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Abstract

Identifying subgroups of shared biological properties based on mutational features
is a key step towards precision treatment of cancer patients. However, clustering
patients based on their mutational profile is challenging due to considerable hetero-
geneity within and across cancer types. Here, we approach the heterogeneity of
cancer by learning probabilistic relationships within pan-cancer data. We present a
network-based clustering method, that integrates mutational and clinical covariate
data in distinct networks of their probabilistic relationships. To avoid learning
the clusters based on covariates such as age and stage, we remove their effect
on the cluster assignment, by exploiting causal relationships among the variables.
In simulations, we demonstrate that our method outperforms standard clustering
methods. We apply our method to a large-scale genomic dataset of 8085 cancer
patients, where we identify novel clusters that are predictive of survival beyond
clinical information and could serve as biomarkers for targeted treatment. [[]

1 Introduction

Cancer progresses in diverse ways leading to a heterogeneous landscape of mutations within and
across cancer types. This heterogeneity is a considerable challenge for the task of using genomic data
to learn clinically and biologically meaningful clusters [Greenman et al., 2007, McDermott et al.,
2011} |Ciriello et al., [2013].

Modelling interactions among the mutations via networks of their probabilistic relationships has
shown to be promising for mutation-based stratification [Hofree et al., 2013} |Hou et al., 2016} |Kuipers
et al.| [2018]] and the identification of drug targets [[Cheng et al.,|2019]. Since clinical covariates such
as age and sex are highly correlated to the mutational profiles [Milholland et al., 2015} |Lopes-Ramos
et al., 2020], they act as hidden variables and hence limit the accuracy of models that are learned
from purely mutational data.

In this work, we integrate mutational and clinical covariate data in networks of their probabilistic
relationships as outlined in Figure[I] In particular, we model the following two biological aspects:
(1) cluster-specific probabilistic relationships among the mutations and clinical covariates, and
(2) causal effects from clinical covariates on the mutations.

!Code implementing our method and reproducible benchmarks and data analysis are available at https:
//github.com/cbg-ethz/graphClust_NeurIPS,
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Figure 1: Patients across different cancer types are clustered based on distinct probabilistic relation-
ships across their mutational profiles and clinical covariates. Each cluster is represented by a Bayesian
network that captures the probabilistic relationships among mutations and clinical covariates. Solid
edges indicate probabilistic relationships among the mutations and dashed edges indicate causal
pathways of clinical covariates to the mutations.

2 Methods

2.1 Covariate-Adjusted Clustering

We want to the cluster mutational profiles of tumours into K different groups. To account for cluster-
specific probabilistic relationships, we model each cluster by a Bayesian network. Each Bayesian
network (G, 8) comprises a directed acyclic graph G and associated local probability distributions
6. The nodes in the Bayesian networks represent mutations and clinical covariates. We differentiate
between two different types of covariates: (1) cluster-independent covariates that have only outgoing
edges into the mutations, and (2) cluster-dependent covariates that have incoming edges from the
mutations.

Exploiting our knowledge about the covariates, we can correspondingly make assumptions about
the direction of the causal pathways. As an example, the covariate sex may make specific mutations
more likely to occur, but it is not the consequence of specific mutations. Thus, the covariate sex
has a downstream causal effect on the mutations and is therefore a cluster-independent covariate. In
contrast, in acute myeloid leukemia the covariate cancer type is determined based on the mutational
profile of the patients [[Gerstung et al}, 2017]], making it a cluster-dependent covariate.

Since we are interested in mutational patterns, we do not want to cluster patients based on cluster-
independent covariates such as age and sex, as these can increase the variance or bias the cluster
assignment. We therefore need to correct for the effect of cluster-independent covariates on the
clustering. In contrast, cluster-dependent covariates can carry information about the mutational
patterns. Hence they can be modelled analogously to the mutations without further adjustment.

With this setup, we assume the generating probability distribution of the cluster-dependent variables
Xy to be conditioned on the cluster-independent covariates X ¢:

K
p(Xv) = ZWkP(XV | Xc, G, Ok) (1)
k=1

where Zszl 7, = 1 is the weight of each cluster and the probability of Xy, given cluster & is

P(Xv | Xc, Gk, 01) = H P(X; | Xou Xpa(iye Ok) 2)
5%
Knowledge of the generating distribution allows us to define a mixture model to cluster the mutational

profiles. In our mixture model, we learn the membership probabilities ¢(Xy | k) of the mutations
for each cluster using the EM-algorithm similar to [Ko et al.} 2009} [Kuipers et al., 2018]. To adjust
for the effects of clinical covariates on the clustering, we employ the following adjusted membership
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Figure 2: Simulation benchmark for an increasing number of covariates, comparing our proposed
clustering algorithm (cov-adjust) against a Bayesian network mixture model (BNMM), k-means, and

a Bernoulli mixture model (BMM). Standard clustering algorithms that do not adjust for covariates
were applied twice: first, by including the covariates, and second, by excluding the covariates.

probability function
Vi - P(XV | Xcﬁm@)

fo/:l Vi! - P(Xv | X&QAk',H;«)

O Xy | k) = 3)

where v, = w is the weight of each cluster and (Qk, ék) are the learned Bayesian
network parameters. In this adjusted function, the probability of the mutations is conditioned on the
covariates. This has two major advantages: first, it corrects for confounding that might be induced
when neglecting the covariates, and second, it adjusts for the effects the covariates might have on
the clustering. We prove that this correction leads to a lower variance in the membership probability
function in Appendix [A]and outline the individual steps of our algorithm in Appendix

Calculating P(Xy | X¢, G, 0)) is a marginalization problem, which is NP-hard in general for
Bayesian networks [[Cooper, [1990] and typically requires approximations in high-dimensional set-
tings [Bayer et al., [2022]. However, P(Xy | X¢, G, ék) simplifies under the condition that the
covariates have only outgoing edges to the mutations due to the factorization property of Bayesian
networks [Maathuis et al.| 2018]]. This significantly reduces the computational cost and allows for an
exact calculation of the membership probability for each sample.

3 Experiments

3.1 Simulations

In order to evaluate the performance of our covariate-adjusted clustering method, we benchmarked it
against standard clustering methods over a range of different simulations, which were selected to
cover typical pan-cancer applications. To account for our biological assumptions, we simulated data
with cluster-specific probabilistic relationships and causal effects from covariates on the clustered
variables. We simulated a Bayesian network for each cluster, including covariates as nodes with
outgoing edges and constant conditional probability tables.

We compared our method against the following clustering algorithms: a Bayesian network mixture
model (BNMM), k-means and a Bernoulli Mixture Model (BMM). Since these clustering algorithms
do not adjust for covariates, we applied them once by adding the covariates to the clustered variables
and once by excluding the covariates from the analysis. Code implementing our method and repro-
ducible benchmarks are available at https://github.com/cbg-ethz/graphClust_NeurIPS.

Figure [2]shows the benchmark results over different numbers of covariates, where clustering accuracy
was assessed via the adjusted rand index (ARI). A more detailed analysis including the benchmarks
for varied cluster-specific parameters can be found in Appendix [C] In the presence of covariates, the
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most accurate clustering performance is reached by our covariate-adjusted method. This is in line with
our theoretical expectations, which removed the effect of the covariates on the cluster membership
probability while adjusting for their other effects. In general, the network-based clustering methods
have a higher clustering accuracy, which reflects that these structures allow one to model probabilistic
relationships among the variables. Figure[2]shows that k-means and BMM perform better when the
covariates are excluded from the analysis. This can be explained by the fact that these models assume
independent probability distributions and hence including the covariates only increases the variance
in the cluster assignment. In contrast, the performance of the BNMM improves when including the
covariates, since their induced probabilistic relationships allow one to model the data more accurately.

3.2 Application to Pan-Cancer Data

16 most significantly mutated genes analogous to
Kuipers et al.| [2018]], adding up to a total of 201
genes across all cancer types. In addition, we in-
cluded the clinical covariates age, sex, and cancer
type in the analysis. Since the variables age and sex
have a downstream causal effect on the mutations, we
adjusted for them in our covariate-adjusted clustering
framework. The number of clusters was determined
by calculating the Akaike information criterion (AIC)
for a range of different sizes. Figure 3: Survival probabilities of the novel
cancer subgroups that were learned using
network-based clustering, labelled A-V.
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While there is no ground truth cluster assignment in
pan-cancer data, similarity in survival outcome within
the clusters is a strong indicator of shared biological
properties. We applied the Cox proportional hazards regression model and corrected for the effects of
age, stage, and cancer type on the results since these are strong predictors for survival.

Using our method to cluster the mutational profiles based on their probabilistic relationships, we
identified 22 novel cancer subgroups for which the survival probabilities are shown in Figure
Each subgroup is associated with a distinct network, representing its subgroup-specific probabilistic
relationships. Table [I| shows the corrected likelihood ratio (LR) of the Cox proportional hazards
regression model for different clustering algorithms, where we only considered network-based
approaches due to their superior performance in the benchmark study. High corrected LRs indicate
cluster assignments that are highly predictive in survival. The lowest corrected LR is reached by
the BNMM that neglects the clinical covariates, highlighting the importance of integrating these
when clustering mutational profiles. In contrast, the cancer subgroups found with our covariate-
adjusted clustering method were most predictive in survival beyond clinical information (LR = 46.6,
p-value = 1.0 - 10719), confirming our theoretical expectations and simulation results.

Table 1: Likelihood ratio for different clustering algorithms

Method Corrected likelihood ratio  P-value

Cov-adjust 46.6 1.0-10710
BNMM (mut. & cov.) 43.8 4.0-10710
BNMM (mut.) 34.4 5.6-10707




4 Conclusions

We introduced a novel network-based clustering method that clusters mutations and covariates based
on their distinct probabilistic relationships. Exploiting causal relationships among the variables, we
showed how to adjust for the effects of clinical covariates on the mutations.

In simulations we demonstrated that our method learns more accurate cluster assignments than
standard clustering algorithms. We applied our method to a large-scale pan-cancer dataset, where we
identified novel clusters which are significantly predictive of survival beyond clinical information.
Adjusting for the clinical covariates increased the accuracy of the survival prediction, highlighting
their impact on the learned mutational networks. While our focus has been on pan-cancer data, our
proposed method may also be useful for other applications.

Our identified mutational networks could serve to uncover mechanistic insights within cancer sub-
groups and could provide biomarkers for targeted treatment.
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A Scenarios of the Covariates

We want to cluster the mutational profiles to a number of K individual clusters. We assume that
(1.) the mutational profiles Xy, can be represented by the probability distributions of K Bayesian
networks, and (2.) the cluster-dependent clinical covariates X affect mutations via directed edges
from covariates to mutations.

In the Bayesian network mixture model, we can consider the following three clustering variations:

* Covariate-adjusted clustering
* Jointly clustering mutational profiles and clinical covariates
* Clustering mutational profiles only

For the covariate-adjusted clustering, the membership probability function is defined as

V- P(Xv | Xc@m@)

S Xv | k) = — — . 4)
D k=1 VH 'P(Xv | Xc,gku@k')
For the clustering of mutational profiles and clinical covariates, it is
Vi 'P(XV,XC | gAkyék)
o(Xv, X | k) = — —— - (5)
D w1 VK 'P(Xch \ gk',ek')
For the clustering of mutational profiles, it is
Vi 'P<XV | gAmék)
o(Xv | k) = (6)

Ypmr 'P(XV | gAk/ﬁ;«)
If we assume that the probability distribution of the cluster-indepenent covariates X is constant
across different clusters, i.e. 3k,k" € {1,..., K} : P(X¢ | k) = P(X¢ | k) and if the Bayesian

network parameters (Qk, 9k) are known, then the membership probability functions defined in
Equation {f] and Equation [5 are identical:

- P(Xv. Xc | G, Or)
SN ~P<XV,XC | Qk,,e;,)
'yk-P<Xc | Gk,ék) -P(XV |X0,Gk,ék)
SV P(Xe | Genbi) - P(Xy | Xe. G 6

Vi - P(Xv | Xc,ék,ék)
- vt T 'P<Xv IXc,QAk/,GL/)

Following Blackwell-Rao theorem, this implies that the variance of Equation []is lower than the
variance in Equation [5| since the estimation of P(X¢ | Gr, ék) introduces further variance in the
estimation. In addltlon applylng our causal knowledge about the direction of the causal pathways
allows us to learn the DAGs Qk more accurately, reducing the variance in P(Xy | gk, Hk) If the
covariates are excluded from the analysis (Equation [6), they act as hidden variables in the probability
distribution of the mutations, leading to a lower accuracy in the cluster assignment.

»(Xv, X | k) =

= o(Xv | k)

We will now discuss two alternative scenarios to the assumption of a constant probability distribution
of the covariates across the clusters. First, instead of being constant, the probability distribution
of the covariates could depend on the clusters, i.e. 3k, k" € {1,...,K} : P(X¢ | k) # P(X¢ |
k). In this case, the covariates would be cluster-dependent covariates that are informative for the
cluster assignment. Thus, the covariates should be treated like cluster-dependent covariates without
adjustments. Another scenario could be that the probability distribution of the covariates depends
on a different grouping than the clusters g € {1, ...,G},i.e. P(X¢ | k,9) # P(Xc | k,¢'). In this
case, adjusting for the covariates helps to remove the bias of the other grouping in the clustering of
the mutations.



B Algorithm

As outlined in Algorithm [I] we clustered the mutational profiles and clinical covariates using a
mixture model. We used a Bernoulli mixture model to initialize the membership probabilities and
learned the DAGs Gy, with corresponding local probability distributions 6, using the BIDAG package
(GPL-3) [Suter et al., [2021]]. Due to the high computational cost of the DAG structure search, we
only relearned the DAGs Gy, for every tenth update of the membership probabilities.

Our computations were performed on one CPU core of the AMD EPYC 7H12 processor (2.6 GHz
nominal, 3.3 GHz peak) and 256 GB of DDR4 memory clocked at 3200 MHz. Code implementing
our method is available at https://github.com/cbg-ethz/graphClust_NeurIPS.

A limitation of our algorithm is that computational cost is significantly higher compared to standard
clustering algorithms such as k-means or a Bernoulli mixture model. In our simulations, the computa-
tion time averaged 4.18 minutes over 20 repetitions with the following parameters: 4 clusters, 20
variables, 5 covariates, and 4800 samples. However, the computational cost can increase significantly
for a higher number of variables. To cluster the mutational profiles from the TCGA database (22
clusters, 201 variables, 24 covariates, 8085 samples), our method took 30.32 hours to converge. By
parallelizing the structure learning step of the individual clusters, we were able to reduce the runtime
of our algorithm by a factor of 1.6 for two clusters.

Algorithm 1: Covariate-Adjusted Clustering

Input: A matrix of variables Xy and a matrjx of covariates X
Output: Cluster membership probabilities ¢(Xy/) and respective Bayesian networks (Gy., 6)

Initialize membership probabilities ¢( Xy | k)

repeat

1+ 0 . ~

Create copy of membership probabilities @previous(Xv | k) — o(Xv | k)
Learn the DAGs G, given the membership probabilities ¢( Xy | k)
repeat

1 1+1 _

M-Step: Learn the parameters ), given Gy, and ¢(Xy | k)

- ’Yk'P(XV‘X07C;k7ék)
E-Step: Update membership probability: ¢(Xy | k)

SR kP (Xv \Xcgk/,@;,)

N -
Update the cluster weights vy Vi < M
until 7 = 10;

Quantify change in membership probabilities § < >y (QNS(X v k) — g?)previous(X v | k:))2

until 4 < ¢;

C Additional Benchmark Information

To assess the performance of our covariate-adjusted algorithm over a range of different scenarios in
our benchmark, we varied the following cluster-specific parameters: number of clusters /', number
of variables Ny, number of covariates N¢, and number of samples per cluster nj. While varying
one parameter in our benchmark, all other parameters remained constant. The results of the different
benchmarks are displayed in Figure ]
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Figure 4: Simulation benchmark over a range of varied cluster-specific parameters including our
proposed cluster algorithm (cov-adjust), a Bayesian network mixture model (BNMM), k-means, and
a Bernoulli mixture model (BMM).
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