model that satisfies it even with only finite sampling.

3.3 IMPLEMENTING DASL NETWORKS

We implement DASL in the popular deep learning library PyTorch [Paszke et al. (2019)]. Any model
that can be implemented in PyTorch can be used for the interpretation functions. We use a PyTorch
dataloader to generate the mini-batches Si on which eachmodel Ai is evaluated.

Loss function. A simple and intuitive loss would be L(A,S, ϕ) = 1− (A,S)[ϕ]. This loss works
as desired at 0 and 1, but if (A,S)[ϕ] = t for every S ∈ S then (A,S)[(∀x)ϕ] = t|S| which
has the disadvantage that loss depends on the sample size and that it gets close to 1 as the sample
size increases which can cause rounding errors to force a 0 gradient. Both of these challenges are
addressed by using a logit representation of the truth value and using cross-entropy as a loss function.
For t ∈ T define logit(t) = ln t

1−t and σ(x) = 1
1+e−x . Then σ(logit(t)) = t and logit(σ(x)) = x.

The cross entropy between the distributions (t, 1− t) and (1, 0) is− ln(t), so when t = (A,S)[ϕ] we
define L(A,S, ϕ) = − ln(t) = ln(1 + e−logit(t)). We reason directly in logit space when computing
the loss, deriving formulas from the above definitions (see subsection A.2 for more details).

Equality. DASL functions can include standard regression tasks f(x) = y for real-valued y. This
requires a differentiable interpretation that preserves equality. For (scalar-valued) terms u and
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v, we model d = (A,S)[u] − (A,S)[v] by a normal distribution with mean 0 and variance ε21
when equality holds and by a normal distribution with mean µ and variance ε22 otherwise. We
define the logit as the log ratio of the resulting densities for x = |d|: logit((A,S)[u = v]) =

ln
2ε22
ε1

+ x2

2ε1
− ln(e−(x−µ)

2/2ε22 + e−(x+µ)
2/2ε22). For vector-valued u and v, we use the same

distribution with x = ||u− v||. This interpretation approaches preserving equality as ε1 → 0.

Extending the logical language. We implement many-sorted logic for convenience and efficiency.
Sorts are subsets of the domain. Each quantifier ranges over a specified subset. Quantifiers can map
variables to elements of tuples from enumerated sets, so a standard machine learning problem can be
written as (∀(x, y) : D)f(x) = y, where D lists the (x, y) training pairs.

In addition to learned models, arbitrary deterministic functions can be coded in PyTorch. This allows
us to fix logical interpretations of <,>,+,−,×, etc. We allow propositional constants (formulas
of the language which are always interpreted either as 0 or as 1) and we allow ∧ and ∨ to apply to
arbitrary sequences of formulas. The connectives also generalize to work component-wise on tensors
and support broadcasting as is familiar for tensor operators in PyTorch. For example, if X is a matrix
and y is a vector, both of logits, then X ∧ y = Z, where Zij = Xij ∧ yi.
Finally, we provide an explicit operator softselect(Γ, i) (denoted as πi(Γ)) which outputs the logit
value for the ith formula of Γ after application of the logit version of the softmax operator. This
allows us to directly specify standard architectures for multi-class classification problems and to
allow rules to operate on the classifier output within the model. Because i is an integer argument, we
can quantify over it, effectively quantifying over a fixed finite list of predicates, providing syntactic
convenience without violating the constraints of first order logic.

4 EXPERIMENTS

We evaluate DASL on two computer vision problems in conditions of data scarcity. The first task is
a toy problem based on MNIST digit classification, where knowledge is provided as an arithmetic
relation satisfied by unlabeled triplets of digit images that are arranged to satisfy that relation
(subsection 4.1). We then focus on the problem of detecting visual relationships between object pairs
and use commonsense knowledge about the plausible arguments of the relationship (subsection 4.2).

4.1 TOY EXAMPLE ON MNIST

Problem statement: We use a toy example to demonstrate DASL’s ability to train a NN from a few
labeled samples and large number of unlabeled samples satisfying a rule. We denote a grayscale input
image of a MNIST digit [LeCun et al. (1998)] as X and its label (if provided) as y(X) ∈ Z10, where
Z10 = {0, 1, ..., 9}. The task is to learn a NN digit(X) to predict the digit in a test image.

We split the training data (50K images) into two disjoint sets: Labeled, containing a small number
Ntr of labeled examples per digit class, and Unlabeled, used to generate the set Triples containing
triplets of images (X1,X2,X3) satisfying the rule y(X1) + y(X2) = y(X3) mod 10. Triples
contains only unlabeled images that together satisfy this relationship. We wish to learn the classifier
by using Labeled and Triples, and thus the challenge is to compensate for the small size of
Labeled by leveraging the prior knowledge about how the unlabeled images in Triples are related.
We formulate this problem within DASL by using its softselect operator πi that, applied to the NN
output digit(X), returns the normalized score for the ith class. This rule is written as:

(∀(X1,X2,X3) : Triples)(∀y1 : Z10)(∀y2 : Z10)

[(πy1(digit(X1)) ∧ πy2(digit(X2)))

→ π(y1 + y2) mod 10(digit(X3))]

We quantify over the triplets from Triples and all possible pairs of digits from Z10. We
use this theory to augment the theory corresponding to the labeled training examples (∀(X) :
Labeled)(πy(X)(digit(X))). The model is required to correctly infer the (unknown) labels of
the triplet members and then use them for indirect supervision. We evaluate the model using the
average accuracy on the test set (10K images). For digit(X), we used a two-layer perceptron with
512 hidden units and a sigmoid non-linearity. We performed experiments in data scarce settings
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with Ntr = 2, 5, 10, and 20, and report mean performance with standard deviation across 5 random
training subsets as shown in Figure 2. We use an equal number of examples per-class for constructing
the triplets. We use a curriculum based training strategy to prevent the model from collapsing to a
degenerate solution, especially for lower values of Ntr (see subsection A.4 for details). We report
performance after 30K training iterations. A test image is classified into the maximum scoring class.
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Figure 2: Figure showing the results for the MNIST toy example with a plot of accuracy of digit classification
versus number of samples per class used for creating the unlabeled knowledge triplets. The labels With-knowledge
and No-knowledge denote whether the training included the knowledge-augmented unlabeled triplets satisfying
the given modular arithmetic (see subsection 4.1). Ntr refers to the number of labeled training examples per
class (all refers to the entire training set). Best seen in color.

Results: Figure 2 shows a plot of digit classification accuracy versus the number of samples per
class used for creating the triplets. We observe that the NN trained with both knowledge and data
(With-knowledge) outperforms its counterpart trained with only labeled samples (No-knowledge).
The improvement is particularly notable when training with smaller labeled training sets; e.g., for
Ntr = 2, using all the knowledge raises performance from 53.3 ± 1.01 to 97.7 ± 0.00. We also
note that the performance of the With-knowledge model improves as the number of triplets increases
and converges to similar values for different values of Ntr, indicating that the knowledge renders
extra labels largely superfluous. The mean performance is 97.6± 0.00, which is competitive with
the performance of a model trained with all 50K labeled examples in MNIST (98.1 for Ntr = all).
Results on a related problem were also shown in [Manhaeve et al. (2018)].

4.2 VISUAL RELATIONSHIP DETECTION

Problem Statement: We use the Visual Relationship Detection (VRD) benchmark [Lu et al. (2016)]
to evaluate the Predicate Detection Task: Given an image and a set of bounding boxes with object
category labels, predict the predicates that describe the relationships within object pairs. The VRD
dataset contains 5000 images spanning 37993 relationships covering 100 object classes and 70
predicate classes. We use splits provided by the authors that contain 4000 train and 1000 test images.
The dataset also provides a zero-shot test subset of 1877 relationships built from the same classes as
the training data but containing novel combinations of predicate classes with object class pairs.

Baseline model: We begin with a NN vrd(I, s, o) that outputs raw scores for predicate classes, where
I is the input RGB image and s and o are the indices of the subject and object classes respectively.
We implement two variants of vrd similar to that proposed in [Liang et al. (2018)]. The first variant,
referred to as VGG, extracts visual features from the last layer of a pre-trained VGG-16 network from
the bounding box of the subject, the object, and their union. These features are projected into a 256
dimensional space by using a projection layer P (made of a fully-connected (FC) layer and a ReLU
non-linearity) and then fused by concatenation. The features are passed through another P layer
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followed by a FC layer to predict the class-wise scores. The second variant, referred to as VGG-SS,
additionally incorporates the word-embedding features of the subject and the object (300 dimensional
Glove features [Pennington et al. (2014))] along with the normalized relative spatial coordinates (see
subsection A.5 for details). These features are first projected using additional P layers and then
concatenated with visual features, as done for VGG, prior to predicting the class-scores.

We express knowledge as vectors of formulas as discussed in subsection 3.3. We begin by defining
CanRide as a constant vector of truth values for all objects which is True at indices of objects which
can ride and False elsewhere. CanRide(s) selects its sth element. Similarly, we define Ridable as a
vector which is True at exactly the indices of objects that can be ridden. Finally we define a one-hot
vector of truth values hCls ∈ R70, which is True at the index of the predicate class “Cls” and False
elsewhere. The theory that asserts that vrd should output the class labels assigned in the training data
and that the “Riding” predicate should only apply when the subject can ride and the object can be
ridden is written as:

(∀(I, s, o, y) : Dvrd)[πy(vrd(I, s, o)

∧ (hRiding → CanRide(s)

∧ Ridable(o)))]

where y is the given training label and Dvrd is the training dataset. This rule reduces the learning
burden of the classifier for “Riding” class by allowing feedback only when CanRide(s) is True. We
introduce a few more rules by adding them in conjunction with the above rules (see subsection A.6).

Evaluation: We follow [Yu et al. (2017)], reporting Recall@N (R@N), the recall of the top-N
prediction scores in an image where we take into account all 70 predictions per object pair. This
strategy is different from [Lu et al. (2016)], which only considers the top prediction for each object
pair penalizing cases where multiple predicates apply equally well but were omitted by the annotators.

Method R@50 R@100
Standard Zero-Shot Standard Zero-Shot

1% Data
VGG (baseline) 60.8± 6.7 40.7± 5.8 75.4± 7.8 59.4± 8.1
+ Knowledge 68.5± 1.8∗∗ 49.5± 1.5∗∗ 83.1± 1.6∗∗ 70.1± 2.4∗∗

VGG-SS (baseline) 67.9± 8.5 47.6± 8.5 80.3± 7.6 65.6± 9.2
+ Knowledge 74.0± 0.7∗ 54.4± 1.4∗ 85.9± 0.5∗ 73.4± 1.2∗

5% Data
VGG (baseline) 70.3± 0.5 48.4± 1.0 83.5± 0.4 68.3± 0.9
+ Knowledge 73.8± 0.5∗∗ 53.4± 0.9∗∗ 86.4± 0.4∗∗ 73.7± 1.1∗∗

VGG-SS (baseline) 79.6± 0.4 58.1± 1.2 89.6± 0.3 77.1± 1.1
+ Knowledge 79.9± 0.4 59.6± 0.9∗∗ 89.7± 0.3 78.5± 0.8∗∗

Table 1: Performance on the predicate detection task [Lu et al. (2016)]. We report Recall@N averaged (with
standard deviation) across 10 random subsets. We report the statistical significance between “baseline” and
corresponding knowledge augmented model (“+ Knowledge”) (p-value < 0.01 as ∗∗ and p-value < 0.05 as ∗).

Results: Table 1 shows the results on the VRD dataset when training with knowledge (+ Knowledge)
and without knowledge (baseline). We observe consistent improvements across all cases with
augmentation of knowledge. The improvements are higher for the 1% data (+7.7% for R@100 for
Standard) than the 5% data (+2.9% for R@100 for Standard) showing that knowledge has more
benefits in lower data regimes. We made similar observation for the MNIST toy example. The
improvements are generally higher for the zero-shot setting (+10.7% for R@100 in the 1% case)
since this setting is inherently data starved. We also note that the improvements are comparatively
smaller for the VGG-SS network since semantic and spatial information are being explicitly injected
as features into the model. We provide class-wise performance for a few predicates in subsection A.8.
We observe consistent improvement for predicates such as “Wear” and “Above” that were specified
in the rules.

4.3 COMPARISON WITH RELATED NEURO-SYMBOLIC METHODS

We empirically verified the advantage of the logit representation over two related methods [Serafini
& Garcez (2016); Demeester et al. (2016)], both of which use product-t norms but represent the
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final truth values using either probabilities or log probabilities. We evaluated these methods on the
task of learning a digit classifier through two variants of logical conjunctions that make assertions
about images and their ground-truth labels. Both of these these techniques fail catastrophically when
the number of conjuncts (see Figure 3) is increased. In contrast, DASL did not see any loss in
performance, highlighting its better numerical stability. We refer readers to subsection A.7 for details.

We also compare our model with a recent neuro-symbolic method [Xie et al. (2019)] that uses graph
neural networks with propositional formulas to semantically regularize output embeddings for VRD.
We observe clear improvements in the top-5 accuracy metric used in their work under similar training
conditions. With 5% data, our model (“VGG-SS + Knowledge”) achieves 77.7% accuracy versus
72.4% of [Xie et al. (2019)]. The improvements are higher for 1% data– 71.5% accuracy of ours
versus 55.5% of [Xie et al. (2019)]– highlighting the advantages of DASL with a small amount of
training data. We refer readers to subsection A.8 for details.

5 CONCLUSION

We introduced Deep Adaptive Semantic Logic (DASL) to unify machine reasoning and machine
learning. DASL is fully general, encompassing all of first order logic and arbitrary deep learning
architectures. It improves deep learning by supplementing training data with declarative knowledge
expressed in first order logic. The vocabulary of the domain is realized as a collection of neural
networks. DASL composes these networks into a single DNN and applies backpropagation to satisfy
both data and knowledge. We provided a formal grounding that demonstrates the correctness and full
generality of DASL for the representation of declarative knowledge in first order logic, including
correctness of mini-batch sampling for arbitrary domains. This gives us the freedom to apply DASL
to new domains without requiring new correctness analysis.

We demonstrated a 1000-fold reduction in data requirements on the artificially constructed MNIST
digit classification task by using declarative knowledge in the form of arithmetic relations satisfied by
unlabeled image triplets. We then demonstrated the application of commonsense knowledge to visual
relationship detection, improving recall from 59.4% to 70.1%. Here, the commonsense knowledge
enabled us to better focus the model on cases not covered by knowledge.
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A APPENDIX

A.1 FORMAL SEMANTICS FOR DASL

A.1.1 SAMPLE FUNCTIONS

We assume the definitions provided in Section 3 and make explicit some of the details of sample
functions. We fix the set V = {x1, . . .} to be the set of variables, independent of any language L.
Fix a language L with constants c1, . . ., function symbols f1, . . . with arities nf1 , . . ., and relation
symbols R1, . . . with arities nR1 , . . .. Let A be the model 〈A; I, If1 , . . . , IR1 , . . .〉.
A sample function for A is a function S : V → A. For V0 ⊆ V we say that sample functions S1
and S2 are consistent over V0 if S1(v) = S2(v) for every v ∈ V0. We say that a set S of sample
functions is consistent over V0 if every pair of sample functions in S is consistent over V0. For any
term or formula Φ we say S is consistent for Φ if S is consistent over the set of free variables of Φ.

Let s1, . . . be any terms of L and S be an arbitrary set of sample functions for A. We define for every
i:

(A,S)[xi] = S(xi) for S ∈ S if S consistent for {xi}
(A,S)[a] = I(a)

(A,S)[fi(s1, . . . , snfi
)] = Ifi((A,S)[s1], . . . , (A,S)[snfi

])

Under this definition, the pair (A,S) maps every term of L to a member of A (recalling from section
3.1 that I maps constants toA) whenever S is consistent for the term. The map is undefined when S is
not consistent for the term. It can be seen by recursion on the definition that whenever S is consistent
for the term on the left-hand side of any of the above equations, it is also consistent for all terms on
that equation’s right-hand side. It can also be seen that for any term s, (A, {S})[s] = (A,S)[s] for
every S ∈ S whenever S is consistent for s.

For brevity of presentation, we define:

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ ≡ ¬(ϕ ∧ ¬ψ)

(∃x)ϕ ≡ ¬(∀x)¬ϕ

We extend (A,S) to also map formulas to truth values. Since A is boolean, the interpretation of
= needs to always evaluate to 0 or 1. There is only one such interpretation that preserves equality.
Define:

(A,S)[Ri(s1, . . . , snRi
)] = IRi

((A,S)[s1], . . . , (A,S)[snRi
])

(A,S)[s1 = s2] =

{
1 if (A,S)[s1] = (A,S)[s2]
0 otherwise

(A,S)[¬ϕ] = 1− ((A,S)[ϕ])

(A,S)[ϕ ∧ ψ] = (A,S)[ϕ] · (A,S)[ψ]

(A,S)[(∀x)ϕ] =
∏
u∈A

(A,S � u/x)[ϕ]

The application of (A,S) to formulas depends on its application to terms, and therefore is still
only well-defined if S is consistent for the formula to which it is applied. As above, we can see by
recursion that whenever S is consistent for the left-hand side of any equation other than the last (the ∀
equation) it is consistent all formulas on the right-hand side of that equation. For ∀ we note that when
S is consistent for (∀x)ϕ), then it is consistent for all free variables of ϕ other than x. S′ = S � u/x
is a subset of S, so it must also be consistent for all free variables of ϕ other than x. By definition,
for every S ∈ S′, S(x) = u, so S′ is consistent for x as well and therefore is consistent for ϕ. Thus,
the ∀ clause of the above definition decomposes the set S of sample functions into a class of sets of
sample functions, each consistent for ϕ, and then conjoins the results of applying each to ϕ. This
particular technique is convenient because it allows us to specify sampling algorithms formally for
implementation.
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The intent of the interpretation of ∀ above is that we are applying all of the sample functions in S, but
in general there could be some u ∈ A for which S does not contain any sample function that maps x to
u, with the result that some of the terms on the right hand side become (A, {})[ϕ], which is undefined.
In principle this could be resolved by taking the product over {u | S(x) = u for some S ∈ S}, but
instead we define (A, {})[ϕ] = 1 for all ϕ just for notational convenience.

A.1.2 FINITE SAMPLES

We will describe construction of finite sample sets that allow for complete search of the infinite model
domain, proving proposition 3 from Section 3 in the main text. For an arbitrary set S of sample
functions, if F = {Si | i ∈ I} is a family of finite sets and

⋃
i∈I Si = S then F is called a finite

decomposition of S. Given a model A and formula ϕ, we say that F preserves truth for A and ϕ if
(A,Si)[ϕ] = (A,S)[ϕ] for every i. If Si is consistent for a set V of variables for every i then we
say that F is consistent for V .

We prove a generalization of proposition 3:

Proposition 4 Let A be a boolean model, A = |A|, ϕ be a formula, and S = {Si | i ∈ I} be a set
of sample functions consistent for ϕ for some infinite index set I. Assume |S| = |A|. Then there is a
finite decomposition {Si | i ∈ I} of S that preserves truth for ϕ and is consistent for ϕ.

Note that |S∗(A)| = |A|, so the assumption on the size of the sample set is a natural one and is met
by proposition 3. To prove this claim we first note that whenever S0 ⊆ S and S is consistent for ϕ
then S0 is consistent for ϕ, so every finite decomposition of S will be consistent for ϕ. We proceed
by induction on the structure of ϕ.

Suppose ϕ is R(s1, . . . , sn) or s1 = s2. Choose any S ∈ S.

(A, {S})[R(s1, . . . , sn)] = IR((A, {S})[s1], . . . , (A, {S})[sn])

= IR((A,S)[s1], . . . , (A,S)[sn])

= (A,S)[R(s1, . . . , sn)]

Similarly, (A, {S})[s1 = s2] = 1 if and only if (A, {S})[s1] = (A, {S})[s2], which holds if and
only if (A,S)[s1] = (A,S)[s2]. Thus in both cases {{S} | S ∈ S} is a finite decomposition of S
that preserves truth for ϕ.

Suppose ϕ is ¬ψ. Let t = (A,S)[¬ψ], so (A,S)[ψ] = 1 − t. By the induction hypothesis let
F = {Si | i ∈ I} be a truth-preserving finite decomposition of S for ψ.

(A,Si)[¬ψ] = 1− (A,Si)[ψ]

= 1− (A,S)[ψ]

= (A,S)[¬ψ]

Thus F also preserves truth for ¬ψ.

Suppose ϕ is ψ1 ∧ ψ2. By the induction hypothesis, let {S1
i | i ∈ I} and {S2

i | i ∈ I} be finite
decompositions of S that preserve truth for ψ1 and ψ2, respectively. For each i, j ∈ I define:

Si,j = {S1 ◦ S2 | S1 ∈ S1
i ,S2 ∈ S2

j}
where we define

(S1 ◦ S2)(x) =

{
S2(x) if x is bound in ψ2

S1(x) otherwise

Recall that all bound variables have been renamed to be distinct from each other and from all free
variables. For each i and j, Si,j and S1

i are identical over all free and bound variables of ψ1, since
none of these is bound in ψ2. Thus (A,Si,j)[ψ1] = (A,S1

i )[ψ1] = (A,S)[ψ1]. Similarly, Si,j is
identical to S2

j over all free and bound variables ofψ2, so (A,Si,j)[ψ2] = (A,S2
j )[ψ2] = (A,S)[ψ2].

Thus

(A,Si,j)[ψ1 ∧ ψ2] = (A,Si,j)[ψ1] · (A,Si,j)[ψ2]

= (A,S)[ψ1] · (A,S)[ψ2]

= (A,S)[ψ1 ∧ ψ2]
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To see that {Si,j | i, j ∈ I} is a finite decomposition of S, let arbitrary S ∈ S be given. Choose i
and j such that S ∈ S1

i and S ∈ S2
j . Then Si,j contains S ◦ S , which is S . Re-indexing the family

requires mapping I2 to I, which is non-problematic since I is infinite.

Suppose ϕ is (∀x)ψ. Let t = (A,S)[(∀x)ψ] and tu = (A,S � u/x)[ψ] for each u ∈ A. By the
induction hypothesis, for each u ∈ A let {Su

i | i ∈ I} be a finite decomposition of S � u/x that
preserves truth for A and ψ. Note that Sv

i � u/x = Sv
i if u = v and is {} otherwise, and recall that

(A, {})[χ] = 1 for every formula χ by definition, so
∏
u∈A(A,Sv

i � u/x)[χ] = (A,Sv
i )[χ].

If t = 1 then tv = 1 for every v, so:

(A,Sv
i )[(∀x)ψ] =

∏
u∈A

(A,Sv
i � u/x)[ψ]

= (A,Sv
i )[ψ]

= (A,S � v/x)[ψ]

= 1

Thus F = {Sv
i | i ∈ I, v ∈ A} is a finite decomposition of S that preserves truth for ϕ. Since

|A| ≤ |I|, |F| ≤ |I|2, so F can be re-indexed in I.

If t = 0, then since A is boolean, choose w such that tw = 0. For v ∈ A define Sv,w
i = Sv

i ∪Sw
i .

As above, note that Sv,w
i � u/x is Su

i if u is v or w and is {} otherwise.

(A,Sv,w
i )[(∀x)ψ] =

∏
u∈A

(A,Sv,w
i � u/x)[ψ]

= (A,Sv
i )[ψ] · (A,Sw

i )[ψ]

= (A,S � v/x)[ψ] · (A,S � w/x)[ψ]

= 0

Thus {Sv,w
i | i ∈ I, v ∈ A} is a finite decomposition of S that preserves truth for ϕ.

This shows that proposition 4 holds for every case of ϕ, and by induction that it holds for all ϕ.
Proposition 3 of Section 3 is a direct consequence.

A.2 DASL MODELS AS NEURAL NETWORKS

For truth values t1 and t2 and corresponding logits l1 and l2, we define negation (¬) and conjunction
(∧) operators as:

¬l1 = logit(1− t1) = −l1

l1 ∧ l2 = logit(t1t2) = lnσ(l1) + lnσ(l2)− ln(1− σ(l1)σ(l2))

This formula for ∧ is numerically unstable when t1t2 gets close to 1. Whenever this occurs, we
instead use the numerically stable approximation:

l1 ∧∗ l2 ≈ − ln(e−l1 + e−l2).

We use PyTorch functions logsigmoid and logsumexp that provide efficient and numerically
robust computations for terms arising in these equations.

Conjunction and universal quantification are naturally represented as products of truth values, but
the product of a large number of positive terms all less than 1 gets arbitrarily close to 0, and so does
its derivative, meaning that learning is slow or will stop altogether. Under the logit space equations
above, however, conjunctions are sums, so increasing the number of conjuncts does not diminish
the gradient. Two typical alternatives for t1 ∧ t2 in systems that operate directly on truth values are
min(t1, t2) and max(0, t1 + t2 − 1) [Serafini & Garcez (2016)]. When many terms are conjoined,
the former formula yields gradient information only for the minimal truth value, and the second yields
no gradient information at all whenever t1 + t2 < 1, again restricting the ability of a system to learn.
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A.3 DETAILS REGARDING TRAINING FOR MNIST TOY EXAMPLE AND VISUAL RELATIONSHIP
DETECTION

For both problems we trained the model with the Adam optimizer [Kingma & Ba (2014)] with a
learning rate of 5 × 10−5. The batch size was set to 64 and 128 for the MNIST toy problem and
visual relationship detection respectively.

A.4 CURRICULUM LEARNING FOR MNIST TOY EXAMPLE

In subsection 4.1 we trained a NN for digit classification on the MNIST dataset in conditions of data
scarcity. We used a few labeled samples and a large number of unlabeled triplets satisfying some rules
(modular arithmetic in our experiments). We used a curriculum based learning strategy to prevent the
model from collapsing to a degenerate solution, especially for cases with an extremely small number
of labeled samples (e.g. 2 samples per class). In such cases the model tends to get trapped in a local
minimum where the axiom corresponding to the unlabeled triplets can be satisfied by a solution with
all digits being classified as 0 since 0 + 0 = 0. Within the curriculum, we begin the training with all
the labeled examples and a small working set of the unlabeled triplets. We progressively expand the
working set during training as the model becomes more confident on the unlabeled examples. The
confidence score ptc is computed using a low-pass filter:

ptc = (1− α) ∗ pt−1c + α ∗ pmax

where ∗ is scalar multiplication, t is the iteration index, p0c = 0, α = 0.1, and pmax is the average
probability of the highest scoring class on the first digit of the triplet. When ptc > 0.9, we increase
the size of the working set of unlabeled triplets by a factor of 2 until it reaches the maximum number
of unlabeled triplets. When ptc > 0.9, we reset ptc to 0 to let the model fit well to the new working set
before reaching the condition again. This curriculum ensures that the model is able to find a decent
initialization using the labeled examples and then progressively improve using the unlabeled samples.
The initial set of unlabeled triplets contained 10 samples per class and the maximum number of
triplets is bounded by the class with minimum number of samples. During the final curriculum step
we remove all labeled data, allowing the model to train solely on the rules. This allows the model to
trade off errors on the labeled data for better overall performance.

A.5 NORMALIZED RELATIVE SPATIAL FEATURES FOR VISUAL RELATIONSHIP DETECTION

We provide the implementation details for the spatial features used in the visual relationship detection
experiments in subsection 4.2. These features capture the relative spatial configuration of the subject
and the object bounding boxes and were used to augment visual and semantic features for predicting
the visual relationship (VGG-SS). We denote the coordinates of the object and subject bounding boxes
as (xs, ys, ws, hs) and (xo, yo, wo, ho) respectively, where (x, y) are the coordinates of the (box)
center with width w and height h. The relative normalized features are captured in an eight dimen-
sional feature vector defined as

[
xs−xo

wo
, ys−yoho

, xo−xs

ws
, yo−yshs

, log(ws

wo
), log(hs

ho
), log(wo

ws
), log(ho

hs
)
]
.

These features were also used in the baseline model [Liang et al. (2018)].

A.6 COMMONSENSE RULES FOR VISUAL RELATIONSHIP DETECTION

In addition to the rule for the “Riding” predicate described in subsection 4.2, we used rules for
incorporating commonsense knowledge about a number of the other predicates in predicting visual
relationships using DASL. These rules follow the same format as the rule for “Riding” and are
outlined below:

1. “Wear” only applies when the subject is a living entity and the object is wearable.

2. “Sleep-On” only applies when the subject is a living entity and the object is sleepable.

3. “Eat” only applies when the object is eatable.

4. The predicates “Above”, “Over”, “Ride”, “On-The-Top-Of”, “Drive-on”, “Park-On”, “Stand-
On”, “Sit-On”, and “Rest-On” apply only when the subject is spatially above the object. We
defined above as a function that is True when ys ≥ yo.
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5. The predicates “Under”, “Beneath”, “Below”, and “Sit-Under” apply only when the subject
is spatially below the object. We defined below as a function that is True when ys ≤ yo.

6. The predicate “On-The-Right-Of” applies only when the subject is spatially right of the
object. We defined right of as a function that is True when xs ≥ xo.

7. The predicate “On-The-Left-Of” applies only when the subject is spatially left of the object.
We defined left of as a function that is True when xs ≤ xo.

These rules cover facts related to both semantic and spatial commonsense knowledge. We incorporated
these rules by conjoining them with the implication in the original theory presented in subsection 4.2.

(∀(I, s, o, y) : Dvrd)[πy(vrd(I, s, o)

∧ (hRiding → CanRide(s)

∧ Ridable(o))

∧ (hWear → Living(s)

∧Wearable(o)) . . .)]

where hCls ∈ R70 is a one-hot vector of truth values, which is True at the index of the predicate
class “Cls” and False elsewhere. Living is a constant vector of truth values for all objects which is
True at indices of objects which are living entities and False elsewhere. Similarly, Wearable is a
constant vector, which is True at exactly the indices of objects which are wearable. We refer readers
to subsection 4.2 for detailed explanation about the application of these rules.

We would like to note two approaches for building such knowledge bases. The first method is a
manual method where a user can supply logical rules that are focused on classes where the model
does not work well. The second method is to exploit knowledge bases such as Concept-Net, WordNet
or meta-data of prior datasets such as Visual Genome [Krishna et al. (2017))]. For VRD, we started
with Visual Genome to build our knowledge base and then kept a subset of rules which we found to
be most helpful. While building these rules we found it helpful to group the predicates in a rule set.
For example, predicates such as “Above” and “Over” were part of the “Above” rule set (number 4 in
the list of rules) which verified whether the subject is above the object. We understand the general
concern regarding the feasibility of constructing a knowledge base but in our view there is sufficient
work in the literature showing how machine learning algorithms have exploited knowledge bases
from pre-existing resources [Aditya et al. (2018); Moldovan & Rus (2001)].

A.7 EMPIRICAL COMPARISON WITH RELATED WORKS

Here we compare DASL to two closely related neuro-symbolic based methods: Logic Tensor
Networks (LTN) [Serafini & Garcez (2016)] and Rocktäschel et al. [Demeester et al. (2016)]. Both
use product t-norm for the conjunction operator on truth values and cross-entropy for the loss function,
as does DASL. These operations are carried out directly in LTN, in log space in Rocktäschel et
al., and in logit space in DASL. Operating directly on the raw truth values suffers from vanishing
gradients because the product of many values between 0 and 1 approaches 0. Operating on logs
of truth values maintains precision near 0 but not near 1. The negation of conjunction has loss
log(1−

∏
i[Ai]), which again has a vanishing gradient as the number of terms increases. DASL’s

logit transform maintains precision near both 0 and 1, enabling DASL to represent full FOL (in
this case, including the negations of conjunctions) at scale. To verify these claims, we train the
classification NN in subsection 4.1 on MNIST digits using two variants of logical conjunctions.
The first variant trains the NN using a conjunction of multiple assertions about MNIST digits and
their labels, i.e., (∀(X, y) : Labeled)(πy(X)(digit(X))). The second variant trains the NN using
negation of conjunction for the same problem ¬(¬(∀(X, y) : Labeled)(πy(X)(digit(X)))). For
a fair comparison we implement both the LTN and Rocktäschel et al. representations within the
DASL’s code by replacing DASL’s logit space computations with truth value computations with
probabilities and log-probabilities respectively for learning. To understand the sensitivity of different
representations to the size of conjunction (batch-size in this case), we plot accuracies on the test-set
against different batch-sizes in Figure 3. We see that the performance of LTN drops quickly as the
number of assertions is increased for both variants since the raw representation fails to preserve
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Figure 3: Comparison of DASL with LTN [Garcez et al. (2019)] and Rocktäschel et al. [Demeester et al. (2016)]
for training a NN to classify MNIST digits with conjunctions and negated conjunctions over training samples.
We observe that the performance of prior methods saturate when increasing the number of terms in conjunction.
However, this is not the case with DASL due to its logit representation, which prevents vanishing gradients and
thus enables improved learning.

gradients. Rocktäschel et al. performs similar to DASL for regular conjunction due to the use of
log truth values. However, when training with negated conjunctions, the converged Rocktäschel et
al. model fails catastrophically for number of conjuncts ≥ 16. The DASL model shows no loss in
performance, highlighting better numerical stability. This example highlights the improved numerical
stability enabled by DASL which is critical for scaling, especially when learning NN with deeper
logical structures.

A.8 ADDITIONAL EXPERIMENTAL RESULTS FOR VISUAL RELATIONSHIP DETECTION

1% Data 5 % Data
Predicate Baseline + Knowledge Baseline + Knowledge
Wear (R) 0.90 1.00 0.86 1.00
Under (R) 0.02 0.38 0.25 0.49
Above (R) 0.30 0.37 0.44 0.58
On 0.63 0.80 0.71 0.77
Has 0.10 0.07 0.18 0.14
Next To 0.15 0.06 0.16 0.15

Table 2: Shows class-wise results (Top-1 accuracy) for top performing predicates from the predicate detection
task. “Baseline” refers to VGG (baseline) and “+ Knowledge” refers to the knowledge augmented model (see
Table 1). (R) means that the predicate was included in one of the rules.

Class-wise performance: To provide further insights into VRD, we also report class-wise compar-
ison (Top-1 accuracy) with and without knowledge in Table 2. We see consistent improvements
for predicates which were included in one of the rules, e.g., “Wear” and “Under”. Interestingly, we
also see improvements for the “On” predicate since it has the most training samples and thus the
baseline tends to confuse other predicates with “On” (common overfitting issue in DNNs). In such
low-data regimes DASL improves performance for “On” by being able to correctly predict related
predicates such as “Under” and “Above”. We observe some loss in performance for predicates such
as “Has” since these are hard to detect and we did not use any rules for them. We also conducted
a simple ablation study by removing all the spatial rules (with VGG-SS + Knowledge) to see their
impact on performance. We observe a drop in performance for 1% training data (R@100=81.8,
R@100-ZS=66.8) with all rules versus (R@100=75.3, R@100-ZS=58.78 w/o spatial rules).
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% Data DASL [Xie et al. (2019)]

DASL Only Positive
Relations

Additional
Negative Relations

1% 71.5 55.5 71.0
5% 77.7 72.4 77.6

Table 3: Comparison on Visual Relationship Detection with a recent neuro-symbolic based method [Xie et al.
(2019)]. We report Top-5 accuracy metric for comparison with their work. Here DASL refers to knowledge
augmented model “VGG-SS + Knowledge”. We show results with [Xie et al. (2019)] as using both positive and
negative object pairs for training. In comparison DASL only uses positive object pairs for training.

We would also like to note that the first-order constraints were always satisfied for VRD since we
applied rules as vectors of formulas as discussed in subsection 3.3. Here the formulas are applied
directly in conjunction with the output of the VRD and thus by definition the rules are always satisfied.
We note that this is different from how the rules were satisfied for MNIST and is made possible by
the ability of DASL to extend logical language by allowing formulas to work on output tensors.

Comparison with [Xie et al. (2019)]: Here we compare DASL with a recent neuro-symbolic method
[Xie et al. (2019)] on the VRD task. This work proposed a graph embedding network that is able to
learn semantically-constrained embeddings using propositional formulas and reported improvements
on the VRD. The numbers reported in this work are not directly comparable to ours since they
used 100% training data, while we use only 1% and 5% training data. Moreover, they reported
performance on both positive pairs and negative object pairs (negative pairs are labeled with an extra
“no-relation” class). This experimental protocol is different from that commonly used the in literature
[Lu et al. (2016)] (also used in our work), which only evaluates on positive pairs. The number of
object pairs with negative relationships is quite high (86% of total boxes), which results in a higher
chance performance leading to higher gains on their test set. For a fair comparison we re-trained
their model with 1% and 5% data and report Top-5 accuracy on positive object pairs, as done in the
literature, in Table 3.

We use the variant “VGG-SS + Knowledge” for comparison since [Xie et al. (2019)] also uses
embedding vectors and bounding box coordinates in their model. We see consistent improvements
with DASL with the improvements being higher for the 1% case as compared to the 5% case. We
also note that [Xie et al. (2019)] uses many more rules (e.g., using 10 spatial relations compared to
our 4) than DASL, which gives them a certain advantage. That is because as we showed earlier the
performance in 1% data case substantially falls when the spatial rules were removed (R@100=81.8
versus R@100=75.3).

A.9 IMPACT OF FORMULAS ON TRAINING TIME

We haven’t done any specific timing tests, though the runtimes were similar with and without logic.
This is theoretically expected as the logic is placed in series (after) the neural networks and is
faster to compute. With sufficiently complex logic one could imagine logical computations (and
backpropagation) to exceed the computation cost of the neural networks, but we are far from this
regime. We also heavily utilize the tensor operations in Pytorch, which allows us to leverage the
speedups in training general neural networks.

A.10 FUTURE WORK

First order logic provides a uniform framework in which we plan to support transfer learning and
zero-shot learning by training DASL models on theories where data is abundant and then creating
new theories on the same vocabulary that address problems where data is sparse. We also plan to
demonstrate the converse capability, training distinct models of a single theory, allowing us to sample
models as a technique for capturing true probabilities, similar to Markov Logic Networks [Richardson
& Domingos (2006)]. Finally, we are exploring ways to allow DASL to learn rules from data while
retaining explainability and integrating smoothly with user defined logic.
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