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ABSTRACT

Sparse neural networks (NNs) are intensively investigated in literature due to
their appeal in saving storage, memory, and computational costs. A recent
work (Ramanujan et al., 2020) showed that, different from conventional pruning-
and-finetuning pipeline, there exist hidden subnetworks in randomly initialized
NNs that have good performance without training the weights. However, such
“hidden subnetworks” have mediocre performances and require an expensive
edge-popup algorithm to search for them. In this work, we define an ex-
tended class of subnetworks in randomly initialized NNs called disguised subnet-
works, which are not only “hidden” in the random networks but also “disguised”
– hence can only be “unmasked” with certain transformations on weights. We
argue that the unmasking process plays an important role in enlarging the ca-
pacity of the subnetworks and thus grants two major benefits: (i) the disguised
subnetworks easily outperform the hidden counterparts; (ii) the unmasking pro-
cess helps to relax the quality requirement on the sparse subnetwork mask so
that the expensive edge-popup algorithm can be replaced with more efficient
alternatives. On top of this new concept, we propose a novel two-stage algo-
rithm that plays a Peek-a-Boo (PaB) game to identify the disguised subnetworks
with a combination of two operations: (1) searching efficiently for a subnet-
work at random initialization; (2) unmasking the disguise by learning to trans-
form the resulting subnetwork’s remaining weights. Furthermore, we show that
the unmasking process can be efficiently implemented (a) without referring to
any latent weights or scores; and (b) by only leveraging approximated gradients,
so that the whole training algorithm is computationally light. Extensive exper-
iments with several large models (ResNet-18, ResNet-50, and WideResNet-28)
and datasets (CIFAR-10, CIFAR-100 and ImageNet) demonstrate the competency
of PaB over edge-popup and other counterparts. Our codes are available at:
https://github.com/VITA-Group/Peek-a-Boo.

1 INTRODUCTION

Recent years have seen substantial efforts devoted to scaling neural networks (NNs) to enormous
sizes (He et al., 2016; Devlin et al., 2019). Parameter-counts are frequently measured in billions
rather than millions, with the time and financial outlay necessary to train these models growing in
concert. Sparse NNs, whose large portions of parameters are zero, have been studied to address those
gaps, saving storage, memory and computational costs. Conventional approaches first train dense
NNs, and then prune the trained NNs to high levels of sparsity (Han et al., 2015; Guo et al., 2016).
Those methods significantly reduce the inference complexity yet cost even greater computational
resources and memory footprints at training.

An emerging field has explored what roles sparsity can play in neural networks, spawning different
directions of research. One of them follows the typical pruning-and-finetuning pipeline in conven-
tional pruning methods, but explored the prospect of directly training smaller, sparse subnetworks

*Work done while the author was at the University of Texas at Austin.
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in place of the full models without sacrificing performance. One key idea is to reuse the sparsity
pattern found through pruning and training a sparse network from scratch. The seminal work of
the lottery ticket hypothesis (LTH) (Frankle & Carbin, 2019) demonstrated that standard dense NNs
contain sparse matching subnetworks (called “winning tickets”) capable of training in isolation to
full accuracy. In other words, we could have trained smaller networks from the start if only we had
known which subnetworks to choose. Additionally, other works also showed that sparsity might
even emerge at initialization, before training ever starts and with minimal-to-no dependence on
data, such as SNIP (Lee et al., 2019), GraSP (Wang et al., 2020), and SynFlow (Tanaka et al., 2020).
Those methods suggest a tantalizing possibility of “pruning-at-initialization” for finding sparse sub-
networks without overhead, even though it remains under debate whether their found subnetworks
have inferior quality to lottery tickets found with IMP (Frankle et al., 2020). The consensus seems
to be that, a “good” sparse topology can be very crucial and informative for successful training.

Another set of efforts (Zhou et al., 2019; Wortsman et al., 2020) suggest that “masking (pruning) is
training”, e.g., by strategically zeroing out randomly initialized weights, the network can reach
far-better-than-chance accuracy. (Ramanujan et al., 2020) found that from a “sufficiently over-
parameterized” dense NN with random initialization, there exists a hidden subnetwork that achieves
competitive accuracy (w.r.t. to the fully trained dense NN), without any training on the remaining
weights. This finding was later theoretically justified by (Malach et al., 2020; Pensia et al., 2020;
Orseau et al., 2020). Ivan & Florian (2020) tried an alternative training scheme, by only flipping
the weight signs in a dense NN while preserving their initialized magnitudes. Sreenivasan et al.
(2021) further showed that such hidden subnetworks also exist in networks with binary weights. All
aforementioned works suggest that it is possible to only update the connectivity patterns without
changing the magnitudes of the weights to achieve decent performance.

However, many of them only tried on rather small NNs (Zhou et al., 2019; Ivan & Florian, 2020),
with notable accuracy drops compared to full gradient-based training. This is intuitively understand-
able because NNs’ expressiveness will be strictly constrained if pruning is the only allowable oper-
ations during training. Under such rigid restrictions, to obtain hidden subnetworks with acceptable
performance requires high-quality connectivity patterns with appropriate pruning ratios. Ramanujan
et al. (2020) found that the hidden subnetworks with either too high or too low pruning ratios have
poor performance. What is even worse is that the tedious optimization needed for identifying the
hidden subnetworks. All of those works used some form of latent weights or score functions for
all NN weights, which are cast into binary decisions to mask their corresponding weights or not
during forward pass and are trained during backpropagation, e.g., the edge-popup algorithm in
(Ramanujan et al., 2020). Those latent weights or scores make their training even more costly than
training standard NNs, and the non-differentiable binarization operation may also inject instability.

1.1 OUR CONTRIBUTIONS AND RATIONALES

Inspired by the recent advances in sparse NNs and the philosophy of “masking is training”, this
paper first proposes the concept of disguised subnetworks in randomly initialized NNs, as the
extension to the “hidden subnetworks” found in (Ramanujan et al., 2020). At its name suggests, a
disguised subnetwork is hidden as a sparse subnetwork in a dense NN at its random initialization.
This subnetwork, without achieving good performance at the beginning, can have its “disguise”
unmasked by learning some simple transformations on the remaining weights to lower the training
loss. To preserve the randomness in the subnetwork at the best, we only consider transformations
that do not alter the magnitudes of the remaining weights, such as shuffling and sign flipping. In this
work, we will focus on sign flipping specifically.

We argue that the extra unmasking step in disguised subnetworks grants essential advantages over
plain hidden subnetworks by significantly enlarging the expressiveness of the subnetworks. Such ad-
vantages immediately bring several benefits. Firstly, with much better capacity and expressiveness,
disguised subnetworks can easily achieve superior performances compared with hidden subnetworks
and thus have better scalability to larger NNs and datasets. Secondly, the searching of the sparse
subnetwork and the following unmasking process can compliment each other for better performance,
which relaxes the quality requirement on the sparse mask. This benefit enables us to replace the un-
stable and expensive searching algorithms in previous works with more efficient pruning algorithms.
The rationale behind is that only learning transformations on randomly initialized weights cannot
create sparsity that a trained NN often shows to possess (Zhou et al., 2019) while only pruning has
too limited flexibility which can be drastically boosted by allowing for further weight processing.
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Based on this reasoning, we propose a two-phase algorithm called Peek-a-Boo (PaB), which consists
of the searching and unmasking phases involving two operations: (1) sparsifying a deep neural
network with efficient pruning-at-initialization methods at its random initialization; (2) learning
to flip the signs of the resulting subnetwork’s remaining weights to lower the training loss. Note
that we never modify weight magnitudes after being initialized aside from removing weights. PaB
absorbs and improves the idea “masking is training” (Zhou et al., 2019), by unifying the two streams
of ideas: pruning (i.e., applying {0,1} masks to weights) and flipping signs (i.e., applying {-1,1}
masks). Moreover, for its second stage of unmasking, we optimize weight signs without extra
latent weights or scores (Helwegen et al., 2019). Such optimization method frees us from using the
heavy latent parameters nor the unstable straight-through-estimators (STEs), which were assumed
by all previous methods. We further demonstrate that an even more efficient implementation could
be achieved by using low-cost gradient predictors for approximated gradients (Wang et al., 2019),
as PaB might be tolerant to “coarser” gradient information since we only flip signs.

Despite remaining as an empirical exploration, the success of PaB also urges theoretical reflections
on whether sparse NNs have to follow the same optimization strategies as the dense ones, or whether
they can utilize new optimizers as simple as sign flipping. On one hand, pruning can often cause
more difficult optimization landscapes for gradient descents, as training a sparse NN essentially
becomes a constrained and non-smooth optimization problem (Evci et al., 2019). On the other
hand, assuming a good sparse mask is known a priori, the possible solution space has also been
significantly reduced, which may suggest the existence of “shortcuts” to reach the optima in this
shrunken space, such as the “solution locality” of LTH recently observed by (Liu et al., 2021).

2 RELATED WORKS

2.1 SPARSE NEURAL NETWORKS

Pruning methods (Hassibi et al., 1993; LeCun et al., 1989) have witnessed great advances to re-
duce the increasing inference complexities of NNs. Magnitude-based pruning methods (Carreira-
Perpiñán & Idelbayev, 2018; Guo et al., 2016; Han et al., 2015) have become mainstream due to
their relative low overheads and good scalability to large NNs. However, they still hinge on the ex-
pensive train-prune-retrain cycles to restore performance, and do not lead to efficient training. LTH
(Frankle & Carbin, 2019) discovers sparse subnetworks at random initialization that can achieve
similar or even better performance when trained in isolation. The winning tickets are found by the
computationally intensive iterative magnitude-based pruning (IMP), which involves tens of rounds
of train-prune-retrain cycles. Rewinding was later found to be essential for stably identifying win-
ning tickets in large networks (Frankle et al., 2019; 2020). (Morcos et al., 2019; Chen et al., 2020;
2021a;b) studied the transferability of winning tickets between datasets, tasks and architectures.

Zhou et al. (2019) made further interesting observations on winning tickets, discovering that pre-
serving the original weight signs is essential to successfully training the tickets, and that the pruned
weights have to be set to zero instead of being frozen at initial values. They concluded that “mask-
ing is training”, i.e., the masking operation tends to move weights in the direction they would have
moved during training. Hence, simply applying an appropriate mask to the random initialization
leads to reasonably good performance. The authors found such “supermasks” with both heuristics
and Bernoulli sampler-based optimization. Their finding was empirically concurred by (Ramanujan
et al., 2020) and theoretically supported by (Malach et al., 2020; Pensia et al., 2020; Orseau et al.,
2020). Similar results are also observed and proved for binary neural networks.

However, the original experiments in (Zhou et al., 2019) were restricted to NNs with a very small
number of layers (e.g., Conv 4). Later work (Ramanujan et al., 2020) identified untrained sub-
networks from Wide ResNet-50 as “mother NNs” on ImageNet that can match the performance
of ResNet-34 (worse than ResNet-50). Yet that is very different from our (more ambitious) goal -
pruning a subnetwork from the “mother NN”, and having it match the original performance of the
“mother NN” by only flipping-based training. Moreover, their sophisticated algorithm relies on a
set of real-valued latent weights (called “scores” associated with each NN weight), making their
training essentially as expensive as full SGD.

Another line of works has arisen to investigate pruning NNs directly at random initialization. Ex-
amples include SNIP (Lee et al., 2019), GraSP (Wang et al., 2020) and SynFlow (Tanaka et al.,
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2020), all of which exploit the weight magnitudes as well as first- or higher-order information of
NNs at the initial point. (Frankle et al., 2021) revisited these methods and observed that the naive
magnitude-based pruning at initialization already plays as a strong competitor, with a side observa-
tion that delaying the pruning generally improves performance. All these algorithms train the pruned
networks using the same standard SGD-type optimizers.

2.2 OPTIMIZATION BY SIGN FLIPPING

The train-by-flipping scheme considered in this work is closely related to the optimization of binary
neural networks (BNNs), whose weights are only +1/-1. Optimization methods over BNNs can
be categorized into two types – training with and without real-valued latent weights. The former
category (Bengio et al., 2013; Courbariaux et al., 2016) maintains and updates a set of full-precision
weights for back-propagation while forward passes only utilize binary weights. The downside of this
method is the extra memory and resource overhead in training. The second category eliminates latent
weights and only learns the decision rules for flipping or not, based on certain training statistics. For
example, Bop (Helwegen et al., 2019) keeps a running average of historical gradients, and flips a
weight’s sign when its accumulated gradients surpasses a pre-defined threshold.

A more recent work (Ivan & Florian, 2020) studied the possibility of training NNs by only flip-
ping the signs of the initialized weights, leaving the magnitudes unchanged. The authors proposed
to update an extra set of latent parameters, whose signs determines the weight flipping decision
throughout training. Their method struggled to scale up to large NNs, causing large performance
drops. The potential reason behind this might be just as (Zhou et al., 2019) advocated, that zero
would a particularly good value to set many weights to. In other words, weight sparsity may be a
generally helpful inductive prior for well-trained NNs, which cannot be met by only flipping signs
of weights. Besides, the training algorithm in (Ivan & Florian, 2020) also induces large overhead
due to using full-precision latent weights and does not head towards efficient training. Moreover,
neither (Ivan & Florian, 2020) nor any BNN optimization methods have considered the intersection
of training-by-flipping and sparse NNs.

3 PEEK-A-BOO: SEARCH AND UNMASK DISGUISED SUBNETWORKS IN
RANDOMLY INITIALIZED NEURAL NETWORKS

3.1 DISGUISED SUBNETWORKS VERSUS HIDDEN SUBNETWORKS

In this subsection, we formally define hidden subnetworks and disguised subnetworks in randomly
initialized NNs, and show that the latter, as an extended class of subnetworks to the former, contain
better subnetworks that can outperform those in the former.

Consider a neural network f(x;ω) parameterized by (vectorized) weights ω ∈ Rn for input x. We
denote the randomly initialized weights as ω(0), and ω(t) as the weights after t steps of training. We
denote a general transformation applied on the weights ω as U(ω) that takes any form.

Definition 1. A hidden subnetwork in the dense neural network f(x;ω) is characterized by a binary
mask m ∈ {0, 1}n and denoted as f(x;ω � m), where � represents the Hadamard product. A
disguised subnetwork is defined as a transformed hidden subnetwork characterized by a binary
mask m ∈ {0, 1}n and a weight transformation U(·), denoted as f(x;U(ω �m))

Remark Here we omit the index for the number of training steps because we can take hidden
subnetworks or disguised subnetworks at any time during training, while in this work our focus is
on the subnetworks at random initializations, i.e., f(x;ω(0) �m) and f(x;U(ω(0) �m)).

To identify the optimal disguised subnetworks at a certain sparsity level S, we need to solve the
optimization problem below:

minimize
U∈U, ‖m‖0=S

LD[f(x;U(ω(0) �m))], (1)

where U is the collection of all possible weight transformations and LD is the loss function on
dataset D. It is clear that the optimal disguised network achieves a minimum that is equal to or
smaller than that achieved by the optimal hidden network, because the hidden networks are the
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special cases of disguised subnetworks if we constrain the weight transformation U to the identity
mapping I . And the optimal hidden subnetwork is the minimizer of the following problem:.

minimize
‖m‖0=S

LD[f(x; I(ω(0) �m))]. (2)

In this paper, we argue that constraining the weight transformation U to identity as in the hidden
networks can significantly decrease the model capacity and thus degrade the performance, especially
when n is large, i.e., the model is large or s is small, i.e., the model is highly sparse. In contrast, if
we can directly solve (1), we can find disguised subnetworks with much better performance.

However, directly optimizing (1) is computationally intractable due to the high-dimensionality of
the networks and the complexity of the collection of weight transformations. Therefore, we propose
to approximately solve (1) by decoupling it into a two-phase process. In the first phase, we find
a suitable mask m̂ to sparsify a deep neural network at its random initialization. We call it the
searching phase. In the second phase, we learn the optimal weight transformation to further lower
the training loss. We call it the unmasking phase. The whole process is formally formulated as:

m̂ ∈ argmin
‖m‖0=S

R(f(x;ω(0) �m)) (3)

Û ∈ argmin
U∈U

LD[f(x;U(ω(0) � m̂))] (4)

Here R is a score function that measures the quality of the binary mask m for the network f with
random initialization ω(0) in some metric. Different selections of this score function will lead to dif-
ferent pruning methods. To efficiently solve this two-phase optimization in (3) and (4), we propose
Peek-a-Boo (PaB) framework as detailed below.

3.2 PEEK-A-BOO: EFFICIENT SEARCHING AND UNMASKING

In the searching phase of the PaB framework, we sparsify a neural network at its random initial-
ization using a training-free pruning method. In the unmasking phase, we learn to flip signs of the
remaining nonzero weights as the weight transformation U to lower the training loss.

Searching phase: training-free pruning. Our goal in the first step is to use pruning to find a sparse
mask m̂, with two requirements. Firstly, the sparse mask provides a useful prior of “good structures”
in the network for the flipping-based training that follows. Secondly, the pruning itself needs to be
light enough to not incur overhead for training efficiency. Due to the second concern, we give up the
expensive IMP (Frankle & Carbin, 2019; Zhou et al., 2019) and focus on the pruning-at-initialization
methods (Lee et al., 2019; Wang et al., 2020; Tanaka et al., 2020; Frankle et al., 2021).

We choose SynFlow (Tanaka et al., 2020) over SNIP (Lee et al., 2019) and GraSP (Wang et al.,
2020), because the latter two depend on the first-order and/or second-order information of the neural
network to calculate the weight scores. To accurately estimate those, one needs to run through
training samples. In comparison, SynFlow is data-free and only uses an all-one input.

Unmasking phase: flipping the non-zero weights. In this step, we learn the optimal weight sign
flipping Us(ω) = ω � s to lower the training loss. Here s is a {+1,−1} binary mask that we
want to optimize. Allowing to flip the signs of the remaining nonzero weights, the unmasking
phase significantly alleviates the limitation in model capacity. That is, one sparse NN of k non-zero
elements can be augmented to 2k possible candidates, if sign flipping is enabled. However, it is
computationally intractable to exhaustively search for the optimal vector. To approximately solve
(4) with sign flipping transformation Us, we leverage a prior art called Bop from BNN optimization
(Helwegen et al., 2019). As formulated in Appendix A, Bop selects what weights and when to flip
their signs by taking into account the exponential moving average of historical gradients. Different
from the edge-popup algorithm used by Ramanujan et al. (2020) and a similar method in (Ivan &
Florian, 2020), Bop gets rid of additional latent weights, hence incurring more training overhead and
deviating from our end goal of more efficient training. Bop also avoids the use of straight-through
estimator (STE) during backpropagation, which is known to unstabilize the training.

3.3 FLIPPING USING CHEAP GRADIENTS: TOWARDS REAL COMPUTATIONAL EFFICIENCY

The training-by-flipping scheme only seeks to optimize the sign configuration, not the the real-
valued weights (they are fixed as initialized). Hence, an educated guess is that this scheme can
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tolerate “coarser” gradient information than standard training methods. This leaves decent room for
us to further reduce the training cost by replacing precise gradients with approximated ones. One
way to implement this is to adopt a low-precision gradient approximation called Predictive Sign
Gradient, which was shown to save computation on hardware (Wang et al., 2019).

PSG predicts the signs of the precise gradients. using the signs of approximated gradients calculated
from the most significant bits (MSB). PSG only corrects its predictions when the approximated
gradients are close to zero, e.g., implying a non-trivial chance of wrong predictions. Specifically,
consider a one-layer neural network with input x, weight matrix ω and output y = ωx. During back-
propagation, we receive gy = ∂L/∂y for the proceeding layer, and calculate the weight gradient
gω = ∂L/∂ω = gyx

T and the input gradient gx = ∂L/∂x = ωT gy . PSG replaces (x, ω, gy) in
the above calculations with their bit-quantized versions (x̃, ω̃, g̃y), with bit-width (bx, bω, bg), and
uses the resulting g̃ω = g̃yx̃

T and g̃x = ω̃T g̃y as the approximated weight and input gradient. g̃x is
further propagated to preceding layers to run the back-propagation.

In PaB, we use g̃ω itself instead of its sign, either in flipping with latent weights or flipping with
Bop. This is because without changing the weight magnitudes, we only have two actions — to flip
or not to flip. Too much training variance will be introduced if we directly use sign(g̃ω) to flip the
weight signs, thus causing instability and difficulty in training. Moreover, we ignore elements in g̃ω
that are close to zero, rather than correct them with precise gradient calculation. This can reduce the
training cost and also help to smooth the training process. Gradients to be ignored are selected using
an adaptive thresholding technique in (Wang et al., 2019). This behavior is discussed in Section 4.4.
The full PaB framework is summarized in Algorithm 1.

Algorithm 1 PaB Efficient Training Framework

Require: Randomly initialized network f(x;ω(0)), dataset D = {xi, yi}Ni=1, loss function LD,
sparsity S, threshold θ, total number of training steps T , PSG configuration [bx, bω, bg].

1: m← Prune(f(x;ω), S,D) with ‖m‖0 = S B Get the sparse mask by pruning
2: s(0) ← (1, . . . , 1); t = 0 B Initialize sign configuration and time step
3: while t < T do
4: g̃(t) ← PSG

(
LD, f(x;ω

(0) �m� s(t)), [bx, bω, bg]
)

B Approximate gradient using PSG
5: s(t+1) ← Flip

(
s(t), {g̃(i)}ti=1

)
B Flip signs using historical gradient information

6: t = t+ 1
7: end while
8: return f(x;ω(0) �m� s(T ))

4 EXPERIMENTS

4.1 MAIN RESULTS ON CIFAR-10 AND CIFAR-100

Comparison Methods. We compare our proposed PaB method with the standard SGD training for
the dense network (Dense-SGD) and the edge-popup algorithm (Ramanujan et al., 2020). For the
non-flipping training for pruned networks, we choose standard SGD and SignSGD (Bernstein et al.,
2018) as the baselines. For the proposed PaB methods, we compare: (1) PaB-Latent, which first
prunes the network and trains the unpruned weights using the flipping with latent weights method in
(Ivan & Florian, 2020) 1; (2) PaB-Latent-PSG, the variant of PaB-Latent combined with PSG; (3)
PaB-Bop, which trains the unpruned weights using Bop (Helwegen et al., 2019); and (4) PaB-Bop-
PSG, the variant of PaB-Bop combined with PSG. We also introduce a variant of Dense-SGD as
baseline called Dense-SGD-Short, where we cut down the training epochs of Dense-SGD to match
the number of training BitOps of that in PaB-Bop-PSG.

Experiment and evaluation settings: We evaluate the performance of these PaB methods on the
CIFAR-10 using large ResNet-18, ResNet-50 architectures, in contrast to previous papers on flipping
based training (Ivan & Florian, 2020) and lottery tickets (Zhou et al., 2019) where their methods

1The latest manuscript of (Ivan & Florian, 2020) just reported a new result on ResNet-18. However, their
baseline accuracy number (90.45%) is inferior to what is commonly used by the community (over 95% using
the implementation in https://github.com/kuangliu/pytorch-cifar). Their flipping algorithm
ends up∼3% accuracy drop on this baseline. Without access to their official codes for large models, we are not
sure whether we could draw fair comparison with their results.
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Table 1: Experiments on CIFAR-10 using ResNet-18 and ResNet-50. Models are initialized with
Kaiming Normal distribution and pruned using SynFlow with pruning ratio 90% at initialization.

Model ResNet-18 ResNet-50

Acc (%) Size (MB) BitOPs Acc (%) Size (MB) BitOPs

Dense-SGD 95.10 42.59 1.71Tr 95.34 89.54 3.99Tr
Dense-SGD-Short 92.52 42.59 0.30Tr 86.19 89.54 0.55Tr
Edge-popup (Ramanujan et al., 2020) 58.54 1.46 1.20Tr 75.90 3.08 2.79Tr

SGD 94.39 5.59 0.72Tr 94.46 11.75 1.32Tr
SignSGD (Bernstein et al., 2018) 93.15 5.59 0.72Tr 93.61 11.75 1.32Tr

PaB-Latent (Ivan & Florian, 2020) 91.82 1.46 0.72Tr 89.80 3.08 1.32Tr
PaB-Latent-PSG 91.84 1.46 0.30Tr 90.25 3.08 0.55Tr
PaB-Bop (Helwegen et al., 2019) 92.55 1.46 0.72Tr 92.13 3.08 1.32Tr
PaB-Bop-PSG 92.71 1.46 0.30Tr 91.61 3.08 0.55Tr

Table 2: Experiment results on CIFAR-10 and CIFAR-100 using WideResNet-28 as testbeds. All
models are initialized with Kaiming Normal distribution and pruned using SynFlow with pruning
ratio 70% at initialization. ∗We perform a range of hyperparameter tuning on SignSGD and report
the best accuracy we observe.

Model WideResNet-28 - CIFAR-10 WideResNet-28 - CIFAR-100

Acc (%) Size (MB) BitOPs Acc (%) Size (MB) BitOPs

Dense-SGD 96.30 139.10 18.28Tr 81.11 139.10 18.28Tr
Dense-SGD-Short 92.29 139.10 2.03Tr 77.04 139.10 4.20Tr
Edge-popup (Ramanujan et al., 2020) 40.77 4.78 12.80Tr 45.01 3.08 12.80Tr

SGD 95.50 18.26 4.86Tr 80.28 46.08 10.10Tr
SignSGD (Bernstein et al., 2018) 94.18 18.26 4.86Tr 77.82 46.08 10.10Tr

PaB-Latent (Ivan & Florian, 2020) - 4.78 4.86Tr - 4.78 10.10Tr
PaB-Latent-PSG 89.29 4.78 2.03Tr 68.90 4.78 4.20Tr
PaB-Bop (Helwegen et al., 2019) 94.41 4.78 4.86Tr 77.59 4.78 10.10Tr
PaB-Bop-PSG 94.26 4.78 2.03Tr 77.81 4.78 4.20Tr

scale only up to 6-layer conv networks. In all experiments, we initialize networks using Kaiming
Normal initialization (He et al., 2016), prune to 90% pruning ratio using SynFlow for 100 iterations
(Tanaka et al., 2020) at random initialization, and train over 200 epochs. For Bop, we start with
adaptivity ratio γ = 10−3, which is decayed by 0.15 every 45 epochs, and use threshold τ = 10−6.
For non-Bop methods and non-Bop weights, we use an initial learning rate of 0.1 and decay them
by 0.1 at epoch 80 and 120. We use an initial learning rate of 0.01 for SignSGD as smaller learning
rates are favored in (Bernstein et al., 2018). Results are presented in Table 1, including accuracies,
model sizes and training BitOPs (in trillions) for each method and network. Huffman coding is used
to encode the PaB models as described in Appendix D. We calculate training BitOPs following (Jin
et al., 2020) instead of FLOPs because PSG involves low-precision computation.

Main observations: Several observations can be drawn from the results:

• As expected, the PaB framework results in impressive compression ratios (> 30x) on all mod-
els, thanks to the fact that flipping-based methods leave weight magnitudes unchanged, which
can be restored easily using the same random seed.

• We see that PaB-Bop and its PSG variant are consistently better than PaB-Latent and the PSG
variant. This shows the superiority of Bop-based methods over latent-weight methods (Ivan &
Florian, 2020) in terms of the effectiveness when training sparse networks. We perceive this
observation as an indication of the potential existence of even better sparse training methods
than the Bop-based method that can exploit the sparse structure more effectively.

• The integration of PSG with PaB further reduces the training cost by significant margins, saving
82∼86% of the total BitOPs that is needed for training a dense counterpart.

• PaB-Bop-PSG performs comparatively well for ResNet-18/50, achieving 1.68% and 2.33%
accuracy gaps respectively compared to SGD and even smaller gaps compared to SignSGD.
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Figure 2: Comparing the performance of PaB-Bop-Psg and the edge-popup algorithm (Ramanujan
et al., 2020) on Conv4, Conv6 and ResNet-18 on the CIFAR-10 dataset.

Results on wider networks: Besides scaling ResNet-18 up to ResNet-50 in depth, we also show the
scalability of PaB in width by training WideResNet-28 with a 10x width multiplier, on both CIFAR-
10 and CIFAR-100 datasets. As seen from the results shown in Table 2, PaB-Bop-PSG scales very
well to WideResNet-28 on both CIFAR-10 and CIFAR-100. On CIFAR-10, PaB-Bop-PSG incurs
a 1.24% gap compared to SGD and even outperforms SignSGD. Similarly on CIFAR-100, PaB-
Bop-PSG incurs a 2.47% gap from SGD and performs similarly to SignSGD. The accuracy gaps
of PaB on WideResNet-28 are even smaller than on ResNet-18/50, demonstrating that PaB scales
well to wide networks, potentially due to better gradient flow in wider architectures. We omit PaB-
Latent results here because we fail to train PaB-Latent to reasonable accuracies for WideResNet-28,
which, in addition to the observed gaps to PaB-Bop on ResNet-18 and -50, shows the superiority of
Bop-based methods over flipping with latent weights.

4.2 COMPARISON WITH STATE-OF-THE-ART EFFICIENT TRAINING METHODS
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Figure 1: Comparison between PaB and
state-of-the-art efficient training methods.
PaB achieves better trade-off between train-
ing BitOps and accuracy.

We compare PaB with two state-of-the-art efficient
training methods, E2-Train (Wang et al., 2019) and
EB-Train (You et al., 2019). E2-Train improves
training efficiency by combining data dropping,
model layer skipping, and gradient quantization, and
EB-Train utilizes structured pruning and the early
emergence of sparsity patterns. We train ResNet-18
on CIFAR-10 using all three methods with different
efficiency-performance trade-offs. As shown in Fig-
ure 1, PaB achieves better accuracy-BitOps trade-off
than E2-Train and EB-Train, especially when high
training efficiency is demanded (small BitOps). The
x-axis is the average BitOps for training one sample
for one step. We present the detailed protocol for
this comparison in Appendix.

4.3 COMPARISON WITH EDGE-POPUP ALGORITHM

We compare PaB with the edge-popup algorithm proposed in (Ramanujan et al., 2020) to identify
the hidden subnetworks in deep neural networks at their random initializations. We adopt two small
networks, Conv4 and Conv62 used in (Ramanujan et al., 2020) and a larger network ResNet-18 for
comparison. All models are trained on CIFAR-10. We apply PaB and edge-popup to the testing
networks with pruning ratios 30%, 50%, 70% and 90%. Results presented in Figure 2 show that PaB
consistently finds better disguised subnetworks than the hidden networks found by edge-popup
algorithm, especially when the pruning ratios are high.

We further implement PaB on the ResNet-50 for ImageNet and compare with edge-popup (Ra-
manujan et al., 2020). For both methods we train the ResNet-50 network for 100 epochs, following
the same settings as in (Ramanujan et al., 2020). With 30% and 50% sparsity ratio (the percentage
of pruned parameters), PaB-PSG can achieve 63.58% and 63.25% accuracy, in contrast to the 39.5%
and 58.4% accuracy achieved by edge-popup.

2We follow the official implementation of the edge-popup algorithm but make slight modifications to the
Conv4 and Conv6 networks by adding batch normalization layers to stabilize the training.
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Figure 3: PaB-Bop accuracy on CIFAR-10 us-
ing different hyperparameter combinations of
γ, τ with ResNet-18. Networks are pruned us-
ing SynFlow with 90% pruning ratio.
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Figure 4: PaB-Bop-PSG accuracy on CIFAR-10
using different PSG behaviors and thresholds.
Networks are pruned using SynFlow with 90%
pruning ratio.

4.4 ABLATION STUDIES ON PAB

Due to space limit, we only present the ablation study on two important sets of hyperparameters
in PaB, namely the hyperparameters for BOP, and those that control the small gradient behavior in
PSG. We leave more ablation studies on the pruning ratio, the epoch when pruning occurs, and the
random distribution for initialization to the Appendix. We use ResNet-18 and CIFAR-10 by default.

BOP hyperparameters: Different from PaB-Latent, which in nature still trains latent weights using
SGD, PaB-Bop consists of two parts: the accumulation of historical gradients and a thresholding
mechanism to select significant updates in the correct directions, controlled by adaptivity ratio γ
and threshold τ , respectively, as formulated in (6). Therefore, we conduct an ablation study on γ
and τ and present the results in Figure 3. We prune ResNet-18 networks with pruning ratio 90%
using SynFlow and then train them on CIFAR-10 using PaB-Bop with different combinations of γ
and τ . When γ is small, the latest gradient makes too small contributions in the accumulation to
cause enough updates. In contrast, when γ = 0.01, Bop needs a larger threshold τ to reduce the
training variance. The best combination is (γ, τ) = (10−3, 10−6).

Dealing with small gradients in PSG: In the original PSG (Wang et al., 2019), when PSG obtains
small gradient approximations (judged by a threshold θ), PSG corrects them with precise gradients
using full-precision calculation. Here we study three different PSG behaviors in the framework of
PaB: (1) PSG-All, where we take whatever gradient approximated; (2) PSG-Correct, the default
behavior in (Wang et al., 2019), which corrects small approximated gradients with precise ones; and
(3) PSG-Remove, which removes small approximated gradients. The accuracy results of applying
PSG with these three different behaviors to ResNet-18 pruned by SynFlow are shown in Figure 4.
Note that PSG-Correct/Remove reduces to PSG-All with zero threshold. The results show that PSG-
Correct and PSG-Remove perform similarly at their best thresholds. Since PSG-Correct requires
extra computation of precise small gradients, we prioritize efficiency and use the PSG-Remove
behavior in all PSG experiments.

5 CONCLUSION, FUTURE WORKS, AND DISCUSSION OF SOCIETAL IMPACTS

We study Peek-a-Boo (PaB) as a new minimalist approach to training dense networks at their ran-
dom initializations without altering weight magnitudes. Inspired by the recent exploration of sparse
NNs, PaB achieves high training efficiency and provides a natural lossless compression after train-
ing. While this work remains as a pilot study, we show it can already scale up to larger networks
and datasets (e.g, up to ResNet-50 and ImageNet) with competitive trade-off between accuracy and
training efficiency. We hope that PaB will evoke more theoretical reflections on training. One of our
immediate future work will explore alternatives to the sign flipping operation as the weight transfor-
mation in the unmasking phase. For example, we can extend sign flipping with learnable scaling, or
replace it with quantization. In another direction, while this paper mainly uses unstructured sparsity
following the convention of pruning at initialization, we can explore how structured sparsity (You
et al., 2019) may fit in PaB for practical hardware acceleration.
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A BOP FORMULATION

Bop (Helwegen et al., 2019) selects what weights and when to flip their signs by taking into ac-
count past gradient information. In particular, Bop accumulates the exponential moving average of
historical gradients:

e(t+1) = (1− γ)e(t) + γ∇ωLD[f(ω(t))], (5)

where γ is called the adaptivity ratio. Bop flips weight signs when the moving average surpasses a
certain threshold τ and aligns with the weights in direction:

w(t+1) =

{
−w(t) if |e(t)| ≥ τ and e(t)w(t) > 0,

w(t) otherwise.
(6)

B PROTOCOL OF COMPARING PAB WITH E2-TRAIN AND EB-TRAIN

EB-train (You et al., 2019) is easier to control the computational costs and calculate its BitOps. EB-
Train consists of three stages: (i) the searching stage where a dense model is trained with sparsity
regularization applied on the scaling factors of the batch normalization layers; (ii) prune the filters
when the convergence of the pruning mask is detected; (iii) continue training the pruned models. In
the first stage, EB-Train has the same computational cost as a dense model, but only for a short period
of training. After the pruning is performed in the second stage, we can easily calculate the reduced
BitOps based on the layerwise pruning ratios induced by pruning. Such reduced computational cost
will be sustained throughout the third stage. In the experiment shown in Figure 1, we change the
pruning ratio in EB-Train to control the BitOps.

E2-Train Wang et al. (2019) is a more tricky baseline because it consists of three components -
stochastic mini-batch dropping (SMD), selective layer update (SLU) and predictive sign gradient
(PSG). We follow the setting of SMD ratio, i.e., the ratio of randomly dropped mini-batches during
training and fix it at 50%. The BitOps reduction brought by PSG is decided by the bit-width of the
most significant bits. We use the same 8-8-16 bit widths for inputs/activations, weights and gradients
respectively as in (Wang et al., 2019) and use full-precision computations for the forward passes.
We then change the computation budget in SLU to control the BitOps in Figure 1.

Although the computation reduction of PaB is fixed given the sparsity ratio and the bit-width con-
figuration in PSG, PaB is orthogonal to stochastic mini-batch dropping and can be combined with
it. Hence, we change the ratio of dropping mini-batches to control the BitOps of PaB-Bop-PSG in
Figure 1.

C ADDITIONAL ABLATION STUDIES

Pruning time point. Although pruning at initialization has shown success at training sparse net-
works, (Frankle et al., 2021) identify that pruning at different time points after initialization could
further improve the performance of these networks. Using a fixed pruning ratio of 90%, we train
ResNet-18 on CIFAR-10 and observe the effects on the test accuracy of delaying pruning to different
training points from epoch 0/200 to epoch 60/200. Figure 5a shows the performance of our non-
flipping baselines and PaB methods as the pruning epoch varies. Different from the observations in
(Frankle et al., 2021), while slight increases in accuracy can be observed with delayed pruning, the
effect is quite small at the scale of this experiment. The reason might be that we fix the total number
of epochs whenever we perform pruning, while (Frankle et al., 2021) goes through the whole train-
ing process after pruning. With efficient training in mind, we maintain pruning at initialization in
subsequent experiments since delaying pruning after initialization would require expensive training
of dense networks before pruning.

Pruning ratios. We also evaluate the performance of our PaB methods against our baselines at
different levels of sparsity. Figure 5b shows the test accuracies from training ResNet-18 on CIFAR-
10 at varying pruning ratios from 0% to 90%. Not surprisingly we see a decreasing tendency in
test accuracy when we gradually increase the pruning ratios for all methods, especially going from
80% to 90%. However, PaB-Bop and its PSG variant are more robust to high pruning ratios, while
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Figure 5: Accuracy of baseline and PaB methods for ResNet-18 and CIFAR-10 with different prun-
ing time epochs (0-60 epoch) and pruning ratios (0-90%).

PaB-Latent and PaB-Latent-PSG have obvious degradation at 90% pruning ratio. Beyond 90%, the
test accuracy starts to drop noticeably, and the resulting sparse networks becoming untrainable for
all training methods due to layer collapse. By default hereinafter, we fix the pruning ratio to 90%.

Table 3: Accuracy on CIFAR-10 with different initial-
ization for ResNet-18. All networks are pruned using
SynFlow at initialization with 90% pruning ratio.

Method Kaiming
Normal

Kaiming
Uniform

Xavier
Normal

SGD 94.39% 94.63% 94.31%
SignSGD 93.15% 93.41% 93.39%

PaB-Latent 91.82% 92.12% 91.75%
PaB-Latent-PSG 91.84% 92.08% 91.47%
PaB-Bop 92.55% 92.62% 91.91%
PaB-Bop-PSG 92.71% 92.53% 92.21%

Ablation on initialization. In previous
experiments, we use Kaiming Normal dis-
tribution for random initialization. We
also try Kaiming Uniform and Xavier Nor-
mal (Glorot & Bengio, 2010) distributions
as alternatives. As shown in Table 3, there
is generally little variation in performance
across initialization methods, but we are
able to achieve the best results across all
PaB methods from PaB-Bop-PSG initial-
ized using the Kaiming Normal distribu-
tion. We can also see that all PaB methods
consistently perform better under Kaiming
Normal initialization than under Xavier
Normal initialization.

Iterative pruning and sign-flipping training. Inspired by the iterative scheme of IMP, which is
observed to be essential for finding winning tickets, we extend SynFlow from one-shot pruning to
multiple-shot over a period of the training process. Note that one shot of SynFlow can contain
many iterations of pruning as described in Tanaka et al. (2020). Here by “multi-shot” we mean to
apply SynFlow several times throughout the training process to gradually increase the sparsity level.
Specifically, instead of applying SynFlow to the networks once at initialization, we run SynFlow for
2∼5 times, evenly spread over the first 50 epochs, so that the sparsity ratio linearly increases to a
certain level (90%). Between two runs of pruning or after the last run of pruning, we perform the
flipping-based training using Bop.

This iterative multi-shot version of PaB can be seen as alternating between the optimization pro-
cesses of the searching and unmasking phase to discover the disguised networks. Compared to the
one-shot variant, multi-shot PaB is closer to a joint optimization scheme on the objective in (1). The
results are shown in Table 4. We observe that such an alternative scheme provides little accuracy
improvement, while apparently losing more of training efficiency. We do not intend to say that the
joint optimization is not good: to properly solve the joint optimization problem in (1) with itera-
tive algorithms is interesting and potentially desirable. Our argument is that, with our goal to do
“efficient” finding of disguised subnetworks, our current two-step relaxation is not only the most
efficient; but also highly competitive in accuracy with no sacrifice.

Changing the bit-widths in PSG. In PSG, the bit-width configuration (bx, bω, bg) for layer inputs,
layer weights and output gradients controls the trade-off between training efficiency and the pre-
cision of approximated gradient, and thus the model performance. We apply PaB-Bop-PSG with
varying bit-configurations and show the results in Table 5. We observe that the bit-width of output
gradient bg has a strong influence on the final performance, which is consistent with previous low-
precision efficient training works (Wang et al., 2019). We choose (bx, bω, bg) = (8, 8, 16) as it is a
combination of good performance and training efficiency.
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Table 4: Results of the iterative multi-shot variant of PaB. We run SynFlow for 2∼5 times, evenly
spread over the first 50 epochs, so that the sparsity ratio linearly increases to a certain level (90%).
Between two runs of pruning or after the last run of pruning, we perform Bop training.

Runs of SynFlow 2 3 4 5

SGD 94.79% 94.76% 94.48% 94.68%
SignSGD 93.20% 93.57% 93.51% 93.77%

PnF-Latent 91.98% 92.05% 92.00% 92.29%
PnF-Latent-PSG 91.93% 91.94% 92.06% 91.89%
PnF-Bop 92.25% 92.18% 92.15% 92.48%
PnF-Bop-PSG 92.28% 91.89% 92.25% 92.32%

Table 5: Accuracy and training cost in BitOPs on CIFAR-10 with varying bit-width configurations
for ResNet-18. All networks are pruned using SynFlow at initialization with 90% pruning ratio.

Configuration (4,4,4) (4,4,8) (8,8,8) (8,8,16) (16,16,16) (16,16,32)

Accuracy (%) 32.38 89.68 89.02 92.71 92.24 92.29
BitOPs 0.25Tr 0.25Tr 0.27Tr 0.30Tr 0.36Tr 0.48Tr

D HUFFMAN CODING FOR ENCODING MASK AND SIGN ENCODING

PaB methods, without changing the magnitudes of the random initialization, only induces two out-
puts that need to be stored - (i) the sparse mask generated by the pruning methods (SynFlow in this
work); and (ii) the sign flipping actions for all weights. These two outputs can be merged into one
format, where the pruned weights are represented by 0, sustaining the sign by +1 and flipping the
sign by−1. Considering that the pruned weights account for the majority of all weights (90% in our
CIFAR-10 experiments and 70% in our CIFAR-100 experiments), we can adopt Huffman coding
to encode 0 using 1-bit representation, and the sign flipping actions with 2-bit representation, as
illustrated in Figure 6.
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Figure 6: Huffman encoding for PaB model compression.
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