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Abstract

Cardiovascular magnetic resonance (CMR) studies combine diverse pulse sequences
and imaging planes, which is clinically valuable but makes large scale data curation and
automated analysis difficult. In routine practice, series descriptions in DICOM headers
are heterogeneous across technologists, scanners, vendors, and time, so manual sequence
and view labeling does not scale beyond small cohorts. We develop a secure labeling
pipeline that uses a domain knowledge guided prompt for large language models (LLMs)
with explicit CMR protocol based mapping rules to drive a locally deployed GPT-OSS
model. From raw series descriptions, our prompt generates standardized pseudo labels for
sequence type and cardiac view for approximately 76,000 CMR series from 1,000 patients
entirely offline, preserving data security while capturing local naming conventions. These
labels are used to train a spatiotemporal CMR, encoder that combines a ConvNeXt image
backbone with an xLSTM temporal module and maps heterogeneous series into a compact
low dimensional embedding for multi-class sequence and view classification. On an expert
annotated test set, the domain knowledge guided prompt reduces the number of unknown
labels by two orders of magnitude and improves sequence and view label accuracy compared
with a generic prompt. Models trained on these optimized pseudo labels achieve sequence
and view classification accuracy of 0.983 and 0.989 respectively, outperforming existing 2D
and Vision Transformer baselines. The proposed framework shows that clinically informed
prompting and explicit spatiotemporal modeling together enable secure CMR, curation and
accurate sequence and view recognition at scale.

Keywords: cardiovascular magnetic resonance, sequence classification, view classification,
spatiotemporal representation learning, large language models

1. Introduction

Cardiovascular magnetic resonance imaging (CMR) is a comprehensive non-invasive imag-
ing technique that is central to the diagnosis and management of cardiovascular disease
(Karamitsos et al., 2009). CMR is widely regarded as the reference modality for quantify-
ing ventricular function, chamber volumes, and myocardial scar, and it provides rich tissue
characterization for myocardial edema, iron overload, perfusion abnormalities, and diffuse
fibrosis (Salerno et al., 2017b). Unlike brain or body MRI protocols that are often built
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around a small number of relatively standardized three dimensional acquisitions, clinical
CMR protocols must accommodate a rapidly moving organ with complex anatomy and
physiology (Salerno et al., 2017a).

The heart is a dynamic structure composed of obliquely oriented chambers that move
with both the cardiac cycle and respiration (Bogaert et al., 2012). As a result, despite recent
progress in 3D whole-heart imaging, the clinical workhorse of CMR remains two dimensional
multi-slice acquisitions that are frequently electrocardiogram-gated and breath-held (Lima
and Desai, 2004). To visualize cardiac anatomy and function, images are acquired in a set
of standardized long axis and short axis views rather than in orthogonal axial, coronal,
and sagittal planes (Figure 1). These views are further combined with multiple sequence
types, such as balanced steady state free precession cine for wall motion and function, phase
contrast flow imaging, inversion recovery late gadolinium enhancement for scar, and quan-
titative T1, T2, and T2* mapping and fat water imaging for diffuse tissue characterization
(Kramer et al., 2020). This diversity of sequences and views is clinically valuable but intro-
duces substantial complexity for large scale data curation and automated analysis (Salerno
et al., 2017a). In routine practice, technologists start from vendor specific protocol trees
and then edit sequence names to reflect the imaging plane, heart rate adjustments, breath
hold strategy, and minor parameter changes (Lim et al., 2022). Over time, local conventions
evolve across scanners, software versions, and personnel. As a consequence, the DICOM
SeriesDescription field is highly heterogeneous, and the same acquisition type may appear
under many different textual variants. Manual labeling works for small research cohorts
but does not scale to tens of thousands of series or multi-center datasets.

Robust sequence and view classification is a critical enabling step for downstream CMR
applications. Reliable labels allow automatic construction of analysis pipelines, for exam-
ple selecting the correct cine series for ventricular function analysis, the appropriate late
gadolinium enhancement images for scar quantification, or specific mapping sequences for
quantitative tissue characterization (Flett et al., 2011). They also support quality control,
protocol harmonization across scanners and sites, and retrospective cohort assembly for
disease specific studies (Kramer et al., 2020). Existing work on MRI sequence identification
has demonstrated that convolutional and transformer based models can classify sequence
types directly from the images even when metadata are unreliable (Ranjbar et al., 2020;
de Mello et al., 2021; Helm et al., 2024; Lim et al., 2022; Mahmutoglu et al., 2025; Wang
et al., 2025). However, most prior studies focus on a limited set of brain or body sequences,
where multi-slice information is either ignored or treated as independent channels rather
than being modeled explicitly and rely on manually curated labels or rigid metadata rules
that are difficult to maintain in real world clinical environments.

Large language models (LLMs) provide a natural way to interpret textual metadata
such as DICOM series descriptions (Kamel et al., 2025). Off the shelf LLMs are not trained
on cardiac specific terminology, local abbreviations or site-specific naming practices, and
sending protected health information to external interfaces raises regulatory and security
concerns. There is therefore a need for labeling strategies that pair clinical domain knowl-
edge with LLMs while keeping all computation inside the institutional firewall.

In this work, we address these challenges with a unified framework for secure labeling
and spatiotemporal representation learning for CMR. First, we design a domain knowl-
edge guided prompt for a locally deployed GPT-OSS model (Agarwal et al., 2025) that
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Figure 1: Comprehensive illustration of CMR sequences and imaging planes, showing all
combinations included in this study. This variability motivates the need for robust
sequence and view classification methods.

generates pseudo labels for both sequence type and imaging plane directly from raw series
descriptions. This approach leverages expert knowledge of CMR, protocols and site-specific
naming patterns, and it produces high fidelity labels for approximately 76,000 series from
1,000 patients without any external data transfer. Second, we propose a spatiotemporal
CMR encoder that combines a ConvNeXt (Liu et al., 2022) based spatial feature extractor
with an xLSTM (Beck et al., 2024a) temporal module. The encoder operates directly on
heterogeneous CMR inputs, including cine series, inversion recovery and mapping sequences,
and multi slice localizers, and compresses them into a compact one dimensional embedding
that captures sequence identity, view, and acquisition specific imaging physics. Third, we
demonstrate that this embedding supports accurate multi-class sequence and view classi-
fication and that models trained on domain knowledge guided pseudo labels outperform
strong 2D ConvNeXt and CNN-Transformer (Manzari et al., 2023) baselines. Together,
these components provide a practical and scalable solution for CMR sequence and view
recognition and lay the foundation for more advanced CMR representation learning and
downstream analysis.

2. Related Work

Accurate identification of MRI sequence types is essential for ensuring consistent down-
stream analysis, and it becomes impractical as datasets grow larger and more diverse. Au-
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tomatic MRI sequence identification can provide reliable inputs for downstream tasks and
enables robust and scalable analysis pipelines. Early MRI sequence identification methods
relied mainly on heuristics derived from DICOM tags such as field strength, echo time, and
sequence name (Liang et al., 2021). However, these methods can be difficult to general-
ize in clinical archives where headers may be incomplete and series descriptions are highly
inconsistent across technologists, scanners, and vendors.

Recent work has shifted toward image-based deep learning methods, which extract se-
quence features from images and remain reliable even without trustworthy metadata (Ran-
jbar et al., 2020; de Mello et al., 2021; Helm et al., 2024). For example, De Mello et al.
achieved strong classification performance by training a ResNet-18 model on 3D brain MRI
volumes with random slice selection as channel input (de Mello et al., 2021). In cardiac MRI,
Lim et al. proposed a CNN tailored for classification that remains robust across vendors
and protocols, with labels generated through DICOM-based metadata extraction followed
by expert verification based on three selected slices as input (Lim et al., 2022). Ranjbar et
al. built a 2D deep neural network to annotate the type of MR image sequence for scans
of brain tumor patients (Ranjbar et al., 2020). Helm et al. developed a 3D DenseNet-121
model capable of classifying MRI sequences across chest, abdominal, and pelvic acquisitions
(Helm et al., 2024). Recent work by Mahmutoglu et al. address domain-shift challenges
in body MRI sequence classification by evaluating CNN—Transformer models on adult-to-
pediatric transfer. Their findings show that MedViT, especially with expert-guided adjust-
ments, substantially improves robustness under cross-population variability (Mahmutoglu
et al., 2025). Despite these advances, CMR sequence classification remains substantially
underexplored, where the imaging workflow shows greater variability and cardiac motion is
more complex. View classification is also restricted to cine images, leaving other important
modalities such as LGE underexplored. These constraints limit generalization of model and
restrict downstream tasks like segmentation or localization to cine-only settings.

3. Methodology

3.1. Training label acquisition

To train the proposed model, we require supervisory labels that specify two key attributes of
each CMR image: the sequence type (e.g., CINE, LGE, T2 MAP) and the anatomical view
(e.g., SAX, 4CH, 2CH). These labels are essential for guiding the model to recognize clin-
ically meaningful patterns. In clinical practice, CMR datasets usually include a sequence
description—a short textual string automatically generated or edited during acquisition.
During a CMR study, technologists queue default sequences from scanner preset protocol
trees, but these sequence names are frequently modified to reflect the imaging plane, ac-
commodate patient heart rate, or denote minor parameter adjustments. As a result, series
descriptions become heterogeneous and non-standardized. Deriving accurate sequence and
view labels from such DICOM metadata requires complex rule sets and expert validation,
which becomes impractical at scale (Lim et al., 2022). Despite this variability, these descrip-
tions still encode useful hints about both the imaging sequence and the view orientation,
making them a valuable source for automated label extraction.

We propose a label-acquisition strategy that leverages sequence descriptions directly.
Instead of relying on manual annotation, which is time-consuming and difficult to scale, we
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use a large language model (LLM) to infer the desired labels from the textual descriptions.
The LLM interprets the shorthand terms, abbreviations, and protocol-specific keywords
embedded in each description and maps them to a unified set of predefined labels. This en-
ables automatic, scalable, and reproducible label extraction from existing metadata without
modifying the imaging pipeline.

Although LLMs provide an efficient mechanism for generating pseudo-labels in settings

with limited annotations, general-purpose LLMs are not trained to interpret CMR-specific
terminology or heterogeneous site-dependent naming conventions. Fine-tuning such models
would require substantial curated data and computational resources, making it impractical
for many clinical research environments. As a result, prompt optimization becomes the
primary lever for improving pseudo-label quality and ensuring that the LLM can reliably
interpret non-standardized CMR metadata.
Domain knowledge guided prompt. To further improve label quality, we introduce
a domain knowledge guided prompting strategy that embeds cardiac MR domain knowl-
edge directly into the LLM query. A naive prompt simply instructs the model to “Select
exactly one from: CINE, LGE, WATER CINE, T1 MAP PRE ...”, relying solely on the
sequence description for inference. However, many sequence descriptions contain cryptic
abbreviations, scanner-specific shorthand, or institution-dependent naming patterns that
can mislead a general LLM. To address this, we augment the prompt with explicit domain
knowledge that captures how specific sequence types are commonly encoded in practice.

For example, we inform the LLM that LGE sequences are often denoted by keywords
such as “DME”, “DE”, “SSHOT”, “LGE”, or “PSIR”. By incorporating such guidance, the
model can recognize semantically related but heterogeneous descriptors and map them to
the correct standardized label. This domain-informed prompt design substantially increases
the robustness of label inference, especially in real-world datasets where sequence names
vary widely across vendors, scanners, and acquisition workflows.

To ensure maximum data security, all labeling was executed locally without external
API calls. A GPT-0OSS-20B model was used to generate sequence and view pseudo-labels.
Images from 20 patients were manually reviewed in a DICOM viewer to verify labeling
accuracy and establish a reliable benchmark for evaluation.

3.2. Network architecture

Clinical CMR acquisitions are inherently multidimensional, varying across temporal phases
(e.g., CINE), inversion times (e.g., T1 mapping), and spatial positions (e.g., multi-slice
LOCALIZER). Multiple sequences can exhibit similar image contrast, making single-frame
classification unreliable. To address this, we developed a spatial-temporal xLLSTM archi-
tecture to extract compact 1D representations from heterogeneous CMR inputs.

Each CMR image—such as 2D+T cine, 2D+TI T1 mapping, or 2D+D localizer—is
first decomposed into a sequence of 2D frames. Each frame is independently encoded by
a ConvNeXt backbone (Liu et al., 2022) pretrained on ImageNet, which extracts spatial
features and produces a sequence of fixed-dimensional latent vectors. The xLSTM module
captures long-range dependencies and integrates spatial-temporal context through gated
recurrent transformations (Beck et al., 2024b). It compresses the fixed-dimensional latent
vectors into a single continuous 1D embedding that consolidates information across time,
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Figure 2: Overview of our proposed framework. Panel (A) shows the data preparation
pipeline, highlighting the variation of DICOM series descriptions and. Panel (B)
shows the architecture of proposed model.

inversion time, or spatial slice dimensions. This final representation is then passed to task-
specific linear heads for sequence and view classification.

Let the input image be denoted by I € REXWXK where the third dimension K may rep-
resent temporal frames 7', inversion times 7T, or slice index D. We first apply a ConvNeXt
encoder FoonvNext to each of the K feature planes, yielding a sequence of feature vectors
X = Foomnext(I) € RV1XK " This sequence is then fed into an xLSTM module FyrsTM,
which aggregates information along the K-dimension and produces a final representation
E = Fastu(X) € RM. In our implementation, K is fixed at 15. For images with fewer
than 15 frames, the images are repeated; for those with more, a random subset of 15 is
sampled during training.

Loss function. For both sequence classification and view classification, we adopt the
standard cross-entropy loss, which is well suited for multi-class prediction tasks. The total
training loss is computed as the sum of the sequence and the view cross-entropy losses.

4. Experiments

4.1. Data collection

We collected CMR studies from 1,000 patients at the Ohio State University Wexner Med-
ical Center. All data were anonymized before analysis. The dataset contains approxi-
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Table 1: Evaluation of sequence and view labels generated by GPT-OSS-20B under two
prompting strategies, using expert annotations as reference. ” Unknown” indicates
series where the model failed to assign a label and is included in the accuracy
calculation, contributing to lower overall metrics.

Evaluation Target Sequence View

g Unknown Accuracy F1-Score | Unknown Accuracy F1-Score
General Prompt 104 0.8589 0.7680 352 0.6297 0.5536
Domain-informed Prompt 2 0.9962 0.9318 228 0.7737 0.7906

mately 76,000 CMR series, which were divided into training, validation, and testing subsets
(882/98/20 patients). For each series, the DICOM tag SeriesDescription (0008,103E)
was extracted and processed by the domain knowledge guided prompt to generate sequence
and view pseudo labels. An expert reader manually reviewed all series from the 20 test
patients in a DICOM viewer to establish the reference labels used for evaluation.

4.2. Training and implementation details

All models were trained on a single NVIDIA A100 GPU. Training was performed for 25
epochs using a batch size of 8 and a learning rate of 1 x 10~* with ADAM optimizer. We
saved both the checkpoint with the highest validation accuracy and the checkpoint from
the final epoch. For configurations that exceeded the memory capacity of one A100 GPU,
the batch size was reduced to 4 and gradient accumulation of 2 was applied to maintain an
effective batch size of 8.

4.3. Effect of domain knowledge guided prompting

We evaluated a locally deployed GPT-OSS-20B model for automatic extraction of CMR
sequence and view labels from Series Description fields. Two prompting strategies were
compared: (1) General prompt, which provides minimal task specification; and (2) Domain-
informed prompt, which incorporates CMR-specific mapping rules, common abbreviations,
and disambiguation logic derived from expert practice. The comparison of two types of
prompts is provided in the Appendix (Figure 5).

To quantify label quality, both prompt outputs were produced for the entire dataset
and evaluated against an expert-reviewed test set. Accuracy and F1 score were computed
for sequence and view categories. We then trained the proposed spatial-temporal classifier
using pseudo-labels from each prompting strategy and assessed model performance on the
same expert-annotated test set.

The results (Table 1) show that domain-informed prompting substantially improves
pseudo-label quality over the general prompt. Models trained on domain-optimized pseudo-
labels also achieved higher accuracy and F1 scores, indicating that improvements in label
fidelity translate directly into downstream model performance (Table 2). These findings
confirm that prompt engineering is an effective and efficient mechanism to adapt LLMs for
CMR metadata interpretation.
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Figure 3: Confusion matrices for sequence and view classification. Panel (a) shows results
from the proposed model, and panel (b) shows results from the baseline 2D Con-
vNeXt model. The corresponding categories are listed on the left.

4.4. Effect of spatiotemporal modeling

To evaluate the importance of modeling this multidimensional structure, we compared our
proposed architecture against a strong 2D baseline model. The proposed model employs a
pretrained ConvNeXt as the spatial encoder to extract features from each temporal frame,
inversion frame, or slice. An xLSTM temporal encoder then models dependencies across
frames through spatiotemporal sequence learning. This design enables the network to in-
corporate temporal and slice-wise information that cannot be recovered from individual
2D frames. In contrast, the 2D baseline uses a pretrained ConvNeXt trained on a single
representative frame sampled from each series following standard 2D classification protocols.

The comparative results in Table 2 show that the proposed spatiotemporal model
achieves higher accuracy in sequence classification, while both models achieve similar perfor-
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mance in view classification. This outcome is consistent with expectations. Many sequences
share similar contrast, making it challenging for a 2D model to differentiate among them
without temporal context. Cine imaging is a representative example. Individual frames are
often visually ambiguous, leading to frequent misclassification. The red-highlighted con-
fusion in Figure 3 illustrates common failure modes of the 2D baseline, underscoring its
limitations in capturing temporal or contextual cues. In contrast, view classification relies
primarily on anatomical localization, which can typically be inferred from a single frame.
Therefore, adding temporal modeling provides limited additional benefit for this task. These
findings highlight that explicit spatiotemporal modeling is important for accurate CMR se-
quence classification, while view recognition depends less on temporal information.

4.5. Baselines comparison

Recent CMR sequence classification studies commonly adopt hybrid architectures that com-
bine a convolutional feature extractor with a Vision Transformer (ViT) for global feature
aggregation. These models aim to retain local spatial detail while enabling global token-
to-token reasoning. Prior work has reported strong performance with these CNN-ViT
hybrids, but, to our knowledge, none have publicly released their training pipelines, making
direct comparison difficult. To establish a fair baseline, we implemented a representative
CNN-ViT model following standard design practices in medical image analysis.

A CNN encoder produces 2D feature embeddings for each frame in a CMR series. These
frame-wise embeddings are then treated as a sequence of tokens and passed through a ViT
encoder that performs self-attention across time. Two linear classification heads, identical
to those used in our framework, predict sequence type and imaging view. This design
tests whether generic transformer-based temporal modeling on frame-level embeddings is
sufficient for CMR classification, or whether the explicit spatiotemporal inductive biases in
our xLSTM architecture provide measurable gains.

Training and evaluation followed the identical protocol described earlier. Results (Ta-
ble 2) show that the CNN-ViT hybrid underperforms relative to our proposed model, high-
lighting the importance of incorporating explicit temporal and slice-wise structure rather
than relying solely on 2D tokenization and global attention.

A t-SNE visualization (Figure 4) of the learned embedding further illustrates these ef-
fects. When projected into 2D, view classes form clear and coherent clusters, indicating
that the model captures anatomical geometry reliably. Sequence clusters, however, appear
partially overlapping in the 2D projection, reflecting the limitations of t-SNE in preserving
high-dimensional structure rather than deficiencies in the representation itself. Despite this
visual overlap, the high-dimensional embedding supports near-perfect sequence classifica-
tion, consistent with the quantitative results.

5. Discussion and Conclusion

We presented an integrated framework for automated CMR sequence and view classification
that targets two persistent obstacles in large scale CMR analysis: nonstandard metadata
in clinical workflows and the multidimensional structure of CMR acquisitions. Our ap-
proach combines a ConvNeXt spatial encoder with an xLSTM temporal module to map
heterogeneous CMR series into a compact one dimensional embedding, and uses a locally
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Figure 4: Two-dimensional t-SNE visualization of the shared embedding. (a) Colored by
sequence label, showing partial overlap due to projection limitations. (b) Colored
by view label, showing clear anatomical clustering.

Table 2: Summary of quantitative results for all model-training experiments. The table
reports sequence and view classification performance for each model configuration

. Sequence View
Evaluation Target Accuracy F1-Score | Accuracy F1-Score
2D ConvNeXT 0.9679 0.9593 0.9829 0.9476
MedViT 0.9404 0.9052 0.9533 0.8532
Proposed Model (General Prompt labels) 0.8869 0.8363 0.9283 0.8668
Proposed Model (Domain-informed prompt labels) | 0.9832 0.9786 0.9891 0.9822

deployed GPT-OSS model with a domain knowledge guided prompt to generate secure and
standardized pseudo labels from DICOM series descriptions.

On a large institutional dataset, this framework consistently outperformed strong two
dimensional and CNN-Vision Transformer baselines, highlighting the importance of ex-
plicit spatiotemporal inductive biases when distinguishing sequences with similar contrast
or acquisition parameters. The unified embedding supports accurate sequence and view
recognition and offers a reusable representation for downstream applications such as proto-
col harmonization, quality control, quantitative parameter estimation, and disease specific
phenotyping. Future work will include multi-center validation, extension to additional ven-
dors and pathologies, and integration with downstream tasks such as segmentation and
prognostic modeling to further assess how secure large scale labeling coupled with multidi-
mensional representation learning generalizes across CMR workflows.
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General Prompt

Domain-informed Prompt

CMR SPATIAL-TEMPORAL REPRESENTATION LEARNING

Sequence Extraction

System: You are an expertin CMR sequence classification.

Task: Extract the sequence name from the Series Description.

Choices:

CINE, LGE, FAT CINE, WATER CINE, T1 MAP PRE, T1 MAP POST,

T2 MAP, T2 STAR, DTI, HASTE, PERFUSION,

FLOW THROUGH PLANE, FLOW IN PLANE,

FLOW THROUGH PLANE PHASE, FLOW IN PLANE PHASE,
LOCALIZER, TI SCOUT, AXIAL STACK, MRA, unknown.

Output Rules:

- Do not infer or assume missing information.

- Output exactly one label from the list.

- If the sequence cannot be determined, output "unknown".

Task: [same as above]
Choices: [same list as above]

Mapping rules:
- "MOLLI" > T1 MAP PRE (default) or POST if specified.
- "DME", "DE", "SSHOT", "LGE", "PSIR" > LGE.
- "loc", "localizer" » LOCALIZER.
- "MRA", "CEMRA" > MRA.

- Flow:
- Contains "flow", "throughplane", "inplane" > Flow.
- "PHASE" or suffix "_P" > Phase flow.
- "MAG", "MAGNITUDE" or no "PHASE" > Magnitude
flow.
- "AO", "AORTA", "MV", "MPA", "TV" > Through-plane;
otherwise In-plane.

-Cine:
- Both "fat" and "water" > choose last occurrence.
- Only "water" > WATER CINE.
- Only "fat" > FAT CINE.
- Else » CINE.

Output rules: [same as above]

View Extraction

System: You are an expertin CMR sequence classification.

Task: Extract the cardiac view from the Series Description.

Choices:

2CH, 3CH, 4CH, RV3CH, LVOT, RVOT, RVIN, SAX,
AO, MPA, MV, TV, MVTV, MULTI, AXIAL, SAGITTAL,
CORONAL, unknown.

Output Rules:

- Matching is case-insensitive.

- Use only explicit information.

- If multiple labels match, choose the first in the list.

- Output exactly one label; if none apply, output "unknown".

Task: [same as above]
Choices: [same list as above]

Mapping rules:
= "mv/ty!, "myv-tv", "mv tv" > MVTV
-2CHorVLA-2CH
-4CHorHLA > 4CH
-"8ch", "three chamber" > 3CH

- "rvin", "rvinf" > RVIN- MV - indicators of mitral valve.

- "sax’, "sa loc", "sa_loc", "multi_sa", "multi sa", "short axis"
> SAX

- "aortic", "ao", "aorta" > AO

-"mpa", "main pulmonary artery" > MPA

- "mitral valve"," mv " > MV
- "tricuspid valve", "tv" > TV

Output:

- Use only explicit information + rules above.

- Return exactly one label; if none match, output "unknown".
Output rules: [same as above]

Figure 5: Prompt design used for automated extraction of sequence and view labels from
CMR Series Descriptions. Each column corresponds to a prediction task, and
each row shows the system instruction, general prompt, and domain-informed
prompt used to guide label generation. For clarity and space considerations, the
prompts shown here are condensed versions of the full instructions used in the
study.
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