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ABSTRACT

Many commonly-used detection frameworks aim to handle the multi-scale object
detection problem. The input image is always encoded to multi-scale features and
objects grouped by scale range are assigned to the corresponding features. How-
ever, the design of multi-scale feature production is quite hand-crafted or partially
automatic. In this paper, we show that more possible architectures of encoder
network and different strategies of feature utilization can lead to superior perfor-
mance. Specifically, we propose an efficient and effective multi-scale network
architecture search method (MSNAS) to improve multi-scale object detection by
jointly optimizing network stride search of the encoder and appropriate feature
selection for detection heads. We demonstrate the effectiveness of the method
on COCO dataset and obtain a remarkable performance gain with respect to the
original Feature Pyramid Networks.

1 INTRODUCTION

Recognizing and localizing objects at vastly different scales is a fundamental challenge in object
detection. Detection performance for objects with different scales is highly related to features with
different properties such as feature resolution, receptive fields, and feature fusion ways. The key to
solving the multi-scale problem in object detection is how to build a multi-scale network that has
proper high-level semantic features for objects with different scales.

A recent work in object detection Feature Pyramid Networks(FPN) (Lin et al., 2017) has achieved re-
markable success in multi-scale feature design and has been commonly used by many modern object
detectors (He et al., 2017; Lin et al., 2020; Lu et al., 2019). FPN extracts multi-scale intermediate
features from the encoder network and assigns objects grouped by scales to corresponding features
according to a heuristic rule. Another prevalent detection framework, SSD (Liu et al., 2016), con-
ducts feature generation by a lighter encoder network without upsampling operators. The basic idea
to deal with the multi-scale detection problem can be summarized as below. Given the input image,
a series of feature maps with the various resolution are generated to detect objects grouped by scale
range. We note it as multi-scale feature production. In FPN and its variants, the multi-scale feature
production is split into two steps, feature generation and feature utilization. In terms of feature gen-
eration, an encoder network composed of blocks provides features with different scales. And the
strategy of feature utilization determines the rule of assigning objects to feature maps. These two
steps are closely related to each other.

Although FPN has achieved promising results on multi-scale object detection tasks, the production
of multi-scale features is quite hand-crafted and relies heavily on the experiences of human experts.
More specifically, network architectures of FPN are based on a downsample-upsample architecture
which may not be effective enough. By changing the downsampling and upsampling operation’s
positions and numbers, we could obtain many other candidates to generate different multi-scale
features. Also, the predefined rule of feature utilization is very empirical and other alternatives may
lead to better performance. Therefore we wonder: Can we find network architectures that can build
better semantic feature representation for multiple scales? The answer is yes.

Recent advances in neural architecture search have shown promising results compared with hand-
crafted architecture by human experts (Zoph et al., 2018; Liu et al., 2019b; Cai et al., 2019; Guo
et al., 2019). Several works have also focused on neural architecture search in object detection
tasks (Chen et al., 2019; Ghiasi et al., 2019; Du et al., 2019), but generating and utilizing multi-scale
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Figure 1: Architecture of ResNet18-FPN and the searched network of MSNAS-R18. MSNAS-R18
has different stride values of blocks in the encoding network and a more flexible feature utilization
strategy. For simplification, P6 of FPN is not included in the figure and only three detection heads
are presented.

features are still not well explored. DetNAS (Chen et al., 2019) adopts the method mainly designed
on image classification to search the operations of backbone networks in object detectors. NAS-
FPN (Ghiasi et al., 2019) focuses on searching for better feature-fusion connections in the neck
part of FPN. NAS-FPN doesn’t optimize the whole encoder network and still relies on predefined
backbone architecture. Recently SpineNet (Du et al., 2019) proposes a search method with scale-
permuted features and cross-scale connections by reinforcement learning, but the search cost is quite
large. All these previous works focus on designing better neural network architectures to generate
better features given a fixed feature selection strategy. However, they fail to conduct a complete
flexible multi-scale feature production strategy.

In this paper, we propose a new method to take into account of both aspects and build detection
networks with the strong and proper multi-scale feature production strategy by neural architecture
search. For feature generation, we put forward a network stride search method to generate multiple
feature representations for different scales. Different from the scale-decreasing-increasing archi-
tecture of FPN, the scale of our networks can decrease or increase at each block, as illustrated in
Figure 1. By stride search for each block, we could significantly explore a wide range of possible
feature generation designs of multi-resolution networks. Most backbones of object detectors are
originally designed on image classification without multi-scale problems. However, stride configu-
ration in the encoder network would be optimized in the context of the multi-scale task. Moreover,
more complex cross-scale feature fusions might appear according to more complex internal scale
changes. For feature utilization, we change the previous one-to-one mapping strategy into a more
flexible feature selection. Since each group with objects of the same scale range owns one detection
head, feature utilization is implemented by selecting proper features for detection heads. Objects
of different scale ranges might be assigned to the same feature map. It is not possible in previous
methods, as shown in Figure 1(b).

By jointly optimizing feature generation and utilization of multi-scale features, we search for flexible
but complete multi-scale feature production strategies. Extensive experiments demonstrate complete
multi-scale feature production search is critical to building strong and proper semantic features for
object detection with different scales. On challenging COCO dataset (Lin et al., 2014), our method
obtains a 2.6%, 1.5%, 1.2% mAP improvement with similar FLOPs as ResNet18-FPN, ResNet34-
FPN, ResNet50-FPN.

2 RELATED WORK

Neural Architecture Search Neural Architecture Search aims to design better network architec-
tures automatically. RL-based methods (Zoph et al., 2018; Zoph & Le, 2017) have achieved great
success despite a huge computation cost. In differentiable algorithms (Liu et al., 2019b; Cai et al.,
2019), architecture parameters are employed and operators in the search space are considered as
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Figure 2: Figure (a) shows the basic architecture of stride selection in the super-net for feature
generation. The path represents one of its sub-architectures. The colored nodes are corresponding
output features of the encoder network. Figure (b) illustrates the feature utilization search. The
formula in Figure (b) represents the rule to assign RoIs to multi-scale features in FPN. We use
different ranges of k to distinguish different object groups as well as their detection heads. The solid
lines show an example of feature utilization strategies. The dotted lines imply each detection head
can select any of the output features.

the weighted sum of candidate operators. There exist difficulties to deal with operators with dif-
ferent strides. Super-nets, acting as the collection of weights shared by all the sub-architectures,
and evolutionary search are involved in one-shot NAS (Guo et al., 2019; Bender et al., 2018). But
it’s difficult to ensure strong correlations between one-shot and stand-alone performances of the
sub-architectures.

Multi-scale Object Detection SSD (Liu et al., 2016) uses multi-scale features generated by different
stages of the backbone network to detect objects of different scales. Feature pyramid architectures
are utilized in FPN (Lin et al., 2017) and RetinaNet (Lin et al., 2020) to obtain multi-scale features.
SNIP (Singh & Davis, 2018) includes the image pyramid architecture to deal with multi-scale de-
tection. Frameworks with multi-scale features are prevalent as objects of different scales appear in
one image.

Neural Architecture Search on Object Detection DetNAS (Chen et al., 2019), NAS-FCOS (Wang
et al., 2019) and Auto-FPN (Xu et al., 2019) focus on the architecture of the top-down pathway and
feature fusion. SM-NAS (Yao et al., 2019) and CR-NAS (Liang et al., 2020) try to adjust the compu-
tation occupied by different parts of detectors. Also, there are several works aiming to improve FPN
using NAS. NAS-FPN (Ghiasi et al., 2019) improves detection performance by searching for better
connections within the feature pyramid network. It is limited without modification to the overall
encoder architecture. And it fails to take the multi-scale feature utilization into account. Efficient-
Det (Tan et al., 2019) and Auto-FPN (Xu et al., 2019) search better feature fusion for FPN with
differentiable methods. Other relative works like Liu et al. (2019a) conduct similar modifications.
Recently, SpineNet (Du et al., 2019) proposes a backbone search method with scale-permuted fea-
tures and cross-scale connections by reinforcement learning. Our work has several major differences
from it. First, the search space of MSNAS is designed that each operator in the network can down-
sample or upsample instead of permutation, which builds a much larger search space than SpineNet.
Second, the complete multi-scale feature production is considered in our work, while SpineNet only
focuses on the architecture of the encoder network. Lastly, our method is based on the one-shot
search method instead of reinforcement learning in SpineNet. Our method is much more efficient
and requires much less computation cost than SpineNet.

3 METHOD

We start by discussing multi-scale feature production for the object detection network in Section 3.1.
In Section 3.2 we will introduce how to build the search space and search proper stride in detection
networks to obtain better multi-scale features. In Section 3.3, how to search the appropriate strategy
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of feature utilization is presented. Finally, details about super-net training and search strategy are
described in Section 3.4.

3.1 FEATURE PRODUCTION FOR DETECTION NETWORK

In this section, we’ll discuss the production of multi-scale features and define the problem in detail.
As noted above, the basic idea of handling the multi-scale detection problem can be summarized as
feature production. In feature production, the input image is first encoded into a series of feature
maps with various resolutions. Then the objects are detected based on the features according to
their scales. One method is to produce the feature for each scale range by one neural network,
like the featurized image pyramid discussed in Lin et al. (2017). Variants include utilizing the
image pyramid, like SNIP (Singh & Davis, 2018). However, we employ only one neural network
and obtain multi-scale features from intermediate features of the network. Because deep neural
networks are experts in encoding the image into features. And they are considered to be able to
encode information of different scales into features with different resolutions. Then we face the
problem of how to utilize these features since there are N features available for K object groups.
Therefore, it is reasonable to split feature production into feature generation and feature utilization.
To be more specific, the problem of multi-scale feature production can be defined as Equation 1.
When we divide the problem into feature generation and feature utilization, as in Equation 2 and
Equation 3, φ is approximated by g ◦ f .

φ : R3×W×H → {RHi×Wi×Hi}K (1)

f : R3×W×H → {RHi×Wi×Hi}N (2)

g : {RHi×Wi×Hi}N → {RHi×Wi×Hi}K (3)
And it is likely that only optimizing feature generation, as previous works do, is not optimal. So
instead of optimizing feature generation for all the feature utilization strategies, we jointly optimize
feature generation and utilization as a whole.

3.2 FEATURE GENERATION

Resolution of feature maps in one network changes with downsampling or upsampling operators.
The network architectures of FPN follow the downsampling-upsampling style, as Figure 1(a) shows.
By encouraging a more flexible design of the scale-changing operation’s positions and numbers, we
could obtain many more promising candidates to generate better multi-scale features. We implement
that by searching the stride of each block in the network.

Search space By deconstructing and generalizing the prevalent feature pyramid architecture, the
basic search space is built as a stride-variable straight structure. A super-net of MSNAS with the
depth of N consists of N mixed-blocks, MB1,MB2, ...,MBN . For each mixed-block, three possi-
ble strides are provided, i.e. 0.5, 1, and 2. The block whose stride equals to 0.5 is implemented as an
upsampling block with an interpolation operator followed by a convolution to double the width and
height of the feature map. Blocks that don’t change the resolution of the feature map are referred to
as normal blocks. The resolution of the feature output by one mixed-block could be twice, half or the
same as the input feature, as illustrated in Figure 2(a). Considering operators with different strides
within a mixed-block and the variation of sizes output from different operators in one mixed-block,
the super-net is designed as a path-wise structure like Guo et al. (2019). One path in the super-net is
treated as valid if none of the blocks output feature larger than a quarter or smaller than 1/64 of the
input image. Invalid paths are removed either in the training process of super-net or the sampling
during the evolutionary search.

Lateral connections Lateral connections are built according to current sub-architecture, as Fig-
ure 1(b) shows. One additional 1×1 lateral convolution attached after every mix-block is available
for latter cross-block connections. In scale-decreasing architectures, blocks can be grouped by res-
olution of output features. Each group is notated as one stage. Similarly, we refer stage to a group
of adjacent blocks with the same output resolution, e.g. one downsampling or upsampling block
and following normal blocks. The feature map of the last mix-block at one stage is merged with the
lateral feature by element-wise addition as Equation 4-Equation 6 shows.

xi =MBi(xi−1) + lati (4)
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lati =

{
LateralConvri(xri), if (stridei+1 6= 1) or (i = N − 1)

0, otherwise (5)

where ri = max ({k | (
∏

k<j≤i

stridej = 1) and (stridek+1 6= 1)}) (6)

where lati means the lateral connection of block i to combine with. If block i is the last block of
a stage or the end of the encoder network as described in Equation5, lati is generated by lateral
convolution LateralConvri. Among blocks with output feature of the same resolution as block i,
block ri is the nearest one at a different stage. It can be regarded as an extensive version of lateral
connections in the original FPN structure.

3.3 FEATURE UTILIZATION

In most multi-scale detection frameworks, objects are assigned to feature maps according to their
scales given a predefined strategy. In this section, we will discuss how to build the search space of
feature utilization with respect to the feature generation network. Basically, objects are split into
G groups and there exists one detection head for each group. So feature utilization strategy could
be simplified by selecting the resolution of feature maps from generated multi-scale features for
each detection head. Figure 2(b) shows one example of feature utilization. Three feature maps of
different resolutions are available. In this case, objects in various scale ranges might be assigned to
the same feature map. This is very different from previous predefined strategies. The dotted lines
represent a possibility of connecting to features of any resolution provided by the encoder network.

When searching for feature utilization, the exploration to obtain better features of object groups is
implemented within a lessened search space. For convenience, several constraints are designed for
more efficient search, as Equation 7 shows.

si ≤ si+1 ∀0 ≤ i < G
min s ≤ 8
max s ≥ 8

min s 6= max s
(7)

Let s be an array with length of G. G equals to the number of object groups as described above. The
ith item in s, noted as si, represents the selected size with respect to the input image of the feature for
the corresponding object group. For example, s = (4, 8, 16, 32, 64) is the configuration counterpart
of FPN. s is assumed as a monotonic sequential based on insights to assign multi-scale objects. That
is to say, smaller objects are considered to be assigned to finer-resolution features, while larger ones
are more compatible with coarser ones. Besides, the degraded pyramid structures are excluded in
the super-net. We expect to focus more on hierarchical architectures and avoid extreme memory
consumption of some special architectures.

3.4 SUPER-NET TRAINING AND SEARCH STRATEGY

It’s difficult to combine features with different resolutions by element-wise addition, so one-shot
based search strategies show great compatibility with our search space. During training the super-
net, one valid path, fulfilling all the requirements in Section 3.2 and Section 3.3, is randomly sam-
pled to optimize weights in the super-net. Inspired by Zhang et al. (2020), we treat the super-net
as a good pre-trained model. A better rank could be obtained within a few iterations of individual
fine-tuning, although the primitive weights in the super-net don’t perform well in terms of ranking
random samples. Fine-tuning for each architecture individually for a few iterations not only mod-
ulates the globally-optimized shared weights towards more personalized weights but also modifies
the statistics of batch normalization operators. And the additional computation cost is marginal in
the entire pipeline.

Evolutionary search is adopted after the super-net training as Algorithm 1 shows. The function
GetV alidRandomSample(n) returns n valid random samples as described in the last paragraph.
The evolution process starts from a population with size P . Variation operations are performed on
both the encoder and stride of heads’ selected features. In Algorithm 1, CrossoverEncoder means
doing crossover concerning the stride values in the encoder network andCrossoverFeatureStride
means doing a crossover concerning the selected stride values of utilization. MutationEncoder
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and MutationFeatureStride have similar meanings about doing mutation. Given that the set
of valid children within computation constraints is not continuous with respect to crossover and
mutation, not enough children could be generated in some iterations and the search process would
terminate at a local optimum of the search space. Like Liu et al. (2020), a random set of new
children from R attempts of valid samples with various computations are appended as the proposals
of population. In this way, both exploitation and exploration in the search space are encouraged to
be conducted.

Algorithm 1: Evolution Process
Input: population size P , total evolution iteration T , max variation attempts M , attempts of

random children R, Constraints C, return top samples k
Output: the top architectures with the best one-shot performances that meet both the validity

requirements and computation constraints
1 pop0 := GetV alidRandomSample(P );
2 for i = 1 : T do
3 popi := ∅;

// Generate children by crossover and mutation
4 j := 0;
5 while j < M and |popi| ≤ P do
6 children := CrossoverEncoder(popi−1) ∪MutationEncoder(popi−1) ∪

CrossoverFeatureStride(popi−1) ∪MutationFeatureStride(popi−1);
children := Select(children,C);

7 popi := popi ∪ children;
8 j := j + 1;
9 end

10 // Add random children
11 random_children := GetV alidRandomSample(R);
12 random_children := Select(random_children,C);
13 popi := popi ∪ random_children;
14 popi := Topk(popi ∪ popi−1, P );
15 end
16 return Topk(popT , k)

4 EXPERIMENTS

Experiments are presented in the following sections. Section 4.1 describes the implementation de-
tails. Section 4.2 shows the main results of MSNAS along with their FPN baselines. Ablation
experiments are conducted and discussed in Section 4.3. Finally, the performance of MSNAS and
comparison with other methods are included in Section 4.4.

4.1 IMPLEMENTATION DETAILS

Dataset COCO (Lin et al., 2014) is one of the commonly used dataset for object detection and
instance segmentation. It contains a training set with around 118K images, a validation set with
around 5K images, and a test-dev set with about 20k images. The annotations cover 80 categories
of common objects.

Super-net training details We train our super-net and retrain the best architectures in the same
settings. An input image is resized so that the shorter side is no more than 800 and the longer side
is less than 1333, then both sides will be fulfilled by padding to be divided by 64. The models are
trained from scratch for 4x-long time with a batch size of 32 images on 16 GPUs. The learning rate
is initialized as 0.00125 and increases to 0.04 after a warm-up epoch. Then it is divided by 10 at the
42nd and 47th epoch. The weight decay is set to 1e-4 and the momentum is 0.9. Each architecture
sample is fine-tuned for several iterations(100 iterations) with a batch size of 32 at a learning rate of
0.004 before testing and evaluation. The evolutionary search process is repeated for 20 iterations.
The population size is 50 and 50 children are generated to update the population in each iteration.
Only those with computation within a 1% gap of the target FLOPs will be considered as valid
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Table 1: Experimental results with respect to their FPN baselines.
Baseline Baseline FLOPs MSNAS Mean Var Max

Architectures mAP (Encoder+RPN) (Ours) mAP mAP mAP
R18-FPN 34.6 145.45 MSNAS-R18 36.94 0.03 37.2
R34-FPN 37.7 182.20 MSNAS-R34 38.86 0.0784 39.2
R50-FPN 38.3 197.33 MSNAS-R50 39.3 0.028 39.5

children. As we focus on the design of the encoder network and multi-scale feature utilization, only
the computations of encoder and RPN head are involved during the search. So in 1, the FLOPs of
the first stage of the network are used. For better comparison, we report our results with FLOPs of
the entire network, as shown in 6. Since the real image input size differs from image to image as
indicated in the previous part, a fixed approximate input size is used when computing FLOPs of the
architectures. In both 6 and 1, the approximate value for architectures with 800×1333 input is set
to 832×1280 and that for networks with 600×1000 input is 576×1024. About 10 individuals will
be appended to the population randomly in every iteration. Finally, five of the top samples after the
search procedure are retrained to compute the statistics.

Detection network details Following He et al. (2019), the b-box head at the second stage originally
composed of two fully-connected layers is replaced by a structure with two convolutions and one
fully-connected layer. We adopt synchronized batch normalization to both the encoder and the b-
box head. Blocks with different strides share the same number of channels, which we adjust to get
a proper distribution of computation in the search space. An ideal search space includes a large
proportion of architectures with similar FLOPs as the target FLOPs. Following the principle above,
the numbers of channels for MSNAS-R18, MSNAS-R34, and MSNAS-R50 are set to 180, 160, 144
respectively.

4.2 RESULTS

Table 1 shows the main results of MSNAS comparing with FPN counterparts. As we can see in the
table, best searched architectures of MSNAS achieve mAP at 37.2%, 39.2%, 39.5% at the compara-
ble computation with ResNet18-FPN(34.6%), ResNet34-FPN(37.7%) and ResNet50-FPN(38.3%),
with a remarkable improvement of 2.6%, 1.5%, 1.2% mAP gain. Moreover, the best samples in all
the experiments outperform the manually-designed baseline networks on average with a relatively
small variance. In particular, the performance of the best sample of MSNAS-R18 is comparable
with ResNet34-FPN, while the computation of the former one is 20% less than that of the latter one.
Also, the maximum of mAP of top samples in the search space of MSNAS-R34 is superior over
ResNet50-FPN.

Computation cost The super-nets are trained with 4x-schedule for around 30 hours on 16 GPUs.
And the evolutionary search stage costs around 3 hours per iteration and about 60hours in total.
Then around 90 hours are spent to search the optimal architectures. It could be further improved if
better schedules and strategies for training detectors from scratch are proposed.

4.3 ABLATION STUDY

Effectiveness of feature utilization and feature generation search To verify the effectiveness of
feature utilization, we conduct experiments to compare fixed predefined feature selection and our
proposed search-based feature selection. For fixed predefined FPN-style feature utilization, all sub-
networks in the search space extract feature maps following the same strategies as FPN. Results are
shown in Table 2. Feature utilization search in MSNAS shows large improvement compared with
the pre-defined feature selection way in the original FPN. By comparing performances of ResNet18-
FPN and FPN-style searched architectures, a +0.7%mAP performance gain is obtained by search-
ing stride for encoder network. We find that the correlation between the one-shot performances
and stand-alone samples is weaker for the experiment in FPN-style feature utilization, according to
Kendall’s tau listed in Table 2. We infer that the reason is the discontinuity among paths inside the
super-net intensifies.
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Table 2: Ablation experiments of pre-defined FPN-style and searched feature utilization.
Encoder Feature Utilization Mean mAP Var mAP Max mAP Kendall’s tau

ResNet18 FPN - - 34.6 -
Searched FPN-style 34.98 0.061 35.3 -0.2247
Searched Searched 36.94 0.03 37.2 0.4495

Table 3: Ablation experiments of stride range constraints
Stride Constraints Mean mAP Var mAP Max mAP

yes 36.94 0.03 37.2
no 36.98 0.107 37.4

Feature utilization search space constraints Several constraints of selected features’ resolution are
applied when searching feature utilization, as described in Section 3.3. Table 3 shows experiment
results with or without stride range constraints. It can be found that although adding constraints
cannot achieve much gain of performance but can reduce the variations of performance. Besides,
the evolutionary process converges faster with constraints and the variance of one-shot performances
in the population is reduced if constraints are added, as shown in Figure 3.

Fine-tuning strategy In Table 4, Kendall’s taus are computed by the one-shot performances from
super-net after fine-tuning and the stand-alone performances of ten random samples with the same
computation as the target FLOPs. It can be easily observed that the ranks have a better performance
after fine-tuning several iterations in both MSNAS-R18 and MSNAS-R34. MSNAS-R18 with fine-
tuning achieves +0.3 mAP at average performance and MSNAS-R34 obtains a +0.6 mAP gain at
both the maximal and average performance of top-5 samples.

Random children search strategy As noted in Section 3.4, several random children are added to
the population for better exploration. According to Table 5, improvement in MSNAS-R50 can be
observed by including random children. At the same time, the average one-shot performances of
top-5 samples increase by more than 0.1 mAP, which is relatively remarkable among low values of
one-shot performances.

4.4 COMPARING WITH OTHER METHODS

In Table 6, comparison with other algorithms is conducted. An outstanding performance of
40.7%mAP is achieved by MSNAS-R50. The network of MSNAS-R50-Mask-RCNN and MSNAS-
R50∗ are trained for 6x-long in order to get comparable performance with that of 2x-schedule with
pre-trained models. R50-FPN-Faster R-CNN(heavy head) is trained for 6x-long with SyncBN and
the bounding-box head at the second stage follows the 4conv-1fc format as noted in He et al.
(2019). In order to perform a more fair comparison, we reproduced NAS-FPN. It is trained with
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(a) Evolutionary process with constraints
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(b) Evolutionary process without constraints

Figure 3: Comparison of the evolutionary process in the ablation of constraints. It’s easy to observe
that the evolutionary process converges faster with constraints.
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Table 4: Ablation experiments of fine-tuning strategy
Network Fine-tuning Kendall’s tau Mean mAP Var mAP Max mAP

MSNAS-R18 yes 0.4495 37.1 0.008 37.2
MSNAS-R18 no -0.0899 36.84 0.1024 37.2
MSNAS-R34 yes 0.5683 38.86 0.0784 39.2
MSNAS-R34 no 0.2501 38.28 0.0936 38.6

Table 5: Ablation experiments of random children strategy
Network Random Children One-shot mAP Mean mAP Var mAP Max mAP

MSNAS-R18 yes 27.12 37.1 0.008 37.2
MSNAS-R18 no 27.31 36.94 0.03 37.2
MSNAS-R50 yes 25.99 39.3 0.028 39.5
MSNAS-R50 no 25.85 38.84 0.0064 38.9

weights pre-trained on ImageNet for 2x-schedule. We can see that MSNAS-R50 has an advantage
over R50-NAS-FPN(7@256) at a comparable computation.

5 CONCLUSION

By analyzing the commonly-used detection framework FPN, we find it critical to generate better
multi-scale features and select proper features for detection heads. Considering the fact that multi-
scale feature production plays an important role in object detection, we propose a one-shot-based
method to efficiently search a complete multi-scale feature generation strategy in the generalized
detection architecture. Instead of only modifying network architecture for feature generation, we
jointly optimize feature generation and feature utilization. The searched architectures achieve an
outstanding performance compared with the state-of-the-art algorithms. More exploration and im-
provement could be carried out by further works.
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A APPENDIX

A.1 SELECTED STRIDE OF ENCODER NETWORK AND FEATURE STRIDE OF DETECTION
HEADS

We present the architecture and performance of top-5 samples of MSNAS-R18, MSNAS-R34,
MSNAS-R50 in Table 7, Table 8 and Table 9. The stride of blocks in the encoder network could
be 0.5(upsample), 1, and 2. The searched architectures do not follow the downsample-upsample
style of FPN. Upsampling blocks are more possible to be observed around the middle parts of the
networks.

Also, different features of detection heads are selected using MSNAS. Features with absolute stride
of 4 and 64 are not utilized for detection heads in most of the best samples.

Table 7: Architecture of top5 samples of MSNAS-R18
Stride of Blocks in the Encoder Selected Feature Stride Performance

1, 2, 2, 1, 2, 1, 0.5, 1, 1, 0.5, 1, 1, 0.5 8, 8, 16, 16, 32 36.7
1, 2, 2, 2, 0.5, 2, 0.5, 1, 0.5, 1, 0.5, 2, 2 8, 8, 16, 16, 32 36.8
1, 2, 2, 2, 1, 1, 0.5, 1, 0.5, 0.5, 2, 1, 2 8, 8, 16, 16, 16 37.0

1, 2, 2, 2, 0.5, 2, 0.5, 1, 1, 0.5, 1, 0.5, 2 8, 8, 16, 16, 32 37.0
1, 2, 0.5, 2, 1, 2, 1, 2, 1, 0.5, 1, 0.5, 2 8, 8, 16, 16, 32 37.2
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Table 8: Architecture of top5 samples of MSNAS-R34
Stride of Blocks in the Encoder Selected Feature Stride Performance

1, 2, 1, 2, 1, 1, 2, 1, 0.5, 0.5, 1, 1, 2, 1, 0.5, 1, 0.5, 2, 2, 2, 1 4, 8, 16, 32, 32 39.0
1, 2, 1, 2, 1, 2, 1, 1, 0.5, 0.5, 1, 1, 2, 1, 0.5, 1, 0.5, 2, 2, 2, 2 4, 8, 16, 32, 64 38.7
1, 2, 1, 2, 1, 2, 1, 1, 0.5, 0.5, 1, 1, 2, 1, 0.5, 1, 0.5, 2, 2, 2, 2 4, 8, 16, 16, 64 38.4

1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 0.5, 0.5, 1, 1, 2, 0.5, 0.5, 0.5, 1, 2, 2 4, 8, 16, 32, 32 39.2
1, 2, 1, 2, 1, 2, 1, 1, 0.5, 0.5, 1, 1, 2, 1, 0.5, 1, 0.5, 2, 2, 2, 0.5 4, 8, 16, 32, 32 39.0

Table 9: Architecture of top5 samples of MSNAS-R50
Stride of Blocks in the Encoder Selected Feature Stride Performance

1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 0.5, 0.5, 1, 0.5, 0.5, 2, 2, 1, 2 8, 8, 16, 32, 32 39.4
1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 0.5, 0.5, 1, 0.5, 0.5, 2, 1, 2, 2 8, 16, 32, 32, 32 39.1
1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 0.5, 0.5, 1, 0.5, 0.5, 2, 1, 2, 2 8, 8, 32, 32, 64 39.5
1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 0.5, 0.5, 1, 0.5, 0.5, 2, 2, 1, 2 8, 8, 16, 32, 64 39.4
1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 0.5, 0.5, 1, 0.5, 2, 2, 2, 2, 0.5, 1, 1 8, 8, 32, 32, 32 39.1
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