
Published as a conference paper at ICLR 2023

LATENT NEURAL ODES WITH SPARSE BAYESIAN
MULTIPLE SHOOTING

Valerii Iakovlev∗, Cagatay Yildiz†, Markus Heinonen∗, Harri Lähdesmäki∗

ABSTRACT

Training dynamic models, such as neural ODEs, on long trajectories is a hard
problem that requires using various tricks, such as trajectory splitting, to make
model training work in practice. These methods are often heuristics with poor
theoretical justifications, and require iterative manual tuning. We propose a prin-
cipled multiple shooting technique for neural ODEs that splits the trajectories into
manageable short segments, which are optimised in parallel, while ensuring prob-
abilistic control on continuity over consecutive segments. We derive variational
inference for our shooting-based latent neural ODE models and propose amortized
encodings of irregularly sampled trajectories with a transformer-based recognition
network with temporal attention and relative positional encoding. We demonstrate
efficient and stable training, and state-of-the-art performance on multiple large-
scale benchmark datasets.

1 INTRODUCTION

Dynamical systems, from biological cells to weather, evolve according to their underlying mech-
anisms, often described by differential equations. In data-driven system identification we aim to
learn the rules governing a dynamical system by observing the system for a time interval [0, T], and
fitting a model of the underlying dynamics to the observations by gradient descent. Such optimi-
sation suffers from the curse of length: complexity of the loss function grows with the length of
the observed trajectory (Ribeiro et al., 2020). For even moderate T the loss landscape can become
highly complex and gradient descent fails to produce a good fit (Metz et al., 2021). To alleviate this
problem previous works resort to cumbersome heuristics, such as iterative training and trajectory
splitting (Yildiz et al., 2019; Kochkov et al., 2021; HAN et al., 2022; Lienen & Günnemann, 2022).

The optimal control literature has a long history of multiple shooting methods, where the trajectory
fitting is split into piecewise segments that are easy to optimise, with constraints to ensure continuity
across the segments (van Domselaar & Hemker, 1975; Bock & Plitt, 1984; Baake et al., 1992).
Multiple-shooting based models have simpler loss landscapes, and are practical to fit by gradient
descent (Voss et al., 2004; Heiden et al., 2022; Turan & Jäschke, 2022; Hegde et al., 2022).

Inspired by this line of work, we develop a shooting-based latent neural ODE model (Chen et al.,
2018; Rubanova et al., 2019; Yildiz et al., 2019; Massaroli et al., 2020). Our multiple shooting
formulation generalizes standard approaches by sparsifying the shooting variables in a probabilistic
setting to account for irregularly sampled time grids and redundant shooting variables. We further-
more introduce an attention-based (Vaswani et al., 2017) encoder architecture for latent neural ODEs
that is compatible with our sparse shooting formulation and can handle noisy and partially observed
high-dimensional data. Consequently, our model produces state-of-the-art results, naturally handles
the problem with long observation intervals, and is stable and quick to train. Our contributions are:

• We introduce a latent neural ODE model with quick and stable training on long trajectories.
• We derive sparse Bayesian multiple shooting – a Bayesian version of multiple shooting

with efficient utilization of shooting variables and a continuity-inducing prior.
• We introduce a transformer-based encoder with novel time-aware attention and relative

positional encodings, which efficiently handles data observed at arbitrary time points.
∗Aalto University, Finland. Corresponding author: valerii.iakovlev@aalto.fi.
†University of Tübingen, Germany. Code: https://github.com/yakovlev31/msvi

1

https://github.com/yakovlev31/msvi

Published as a conference paper at ICLR 2023

Figure 2: Method overview with two blocks (see Section 3.1). The encoder maps the input sequence
y1:5 observed at arbitrary time points t1:5 to two distributions q 1(s1), q 2(s2) from which we
sample shooting variables s1, s2. Then, s1, s2 are used to compute two sub-trajectories that define
the latent trajectory x1:5 from which the decoder reconstructs the input sequence.

2 PROBLEM SETTING AND BACKGROUND

Data. We observe a dynamical system at arbitrary consecutive time points t1:N = (t1, ..., tN),
which generates an observed trajectory y1:N = (y1, . . . ,yN), where yi := y(ti) 2 RD. Our goal
is to model the observations and forecast the future states. For brevity we present our methodology
for a single trajectory, but extension to many trajectories is straightforward.

Figure 1: Top: Train loss of L-NODE
model using iterative training heuris-
tic. We start training on a short trajec-
tory (N = 10), and double its length
every 3000 iterations. The training
fails for the longest trajectory. Bot-
tom: 1-D projection of the loss land-
scape around the parameters to which
the optimizer converged for a given
trajectory length. Complexity of the
loss grows dramatically with N .

Latent Neural ODE models. L-NODE models (Chen
et al., 2018; Rubanova et al., 2019) relate the observations
y1:N to a latent trajectory x1:N := (x1, ...,xN), where
xi := x(ti) 2 Rd, and learn dynamics in the latent space.
An L-NODE model is defined as:

xi = ODEsolve(x1, t1, ti, f�dyn), i = 2, ..., N, (1)

yijxi � p(yijg�dec(xi)), i = 1, ..., N. (2)

Variable x1 is the initial state at time t1. Dynam-
ics function f�dyn is the time derivative of x(t), and
ODEsolve(x1, t1, ti, f�dyn) is defined as the solution of the
following initial value problem at time ti:

dx(t)

dt
= f�dyn(t,x(t)), x(t1) = x1, t 2 [t1, ti]. (3)

Decoder g�dec maps the latent state xi to the parameters of
p(yijg�dec(xi)). Dynamics and decoder functions are neu-
ral networks with parameters θdyn and θdec. In typical appli-
cations, data is high-dimensional whereas the dynamics are
modeled in a low-dimensional latent space, i.e., d� D.

L-NODE models are commonly trained by minimizing a loss function, e.g., evidence lower bound
(ELBO), via gradient descent (Chen et al., 2018; Yildiz et al., 2019). In gradient-based optimization
complexity of the loss landscape plays a crucial role in the success of the optimization. However, it
has been empirically shown that the loss landscape of L-NODE-like models (i.e., models that com-
pute latent trajectory x1:N from initial state x1) is strongly affected by the length of the simulation
interval [t1, tN] (Voss et al., 2004; Metz et al., 2021; Heiden et al., 2022). Furthermore, Ribeiro et al.
(2020) show that the loss complexity in terms of Lipschitz constant can grow exponentially with the
length of [t1, tN]. Figure 1 shows an example of this phenomenon (details in Appendix A).

2

Published as a conference paper at ICLR 2023

3 METHODS

In Section 3.1, we present our latent neural ODE formulation that addresses the curse of length by
sparse multiple shooting. In Section 3.2 we describe the generative model, inference, and forecasting
procedures. In Section 3.3 we describe our time-aware, attention-based encoder architecture that
complements our sparse multiple shooting framework.

3.1 LATENT NEURAL ODES WITH SPARSEMULTIPLE SHOOTING

Figure 3: Top: Trajec-
tory over [t1; t4], x i is
computed fromx 1. Bot-
tom: [t1; t4] is split into
three sub-intervals,x i is
computed fromsi � 1.

Multiple shooting. A simple and effective method for solving opti-
misation problems with long simulation intervals is to split these in-
tervals into short, non-overlapping sub-intervals that are optimised in
parallel. This is the main idea of a technique called multiple shooting
(Hemker, 1974; Bock & Plitt, 1984). To apply multiple shooting to an
L-NODE model we introduce new parameters, called shooting variables,
s1:N � 1 = (s1; : : : ; sN � 1) with si 2 Rd that correspond to time points
t1:N � 1, and rede�ne the L-NODE model as

x 1 = s1; (4)
x i = ODEsolve(si � 1; t i � 1; t i ; f � dyn); (5)

y i jx i � p
�
y i jg� dec

�
x i)

�
: (6)

The initial statex 1 is represented by the �rst shooting variables1, and
the latent statex i is computed from the previous shooting variablesi � 1.
This gives short simulation intervals[t i � 1; t i], which greatly reduces complexity of the loss land-
scape. Continuity of the entire piecewise trajectory is enforced via constraints on the distances
betweenx i andsi (see Figure 3), which we discuss in Section 3.2. Multiple shooting leads to a new
optimisation problem over� dyn; � dec, ands1:N � 1.

Figure 4: An exam-
ple of sparse multiple
shooting with B = 2 ,
I 1 = f 2; 3; 4g andI 2 =
f 5; 6g.

Sparse multiple shooting. Multiple shooting assigns a shooting vari-
able to every time point (see Figure 3). For irregular or densely sampled
time grids this approach might result in redundant shooting variables and
excessively short and uninformative sub-intervals due to high concentra-
tion of time points in some regions of the time grid.

We propose to �x these problems by sparsifying the shooting variables.
Instead of assigning a shooting variable to every time point, we divide
the time grid intoB non-overlappingblocksand assign a single shooting
variable to each block. For blockb 2 f 1; :::; B g, we de�ne an index
setI b containing indices of consecutive time points associated with that
block such that[bI b = f 2; : : : ; N g. We do not include the �rst time
point t1 in any of the blocks. With every blockb we associate observa-
tionsf y i gi 2I b , time pointsf t i gi 2I b and a shooting variablesb placed at the �rst time point before
the block. The temporal position ofsb is denoted byt [b]. Latent statesf x i gi 2I b are computed from
sb as

x i = ODEsolve(sb; t [b]; t i ; f � dyn); i 2 I b: (7)

As shown in Figure 4, this approach reduces the number of shooting variables and grants �ner
control over the length of each sub-interval to ensure that it is both suf�ciently long to contain
enough dynamics information and suf�ciently short to keep the loss landscape not too complex.

As illustrated in Figure 4, an ODE solution (Eq. 7) does not necessarily match the corresponding
shooting variable. Standard multiple shooting formulations enforce continuity of the entire trajectory
via a hard constraint or a penalty term (Voss et al., 2004; Jordana et al., 2021; Turan & Jäschke,
2022). Instead, we propose to utilize Bayesian inference and naturally encode continuity as a prior
which leads to sparse Bayesian multiple shooting which we discuss in the next section.

3

Published as a conference paper at ICLR 2023

3.2 MODEL, INFERENCE, AND FORECASTING

Model. Our model is a latent neural ODE with sparse multiple shooting (Section 3.1). To infer the
parameterss1:B ; � dyn, and� dyn we use Bayesian inference with the following prior:

p(s1:B ; � dyn; � dec) = p(s1:B j� dyn)p(� dyn)p(� dec); (8)
wherep(� dyn); p(� dec) are Gaussians, and thecontinuity inducing priorp(s1:B j� dyn) is de�ned as

p(s1:B j� dyn) = p(s1)
BY

b=2

p(sbjsb� 1; � dyn) = p(s1)
BY

b=2

N
�
sbjODEsolve(sb� 1; t [b� 1] ; t [b]; f � dyn); � 2

c I
�
;

(9)

wherep(s1) is a diagonal Gaussian,N is the Gaussian distribution,I 2 Rd� d is identity matrix,
and parameter� 2

c controls the strength of the prior. The continuity prior forces the shooting variable
sb and the �nal state of the previous blockb� 1, which is obtained using the dynamics model, to be
close (e.g.,s2 andx (t [2]) = x 4 in Fig. 4), thus promoting continuity of the entire trajectory.

With the priors above, we get the following generative model
� dyn; � dec � p(� dyn)p(� dec); s1:B j� dyn � p(s1:B j� dyn); (10)
x 1 = s1; (11)
x i = ODEsolve(sb; t [b]; t i ; f � dyn); b 2 f 1; :::; B g; i 2 I b; (12)

y i jx i � p(y i jg� dec(x i)) ; i = 1 ; :::; N: (13)
Sincex 1:N are deterministic functions ofs1:B and� dyn, we have the following joint distribution (see
Appendix B for more details)

p(y1:N ; s1:B ; � dyn; � dec) = p(y1:N js1:B ; � dyn; � dec)p(s1:B j� dyn)p(� dyn)p(� dec): (14)

Inference. We use variational inference (Blei et al., 2017) to approximate the true posterior
p(� dyn; � dec; s1:B jy1:N) by an approximate posterior

q(� dyn; � dec; s1:B) = q(� dyn)q(� dec)q(s1:B) = q dyn(� dyn)q dec(� dec)
BY

b=1

q b (sb) (15)

with variational parameters dyn, dec, and 1:B = (1; : : : ; B). Note that contrary to standard
VAEs, which use point estimates of� dyn and� dec, we extent the variational inference to these param-
eters to adequately handle the uncertainty. To avoid direct optimization over the local variational
parameters 1:B , we use amortized variational inference (Kingma & Welling, 2013) and learn an
encoderh� enc with parameters� enc which maps observationsy1:N to 1:B (see Section 3.3). We
denote the amortized shooting distributionsq b (sbjy1:N ; � enc), where b = h� enc(y1:N), simply as
q(sb) or q b (sb) for brevity. We assumeq dyn, q dec, andq b to be diagonal Gaussians.

With a fully factorisedq(s1:B) we can sample the shooting variabless1:B independently which
allows to compute the latent statesx 1:N in parallel by simulating the dynamics only over short sub-
intervals. If the posteriorq(s1:B) followed the structure of the priorp(s1:B j� dyn) we would not be
able to utilize these bene�ts of multiple shooting since to samples1:B we would need to simulate
the whole trajectorys1:B starting ats1.

In variational inference we minimize the Kullback-Leibler divergence between the variational ap-
proximation and the true posterior,

KL
�
q(� dyn; � dec; s1:B)kp(� dyn; � dec; s1:B jy1:N)

�
; (16)

which is equivalent to maximizing the ELBO which for our model is de�ned as

L = Eq(� dec;s1)
�

logp(y1js1; � dec)
�

| {z }
(i) data likelihood

+
BX

b=1

X

i 2I b

Eq(� dyn;� dec;sb)
�

logp(y i jsb; � dyn; � dec)
�

| {z }
(ii) data likelihood

(17)

� KL
�
q(s1)kp(s1)

�

| {z }
(iii) initial state prior

�
BX

b=2

Eq(� dyn;sb� 1)

h
KL

�
q(sb)kp(sbjsb� 1; � dyn)

� i

| {z }
(iv) continuity prior

(18)

� KL
�
q(� dyn)kp(� dyn)

�

| {z }
(v) dynamics prior

� KL
�
q(� dec)kp(� dec)

�

| {z }
(vi) decoder prior

: (19)

4

Published as a conference paper at ICLR 2023

Figure 5: (a) Encoder structure. (b) Encoder with two blocks (i.e.,B = 2) operating on input
sequencey1:5 with shooting variabless1; s2 located att1; t3.

Appendix B contains detailed derivation of the ELBO, and fully speci�es the model and the approx-
imate posterior. While terms(iii) , (v) and(vi) have a closed form, computation of terms(i), (ii) and
(iv) involves approximations: Monte Carlo sampling for the expectations, and numerical integration
for the solution of the initial value problems. Appendix C details the computation of ELBO.

Forecasting. Given initial observationsy �
1:m of a test trajectory at time pointst �

1:m we predict the
future observationy �

n at a time pointt �
n > t �

m as the expected value of the approximate posterior
predictive distribution

p(y �
n jy �

1:m ; y1:N) �
Z

p(y �
n js�

1; � dyn; � dec)q �
1
(s�

1)q dyn(� dyn)q dec(� dec)ds�
1d� dynd� dec; (20)

where �
1 = h� enc(y

�
1:m). The expectation is estimated via Monte Carlo integration (Appendix C).

Note that inferrings�
m instead ofs�

1 could lead to more accurate predictions, but in this work we use
s�

1 to simplify implementation of the method.

3.3 ENCODER

We want to design an encoder capable of operating on irregular time grids, handling noisy and
partially observed data, and parallelizing the computation of the local variational parameters 1:B .
Transformer (Vaswani et al., 2017) satis�es most of these requirements, but is not directly applica-
ble to our setup. We design a transformer-based encoder with time-aware attention and continuous
relative positional encodings. These modi�cations provide useful inductive biases and allow the en-
coder to effectively operate on input sequences with a temporal component. The encoder computes
 1:B with (see Figure 5 (a-b)):

 1:B = h� enc(y1:N) = hread(hagg(hcomp(y1:N))) ; (21)

where

1. hcomp : RD ! RD low compresses observationsy1:N 2 RD � N into a low-dimensional
sequencea1:N 2 RD low� N , whereD low � D .

2. hagg : RD low� N ! RD low� B aggregates information acrossa1:N into b1:B 2 RD low� B ,
wherebi is located at the temporal position ofsi (Figure 5 (b)).

3. hread : RD low ! RP reads the parameters 1:B 2 RP � B from b1:B .

Transformationshcomp andhread are any suitable differentiable functions. Transformationhagg is a
transformer encoder (Vaswani et al., 2017) which is a sequence-to-sequence mapping represented
by a stack ofL layers (Figure 5 (a)). Each layer` 2 f 1; : : : ; Lg contains a component called
attention sub-layer which maps an input sequence� (`)

1:N := (� (`)
1 ; : : : ; � (`)

N) 2 RD low� N to an
output sequence� (`)

1:N := (� (`)
1 ; : : : ; � (`)

N) 2 RD low� N , except for the last layer which maps� (L)
1:N to

� (L)
1:B to match the number of shooting variables. For the �rst layer,� (1)

1:N = a1:N , and for the last
layer,b1:B = FF(� (L)

1:B), whereFF(�) is a feed-forward network with a residual connection. In the

5

Published as a conference paper at ICLR 2023

following, we drop the index̀ for notational simplicity since each layer has the same structure. The
attention sub-layer for the standard, scaled dot-product self-attention (assuming a single attention
head) is de�ned using the dot-product (C DP

ij), softmax (C ij) and weighted average (� i) (Vaswani
et al., 2017):

C DP
ij =

hWQ � i ; WK � j i
p

D low
; C ij =

exp (C DP
ij)

P N
k=1 exp (C DP

ik)
; � i =

NX

j =1

C ij (WV � j); (22)

whereWQ ; WK ; WV 2 RD low� D low are learnable layer-speci�c parameter matrices, andC 2 RN � N

is the attention matrix. This standard formulation of self-attention works poorly on irregularly sam-
pled trajectories (see Section 4). Next, we discuss modi�cations that we introduce to make it appli-
cable on irregularly sampled data.

Figure 6: (a) Tem-
poral attention. (b)
Relative position
encoding.

Temporal attention Dot product attention has no notion of time hence can
attend to arbitrary elements of the input sequence. To make� i dependent
mostly on those input elements that are close tot i we augment the dot-product
attention with temporal attentionC TA

ij and rede�ne the attention matrix as

C TA
ij = ln (�)

�
jt j � t i j

� r

� p

; C ij =
exp (C DP

ij + C TA
ij)

P N
k=1 exp (C DP

ik + C TA
ik)

; (23)

where � 2 (0; 1], p 2 N and � r 2 R> 0 are constants. Since
exp (C DP

ij + C TA
ij) = exp (C DP

ij) exp (C TA
ij), the main purpose of temporal

attention is to reduce the amount of attention from� i to � j as the tempo-
ral distancejt i � t j j grows. Parameter� r de�nes the distance beyond which
exp(C DP

ij) is scaled by at least� , whilepde�nes the shape of the scaling curve.
Figure 6 (a) demonstrates shapes of the scaling curves for various values ofp.

Relative positional encodings To make� i independent of its absolute tem-
poral positiont i we replace the standard global positional encodings with
relative positional encodings which we de�ne as

P ij = w � hardtanh
�

t j � t i

� r

�
; and rede�ne � i =

NX

j =1

C ij (WV � j + P ij); (24)

wherew 2 Rd is a vector of trainable parameters,� is point-wise multiplication, and� r is the same
as for temporal attention. This formulation is synergistic with temporal attention as it ensures that� i
has useful positional information about� j only if jt i � t j j < � r which further forces� i to depend
on input elements close tot i (see Figure 6 (b)). In this work we sharew across attention sub-layers.
For further details about the encoder, see Appendix E. In Appendix F we investigate the effects ofp
and� r . In Appendix J we compare our transformer-based aggregation function with ODE-RNN of
Rubanova et al. (2019).

Note that our encoder can process input sequences of varying lengths. Also, as discussed in Section
3.2, at test time we setB = 1 so that the encoder outputs only the �rst parameter vector 1 since
we are only interested in the initial states1 from which we predict the test trajectory.

4 EXPERIMENTS

To demonstrate properties and capabilities of our method we use three datasets: PENDULUM,
RMNIST, and BOUNCING BALLS, which consist of high-dimensional (D = 1024) observations
of physical systems evolving over time (Figure 7) and are often used in literature on modeling of
dynamical systems. We generate these datasets on regular and irregular time grids. Unless otherwise
stated, we use the versions with irregular time grids. See Appendix D for more details.

We train our model for300000iterations with Adam optimizer (Kingma & Ba, 2015) and learning
rate exponentially decreasing from3 � 10� 4 to 10� 5. To simulate the dynamics we use an ODE
solver fromtorchdiffeq package (Chen et al., 2018) (dopri5 withrtol = atol = 10 � 5). We
use second-order dynamics and set the latent space dimensiond to 32. See Appendix E for detailed
description of training/validation/testing setup and model architecture. Error bars are standard errors
evaluated with �ve random seeds. Training is done on a single NVIDIA Tesla V100 GPU.

6

Published as a conference paper at ICLR 2023

Figure 7: Top row: PENDULUM dataset consisting of images of a pendulum moving under the
in�uence of gravity.Middle row: RMNIST dataset consisting of images of rotating digits 3.Bottom
row: BOUNCING BALLS dataset consisting of images of three balls bouncing in a box.

4.1 REGULAR AND IRREGULAR TIME GRIDS

Here we compare performance of our model on regular and irregular time grids. As Figure 8 shows,
for all datasets our model performs very similarly on both types of the time grids, demonstrating its
strong and robust performance on irregularly sampled data. Next, to investigate how design choices
in our encoder affect the results on irregular time grids, we do an ablation study where we remove
temporal attention (TA) and relative positional encodings (RPE). Note that when we remove RPE
we add standard sinusoidal-cosine positional encodings as in Vaswani et al. (2017). The results are
shown in Table 1. We see that removing temporal attention, or RPE, or both tends to noticeably
increase test errors, indicating the effectiveness of our modi�cations.

Figure 8: Test errors for our model on regular
and irregular time grids.

Model Pendulum RMNIST Bouncing Balls

-RPE -TA 0:036� 0:007 0:068� 0:000 0:079� 0:001
+RPE -TA 0:043� 0:010 0:062� 0:002 0:043� 0:013
-RPE +TA 0:009� 0:001 0:047� 0:002 0:024 � 0:002
+RPE +TA 0:004 � 0:001 0:015 � 0:002 0:024 � 0:001

Table 1: Test MSEs for different ablations.

4.2 BLOCK SIZE

Our model operates on sub-trajectories whose lengths are controlled by the block sizes, i.e., the
number of observations in each block (Section 3.1). Here we set the size of all blocks to a given
value and demonstrate how it affects the performance of our model. Figure 9 shows test errors and
training times for various block sizes. We see that the optimal block size is much smaller than the
length of the observed trajectory (51 in our case), and that in some cases the model bene�ts from
increasing the block size, but only up to some point after which the performance starts to drop. We
also see how the ability to parallelize computations across block improves training times.

Figure 9: Test errors and training times for different block sizes.

7

Published as a conference paper at ICLR 2023

4.3 CONTINUITY CONSTRAINT

Figure 10: Test errors vs.� c.

Our model divides training sequences into blocks and uses the con-
tinuity prior (Equation 9) to enforce continuity of the latent trajec-
tories across the blocks. Here we investigate how the strength of the
prior (in terms of� c) affects the model's performance. In Figure 10
we show results for different values of� c. We see that stronger con-
tinuity prior tends to improve the results. For BOUNCING BALLS
with � c = 2 � 10� 5 the model failed to learn meaningful latent dy-
namics, perhaps due to excessively strong continuity prior. For new
datasets the continuity prior as well as other hyperparameters can
be set e.g. by cross-validation. In appendix I we also show how the
value of� c affects the gap between the blocks.

4.4 CONSTRAINING THE APPROXIMATE POSTERIOR

Figure 11: Errors for constrained
and unconstrained approximate
posteriors.

We found that constraining variance of the approximate poste-
riors q i (si) to be at least� 2

min > 0 (in each direction) might
noticeably improve performance of our model. In Figure 11
we compare the results for� min = 0 and� min = 0 :02. As can
be seen, this simple constraint greatly improves the model's
performance on more complex datasets. This constraint could
be viewed as an instance of noise injection, a technique used
to improve stability of model predictions (Laskey et al., 2017;
Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021). Previous
works inject noise into the input data, but we found that inject-
ing noise directly in the latent space produces better results.
Details are in Appendix E.4.3.

4.5 COMMON HEURISTICS

Figure 12: Errors for different
heuristics.

As discussed previously, models that computex 1:N directly
from x 1 without multiple shooting (so called single shoot-
ing models) require various heuristics to train them in prac-
tice. Here we compare two commonly used heuristics with
our multi-block model. First, we train our model with a single
block (equivalent to single shooting) and use it as the base-
line (SS). Then, we augment SS with the two heuristics and
train it on short sub-trajectories (SS+sub) and on progressively
increasing trajectory lengths (SS+progr). Finally, we train our
sparse multiple shooting model (Ours) which is identical to SS,
but has multiple blocks and continuity prior. See Appendix G
for details. The results are in Figure 12. The baseline single
shooting model (SS) tends to fail during training, with only a
few runs converging. Hence, SS produces poor predictions on
average. Training a single shooting model on short sub-trajectories tends to make results even worse
in our case. With relatively easy training, SS+sub produces unstable test predictions that quickly
blow up. In our case SS+progr was the most effective heuristic, with stable training and reasonable
test predictions (with a few getting a bit unstable towards the end). Compared to our model, none of
the heuristics was able to match the performance of our sparse multiple shooting model.

4.6 COMPARISON TO OTHER MODELS

We compare our model to recent models from the literature: ODE2VAE (Yildiz et al., 2019) and
NODEP (Norcliffe et al., 2021). Both models learn continuous-time deterministic dynamics in the
latent space and use an encoder to map observations to the latent initial state. For comparison we
use datasets on regular time grids since ODE2VAE's encoder works only on regular time grids. All
models are trained and tested on full trajectories and use the �rst 8 observations to infer the latent
initial state. We use the default parameters and code provided in the ODE2VAE and NODEP papers.

8

	Introduction
	Problem Setting and Background
	Methods
	Latent Neural ODEs with Sparse Multiple Shooting
	Model, Inference, and Forecasting
	Encoder

	Experiments
	Regular and irregular time grids
	Block size
	Continuity constraint
	Constraining the approximate posterior
	Common heuristics
	Comparison to other models

	Related Work
	Conclusion
	Dependence of loss landscape on the observation interval
	Model, approximate posterior, and ELBO
	Computation Algorithms
	ELBO
	Forecasting

	Datasets
	Pendulum
	RMNIST
	Bouncing Balls

	Setup
	Training, validation, testing
	Data preprocessing
	Training
	Validation
	Testing

	Priors
	Variational parameters
	Model architecture
	Dynamics function
	Decoder
	Encoder

	Properties of the encoder
	Common heuristics
	Setup
	Heuristics

	Comparison to other models
	NODEP
	ODE2VAE
	Our model
	More predictions
	Training with different sub-trajectory lengths
	Comparison against another multiple-shooting-based method

	Strength of the continuity prior vs gap between blocks
	Using ODE-RNN as aggregation function

