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ABSTRACT

In this paper, we present a 4D embodied world model, which takes in an image
observation and language instruction as input and predicts a 4D dynamic mesh
predicting how the scene will change as the embodied agent performs actions based
on the given instructions. In contrast to previously learned world models which
typically generate 2D videos, our 4D model provides detailed 3D information on
precise configurations and shape of objects in a scene over time. This allows us
to effectively learn accurate inverse dynamic models for an embodied agent to
execute a policy for interacting with the environment. To construct a dataset to train
such 4D world models, we first annotate large-scale existing video robotics dataset
using pretrained depth and normal prediction models to construct 3D consistent
4D models of each video. To efficiently learn generative models on this 4D data,
we propose to train a video generative model on this annotated dataset, which
jointly predicts RGB-DN (RGB, Depth, and Normal) for each video. We then
present an algorithm to directly convert generated RGB, Depth and Normal images
into high-quality dynamic 4D mesh models of the world. We illustrate how this
enables us to predict high-quality meshes consistent across both time and space
from embodied scenarios, render novel views for embodied scenes, as well as
construct policies that substantially outperform those from prior 2D and 3D models
of the world. Our code, model, and dataset will be made publicly available. Video
results can be found at our website: https://4d-worldmodel.github.io/.

1 INTRODUCTION

The ability to simulate and construct learned models of the world (Ha & Schmidhuber, 2018; Yang
et al., 2023a; Zheng et al., 2024; Xiang et al., 2024) opens a rich set of opportunities for constructing
intelligent embodied agents. Such models enable flexible policy synthesis (Du et al., 2024; Liang
et al., 2024), data simulation and generation (Yang et al., 2023a; Zhu et al., 2024), and flexible
long-horizon planning (Janner et al., 2022; Du et al., 2023; Zhang et al., 2024). However, while
the physical world is three-dimensional in nature, existing world models operate in the space of 2D
pixels. As a result, existing models fail to provide information about the precise state of world, such
as how far away a manipulated object is or what 6-DoF pose is needed to accurately manipulate an
object, which is often important to extract precise controls to execute a robot. In addition, simulated
dynamics will often not be consistent in the 3D world, such as having objects change dramatically in
size and shape over time, making it difficult to use such models for effective data driven simulation
and generation.

In this paper, we explore how we can instead learn a 4D embodied world model, which directly
simulates the dynamics of 3D world. By directly modeling the dynamics of the world in 3D, we
can more accurately simulate physical interactions, such as the grasping of an object or the opening
of drawer. Simultaneously, the detailed output space of 3D dynamics allows us to precisely extract
detailed 6-DoF actions of a robot directly from the 3D shape of the manipulator, allowing our world
model to effectively serve as a zero-shot policy.

However, the task of learning a 4D embodied world model is very challenging as the dynamics of
the world is extremely computationally expensive to train and learn, requiring models to generate
outputs in three-dimensional space and time. To efficiently represent and predict the dynamics of
the world, we propose a substantially more lightweight representation of the 4D world, consisting of
predicting a sequence of RGB, depth and normal maps of the scene. This combined representation
accurately captures the appearance, geometry, and surface of a scene while being substantially lower
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Text Input: Close Middle Drawer Predicted RGB-DN Video

Inverse Dynamic Reconstructed 4D Meshes

Frame t-1 Frame t Frame t+1

Frame t-1 Frame t Frame t+1

Figure 1: 4D Embodied World Models. Our approach gets an input image and instructions and
predicts RGB-D-N (RGB, Depth, Normal) maps. We propose a normal integration method which
constructs a high-quality 4D mesh of the interaction from these predictions.

dimensional than explicitly predicting world dynamics. Furthermore, such a representation shares
substantial similarities to existing video space models, allowing us to directly use the generative
capabilities and architecture improvements of existing video space models to effectively construct
our 4D world model.

Given this intermediate representation, we present an efficient algorithm to reconstruct accurate
4D scenes from generated maps. For each frame, we use a combination of both depth and normal
prediction to integrate a smooth 3D surface of scene. We then use optical flow between generated
frames to distinguish between background and dynamic regions in the reconstructed 3D scene across
frames, and add a loss function to reconstructions to enforce consistency across scenes over time. We
find this enables us to construct a fidelity 4D generated meshes for the scene suitable for downstream
tasks such as policy prediction for the robot (Figure 1).

A key challenge for training a 4D world model is a lack of access to existing large-scale datasets with
existing 4D annotations, or the high-quality image, depth and normal annotations needed to train our
approach. To construct such data, in principle, we can use pretrained depth and normal estimators (Ke
et al., 2024; Yang et al., 2024) to obtain such estimates from video data, but these estimators are
typically limited to predicting relative value maps from individual frames. As a result, as a scene
changes, these estimators will produce depth and normal maps with significant inconsistencies across
time. To tackle this challenge, we develop a data collection pipeline that leverages optical flow
between frames in a video to enforce consistency between generated depth and normal maps across
timesteps. In particular, we use optical flow to guide a depth and normal diffusion model across
frames in a video, which we find is sufficient to ensure consistent depth and normal predictions across
all timesteps without the need for expensive ground-truth annotations, facilitating the training of our
world model on a large scale.

Overall, our paper has the following contributions: (1) We introduce a 4D embodied world model,
and present an efficient representation of this model, in the form of RGB, depth and normal maps, and
illustrate how this representation can be used to construct a full 4D mesh of the scene. (2) We present
a pipeline to automatically extract 4D world model data from existing video datasets, leveraging an
optical flow guided depth and normal diffusion model. (3) We illustrate the efficacy of the approach
in generating consistent 4D meshes across different environments, substantially outperforming other
baselines, as well as illustrating its downstream use as an effective policy.

2 RELATED WORK

Embodied Foundation Models A flurry of recent work has focused on constructing foundation
models for general purpose agents (Yang et al., 2023b; Firoozi et al., 2023). One line of work
has focused on constructing multimodal language models that operate over images (Li et al., 2022;
Jiang et al., 2022; Raman et al., 2022; Driess et al., 2023; Wang et al., 2023; Zhang et al., 2023;
Gramopadhye & Szafir, 2022) as well as 3D inputs (Hong et al., 2023; Huang et al., 2023) and output
text describing the actions of an agent. Other works have focused on construction of vision-language-
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Figure 2: Data Collection Visualization. An illustration for the data collection pipeline.

action (VLA) models that directly output action tokens (Brohan et al., 2023; Kim et al., 2024; Zhen
et al., 2024). Both of the previous approaches aim to construct foundation model policies (over text
or continuous actions). In contrast, our work aims to instead construct a foundation 4D world model
for embodied agents, which can then used for downstream applications such as planning (Du et al.,
2023; Zhang et al., 2024) or policy synthesis (Du et al., 2024; Liang et al., 2024).

Learning World Models Learning dynamics model of the world given control inputs has been
long-standing challenge in system identification (Ljung & Glad, 1994), model-based reinforcement
learning (Sutton, 1991), and optimal control (Åström & Wittenmark, 1973; Bertsekas, 1995). A large
body of work focused on learning world models in the low dimensional state space (Ferns et al.,
2004; Achille & Soatto, 2018; Lesort et al., 2018), which while being efficient to learn, is difficult to
generalize across many environments. Other works have explored how world models may be learned
over pixel-space images (Chiappa et al., 2017; Ha & Schmidhuber, 2018; Hafner et al., 2021; Chen
et al., 2022; Micheli et al., 2022), but such models are trained on simple game environments. With
advances in generative modeling, a large flurry of recent research has focused on using video models
as foundation world models (Yang et al., 2023a; OpenAI, 2023; Zheng et al., 2024; Xiang et al., 2024;
Bruce et al., 2024; Zhou et al., 2024) but such models operate over the space of 2D pixels which does
not fully simulate the 3D world. Most similar to our work, in Zhen et al. (2024), a world model over
3D inputs is learned. In contrast to this work, our world model directly captures the dynamics of 3D
scenes using a compact representation of RGB-DN video.

3 4D EMBODIED VIDEO DATA COLLECTION

Learning 4D embodied world models requires large-scale 4D datasets, which are expensive to collect
in the real world. In this section, we present a data annotation pipeline that enables us to automatically
construct 4D datasets from existing video datasets. For an illustration of this process, see Figure 2.
We collected 87,212 episodes of (V, T ) directly from the RT-1 dataset (Brohan et al., 2022), which is
a large dataset of real-world tabletop robotic manipulation tasks involving 17 objects.

Given the original input video, V and a robot text action description T , our data collection protocol
aims to automatically obtain 4D annotations of (F ,D,N ) quadruplet structure, where F , D and N
denotes the optical flow, depth and normal information corresponding to V .

To generate the optical flow F , we employ RAFT (Teed & Deng, 2020), an efficient and high-
quality optical flow estimation method suitable for various video datasets. The optical flow between
consecutive frames is computed as F = RAFT(V). The next step involves generating the 3D
annotations: depth D and surface normal N . These 3D annotations provide richer visual context and
enhance the understanding of the 4D environment represented by V . Recent advances in monocular
depth and normal estimators, typically based on models like Vision Transformers (ViT) or Diffusion
Models, have shown strong generalization capabilities across diverse datasets.

In our approach, we leverage the diffusion model Marigold (Ke et al., 2024) to estimate Di and N i

from each video frame Vi. The frame is first encoded into a latent representation vi using a variational
autoencoder (VAE) (Kingma, 2013a; Rezende et al., 2014): vi = Encoder(Vi). At the same time, an
initial depth or normal latent map ziT is sampled from a Gaussian distribution: ziT ∼ N (0, 1). Then
we iteratively apply the learned denoiser U-Net (Ronneberger et al., 2015) ϵ to reconstruct the zi0 and
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Zi:

zit−1 = ϵ(vi, zit, t) and Zi = Decoder(zi0) where (z,Z) ∈ {(d,D), (n,N )} (1)

However, most existing approaches (Yang et al., 2024; Ke et al., 2024; Bhat et al., 2023) are primarily
designed for image-based inputs and often struggle when processing videos, resulting in unstable
predictions. To overcome this limitation, we propose a novel technique that leverages optical
flow as guidance to refine depth estimation. The key insight is that optical flow can capture how
static backgrounds and objects move within a scene. Therefore, during the inference stage of the
diffusion models, we introduce a loss function that enforces consistency between the backgrounds
of consecutive frames. Specifically, we define a static region mask for the i-th frame based on the
optical flow magnitude:Mi = (∥F i∥ < c) where c is a predefined threshold. In practice, we erode
the mask to ensure it covers a robust region. Finally, we define the loss function and integrate its
gradient into Eq. 1:

L(zit) =
∥∥Decoder

(
ϵ(vi, zit, t)

)
◦ (Mi ∩Mi−1)−Zi−1 ◦ (Mi ∩Mi−1)

∥∥2 (2)

zit−1 = ϵθ

[
vi,

(
zit − w∇zi

t
L
)
, t
]

(3)

where ◦ represents the element-wise product andMi ∩Mi−1 selects the overlapping stable regions
between two consecutive frames. The pseudocode is presented in appendix Algo. 1.

4 LEARNING 4D EMBODIED WORLD MODELS

We introduce the 4D Embodied World Model, which predicts future RGB, depth, and normal maps
based on a given input image and text, generating dynamic meshes from these outputs. We leverage a
pretrained video diffusion model as the backbone to predict this rich set of 2D geometric information.
Then, we propose an efficient method to convert the RGB-DN video into 4D meshes.

4.1 PRELIMINARIES ON VIDEO DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Rombach et al., 2022) are capable of learning the data distribution
p(x) by progressively adding noise to the data until it resembles a Gaussian distribution through a
forward process. During inference, a denoiser ϵ is trained to recover the data from this noisy state.
Latent video diffusion models (Zheng et al., 2024) utilize a Variational Autoencoder (VAE) Kingma
(2013a); Van Den Oord et al. (2017), in the latent space of the data, maintaining high-quality outputs
while more efficiently modeling the data distribution. In this section, we formulate the task of RGB
V , depth D, and normal N map video generation as a conditional denoising generation task, i.e., we
model the distribution p(v,d,n|v0, T ), where v,d,n represent the predicted future latent sequences
of RGB, depth, and normal maps, respectively. The condition v0 is a given RGB image latent, and T
denotes the instruction provided by the user.

The forward diffusion process adds Gaussian noise to the latent over T timesteps, defined as:

q(zt|zt−1) = N (zt;
√
αtzt−1, (1− αt)I) where z ∈ {v,d,n} (4)

where t ∈ {1, 2, . . . , T} denotes the diffusion step, αt is a parameter controlling the noise influence
at each step, and I is the identity matrix. In the reverse process, the model aims to recover the original
latent from the noise. A denoising network ϵθ(xt, t,v0, T ) with learning parameters θ is trained
to predict the noise added at each timestep. For simplicity, let xt = [vt,nt,dt], which denotes the
concatenation operation. The reverse process is defined as:

pθ(xt−1|xt,v0, T ) = N (xt−1;µθ(xt, t,v0, T ),Σθ(xt, t)) , (5)

where µθ(xt, t,v0, T ) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t,v0, T )
)
. (6)

The variance term Σθ(xt, t) is typically constant. Once the denoised sequence of latent z0 is obtained,
the model reconstructs the final video frames using the decoder network, mapping the latent back to
the pixel space: Z = Decoder(z0).
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During training, we randomly select a pair of samples from the dataset (V,D,N , T ) and apply Eq.4
to noise the RGB-DN data at timestep t, minimizing the following objective:

L = Ev0,T ,t∼U(T ),ϵ∼N (0,I)

[∥∥∥∥[ϵv, ϵd, ϵn]− ϵθ(xt, t,v0, T )
∥∥∥∥2

]
(7)

4.2 VIDEO DIFFUSION MODELS FOR JOINT RGB, DEPTH AND NORMAL PREDICTIONS

Training a diffusion model to model temporal RGB-DN data is a challenging task. To effectively train
RGB video models, large-scale video datasets with billions of high-quality samples are used (Zheng
et al., 2024). In contrast, even through automatic annotation, our dataset of RGB-DN data contains
only around one million data points, which is insufficient to train a world model from scratch. To
address this, we finetune the Open-Sora (Zheng et al., 2024) as our RGB-DN prediction model and
directly leverage the pretrained knowledge inside the model to effectively bootstrap our 4D model.

To implement this, we use the temporal VAE Kingma (2013a); Van Den Oord et al. (2017) in Open-
Sora (Zheng et al., 2024) to separately encode RGB, depth and normal images for each frame of
a video. We then train our video diffusion model to denoise and generate the concatenated RGB,
depth and normal images. We directly then expand Open-Sora’s input and output channels threefold
and finetune the remaining parameters of the model to denoise RGB-DN images. The resultant is
then able to directly leverage previous knowledge trained from video data, and use it to predict RGB,
depth and normal frames representing the 4D dynamics of a scene.

4.3 4D MESH RECONSTRUCTION FROM RGB-DN VIDEO

After obtaining the RGB-DN video, we further optimize the depth and reconstruct the surface to
generate a full final dynamic mesh of the scene. Similar to prior works (Ye et al., 2024; Ke et al.,
2024), our depth representation for each image is given by a relative map in the range [0, 1], and thus
cannot directly reconstruct the entire scene. While past work has sidestepped this by assuming either
a default scale for depth or by directly predicting metric depth, such reconstructions from depth are
often coarse and often cause reconstructed planes or walls to be tilted.

We instead leverage the normal maps N i and optical flow F i between frames in a video to obtain
precise depth estimates per pixel from relative depth maps Di. In particular, we use normal maps
to enforce constraints on the surface scene. We then use optical flow between frames to enforce 3D
consistency in the scene over time. Both maps in combination with the coarse depth Di allow to
optimize a refined depth map D̂ that corresponds to a consistent 4D scene.

To formalize the process and enforce consistency across frames, we can use the perspective camera
model to set constraints on the depth and surface normal. In the coordinate system of the 2D image at
frame i, a pixel position is given as u = (u, v)T ∈ Vi, and its corresponding depth scalar, normal
vector is d ∈ Di,n = (nx, ny, nz) ∈ N i. Under the assumption of a perspective camera whose focal
length is f and the principal point is (cu, cv)T , as proposed by (Durou et al., 2009), the log-depth
d̃ = log(d) should satisfy the following equations: ñz∂ud̃ + nx = 0 and ñz∂vd̃ + ny = 0 where
ñz = nx(u− cu)+ny(v− cv)+nzf . In addition, we can add, assumption that assumes all locations
are smooth surfaces (Cao et al., 2022), we can convert the above constraint to the quadratic loss
function, allowing us to find the minimized depth map:

min
d

∫∫
Ω

(ñz∂ud̃+ nx)
2 + (ñz∂ud̃+ ny)

2dudv. (8)

Following Cao et al. (2022), we can convert the above objective to an iteratively optimized loss
objective. At iteration step t, we can compute the matrix W (d̃t) and iteratively optimize for a refined
depth prediction d̃t+1:

d̃t+1 = argmin
d̃

(Ad̃− b)TW (d̃t)(Ad̃− b)
def
= argmin

D̃
L(D̃,N i), (9)

where A and b are defined by predicted normals and camera intrinsics.

The above optimization approach optimizes depth frame by frame, which lacks temporal consistency
across the dynamic scene. To address this, we compute optical flow between frames (Teed & Deng,
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2020) F = RAFT(V) and enforce consistency of depth across frames. We define the static regions of
each frame as the pixels with the magnitude of optical flow is smaller than thresholdMi = ∥F i∥ ≤ c.
We then define the dynamic parts of an image M i

d as all regions not inMi. We further define the
background of an imageMi

b as static regions that are fixed across image frames,Mi
b =Mi ∩Mi−1

Since optical flow represents the movement of objects in the 2D-pixel space, we can retrieve the
depth at any position from the previous frame to impose consistency constraints. To compute the
depth values from the previous frame at positions corresponding to the current frame, we utilize the
optical flow F i→(i−1). For each pixel (u, v) in frame i, the optical flow provides the displacement
(∆u,∆v), allowing us to find the corresponding pixel in frame i− 1 at position (u−∆u, v −∆v).
Based on this mapping, we define theDi→(i−1) such that: Di→(i−1)(u, v) = Di−1(u−∆u, v−∆v).
We then introduce the loss function Ld for dynamic regions of an image:

Ld(D̃, D̂i−1,Mi
d,F i,F i−1) =

∥∥∥D̃i ◦Mi
d −Di→(i−1) ◦Mi

d

∥∥∥2 . (10)

In addition to the loss terms L defined previously, we incorporate regularization loss Lg enforcing
that optimized depths are similar to the generated depth map Di. We define the regularization loss
Lg as:

Lg(D1,D2,M) = ∥D1 ◦M−D2 ◦M∥2 (11)
We then define a regularization term on optimized depth maps over background regions of images
λg2Lg(D̃, D̂i−1,Mi

b) enforcing that optimized depths for background regions of an image are con-
sistent between frames and a regularization term over dynamic regions of images λg1Lg(D̃,Di,M i

d)
enforcing that optimized depth of dynamic regions of an image match with predicted dynamic depths.

Our overall loss objective we optimize is given by:

argmin
D̃

L(D̃,N i) + λbLg(D̃, D̂i−1,Mi
b) + λdLd(D̃, D̂i−1,Mi

d,F i,F i−1)+ (12)

λg2Lg(D̃,Di,M i
b) + λg1Lg(D̃,Di,M i

d). (13)

We initialize the starting depth d̃0 = Di with the generated depth map, and similar to prior work (Cao
et al., 2022; Xiu et al., 2023), where we repeatedly optimize D̃t across multiple iterations (using the
previously optimized depth map D̃t−1 to define the new optimization objective).

Finally, we construct faces by connecting pixels to their nearby neighbors. For mesh denoising,
we remove isolated vertices based on mean neighbor distances and eliminate small clusters using
DBSCAN (Hahsler et al., 2019). We also discard faces with abnormal normals or high edge-length
variance, ensuring the final mesh is cleaner.

4.4 INVERSE DYNAMICS MODELS FROM 4D MESHES

After generating 4D meshes, which encapsulate both spatial and temporal information, we extract
geometric details that can significantly enhance downstream tasks in robotics. The detailed geometry
captured by these 4D meshes plays a crucial role in robotic grasping tasks.

To achieve this, we employ an inverse dynamics model built on the 4D meshes, predicting the
appropriate robot action ai based on the current state si and the predicted future state si+1.
Mathematically, this relationship is expressed as ai = ID(si, si+1). In our scenario, si represents the
scene at time step i. Specifically, we sample the meshes to obtain point clouds, which are encoded
by a PointNet (Qi et al., 2017) architecture within the inverse dynamics model to extract features.
These features, combined with the instruction text embeddings, are further processed by an MLP
to generate the final action.

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed model across several tasks. In Section 5.1,
we present our experiments on 4D mesh prediction using the RLBench (James et al., 2020) and RT-1
(Brohan et al., 2022) datasets. In Section 5.2, we conduct experiments on embodied novel view
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Figure 3: 4D Reconstruction and Video Generation. The first row shows the results of our 4D
reconstruction method from multiple views on a single frame. The following rows present the
inference results of our method given the input image and instruction, along with the reconstructed
meshes.

Method Chamfer L1

RLBench RT-1

RGB to depth 0.2570 0.3013
4D Point Cloud Diffusion 0.1086 0.2211
Ours 0.0945 0.2022

Table 1: Comparison for 4D Generation Meth-
ods on RLBench and RT-1 Datasets

Method Time Cost Consistency
Depth Normal

Open-Sora 25.6 seconds 0.09267 0.04153

Marigold-LCM 15.2 seconds 0.09453 0.04647
Guided Marigold ∼3.5 hours 0.07299 0.03822

Table 2: Comparison of Data Generation Meth-
ods

synthesis, using RLBench to assess our model’s ability to generate novel views from monocular
video inputs. In Section 5.3, we explore embodied action planning, applying our model to guide
robotic arm policies for specific tasks. Finally, in Section 5.4, we present discussions and ablation
studies that analyze the effect of different architectural and data generation choices on the quality and
consistency of our video diffusion models.

5.1 4D MESH PREDICTION

Since no prior work directly generates dynamic meshes from image and text inputs, we primarily
compare our method to a 4D point cloud diffusion model. Our baselines include two main approaches:
the first is a 16-frame RGB diffusion model, where we obtain depth from the pretrained depth estimator
Marigold (Ke et al., 2024), and lift it to 3D via camera intrinsic and extrinsic parameters. We also
modify the Point-E (Nichol et al., 2022) model by conditioning it on the mean of CLIP (Radford
et al., 2021) features extracted from both text and image inputs, outputting a point cloud of size
T × num of points, where T is set to 4 due to computational constraints. The datasets used for
evaluation include RLBench (James et al., 2020) and our annotated RT-1 (Brohan et al., 2022) dataset.
For evaluation, we use the L1 Chamfer Distance metric, which measures the distance between two
point sets. The results are shown in Table 1.

As shown in the table, our method achieves the lowest Chamfer distances on both the RLBench
(James et al., 2020) and RT-1 (Brohan et al., 2022) datasets, indicating a more accurate reconstruction
of 4D structures compared to the baselines. All methods perform better on RLBench (James et al.,
2020), which is due to it being synthetic data, with less noise and perfectly accurate depth ground
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wo/ guidance
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Figure 4: Qualitative Results of Data Generation Methods with and without Guidance, where the
black boxes highlight areas of inconsistency.

truth. The RGB-to-depth approach, while simple, suffers from larger errors due to the limitations of
depth estimation from 2D images. The 4D point cloud diffusion method performs better, particularly
on RLBench, but still lags behind our approach. Additionally, point cloud training is computationally
expensive, restricting the number of frames used. In contrast, our model, by leveraging both image
and text inputs, manages to generate more precise 3D representations, particularly in capturing
fine-grained details in dynamic scenes. We show our qualitative results in Figure 3.

5.2 EMBODIED NOVEL VIEW SYNTHESIS

Our method performs monocular video to 4D tasks by predicting depth and normal sequences and
generating meshes. We select Shape of Motion (Wang et al., 2024) as our primary baseline, a
state-of-the-art video reconstruction approach that utilizes Gaussian splatting (Kerbl et al., 2023).
Additionally, we include an RGB-to-depth approach, lifting depth to 3D and rendering point clouds
for novel views. Since real-world datasets like RT-1 lack multiview camera information, we conduct
experiments on RLBench. The input is a monocular front camera video, and we compare results
from the overhead and left shoulder cameras. Metrics include PSNR (reconstruction accuracy), SSIM
(structural similarity), LPIPS (perceptual difference), CLIP Score (semantic match) (Zhengwentai,
2023), CLIP aesthetic (visual quality) (LAION-AI, 2022), and Time costs.

Method PSNR SSIM LPIPS CLIP Score CLIP aesthetic Time costs

Shape of Motion 10.94 0.2402 0.7382 66.67 3.61 ∼2 hours
Ours 12.99 0.4262 0.6051 83.02 3.73 ∼ 1 minutes

Table 3: Performance Comparison of Novel View Synthesis Methods on RLBench Dataset

5.3 EMBODIED ACTION PLANNING

Since our world model can predict future scenes, a direct application is to guide robotic arm policies.
We compare our method with video diffusion models fine-tuned on OpenSora (Zheng et al., 2024)
and use a ResNet (He et al., 2016) in the image-based inverse dynamic model to encode both the
current and predicted frames. For simulation, we use RLBench (James et al., 2020) and collect 500
samples for each task to train our model. During inference, given an initial state, we first predict and
record all future key frames. In subsequent actions, we only query the inverse dynamic model to
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Methods Close Box Close Laptop Lift Block Lamp Off

Video Diffusion 81.0 14.3 19.0 57.1
Ours 95.2 28.6 23.8 42.9

Table 4: Evaluation of action planning on RLBench dataset

obtain the corresponding actions by current state and the predicted future state. Table 4 below reports
the accuracy across different tasks.

The results show that our method outperforms video diffusion models across the selected tasks. This is
because in most tasks, 4D meshes or point clouds can reveal the geometry of objects, providing better
spatial guidance for robotics planing, as seen in tasks like Close Box and Close Laptop. However the
performance of our model declines in tasks like Lamp Off, due to the small size of the switch, which
may not have been sampled. Overall, these results highlight the potential of combining 4D scene
prediction with inverse dynamic models to improve robotics task execution.

5.4 ABLATIONS

RGB-DN Video Diffusion Models. We first conduct ablation studies on our video generation task.
We perform experiments to explore the impact of different concatenation methods and the number of
frames on the results. For the former, we compare two settings: (1) concatenating RGB-DN images
along the width to form a larger image, or (2) using a VAE encoder (Kingma, 2013b; Van Den Oord
et al., 2017) to separately process RGB, depth, and normal maps, and concatenating them along
the channel dimension before inputting them into the diffusion model. In the latter case, we also
modify the input and output dimensions of the backbone network. Our evaluation metrics focus on
the generation/reconstruction quality of RGB, depth, and normal maps. Additionally, we introduce
an edge similarity metric to assess the consistency across RGB, depth, and normal maps at the same
timestamp. Specifically, we convert them into gray-scale images, apply Canny edge detection (Canny,
1986), and compare the edge maps using SSIM (Wang et al., 2004).

Frames Channel RGB Depth Normal Consistency
FVD ↑ SSIM ↑ PSNR ↑ AbsRel ↓ δ1 ↑ δ2 ↑ Mean ↓ Median ↓ 11.25◦ ↑ Edge-sim ↑

32 ✗ 20.12 70.23 19.32 30.22 59.21 80.28 54.22 40.87 6.41 28.27
32 ✓ 19.84 69.94 19.30 18.67 69.65 89.12 19.78 10.01 26.42 31.06
16 ✗ 25.78 71.89 21.86 16.14 76.59 91.54 26.59 15.73 24.36 19.67
16 ✓ 25.45 74.98 21.94 16.53 77.13 92.15 16.23 7.78 38.50 32.98

Table 5: Ablation study. Impact of the number of frames and channel concatenation. Frames refers
to the number of input frames used in the model. ”Channel” ✓ indicates concatenating RGB, depth,
and normal maps along the channel dimension, while × refers to concatenation along the width.

Although concatenating images along the width results in better RGB reconstruction due to better
utilization of the pretrained Open-Sora model (Zheng et al., 2024), it is less effective for depth
and normal map predictions. Moreover, the inconsistency between RGB, depth, and normal maps
prevents effective post-processing. As shown in Figure 5, concatenating along the channel dimension
yields higher-quality depth and normal maps while maintaining consistency across the three value
maps. This prevents issues such as a robotic arm appearing in different locations in the RGB and
depth/normal maps.

Data Collection. This part primarily compares the effects of guidance on depth and normal diffusion
models during data generation. As shown in Table 2, ”Marigold-LCM” refers to our use of the
Marigold Latent Consistency Model (Ke et al., 2024) for independently predicting each frame.
”Guided Marigold represents our data generation method. We compare the time cost and the static
part L1 difference for these methods. As a reference, we provide the scores from our trained
Open-Sora. Qualitative results are presented in Figure 4, where we observe that our proposed data
generation method maintains the highest consistency, though at a significantly higher time cost. This
also highlights the necessity of training a world model to rapidly predict and generate dynamic scenes.

Regularization and Consistency Loss in 4D Mesh Reconstruction. In this task, we evaluate the
impact of our newly designed loss terms, as shown in Figure 6. The first two rows demonstrate the
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Pick Apple Chnnel Extend Width Concat

Close Middle Drawer Chnnel Extend Width Concat

Figure 5: Channel concatenation improves visual quality and ensures consistency across maps.

w/
regularization

wo/
regularization

w/ consistency loss

wo/ consistency loss

Figure 6: Effect of Consistency and Regularization Losses on 4D Mesh Reconstruction. The red
boxes highlight the inconsistent regions.

effect of the consistency loss, where we render frames from the same camera view at different time
steps. The results show that the robot arm’s movements are more coherent with the consistency loss
applied. The last row highlights the role of the regularization loss. We display images of the same
frame from three different views, revealing that this loss term helps improve the geometric accuracy
of the reconstruction.

6 CONCLUSION

Our current approach has several limitations. First, while our RGB-DN representation of a 4D world
model is cheap and easy to predict, it only captures a single surface of the world. To construct a more
complete 4D world model, it may be interesting in the future to have a generative model that generates
multiple RGB-DN views of the world, which can then be integrated to form a more complete 4D
world model. In addition, we observe that generated RGB-DN maps from our 4D world model may
not be fully consistent with each. Adding additional structure in the architecture or loss function
constraints at training time to help enforce consistency is a rich direction of future work.

Overall, our work provides some first steps towards the goal of constructing 4D generative model
of the world. We believe that such world models will be increasingly powerful and useful in the
future, serving as a way to simulate the physical world and is an important step towards constructing
intelligent embodied agents. Such models would then enable us to train policies in the real world in a
fully offline manner, as well as roll out and imagine future plans in the world.
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Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. arXiv preprint arXiv:1704.02254, 2017. 3

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. arXiv preprint arXiv:2303.03378, 2023. 2

Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet,
Tianhe Yu, Pieter Abbeel, Joshua B Tenenbaum, et al. Video language planning. arXiv preprint
arXiv:2310.10625, 2023. 1, 3

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in Neural
Information Processing Systems, 36, 2024. 1, 3

Jean-Denis Durou, Jean-François Aujol, and Frédéric Courteille. Integrating the normal field of a
surface in the presence of discontinuities. In International Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition, pp. 261–273. Springer, 2009. 5

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI, volume 4, pp. 162–169, 2004. 3

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu,
Yuke Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics:
Applications, challenges, and the future. The International Journal of Robotics Research, pp.
02783649241281508, 2023. 2

Maitrey Gramopadhye and Daniel Szafir. Generating executable action plans with environmentally-
aware language models. arXiv preprint arXiv:2210.04964, 2022. 2

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf. 1, 3

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021. 3

Michael Hahsler, Matthew Piekenbrock, and Derek Doran. dbscan: Fast density-based clustering
with R. Journal of Statistical Software, 91(1):1–30, 2019. doi: 10.18637/jss.v091.i01. 6

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016. 8

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. 4

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. Advances in Neural Information
Processing Systems, 36:20482–20494, 2023. 2

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world.
arXiv preprint arXiv:2311.12871, 2023. 2

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 2020. 6, 7, 8

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022. 1

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
prompts. arXiv preprint arXiv:2210.03094, 2(3):6, 2022. 2

Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad
Schindler. Repurposing diffusion-based image generators for monocular depth estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9492–9502, 2024. 2, 3, 4, 5, 7, 9, 15

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023. 8

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024. 3

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013a. 3, 4,
5

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013b. 9

LAION-AI. Aesthetic predictor. https://github.com/LAION-AI/
aesthetic-predictor, 2022. 8

Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean-Franois Goudou, and David Filliat. State representa-
tion learning for control: An overview. Neural Networks, 108:379–392, 2018. 3

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An
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A APPENDIX

A.1 DATA COLLECTION DETAILS

For data generation, we use the Marigold (Ke et al., 2024) DDIM Scheduler, performing 100 denoising
steps in total. During the last 30 steps, optical flow guide inference was incorporated. The threshold
for background mask computation was set to 0.5, and the gradient descent weight was configured as
2000. The pseudocode for the guidance stage is as follows:

Algorithm 1 Denoising With Optical Flow Consistency

1: Parameters: w ▷ Gradient descent weight
2: Inputs:

• zit: Noisy depth/normal latent variable at timestep t

• vi: Latent encoding of the video frame Vi

• Mi,Mi−1: Static region masks for the current and previous frames
• Zi−1: Depth/normal annotation from the previous frame
• t: Current timestep in the denoising process

3: Outputs: zit−1: Noisy images at timestep t− 1

4: function DENOISINGONESTEP(zit)
5: zit: require grads← True
6: z = ϵθ(v

i, zit, t) ▷ First denoise
7: L = ||Decoder(z) ◦ (Mi ∩Mi−1)−Zi−1 ◦ (Mi ∩Mi−1)||2 ▷ By equation. 2
8: L.backward() ▷ To get the value of ∇zi

t
L

9: zit ← zit − w∇zi
t
L

10: zit−1 = ϵθ(v
i, zit, t) ▷ Second denoise

11: end function

A.2 VIDEO DIFFUSION IMPLEMENTATION DETAILS

We trained our video diffusion model using the STDiT3-XL/2 architecture, fine-tuned on OpenSora-
v1.2 (Zheng et al., 2024), employing 6 × 8 V100 GPUs. The model processes videos with 16
frames, using gradient checkpointing to optimize memory usage. For acceleration, we set a batch
size of 2, used bf16 precision, and applied the ZeRO2 (Rajbhandari et al., 2020) optimization plugin.
Additionally, we leveraged a T5 text encoder (Raffel et al., 2020) for conditioning. For sampling, we
use the rflow scheduler with logit-normal sampling across 30 steps and set a classifier-free guidance
scale of 7.0.

Training spanned 40,000 iterations with an initial learning rate of 1e-4, 1.0 gradient clipping, and a
1,000-step warmup. The optimizer incorporated Adam with epsilon set to 1e-15, and an exponential
moving average (EMA) decay of 0.99 was used to stabilize training.

A.3 IMPLEMENTATION DETAILS FOR ROBOTICS PLANING TASKS

For the RLBench training, we adopted the same architecture and methods as our video diffusion
model, with the primary difference being that we used 13 frames and fine-tuned the model on the
RT-1 dataset.

For the action prediction stage, we first filter out the background and floor from the data, focusing
only on the points of the table and the objects manipulated by the robotic arm, and then sample 1024
points from filtered the point cloud. In our inverse dynamic model, the PointNet extracts features
from this point cloud, which are then concatenated with the instruction’s language embedding and
passed into a 4-layer MLP, finally outputting the 7DoF actions.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 4D MESHES GENERATION

The parameters for the loss term in Eq. 12 are set differently for the RT-1 and RLBench datasets, as
shown in the table below:

Dataset λd λb λg1 λg2

RT-1 20 200 20 20
RLBench 20 200 2 2

Table 6: Loss Term Parameters for RT-1 and RLBench Datasets
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