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Abstract

Deep Reinforcement Learning (DRL) has achieved expressive success across a
wide range of domains. However, it is still faced with the sample-inefficiency
problem that requires massive training samples to learn the optimal policy. Fur-
thermore, the trained policy is highly dependent on the training environment
which limits the generalization. In this paper, we propose the Planner-guided
RL (PRL) approach to explore how symbolic planning can help DRL in terms of
efficiency and generalization. Our PRL is a two-level structure that incorporates
any symbolic planner as the meta-controller to derive the subgoals. The low-level
controller learns how to achieve the subgoals. We evaluate PRL on Montezuma’s
Revenge and results show that PRL outperforms previous hierarchical methods.
The evaluation of generalization is a work-in-progress.

1 Introduction

Deep Reinforcement Learning (DRL) has achieved notable success across a diverse range of fields,
from mastering complex games such as Go [22]] and Dota [4]] to interesting applications like navi-
gating super-pressure balloons in the stratosphere [3]]. Many of these domains share common traits,
characterized by high-dimensional state spaces and continuous action spaces. Nevertheless, the ap-
plication of these algorithms to complex real-world domains such as robotics faces a significant
challenge because of sample inefficiency [13]] as DRL agents require millions of interactions with
the environment to learn an optimal policy. Another challenge that DRL agents face is their poor
generalization capability [25] when executing the learned policy on a similar environment with slight
variation in logic.

Symbolic models have been used in the literature to increase the generalization capability of RL
algorithms. One of the earlier directions was Relational Reinforcement Learning [8]], where the
agent learned a non-parametric tree-based value function representation that generalized well to
tasks with a similar structure. This solution, however, was restricted to tabular RL algorithms on
smaller domains. Jiang et al. [[15] proposed a method to integrate differentiable Inductive logic
Programming with policy gradient algorithms using minimum background knowledge. High-level
programs [23| 28] have also been used to propose sub-tasks in order to make the policies learned
by a low-level agent generalizable. Cao et al. [6] integrate program synthesis with inductive logic
programming to construct policies that are more robust to slight logical changes in the training
environment.

Symbolic Planning has long been used at the highest level to guide DRL agents with explo-
ration [19}[16]. However, most prior work uses some combination of meta-controller and symbolic
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planner at the higher level to choose the appropriate subgoals for the lower-level DRL agent. In
this work, we propose a two-level structure that incorporates any symbolic planner as the meta-
controller to get the subgoals. Since the subgoals are directly derived from the symbolic plan; they
are already ordered and there is no need to use a meta-controller separately to choose the subgoals.
The low-level RL agent learns to achieve the subgoals sequentially as proposed by the planner. As a
result, our proposed method is more efficient than other baselines in terms of training time. The pro-
posed algorithm should also generalize well to similar environments with slight logical differences
by virtue of the cause-effect relationship which is inherently incorporated in the domain represen-
tation at the symbolic level. This is a work-in-progress, and we leave the evaluations related to the
generalization of our algorithm as immediate future work.

2 Related work

Integration of Symbolic Planning and RL: A variety of work exists along guiding Reinforcement
Learning agents to useful states using the integration of symbolic planners at the higher level. Yang
et al. [26] integrated a planner with hierarchical R-learning for small domains with a direct mapping
between symbolic transitions and options. In this work, the planner updates its plan after every
step of R-learning. Lyu et al. [19] further generalized [26] for Deep RL by using a symbolic
planner that suggests sub-tasks; a controller that learns sub-policy for the suggested sub-task based
on intrinsic reward and a meta-controller that proposes intrinsic goals back to the planner. Jin et
al. [16] proposed a hierarchical 2-level framework where the top level includes interaction between
the meta-controller and symbolic planner; the former generates the action model automatically and
the goal for the planner to plan and also selects the best option. The lower-level agent learns the
policy for the option chosen by the higher level. Chester et al. [7]] propose a three-level hierarchy for
incomplete symbolic domain models consisting of a meta-controller that chooses symbolic goals; a
planner that plans for these goals and a controller that uses the generated plan to guide its policy.
Symbolic Planners have also been used in Taskable RL and Relational MDP representation [14, [17]]
for better generalization and transfer; however, these were restricted to tabular RL algorithms for
learning the tasks. Guan et al. [11] combine symbolic planning and hierarchical RL in a setting
where symbolic domain knowledge by humans is incomplete by using skill diversity to account for
the incompleteness at the symbolic level. Sarathy et al. [21] consider a slightly different integration
task where they use RL for discovering new operators and adding them to the planning representation
to construct a valid plan. Contrary to prior work [[19}[16} 7], we remove the meta-controller from our
framework and let the planner suggest sequential subgoals to the low-level learner with the future
objective to be able to generalize to logically similar tasks.

3 Background

3.1 Markov Decision Process (MDP)

A Markov Decision Process (MDP) is generally defined as (S, A, T, R, po,~), with a set of states
S, a set of actions A, a stochastic transition function 7" : S x A — P(S), which represents the
probability distribution over possible next states, given the current state and action, a reward function
R : S x A — R, an initial state distribution pg : S — Rg[ 1], and a discounted factor v € [0, 1).
An agent interacts with the environment (i.e., MDP) at discrete time steps by performing its policy
m: S — P(A), receiving a reward r. The agent’s objective is to learn a policy to maximize the
expected cumulative discounted reward: J(7) = E, » 7[> o7 7).

3.2 Reinforcement Learning

In this paper, we focus on value-based RL algorithms and introduce one representative DRL method,
DQN [20]. DQN [20] is a popular value-based DRL method, which replaces the Q-table of Q-
learning [24] as a deep neural network. DQN learns an action-value function as (s, a|6), parame-
terized by 6, by minimizing the loss:

0 =Foare [(T +ymaxQ'(s',a'[8') - Q(s, ae)ﬂ 0

where Q' is the target Q-network parameterized by 6’ and periodically updated from 6.



3.3 Classical Planning

In classical planning, the objective is to select actions in deterministic environments whose initial
state is fully known. The classical planning model is represented as a tuple (S, so, Sg, A, T, C),
where S is the set of states and A is the set of actions, so € S is the known initial state, S¢ € S
is the non-empty set of goal states, 7 : S x A — S is a deterministic transition function, and
C:S x A — Risa positive cost function. A solution or plan, is a sequence of applicable actions
ap - - - a, that generates a state sequence Sy . . . S,41 Where s, is a goal state.

3.3.1 Languages for Classical Planning

The simplest classical planning language in use is STRIPS [9], a language based on boolean vari-
ables. A STRIPS planning problem is a tuple P = (F, 1,0, G), where F is the set of propositions
of interest, I C F’ represents the initial situation, O denotes the set of actions, and G C F' repre-
sents the goal. The actions as € O in STRIPS are represented by three sets of propositions over F':
Add(as), Del(as), and Pre(as). Add(as) describes the propositions that as makes true, Del(as),
the propositions that a, makes false, and Pre(as), the propositions that must be true in order for as
to be applicable. In STRIPS, a state f, is a possible collection of propositions over F', where an atom
p€ Fistruein fg <= p¢€ fs,s0 =1, fs € S NG C fs, A(fs) = O with Prec(as) C fs,
T (fs,as) = (fs \ Del(as)) U Add(as), and cost c¢(fs,as) = 1 by default. The Planning Do-
main Definition Language (PDDL) [1]] accommodates the STRIPS language and has been used in
planning competitions. There are many free classical planners and hundreds of planning problems
expressed in PDDL for use with such planners [10]].

4 Planner-guided RL
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Figure 1: Planner-guided Reinforcement Learning

4.1 Problem Formulation

We represent the problem with a tuple (F,I,0,G,S,A,T, R, po,7,G), where F,I,0,G are as
defined in a STRIPS planning problem, S, A, T', pg, v are MDP components, R is the intrinsic reward
function, and G C S represents the set of subgoals that a RL agent should achieve. The final goal
of the RL agent is to learn a policy = which learns faster (due to guidance from the planner) and
generalizes well (due to symbolic representation of the domain)

Our proposed framework for Planner-guided RL is shown in Figure [T} At the top level, a domain
expert specifies the environment dynamics and constraints in the form of PDDL. This domain def-
inition is taken as input by the Symbolic Planner to generate a symbolic plan which is an ordered
set of symbolic actions (ag, a1, az,as) as per Figure |1} These symbolic actions are mapped into
subgoals through a mapping function and are achieved sequentially by the low-level Deep RL agent.
In order to learn the subgoals, the low-level RL agent receives an intrinsic reward based on R when
it achieves a subgoal.

4.1.1 Interaction Between Planner and RL Agent

An illustration of the interaction between Planner and RL agent is shown in Figure 2] The repre-
sentation of an environment differs for the planner and the reinforcement learning algorithm to suit
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Figure 2: The execution of PRL. First, given the initial state s from the environment, we map s to the symbolic
state I and generate the plan. Then, the symbolic action is derived following the plan and mapped to the low-
level subgoal state. Last, the low-level agent learns the policy to reach the subgoal, which becomes the new
symbolic state I’. The above process repeats until the agent learns to achieve the final goal.

their respective decision-making approaches. We use a symbolic representation, PDDL, to allow
the planner to reason about the environment at a high level regarding symbolic predicates, precon-
ditions, and effects. On the other hand, the reinforcement learning algorithm uses a state-action
representation at a low level. The planner generates an optimal sequence p = (ag, ay, ..., a,) of
symbolic actions a; € O, which are sent to the RL agent as subgoals. We consider the mapping
functionU : O — Qﬂ which takes as input a symbolic action a € O and maps it to a subgoal g € G.
Therefore, the RL agent receives a sequence:

u={(go=U(ag),g1 =U(ar),...,gn =U(an)) wherei =0,...,nANg; €G )

We consider another mapping function W : S — F which maps the low-level states to symbolic
states for the planner to generate a plan.

In a static environment, the planner only needs to run once. However, the environment may change,
especially during training, causing unreachable or suboptimal sequences of actions and, hence, sub-
goals. For instance, consider the initial room (Figure [3) in the Montezuma’s Revenge environment.
If the agent successfully follows all subgoals, after getting the key, it would need to go to the ladder
on the right and climb it, climb the middle ladder, and open one door. In contrast, if the agent dies
after getting the key, its next initial position will be at the top of the first ladder, and since it already
has a key, the next optimal subgoal should be to open a door (Figure ). To handle such a dynamic
environment, the RL agent sends its current state as the new initial state to the planner after reaching
every subgoal or at the beginning of every episode. Our system accounts for the agent’s progress
and current state to generate a new PDDL file (Figure[I). While requesting a new plan after reaching
every subgoal is not optimal, the running time is dominated by the learning process.

4.2 Algorithm

We present the algorithm for Planner-guided RL (PRL) in Algorithm [I] The Planner generates a
plan starting from a symbolic representation of the current state sg (line 5). The symbolic action
as following the plan is converted to subgoal g, in the low-level learner’s state and action-space
representation using the mapping function U (lines 6 and 8). The low-level Deep RL agent collects
experience by taking action a, getting a reward r, and transitioning to the next state s’ and stores
this to replay buffer D (lines 10-12). A mini-batch of experience is sampled from D to update the

'In this work, this function is predefined manually; however, we plan to investigate learning it automatically
as future work
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Figure 3: Initial room (Montezuma’s Revenge.) Figure 4: A different initial state.

Algorithm 1: Planner-guided RL

Initialize: Q-network parameters 6, target Q-network parameters 6, replay buffer D, target
Q-network update interval 7, G

repeat

Start from state s

// Planning stage

Get the symbolic state I = W (s)

Generate a plan to reach goal G

Get the symbolic action as following the plan > see Eq.

//IRL stage

Receive the subgoal g, = Ulas)

repeat

Select an action a following a e-greedy strategy over Q-values

Obtain a reward 7 and next state s’

Store {s, gs,a,r, s’} to replay buffer D

/' Update Q-network

Sample a batch of trajectories from D

Update Q-network w.r.t. 6 > see Eq. (1)

Update target Q-network w.r.t. 6~ every 7 episodes

until reaching maximum steps or achieving gs;

s < Reset to initial state

until reaching maximum training steps;

parameter 6 and 6~ of the Q-network and target Q-network respectively as per the loss function in
Equation [I] The agent’s next initial state is used by the symbolic planner to generate a new plan for
the defined goal G.

5 Experimental Evaluations

Experimental settings: We present our results on Montezuma’s revenge. Montezuma’s Revenge [15]]
is a notorious example with sparse, delayed rewards. Fig. [3] shows the first room of Montezuma’s
Revenge. An ideal agent needs to climb down the ladder, move left, and collect the key where
obtains a reward (+100); then the agent backtracks and navigates to the door and opens it with the
key, resulting in a final reward (+300). A long sequence of specific actions is required to solve
this task. Without effective exploration, an RL agent would not be able to finish the task in such
an environment [27]]. We use this environment to test the effectiveness of our method. Note that
this game requires some primary skills that are common throughout a panorama of 24 different
rooms [2]. For example, the agent needs to collect different objects (e.g., keys and treasures) and
solve relations among objects (e.g., the correspondence between keys and doors) to trigger a series
of critical events (e.g., discovering the sword). Meanwhile, collecting the items requires avoiding
monsters and traps. Thus, some tasks learned in one room will be helpful in other rooms. Therefore,



it is an adequate domain to test planning, learning, and generalization skillsﬂ We used the Fast
Downward planning system [12] to generate the subgoals.

Baselines: We compare PRL to 2 baselines-(1) H-DQN which is a hierarchical DRL method using
human-designed subgoals [[18]]; (2) SORL, which is a start-of-the-art algorithm that uses a three-level
hierarchy consisting of planner, meta-controller and controller [16].

Result: Our preliminary results are shown in Figure
‘We compare the average training reward and see that our
proposed approach PRL gets an average reward of 400 400

in around 2000 episodes as compared to the other base- g
line approaches, presenting the effectiveness of using our % H-DON
method to facilitate more efficient training. H-DQN con- g PRL

' . 22000 00l | SORL
verges in around 5000 episodes but gets a much lower av- 5
erage reward (around 100) as compared to our approach. <100 e
SORL is not able to learn within 10000 episodes which I
shows that SORL might need'a lot. of training episodg:s 0 00 02 04 06 o8 10
to learn the optimal policy. This validates our hypothesis Training episodes x10°

that removing the meta-controller improves the training  gjgure 5: Training results on Montezuma’s
efficiency, as PRL takes into account the ordered subgoals  Revenge.
output by the planner.

6 Conclusion and Future Work

This paper presents a first step to show the advantages of combining symbolic planning with deep
RL to improve learning and generalization. The experiments illustrate how our approach requires
less training than prior work, proving our first point.

As for future work, we plan to test our approach on more domains and show that our method is
also effective in generalization in domains that contain the same domain definitions as the training
environment with slight variations in the environment. The symbolic actions (mapped to subgoals)
carry the cause and effect information, which allows planners to use the same domain information
in different instances and which will support the generalization for the RL agent. Since the agent
receives the same subgoals for similar tasks (i.e., the planner does not consider low-level details
such as background color and types of enemies in Montezuma’s revenge domain), it should be able
to use a learned task in different contexts.
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