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Abstract

We introduce a generic template for developing regret minimization algorithms in
the Stochastic Shortest Path (SSP) model, which achieves minimax optimal regret
as long as certain properties are ensured. The key of our analysis is a new technique
called implicit finite-horizon approximation, which approximates the SSP model
by a finite-horizon counterpart only in the analysis without explicit implementation.
Using this template, we develop two new algorithms: the first one is model-free
(the first in the literature to our knowledge) and minimax optimal under strictly
positive costs; the second one is model-based and minimax optimal even with
zero-cost state-action pairs, matching the best existing result from [Tarbouriech
et al., 2021b]. Importantly, both algorithms admit highly sparse updates, making
them computationally more efficient than all existing algorithms. Moreover, both
can be made completely parameter-free.

1 Introduction

We study the Stochastic Shortest Path (SSP) model, where an agent aims to reach a goal state
with minimum cost in a stochastic environment. SSP is well-suited for modeling many real-world
applications, such as robotic manipulation, car navigation, and others. Although it is widely studied
empirically (e.g., [Andrychowicz et al., 2017, Nasiriany et al., 2019]) and in optimal control theory
(e.g., [Bertsekas and Tsitsiklis, 1991, Bertsekas and Yu, 2013]), it has received less attention under
the regret minimization setting where a learner needs to learn the environment and improve her policy
on-the-fly through repeated interaction. Specifically, the problem proceeds in K episodes. In each
episode, the learner starts at a fixed initial state, sequentially takes action, suffers some cost, and
transits to the next state, until reaching a predefined goal state. The performance of the learner is
measured by her regret, which is the difference between her total costs and that of the best policy.

Tarbouriech et al. [2020a] develop the first regret minimization algorithm for SSP with a regret bound
of Õ(D3/2S

√
AK/cmin), where D is the diameter, S is the number of states, A is the number of

actions, and cmin is the minimum cost among all state-action pairs. Cohen et al. [2020] improve
over their results and give a near optimal regret bound of Õ(B?S

√
AK), where B? ≤ D is the

largest expected cost of the optimal policy starting from any state. Even more recently, Cohen et al.
[2021] achieve minimax regret of Õ(B?

√
SAK) through a finite-horizon reduction technique, and

concurrently Tarbouriech et al. [2021b] also propose minimax optimal and parameter-free algorithms.
Notably, all existing algorithms are model-based with space complexity Ω(S2A). Moreover, they all
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update the learner’s policy through full-planning (a term taken from [Efroni et al., 2019]), incurring a
relatively high time complexity.

In this work, we further advance the state-of-the-art by proposing a generic template for regret
minimization algorithms in SSP (Algorithm 1), which achieves minimax optimal regret as long as
some properties are ensured. By instantiating our template differently, we make the following two
key algorithmic contributions:

• In Section 4, we develop the first model-free SSP algorithm called LCB-ADVANTAGE-SSP
(Algorithm 2). Similar to most model-free reinforcement learning algorithms, LCB-ADVANTAGE-
SSP does not estimate the transition directly, enjoys a space complexity of Õ(SA), and also takes
only O (1) time to update certain statistics in each step, making it a highly efficient algorithm.
It achieves a regret bound of Õ(B?

√
SAK + B5

?S
2A/c4min), which is minimax optimal when

cmin > 0. Moreover, it can be made parameter-free without worsening the regret bound.

• In Section 5, we develop another simple model-based algorithm called SVI-SSP (Algorithm 3),
which achieves minimax regret Õ(B?

√
SAK +B?S

2A) even when cmin = 0, matching the best
existing result by Tarbouriech et al. [2021b].1 Notably, compared to their algorithm (as well as
other model-based algorithms), SVI-SSP is computationally much more efficient since it updates
each state-action pair only logarithmically many times, and each update only performs one-step
planning (again, a term taken from [Efroni et al., 2019]) as opposed to full-planning (such as value
iteration or extended value iteration); see more concrete time complexity comparisons in Section 5.
SVI-SSP can also be made parameter-free following the idea of [Tarbouriech et al., 2021b].

We include a summary of regret bounds of all existing SSP algorithms as well as more complexity
comparisons in Appendix A.

Techniques Our main technical contribution is a new analysis framework called implicit finite-
horizon approximation (Section 3), which is the key to analyze algorithms developed from our
template. The high level idea is to approximate an SSP instance by a finite-horizon counterpart.
However, the approximation only happens in the analysis, a key difference compared to [Chen et al.,
2021, Chen and Luo, 2021, Cohen et al., 2021] that explicitly implement such an approximation in
their algorithms. As a result, our method not only avoids blowing up the space complexity by a factor
of the horizon, but also allows one to derive a horizon-free regret bound (more explanation to follow).

In order to achieve the minimax optimal regret, our model-free algorithm LCB-ADVANTAGE-SSP
uses a key variance reduction idea via a reference-advantage decomposition by [Zhang et al., 2020b].
However, crucial distinctions exist. For example, we update the reference value function more
frequently instead of only one time, which helps reduce the sample complexity and improve the
lower-order term in the regret bound. We also maintain an empirical upper bound on the value
function in a doubling manner, which is the key to eventually make the algorithm parameter-free. On
the other hand, for our model-based algorithm SVI-SSP, we adopt a special Bernstein-style bonus
term and bound the learner’s total variance via recursion, taking inspiration from [Tarbouriech et al.,
2021b, Zhang et al., 2020a].

Empirical Evaluation We support our theoretical findings with experiments in Appendix H. Our
model-free algorithm demonstrates a better convergence rate compared to vanilla Q learning with
naive ε-greedy exploration. Our model-based algorithm has competitive performance compared to
other model-based algorithms, while spending the least amount of time in updates.

Related Work For a detailed comparison of existing results for the same problem, we refer the
readers to [Tarbouriech et al., 2021b, Table 1] as well as our Table 1. There are also several
works [Rosenberg and Mansour, 2020, Chen et al., 2021, Chen and Luo, 2021] that consider the even
more challenging SSP setting where the cost function is decided by an adversary and can change over
time. Apart from regret minimization, Tarbouriech et al. [2021a] study the sample complexity of SSP
with a generative model; Lim and Auer [2012] and Tarbouriech et al. [2020b] investigate exploration
problems involving multiple goal states (multi-goal SSP).

1Depending on the available prior knowledge, the final bounds achieved by SVI-SSP are slightly different,
but they all match that of EB-SSP. See [Tarbouriech et al., 2021b, Table 1] for more details.
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The special case of SSP with a fixed horizon has been studied extensively, for both stochastic costs
(e.g., [Azar et al., 2017, Jin et al., 2018, Efroni et al., 2019, Zanette and Brunskill, 2019, Zhang
et al., 2020a]) and adversarial costs (e.g., [Neu et al., 2012, Zimin and Neu, 2013, Rosenberg and
Mansour, 2019, Jin et al., 2020]). Importantly, recent works [Wang et al., 2020, Zhang et al., 2020a]
find that when the cost for each episode is at most a constant, it is in fact possible to obtain a regret
bound with only logarithmic dependency on the horizon. Tarbouriech et al. [2021b] generalize
this concept to SSP and define horizon-free regret as a bound with only logarithmic dependence
on the expected hitting time of the optimal policy starting from any state (which is bounded by
B?/cmin). They also propose the first algorithm with horizon-free regret for SSP, which is important
for arguing minimax optimality even when cmin = 0. Notably, our model-based algorithm SVI-SSP
also achieves horizon-free regret (but the model-free one does not).

2 Preliminaries

An SSP instance is defined by a Markov Decision Process (MDP) M = (S,A, sinit, g, c, P ), where
S is the state space, A is the action space, sinit ∈ S is the initial state, and g /∈ S is the goal state.
When taking action a in state s, the learner suffers a cost drawn in an i.i.d manner from an unknown
distribution with mean c(s, a) ∈ [0, 1] and support [cmin, 1] (cmin ≥ 0), and then transits to the next
state s′ ∈ S+ = S ∪ {g} with probability Ps,a(s′). We assume that the transition P and the cost
mean c are unknown to the learner, while all other parameters are known.

The learning process goes as follows: the learner interacts with the environment for K episodes. In
the k-th episode, the learner starts in initial state sinit, sequentially takes an action, suffers a cost, and
transits to the next state until reaching the goal state g. More formally, at the i-th step of the k-th
episode, the learner observes the current state ski (with sk1 = sinit), takes action aki , suffers a cost cki ,
and transits to the next state ski+1 ∼ Pski ,aki . An episode ends when the current state is g, and we
define the length of episode k as Ik, such that skIk+1 = g.

Learning Objective At a high level, the learner’s goal is to reach the goal with a small total cost.
To this end, we focus on proper policies — a (stationary and deterministic) policy π : S → A is a
mapping that assigns an action π(s) to each state s ∈ S, and it is proper if the goal is reached with
probability 1 when following π (that is, taking action π(s) whenever in state s). Given a proper policy
π, one can define the cost-to-go function V π : S → [0,∞) as V π(s) = E

[∑I
i=1 ci

∣∣∣P, π, s1 = s
]
,

where the expectation is with respect to the randomness of the cost ci incurred at state-action pair
(si, π(si)), next state si+1 ∼ Psi,π(si), and the number of steps I before reaching g. The optimal
proper policy π? is then defined as a policy such that V π

?

(s) = minπ∈Π V
π(s) for all s ∈ S , where

Π is the set of all proper policies assumed to be nonempty. The formal objective of the learner is then
to minimize her regret against π?, the difference between her total cost and that of the optimal proper
policy, defined as

RK =

K∑
k=1

Ik∑
i=1

cki −K · V ?(sinit),

where we use V ? as a shorthand for V π
?

. The minimax optimal regret is known to be Õ(B?
√
SAK),

where B? = maxs∈S V
?(s), and S = |S+| and A = |A| are the numbers of states (including the

goal state) and actions respectively [Cohen et al., 2020].

Bellman Optimality Equation For a proper policy π, the corresponding action-value function
Qπ : S × A → [0,∞) is defined as Qπ(s, a) = c(s, a) + Es′∼Ps,a [V π(s′)]. Similarly, we use Q?

as a shorthand for Qπ
?

. it is known that π? satisfies the Bellman optimality equation: V ?(s) =
mina∈AQ

?(s, a) for all s ∈ S [Bertsekas and Tsitsiklis, 1991].

Assumption on cmin Similar to many previous works, our analysis requires cmin being known and
strictly positive. When cmin is unknown or known to be 0, a simple workaround is to solve a modified
SSP instance with all observed costs clipped to ε if they are below some ε > 0, so that cmin = ε > 0.
Then the regret in this modified SSP is similar to that in the original SSP up to an additive term of
order O (εK) [Tarbouriech et al., 2020a]. Therefore, throughout the paper we assume that cmin is
known and strictly positive unless explicitly stated otherwise.
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Algorithm 1 A General Algorithmic Template for SSP
Initialize: t← 0, s1 ← sinit, Q(s, a)← 0 for all (s, a) ∈ S ×A.
for k = 1, . . . ,K do

repeat
1 Increment time step t +← 1.
2 Take action at = argminaQ(st, a), suffer cost ct, transit to and observe s′t.
3 Update Q (so that it satisfies Property 1 and Property 2).
4 if s′t 6= g then st+1 ← s′t; else st+1 ← sinit, break.

Record T ← t (that is, the total number of steps).

Other Notations For simplicity, we use CK =
∑K
k=1

∑Ik
i=1 c

k
i in the analysis to denote the total

costs suffered by the learner over K episodes. For a function X : S+ → R and a distribution P
over S+, denote by PX = ES∼P [X(S)], PX2 = ES∼P [X(S)2], and V(P,X) = VARS∼P [X(S)]
the expectation, second moment, and variance of X(S) respectively where S is drawn from P . For
a scalar x, define (x)+ = max{x, 0}, and denote by dxe2 = 2dlog2 xe and bxc2 = 2blog2 xc the
closest power of two upper and lower bounding x respectively. For an integer m, [m] denotes the set
{1, . . . ,m}. In pseudocode, x +← y is a shorthand for the increment operation x← x+ y.

3 Implicit Finite-Horizon Approximation

In this section, we introduce our main analytical technique, that is, implicitly approximating the
SSP problem with a finite-horizon counterpart. We start with a general template of our algorithms
shown in Algorithm 1. For notational convenience, we concatenate state-action-cost trajectories of all
episodes as one single sequence (st, at, ct) for t = 1, 2, . . . , T , where st ∈ S is one of the non-goal
state, at ∈ A is the action taken at st, and ct is the resulting cost incurred by the learner. Note that
the goal state g is never included in this sequence (since no action is taken there), and we also use the
notation s′t ∈ S+ to denote the next-state following (st, at), so that st+1 is simply s′t unless s′t = g
(in which case st+1 is reset to the initial state sinit); see Line 4.

The template follows a rather standard idea for many reinforcement learning algorithms: maintain an
(optimistic) estimate Q of the optimal action-value function Q?, and act greedily by taking the action
with the smallest estimate: at = argminaQ(st, a); see Line 2. The key of the analysis is often to
bound the estimation error Q?(st, at)−Q(st, at), which is relatively straightforward in a discounted
setting (where the discount factor controls the growth of the error) or a finite-horizon setting (where
the error vanishes after a fixed number of steps), but becomes highly non-trivial for SSP due to the
lack of similar structures.

A natural idea is to explicitly solve a discounted problem or a finite-horizon problem that approximates
the original SSP well enough. Unfortunately, both approaches are problematic: approximating an
undiscounted MDP by a discounted one often leads to suboptimal regret [Wei et al., 2020]; on the
other hand, while explicitly approximating SSP with a finite-horizon problem can lead to optimal
regret [Chen et al., 2021, Cohen et al., 2021], it greatly increases the space complexity of the
algorithm, and also produces non-stationary policies, which is unnatural and introduces unnecessary
complexity since the optimal policy in SSP is stationary.

Therefore, we propose to approximate the original SSP instance M with a finite-horizon counterpart
M̃ implicitly (that is, only in the analysis). We defer the formal definition of M̃ to Appendix C,
which is similar to those in [Chen et al., 2021, Cohen et al., 2021] and corresponds to interacting with
the original SSP for H steps (for some integer H) and then teleporting to the goal. All we need in the
analysis are the optimal value function V ?h and optimal action-value function Q?h of M̃ for each step
h ∈ [H], which can be defined recursively without resorting to the definition of M̃ :

Q?h(s, a) = c(s, a) + Ps,aV
?
h−1, V ?h (s) = min

a
Q?h(s, a), (1)

4



withQ?0(s, a) = 0 for all (s, a).2 Intuitively,Q?H approximatesQ? well whenH is large enough. This
is formally summarized in the lemma below, whose proof is similar to prior works (see Appendix C).
Lemma 1. For any value of H , Q?H(s, a) ≤ Q?(s, a) holds for all (s, a). For any β ∈ (0, 1), if
H ≥ 4B?

cmin
ln(2/β) + 1, then Q?(s, a) ≤ Q?H(s, a) +B?β holds for all (s, a).

In the remaining discussion, we fix a particular value of H . To carry out the regret analysis, we now
specify two general requirements of the estimate Q. Let Qt be the value of Q at the beginning of
time step t (that is, the value used in finding at). Then Qt needs to satisfy:
Property 1 (Optimism). With high probability, Qt(s, a) ≤ Q?(s, a) holds for all (s, a) and t ≥ 1.
Property 2 (Recursion). There exists a “bonus overhead” ξH > 0 and an absolute constant d > 0
such that the following holds with high probability:

T∑
t=1

(Q̊(st, at)−Qt(st, at))+ ≤ ξH +

(
1 +

d

H

) T∑
t=1

(V̊ (st)−Qt(st, at))+,

for Q̊ = Q?h and V̊ = V ?h−1 (h = 1, . . . ,H) as well as Q̊ = Q? and V̊ = V ?.3

Property 1 is standard and can usually be ensured by using a certain “bonus” term derived from
concentration equalities in the update. These bonus terms on (st, at) accumulate into some bonus
overhead in the final regret bound, which is exactly the role of ξH in Property 2. In both of our
algorithms, ξH has a leading-order term Õ(

√
B?SACK) and a lower-order term that increases in H .

Property 2 is a key property that provides a recursive form of the estimation error and allows us to
connect it to the finite-horizon approximation. This is illustrated through the following two lemmas.

Lemma 2. Property 2 implies
∑T
t=1(Q?H(st, at)−Qt(st, at))+ ≤ O (HξH).

Proof. With Q̊ = Q?H and V̊ = V ?H−1, Property 2 implies
T∑
t=1

(Q?H(st, at)−Qt(st, at))+ ≤ ξH +

(
1 +

d

H

) T∑
t=1

(V ?H−1(st)−Qt(st, at))+

≤ ξH +

(
1 +

d

H

) T∑
t=1

(Q?H−1(st, at)−Qt(st, at))+,

where in the last step we use the optimality of V ?H−1 from Eq. (1). Repeatedly applying

this argument, we eventually arrive at
∑T
t=1(Q?H(st, at) − Qt(st, at))+ ≤ H

(
1 + d

H

)H
ξH +(

1 + d
H

)H∑T
t=1(Q?0(st, at) − Qt(st, at))+ = O (HξH), where the last step uses the facts

Q?0(st, at) = 0 and
(
1 + d

H

)H ≤ ed (an absolute constant).

Lemma 3. For any β ∈ (0, 1), if H ≥ 4B?
cmin

ln(2/β) + 1, then Property 1 and Property 2 together

imply
∑T
t=1Q

?(st, at)− V ?(st) = O (βCK + ξH).

Proof. Applying Property 2 with Q̊ = Q? and V̊ = V ?, we have
∑T
t=1(Q?(st, at)−Qt(st, at))+ ≤

ξH +
(
1 + d

H

)∑T
t=1(V ?(st)−Qt(st, at))+. Now note that by Property 1, the Bellman optimality

equation V ?(st) = minaQ
?(st, a), and the fact Qt(st, at) = minaQt(st, a) (by the definition of

at), the arguments within the clipping operation (·)+ are all non-negative and thus the clipping can
be removed. Rearranging terms then gives

T∑
t=1

Q?(st, at)− V ?(st) ≤ ξH +
d

H

T∑
t=1

(V ?(st)−Qt(st, at))

≤ ξH +
d

H

T∑
t=1

(Q?(st, at)−Qt(st, at)). (optimality of V ?)

2Note that our notation is perhaps unconventional compared to most works on finite-horizon MDPs, where
Q?

h usually refers to our Q?
H−h. We make this switch since we want to highlight the dependence on H for Q?

H .
3Note that ξH might be a random variable. In fact, it often depends on CK .
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It remains to bound the last term using the finite-horizon approximation Q?H as a proxy:

T∑
t=1

(Q?(st, at)−Qt(st, at)) =

T∑
t=1

(Q?(st, at)−Q?H(st, at) +Q?H(st, at)−Qt(st, at))

= O (TB?β +HξH) ,

where the last step uses Lemma 1 and Lemma 2. Importantly, this term is finally scaled by d/H ,
which, together with the fact TB?H ≤ cminT ≤ CK , proves the claimed bound.

Readers familiar with the literature might already recognize the term
∑T
t=1Q

?(st, at) − V ?(st)
considered in Lemma 3, which is closely related to the regret. Indeed, with this lemma, we can
conclude a regret bound for our generic algorithm.

Theorem 1. For any β ∈ (0, 1), if H ≥ 4B?
cmin

ln(2/β) + 1, then Algorithm 1 ensures (with high
probability) RK = Õ

(√
B?CK +B? + βCK + ξH

)
.

Proof. We first decompose the regret as follows, which holds generally for any algorithm:

RK =

K∑
k=1

(
Ik∑
i=1

cki − V ?(sk1)

)

≤
K∑
k=1

Ik∑
i=1

(
cki − V ?(ski ) + V ?(ski+1)

)
=

T∑
t=1

(ct − V ?(st) + V ?(s′t))

=

T∑
t=1

(ct − c(st, at)) +

T∑
t=1

(V ?(s′t)− Pst,atV ?) +

T∑
t=1

(Q?(st, at)− V ?(st)). (2)

The first and the second term are the sum of a martingale difference sequence (since s′t is drawn from
Pst,at) and can be bounded by Õ

(√
CK
)

and Õ
(√
B?CK +B?

)
respectively using concentration

inequalities; see Lemma 4, Lemma 35, and Lemma 5. The third term can be bounded using Lemma 3
directly, which finishes the proof.

To get a sense of the regret bound in Theorem 1, first note that since 1/β only appears in a logarithmic
term of the required lower bound of H , one can pick β to be small enough so that the term βCK is
dominated by others. Moreover, if ξH is Õ(

√
B?SACK) plus some lower-order term ρH (which as

mentioned is the case for our algorithms), then by solving a quadratic of
√
CK , the regret bound of

Theorem 1 implies RK = Õ(B?
√
SAK + ρH), which is minimax optimal (ignoring ρH )!

Based on this analytical technique, it remains to design algorithms satisfying the two required
properties. In the following sections, we provide two such examples, leading to the first model-free
SSP algorithm and an improved model-based SSP algorithm.

4 The First Model-free Algorithm: LCB-ADVANTAGE-SSP

In this section, we present a model-free algorithm (the first in the literature) called LCB-ADVANTAGE-
SSP that falls into our generic template and satisfies the required properties. It is largely inspired
by the state-of-the-art model-free algorithm UCB-ADVANTAGE [Zhang et al., 2020b] for the finite-
horizon problem. The pseudocode is shown in Algorithm 2, with only the lines instantiating the
update rule of the Q estimates numbered. Importantly, the space complexity of this algorithm is only
O (SA) since we do not estimate the transition directly or conduct explicit finite-horizon reduction,
and the time complexity is only O (1) in each step.

Specifically, for each state-action pair (s, a), we divide the samples received when visiting (s, a)
into consecutive stages of exponentially increasing length, and only update Q(s, a) at the end of a
stage. The number of samples ej in stage j is defined through e1 = H and ej+1 = b(1 + 1/H)ejc
for some parameter H . Further define L? = {Ej}j∈N+ with Ej =

∑j
i=1 ei, which contains all the

indices indicating the end of some stage. As mentioned, the algorithm only updates Q(s, a) when the

6



Algorithm 2 LCB-ADVANTAGE-SSP
Parameters: horizon H , threshold θ?, and failure probability δ ∈ (0, 1).
Define: L? = {Ej}j∈N+ where Ej =

∑j
i=1 ei, e1 = H and ej+1 = b(1 + 1/H)ejc.

Initialize: t← 0, s1 ← sinit, B ← 1, for all (s, a), N(s, a)← 0,M(s, a)← 0.
Initialize: for all (s, a), Q(s, a)← 0, V (s)← 0, V ref(s)← V (s), Ĉ(s, a)← 0.
Initialize: for all (s, a), µref(s, a)← 0, σref(s, a)← 0, µ(s, a)← 0, σ(s, a)← 0, v(s, a)← 0.
for k = 1, . . . ,K do

repeat
Increment time step t +← 1.
Take action at = argminaQ(st, a), suffer cost ct, transit to and observe s′t.

1 Increment visitation counters: n = N(st, at)
+← 1,m = M(st, at)

+← 1.

2 Update global accumulators: µref(st, at)
+← V ref(s′t), σref(st, at)

+← V ref(s′t)
2,

Ĉ(st, at)
+← ct.

3 Update local accumulators: v(st, at)
+← V (s′t), µ(st, at)

+← V (s′t)− V ref(s′t), σ(st, at)
+←

(V (s′t)− V ref(s′t))
2.

4 if n ∈ L? then
5 Compute ι ← 256 ln6(4SAB8

?n
5/δ), cost estimator ĉ = Ĉ(st,at)

n , bonuses b′ ←

2
√

B2ι
m +

√
ĉι
n + ι

n and b←√
σref(st,at)/n− (µ

ref(st,at)/n)2

n
ι+

√
σ(st,at)/m− (µ(st,at)/m)2

m
ι+

(
4B

n
+

3B

m

)
ι+

√
ĉι

n
.

6 Q(st, at)← max
{
ĉ+ v(st,at)

m − b′, Q(st, at)
}

.

7 Q(st, at)← max
{
ĉ+ µref(st,at)

n + µ(st,at)
m − b,Q(st, at)

}
.

8 V (st)← minaQ(st, a).
9 if V (st) > B then B ← 2V (st).

10 Reset local accumulators: v(st, at)← 0, µ(st, at)← 0, σ(st, at)← 0,M(st, at)← 0.

11 if
∑
aN(st, a) is a power of two not larger than θ? then V ref(st)← V (st).

if s′t 6= g then st+1 ← s′t; else st+1 ← sinit, break.

total number of visits to (s, a) falls into the set L? (Line 4). The algorithm also maintains an estimate
V for V ?, which always satisfies V (s) = minaQ(s, a) (Line 8), and importantly another reference
value function V ref whose role and update rule are to be discussed later.

In addition, some local and global accumulators are maintained in the algorithm. Local accumulators
only store information related to the current stage. These include: M(s, a), the number of visits to
(s, a) within the current stage; v(s, a), the cumulative value of V (s′) within the current stage, where
s′ represents the next state after each visit to (s, a); and finally µ(s, a) and σ(s, a), the cumulative
values of V (s′)− V ref(s′) and its square respectively within the current stage (Line 3). These local
accumulators are reset to zero at the end of each stage (Line 10).

On the other hand, global accumulators store information related to all stages and are never reset.
These include: N(s, a), the number of visits to (s, a) from the beginning; Ĉ(s, a), total cost incurs
at (s, a) from the beginning; and µref(s, a) and σref(s, a), the cumulative value of V ref(s′) and its
square respectively from the beginning, where again s′ represents the next state after each visit to
(s, a) (Line 2).

We are now ready to describe the update rule of Q. The first update, Line 6, is intuitively based on the
equality Q?(s, a) = c(s, a) + Ps,aV

? and uses v(s, a)/M(s, a) as an estimate for Ps,aV ? together
with a (negative) bonus b′ derived from Azuma’s inequality (Line 5). As mentioned, the bonus is
necessary to ensure Property 1 (optimism) so that Q is always a lower confidence bound of Q? (hence
the name “LCB”). Note that this update only uses data from the current stage (roughly 1/H fraction
of the entire data collected so far), which leads to an extra

√
H factor in the regret.

7



To address this issue, Zhang et al. [2020b] introduce a variance reduction technique via a reference-
advantage decomposition, which we borrow here leading to the second update rule in Line 7. This
is intuitively based on the decomposition Ps,aV ? = Ps,aV

ref + Ps,a(V ? − V ref), where Ps,aV ref is
approximated by µref(s, a)/N(s, a) and Ps,a(V ? − V ref) is approximated by µ(s, a)/M(s, a). In
addition, a “variance-aware” bonus term b is applied, which is derived from a tighter Freedman’s
inequality (Line 5). The reference function V ref is some snapshot of the past value of V , and is
guaranteed to be O(cmin) close to V ? on a particular state as long as the number of visits to this state
exceeds some threshold θ? = Õ

(
B2
?H

3SA/c2min

)
(Line 11). Overall, this second update rule not

only removes the extra
√
H factor as in [Zhang et al., 2020b], but also turns some terms of order

Õ(
√
T ) into Õ(

√
CK) in our context, which is important for obtaining the optimal regret.

Despite the similarity, we emphasize several key differences between our algorithm and that of
[Zhang et al., 2020b]. First, [Zhang et al., 2020b] maintains a different Q estimate for each step of
an episode (which is natural for a finite-horizon problem), while we only maintain one Q estimate
(which is natural for SSP). Second, we update the reference function V ref(s) whenever the number of
visits to s doubles (while still below the threshold θ?; see Line 11), instead of only updating it once
as in [Zhang et al., 2020b]. We show in Lemma 8 that this helps reduce the sample complexity and
leads to a smaller lower-order term in the regret. Third, since there is no apriori known upper bound
on V (unlike the finite-horizon setting), we maintain an empirical upper bound B (in a doubling
manner) such that V (s) ≤ B ≤ 2B? (Line 9), which is further used in computing the bonus terms b
and b′. This is important for eventually developing a parameter-free algorithm.

In Appendix D, we show that Algorithm 2 indeed satisfies the two required properties.

Theorem 2. Let H = d 4B?
cmin

ln( 2
β ) + 1e2 for β = cmin

2B2
?SAK

and θ? = Õ
(
B2
?H

3SA

c2min

)
be de-

fined in Lemma 8, then Algorithm 2 satisfies Property 1 and Property 2 with d = 3 and
ξH = Õ

(√
B?SACK +

B2
?H

3S2A
cmin

)
.

Proof Sketch. The proof of Property 1 largely follows the analysis of [Zhang et al., 2020b, Proposition
4] for the designed bonuses. To prove Property 2, similarly to [Zhang et al., 2020b] we can show:

T∑
t=1

(Q̊(st, at)−Qt(st, at))+ . ξH +

T∑
t=1

1

mt

mt∑
i=1

Psľt,i ,aľt,i
(V̊ − Vľt,i)+,

where mt is the value of m used in computing Qt(st, at), and ľt,i is the i-th time step the agent visits
(st, at) among thosemt steps. Now it suffices to show that

∑T
t=1

1
mt

∑mt
i=1 Psľt,i ,aľt,i

(V̊ −Vľt,i)+ .

(1 + 3
H )
∑T
t=1(V̊ (st)− Vt(st))+, which is proven in Lemma 13.

As a direct corollary of Theorem 1, we arrive at the following regret guarantee.

Theorem 3. With the same parameters as in Theorem 2, with probability at least 1−60δ, Algorithm 2
ensures RK = Õ

(
B?
√
SAK +

B5
?S

2A

c4min

)
.

We make several remarks on our results. First, while Algorithm 2 requires setting the two parameters
H and θ? in terms of B? to obtain the claimed regret bound, one can in fact achieve the exact same
bound without knowing B? by slightly changing the algorithm. The high level idea is to first apply
the doubling trick from Tarbouriech et al. [2021b] to determine an upper bound on B?, then try
logarithmically many different values of H and θ? simultaneously, each leading to a different update
rule for Q and V ref. This only increases the time and space complexity by a logarithmic factor,
without hurting the regret (up to log factors). Details are deferred to Section D.5.

Second, as mentioned in Section 2, when cmin is unknown or cmin = 0, one can clip all observed
costs to ε if they are below ε > 0, which introduces an additive regret term of order O (εK). By
picking ε to be of order K−1/5, our bound becomes Õ

(
K4/5

)
ignoring other parameters. Although

most existing works suffer the same issue, this is certainly undesirable, and our second algorithm to
be introduced in the next section completely avoids this issue by having only logarithmic dependence
on 1/cmin.
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Algorithm 3 SVI-SSP
Parameters: horizon H , value function upper bound B, and failure probability δ ∈ (0, 1).
Define: L = {Ej}j∈N+ , where Ej =

∑j
i=1 ei, ej = bẽjc, and ẽ1 = 1, ẽj+1 = ẽj + 1

H ej .
Initialize: t← 0, s1 ← sinit.
Initialize: for all (s, a, s′), n(s, a, s′)← 0, n(s, a)← 0, Q(s, a)← 0, V (s)← 0, Ĉ(s, a)← 0.
for k = 1, . . . ,K do

repeat
Increment time step t +← 1.
Take action at = argminaQ(st, a), suffer cost ct, transit to and observe s′t.

1 Update accumulators: n = n(st, at)
+← 1, n(st, at, s

′
t)

+← 1, Ĉ(st, at)
+← ct.

2 if n ∈ L then
3 Update empirical transition: P̄st,at(s

′)← n(st,at,s
′)

n for all s′.

4 Compute ι ← 20 ln 2SAn
δ , cost estimator ĉ ← Ĉ(s,a)

n , and bonus b ←

max
{

7

√
V(P̄st,at ,V )ι

n , 49Bι
n

}
+
√

ĉι
n .

5 Q(st, at)← max{ĉ+ P̄st,atV − b,Q(st, at)}.
6 V (st)← argminaQ(st, a).

if s′t 6= g then st+1 ← s′t; else st+1 ← sinit, break.

Finally, we point out that, just as in the finite-horizon case, the variance reduction technique is crucial
for obtaining the minimax optimal regret. For example, if one instead uses an update rule similar
to the (suboptimal) Q-learning algorithm of [Jin et al., 2018], then this is essentially equivalent to
removing the second update (Line 7) of our algorithm. While this still satisfies Property 2, the bonus
overhead ξH would be

√
H times larger, resulting in a suboptimal leading term in the regret.

5 An Optimal and Efficient Model-based Algorithm: SVI-SSP

In this section, we propose a simple model-based algorithm called SVI-SSP (Sparse Value Iteration
for SSP) following our template, which not only achieves the minimax optimal regret even when
cmin = 0, matching the state-of-the-art by a recent work [Tarbouriech et al., 2021b], but also admits
highly sparse updates, making it more efficient than all existing model-based algorithms. The
pseudocode is in Algorithm 3, again with only the lines instantiating the update rule for Q numbered.

Similar to Algorithm 2, SVI-SSP divides samples of each (s, a) into consecutive stages of (roughly)
exponentially increasing length, and only update Q(s, a) at the end of a stage (Line 2). However,
the number of samples ej in stage j is defined slightly differently through ej = bẽjc, ẽ1 = 1, and
ẽj+1 = ẽj + 1

H ej for some parameter H . In the long run, this is almost the same as the scheme used
in Algorithm 2, but importantly, it forces more frequent updates at the beginning — for example, one
can verify that e1 = · · · = eH = 1, meaning that Q(s, a) is updated every time (s, a) is visited for
the first H visits. This slight difference turns out to be important to ensure that the lower-order term
in the regret has no poly(H) dependence, as shown in Lemma 16 and further discussed in Remark 3.
More intuition on the design of this update scheme is provided in Section E.1.

The update rule for Q is very simple (Line 5). It is again based on the equality Q?(s, a) = c(s, a) +
Ps,aV

?, but this time uses P̄s,aV − b as an approximation for Ps,aV ?, where P̄s,a is the empirical
transition directly calculated from two counters n(s, a) and n(s, a, s′) (number of visits to (s, a) and
(s, a, s′) respectively), V is such that V (s) = minaQ(s, a), and b is a special bonus term (Line 4)
adopted from [Tarbouriech et al., 2021b, Zhang et al., 2020a] which ensures that Q is an optimistic
estimate of Q? and also helps remove poly(H) dependence in the regret.

SVI-SSP exhibits a unique structure compared to existing algorithms. In each update, it modifies
only one entry of Q (similarly to model-free algorithms), while other model-based algorithms such
as [Tarbouriech et al., 2021b] perform value iteration for every entry ofQ repeatedly until convergence
(concrete time complexity comparisons to follow). We emphasize that our implicit finite-horizon
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analysis is indeed the key to enable us to derive a regret guarantee for such a sparse value iteration
algorithm. Specifically, in Appendix E, we show that SVI-SSP satisfies the two required properties.
Theorem 4. If B ≥ B? and H = d 4B

cmin
ln( 2

β ) + 1e2 for β = cmin

2B2SAK , then Algorithm 3 satisfies

Property 1 and Property 2 with d = 1 and ξH = Õ(
√
B?SACK + BS2A + βCK), where the

dependence on H in ξH is hidden in logarithmic terms.

Proof Sketch. The proof of Property 1 largely follows the analysis of [Tarbouriech et al., 2021b,
Lemma 15]. To prove Property 2, we first show

∑T
t=1(Q̊(st, at)−Qt(st, at))+ . ξH+

∑T
t=1 Pt(V̊−

Vlt)+, where lt is the last time step Q(st, at) is updated. Then, the remaining main steps are shown
below with all details deferred to the corresponding key lemmas:

T∑
t=1

Pt(V̊ − Vlt)+ .

(
1 +

1

H

) T∑
t=1

Pt(V̊ − Vt)+ (Lemma 16)

.

(
1 +

1

H

) T∑
t=1

(V̊ (st)− Vt(st))+ +

(
1 +

1

H

) T∑
t=1

(Pt − Is′t)(V̊ − Vt)+

.

(
1 +

1

H

) T∑
t=1

(V̊ (st)− Vt(st))+ + ξH , (Lemma 22 and Lemma 21)

which completes the proof.

Again, as a direct corollary of Theorem 1, we arrive at the following regret guarantee.
Theorem 5. With the same parameters as in Theorem 4, with probability at least 1−12δ, Algorithm 3
ensures RK = Õ(B?

√
SAK +BS2A).

Setting B = B?, our bound becomes Õ(B?
√
SAK + B?S

2A), which is minimax optimal even
when cmin is unknown or cmin = 0 (this is because the dependence on 1/cmin is only logarithmic,
and one can clip all observed costs to ε if they are below ε = 1/K in this case without introducing
poly(K) overhead to the regret). When B? is unknown, we can use the same doubling trick from Tar-
bouriech et al. [2021b] to obtain almost the same bound (with only the lower-order term increased to
Õ
(
B3
?S

3A
)
); see Section E.5 for details.4

Comparison with EB-SSP [Tarbouriech et al., 2021b] Our regret bounds match exactly the state-
of-the-art by Tarbouriech et al. [2021b]. Thanks to the sparse update, however, SVI-SSP has a much
better time complexity. Specifically, for SVI-SSP, each (s, a) is updated at most Õ(H) = Õ(B?/cmin)

times (Lemma 16), and each update takes O(S) time, leading to total complexity Õ(B?S
2A/cmin).

On the other hand, for EB-SSP, although each (s, a) only causes Õ(1) updates, each update runs
value iteration on all entries of Q until convergence, which takes Õ(B

2
?S

2
/c2min) iterations (see their

Appendix C) and leads to total complexity Õ(B
2
?S

5A/c2min), much larger than ours.

Comparison with ULCVI [Cohen et al., 2021] Another recent work by Cohen et al. [2021] using
explicit finite-horizon approximation also achieves minimax regret but requires the knowledge of
some hitting time of the optimal policy. Without this knowledge, their bound has a large 1/c4min
dependence in the lower-order term just as our model-free algorithm. Our results in this section
show that implicit finite-horizon approximation has advantage over explicit approximation apart from
reducing space complexity: the former does not necessarily introduce poly(H) dependence even for
the lower-order term, while the latter does under the current analysis.
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