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ABSTRACT

Domain adaptation enhances generalizability of a model across domains with do-
main shifts. Most research effort has been spent on Unsupervised Domain Adap-
tion (UDA) which trains a model jointly with labeled source data and unlabeled
target data. This paper studies how much it can help address domain shifts if
we further have a few target samples (e.g., one sample per class) labeled. This
is the so-called semi-supervised domain adaptation (SSDA) problem and the few
labeled target samples are termed as “landmarks”. To explore the full potential
of landmarks, we incorporate a prototypical alignment (PA) module which calcu-
lates a target prototype for each class from the landmarks; source samples are then
aligned with the target prototype from the same class. To further alleviate label
scarcity, we propose a data augmentation based solution. Specifically, we severely
perturb the labeled images, making PA non-trivial to achieve and thus promoting
model generalizability. Moreover, we apply consistency learning on unlabeled
target images, by perturbing each image with light transformations and strong
transformations. Then, the strongly perturbed image can enjoy “supervised-like”
training using the pseudo label inferred from the lightly perturbed one. Exper-
iments show that the proposed method, though simple, reaches significant per-
formance gains over state-of-the-art methods, and enjoys the flexibility of being
able to serve as a plug-and-play component to various existing UDA methods and
improve adaptation performance with landmarks provided.

1 INTRODUCTION

Domain adaptation investigates techniques of avoiding severe performance drop when deploying
a model on a new domain (target) that has domain gap with the one (source) which the model is
trained on. Most existing research focuses on Unsupervised Domain Adaptation (UDA) which trains
a model jointly with unlabeled target data and labeled source data. Many effective UDA approaches
have been proposed, from early works that project data from both domains to a shared feature space
(Gong et al., 2012; Pan et al., 2011), to recent ones that are based on adversarial learning (Tzeng
et al., 2015; Long et al., 2018).

This paper makes a slight diversion from the mainstream UDA research direction and investigates
how much it can help if we are further provided with a few (e.g., one sample per class) labeled
target samples. We call these scarce labeled target samples as “landmarks”. This is a practical
(with minimal labeling effort) yet under-investigated problem and was referred as semi-supervised
domain adaptation (SSDA). Preliminary works before the deep learning era use landmarks to more
precisely measure the data distribution mismatch between source and target domains, either based
on Maximum Mean Discrepancy (MMD) or domain invariant subspace learning (Ao et al., 2017;
Donahue et al., 2013; Yao et al., 2015). Recent ones revisit this problem and establish new evaluation
benchmarks in the deep learning context (Saito et al., 2019; Kim & Kim, 2020). However, these
pioneering works have not fully realized the value of the precious landmarks as they are mainly
used to optimize the cross-entropy loss along with labeled source samples that are of a much larger
amount. The contribution of the landmarks is significantly diluted and thus the learned model shall
still be biased towards source domain.
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In this paper, we propose a Prototypical Alignment and Consistency Learning (PACL) based frame-
work which addresses SSDA by empowering existing UDA methods to comprehensively exploit
the limited yet precious landmarks. PACL is model-agnostic in the sense that most existing UDA
models can be integrated into the framework and have adaption performance enhanced providing
landmarks. A main composing component of PACL is the prototypical alignment (PA) module
which calculates a target prototype for each class by averaging feature embeddings of the landmarks
from that class. Then, source samples are aligned with the target prototype from the same class.
In this way, we achieve class-level domain alignment, a desirable complement of the domain-level
alignment fulfilled by UDA methods.

Other techniques of PACL are based on data augmentation. Data augmentation is a common regu-
larization technique of avoiding overfitting for supervised learning (Krizhevsky et al., 2012; Cubuk
et al., 2019a). It is also shown recently that data augmentation can significantly advance semi-
supervised learning performance when properly applied (Xie et al., 2019; Sohn et al., 2020). In-
spired by this, we propose a data augmentation based solution to further address the label scarce
problem. We apply strong data augmentation on labeled images and produce highly perturbed ones,
which makes it non-trivial to achieve the PA task, thus enhancing model generalibility. We also
apply data augmentation on unlabeled samples to perform consistency learning. We apply light
and strong transformations on each unlabeled target image, generating a lightly perturbed version
and a strongly perturbed one. Then, pseudo label inferred from the former can be applied on the
latter in a supervised learning manner. These procedures cast a consistency regularization on the
model, smoothing its predictions over image changes, and thus contributing to more desirable re-
sults. Experiments show that PACL significantly outperforms state-of-the-art SSDA methods and
consistently boosts various UDA methods for adaptation performance with large gains.

In summary, the contributions of this paper are as follows: (1) We propose a general framework that
can significantly advance state-of-the-art SSDA performance and flexibly integrate various UDA
methods to have adaptation performance boosted by large margins. (2) We propose the PA module
which achieves class-wise domain alignment by assigning source samples to the target prototype that
from the same class. (3) We propose to enhance DA performance with a novel data augmentation
based solution where we apply data augmentation on both labeled and unlabeled images, aiming to
address model overfitting and enforce consistency regularization, respectively.

2 RELATED WORK

Domain Adaptation (DA). According to the type of data available in target domain, DA methods
can be divided into three categories: Unsupervised Domain Adaptation (UDA), Few-Shot Domain
Adaptation (FSDA) and Semi-Supervised Domain Adaptation (SSDA). UDA assumes that target
domain data are purely unlabeled. Early methods in the shallow regime address UDA either by
reweighting source instances (Huang et al., 2006; Gong et al., 2013) or projecting samples into a
domain invariant feature space (Gong et al., 2012; Pan et al., 2011). Recent ones are more in the
deep regime and approach UDA by moment matching (Long et al., 2015; Carlucci et al., 2017;
Long et al., 2017) or adversarial learning (Tzeng et al., 2015; Ganin et al., 2016; Luo et al., 2017;
Long et al., 2018). FSDA assumes that there is no access to unlabeled samples, but a few labeled
ones in target domain. To fully utilize the few labeled target samples, existing methods perform
class-wise domain alignment using contrastive loss (Motiian et al., 2017) or triplet loss (Xu et al.,
2019b). SSDA is a hybrid of FSDA and UDA where we have access to both a few labeled samples
and many unlabeled samples from target domain. Early works use the extra labeled target samples
to help more precisely measure the data distribution mismatch between source and target domains,
either based on Maximum Mean Discrepancy (MMD) or domain invariant subspace learning (Ao
et al., 2017; Donahue et al., 2013; Yao et al., 2015; Saito et al., 2019; Tejankar & Pirsiavash, 2019).
Saito et al. recently proposed a deep learning based method which alternates between maximizing
the classification entropy with respect to the classifier and minimizing it with respect to the feature
encoder (Saito et al., 2019). Kim et al. extended this work by explicitly alleviating the intra-domain
discrepancy problem (Kim & Kim, 2020). We approach SSDA in a new way by proposing a general
framework into which existing UDA methods can be incorporated and served as one component for
domain alignment along with other novel components.

Semi-Supervised Learning (SSL). Leveraging unlabeled data along with labeled ones in the train-
ing process, SSL has boosted performance with a variety of training strategies, including graph-
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Figure 1: Illustration of the proposed PACL framework. PACL includes three alignment modules:
UDA performs domain alignment using labeled source and unlabeled target samples, exactly the
same way as existing UDA methods. PA conducts class-level alignment by explicitly pushing close
cross-domain samples that are from the same class. CA generates a pseudo label for each unla-
beled target sample from its weakly augmented version and applies the pseudo label on its strongly
augmented version with supervised learning.

based (Kipf & Welling, 2016), adversarial (Miyato et al., 2016), generative (Dai et al., 2017), model-
ensemble (Laine & Aila, 2016), self-training (Li et al., 2019; Sohn et al., 2020), etc. The difference
of SSL and SSDA lies that labeled samples of SSL are from the same domain as the unlabeled ones
and they are usually of a fair amount, often up to several hundreds or thousands. In SSDA, labeled
samples instead come from two different domains, with the majority being out-of-domain (relative
to the unlabeled samples). So, compared with SSL, SSDA needs further solving the domain shift
problem to more effectively utilize the plenty yet out-of-domain labeled samples. We achieve this
by employing off-the-shelf UDA techniques and the proposed prototypical alignment technique.

Few-Shot Learning (FSL). FSL aims to acquire knowledge of novel classes with only a few labeled
samples (Vinyals et al., 2016; Snell et al., 2017). FSL has very distinct goals from SSDA. FSL
emphasizes generalizability of a learned model towards novel classes for which there is no sample
(neither labeled nor unlabeled) available during training but a few labeled ones in test. SSDA instead
focuses on enhancing generalizability of a model towards unlabeled samples of the classes for which
during training there are plenty of labeled samples from source domain, a few labeled ones and many
unlabeled ones from target domain. Even with different goals, the way that an FSL method (Snell
et al., 2017) utilizes a few labeled samples to recognize other unlabeled ones inspires us to develop
the supervised alignment module which achieves class-level domain alignment.

3 ALGORITHM

Semi-supervised domain adaptation (SSDA) investigates the adaptation from a label-rich source
dataset S = {Xs,Ys} to a label-scarce target dataset T . The two datasets are drawn from the
same label space {1, 2, . . . , C} but with different data distributions that cause domain shifts. Unlike
Unsupervised Domain Adaptation (UDA) problem where the target dataset T consists of purely
unlabeled samples, in SSDA T is a hybrid of labeled and unlabeled samples, i.e., T = Tl ∪ Tu,
where Tl = {Xt,Yt} and Tu = Xu. Usually, the number of labeled samples in Tl is very small, even
to one sample per class in the most extreme case. We call these labeled samples as “landmarks”.
Our goal is to learn a domain adaptive model using S, Tu as well as the landmarks from Tl, and
evaluate the model on Tu. Let the model be h = f ◦g with parameters θ, where f generates features
from images and g outputs label predictions based on the extracted features.

We can see that the difference of SSDA from UDA is the extra access to landmarks. A naive way to
use them is to optimize a cross-entropy loss jointly with an unsupervised alignment loss:

Luda = Lce + αLua, (1)

where
Lce = E

(s,ys)∼S
[L(h(s), ys)] + E

(t,yt)∼Tl
[L(h(t), yt)] (2)
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is the cross-entropy loss over labeled source samples and target landmarks. Lua is an UDA loss that
exploits unlabeled target samples and labeled source samples for domain alignment.

Naively merging the limited landmarks into source samples for the cross-entropy loss optimization
does not fully realize their value, as their contribution would be severely diluted, resulting in a
model biased towards source domain. We solve this by proposing a prototypical domain alignment
module, which aligns domains in class-level by explicitly pushing source samples towards target
samples that from the same class. This module is further enhanced by a data augmentation based
technique. Moreover, we propose another data augmentation based technique that is applied on
unlabeled target samples. This technique constrains the model to make consistent predictions for
different versions of the same image undergone perturbations of different extent. Figure 1 shows
our framework.

3.1 PROTOTYPICAL ALIGNMENT

The labeled samples from target domain, i.e., landmarks, though limited, provide reliable (relative
to pseudo labels produced by various thresholding techniques (Zou et al., 2019)) class information
about target domain. We can utilize these landmarks to achieve a class-level domain alignment,
which complements with the domain-level alignment fulfilled by existing UDA methods.

We calculate a target representation, or a target prototype (Snell et al., 2017) for each class by
averaging the feature embeddings of the landmarks from that class:

ck =
1

|Tk|
∑

(ti,yi)∈Tk

f(ti), (3)

where Tk is the landmark collection from class k. With the target prototypes for all classes {ck}Ck=1,
we can compute a distribution over classes for a source sample (s, ys) based on a softmax over
distances to the target prototypes in the embedding space:

P (ys = y|s) =
exp(f(s)− cy)∑C
k=1 exp(f(s)− ck)

. (4)

Then, we can calculate the prototypical alignment loss over all source samples as

Lpa = E
(s,ys)∼S

[ 1

C

C∑
y=1

y log[−p(ys = y|s)]
]
. (5)

This learning objective encourages the model to produce features that maintain class discrimination
regardless domain shift, and consequently the learned model is more likely to be domain invariant.

3.2 IMPROVING DOMAIN ALIGNMENT WITH DATA AUGMENTATION

To further alleviate the scarcity of landmarks, we propose two data augmentation based domain
alignment techniques, one for labeled samples and the other for unlabeled samples.

3.2.1 DATA AUGMENTATION FOR PROTOTYPICAL ALIGNMENT

It has been shown that strong augmentation that creates highly perturbed images can lead to sig-
nificant performance gains in supervised learning (Cubuk et al., 2019a;b). This technique has also
been proved effective in semi-supervised learning (Sohn et al., 2020; Xie et al., 2019). Inspired by
this, we introduce strong data augmentation to address DA problem. We employ a data augmenta-
tion method called RandAugment (Cubuk et al., 2019b), which applies on an image with random
augmentation techniques sampled from a transformation set, including color, brightness, contrast
adjustments, rotation, polarization, etc.

For each labeled sample from both source and target domains (s, ys) ∈ S and (t, yt) ∈ Tl, we
perform strong data augmentation and obtain S ′ and T ′ that consist of highly perturbed images.
With S ′ and T ′, the enhanced PA learning objective turns

L′pa = E
(s′,ys)∼S′

[ 1

C

C∑
y=1

y log[−P (ys = y|s′)]
]
, (6)
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where P (ys = y|s′) are calculated with Eq. (4), and the target prototypes are calculated with T ′.
Strong data augmentation produces a wider range of highly perturbed images, which makes the
model harder to memorize the few landmarks and therefore enhances the generalizability of the
learned model. On the one hand, the model is forced to be insensitive to more diverse changes or
perturbations in the image space. On the other hand, the above PA module in essence optimizes the
model extracting image features that the intra-class ones are of higher similarity than the inter-class
ones across domains. It is harder for the model to achieve this optimization objective with highly
perturbed images. Thus, the model is encouraged to mine the most discriminative class semantics
from images and at the same time the most subtle distinctions among images from different classes.

3.2.2 CONSISTENCY ALIGNMENT

Inspired by the recent success in semi-supervised learning (Sohn et al., 2020; Xie et al., 2019),
we introduce data augmentation to address SSDA and propose the Consistency Alignment (CA)
module. For each unlabeled target sample u ∈ U , we apply both weak data augmentation ψ and
strong data augmentation Φ:

uw = ψ(u), (7)
us = Φ(u). (8)

The weak data augmentation ψ includes the widely-used image flipping and image translation. Same
as the practice for labeled samples, we use RandAugment (Cubuk et al., 2019b) as our strong data
augmentation Φ. We feed us and uw to our model h, and optimize the following objective function:

Lca = E
u∼U

[
1(max(pw) ≥ σ)H(p̃w,ps

]
, (9)

where ps and pw are the classification probabilities of augmented samples us and uw, respectively.
p̃w = arg max(pw) transforms the classification probability into a one-hot vector; H(., .) is the
cross-entropy of two possibility distributions; max(pw) returns the highest possibility score.

In essence, the above CA module computes a pseudo label for an unlabeled sample with its weakly-
augmented version and applies the pseudo label on its strongly-augmented version by computing
the standard cross-entropy loss. To mitigate the impact of incorrect pseudo labels, only the sam-
ples with confident predictions (the highest probability scores are above a threshold) are used for
loss computation. This introduces a form of consistency regularization, enforcing the model to be
insensitive to the image perturbations and hence being stronger in classifying unlabeled images.

Pseudo labeling (or self-training) has been investigated before for domain adaptation (Pan et al.,
2019; Zou et al., 2019), but our method is clearly distinct from the previous ones. Existing methods
usually perform stage-wise pseudo labeling: Each stage consists of a number of training epochs and
the latest model is deployed on unlabeled samples at the end of each stage. The confidently predicted
samples are selected for model training in the next stage usually in the same way as labeled samples
from source domain. Within all training epochs in each stage, the pseudo-labeled samples remain
unchanged. Our method instead performs mini-batch-wise pseudo labeling: In each mini-batch, we
compute a pseudo label for every sample from its weakly-augmented version and apply the pseudo
label on the strongly-augmented one. We discard all of the pseudo labels after each mini-batch,
which alleviates the harmful impact of incorrect pseudo labels.

The overall learning objective of our method is a weighted combination of the UDA loss, the PA
loss, and the CA loss:

L = Luda + λ1L
′
pa + λ2Lca, (10)

where λ1 and λ2 are the hyper-parameters.

4 EXPERIMENTS

Datasets and evaluation protocols. We conduct experiments on three commonly used
datasets, namely, VisDA2017 (Peng et al., 2017), DomainNet (Peng et al., 2019), and Office-
Home (Venkateswara et al., 2017).

DomainNet consists of 6 domains of 345 categories. Following (Saito et al., 2019), we select the
Real (R), Clipart (C), Painting (P), and Sketch (S) as the 4 evaluation domains and perform the
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Net R→C R→P P→C C→S S→P R→S P→R Mean
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

ST AlexNet 43.3 47.1 42.4 45.0 40.1 44.9 33.6 36.4 35.7 38.4 29.1 33.3 55.8 58.7 40.0 43.4
DANN AlexNet 43.3 46.1 41.6 43.8 39.1 41.0 35.9 36.5 36.9 38.9 32.5 33.4 53.6 57.3 40.4 42.4
ADR AlexNet 43.1 46.2 41.4 44.4 39.3 43.6 32.8 36.4 33.1 38.9 29.1 32.4 55.9 57.3 39.2 42.7
CDAN AlexNet 46.3 46.8 45.7 45.0 38.3 42.3 27.5 29.5 30.2 33.7 28.8 31.3 56.7 58.7 39.1 41.0
ENT AlexNet 37.0 45.5 35.6 42.6 26.8 40.4 18.9 31.1 15.1 29.6 18.0 29.6 52.2 60.0 29.1 39.8
MME AlexNet 48.9 55.6 48.0 49.0 46.7 51.7 36.3 39.4 39.4 43.0 33.3 37.9 56.8 60.7 44.2 48.2
FAN AlexNet 47.7 54.6 49.0 50.5 46.9 52.1 38.5 42.6 38.5 42.2 33.8 38.7 57.5 61.4 44.6 48.9
PACL AlexNet 55.8 62.6 54.0 59.0 56.1 60.5 46.1 50.6 54.6 50.3 45.0 48.4 62.3 67.4 52.8 57.6
ST ResNet-34 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
DANN ResNet-34 58.2 59.8 61.4 62.8 56.3 59.6 52.8 55.4 57.4 59.9 52.2 54.9 70.3 72.2 58.4 60.7
ADR ResNet-34 57.1 60.7 61.3 61.9 57.0 60.7 51.0 54.4 56.0 59.9 49.0 51.1 72.0 74.2 57.6 60.4
CDAN ResNet-34 65.0 69.0 64.9 67.3 63.7 68.4 53.1 57.8 63.4 65.3 54.5 59.0 73.2 78.5 62.5 66.5
ENT ResNet-34 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
MME ResNet-34 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
FAN ResNet-34 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7
PACL ResNet-34 75.3 79.0 74.1 77.3 75.3 79.4 65.0 70.6 72.1 74.6 68.1 71.6 79.7 82.4 72.8 76.4

Table 1: Results on the DomainNet dataset.

following cross-domain evaluations: R→C (adaptation from source Real to target Clipart), R→P,
P→C, C→S, S→P, R→S, and P→R. For each set of cross-domain experiment, we evaluate both
1-shot and 3-shot settings, where there are 1 and 3 labeled target samples, respectively. The labeled
samples are randomly selected and we use the provided splits for experiments. We evaluate the
classification accuracy for all the 7 sets of experiments and also report the mean of the accuracies.

VisDA2017 includes 152,397 synthetic and 55,388 real images from 12 categories. To conduct
SSDA evaluation, we randomly select 1 and 3 real images from each of the 12 classes as the land-
marks, which corresponds to the 1-shot and 3-shot evaluation settings, respectively. Following the
precious UDA methods, we report the per-class classification accuracy and also the Mean Class
Accuracy (MCA) over all classes.

Office-Home contains images of 65 categories that are from 4 different domains, namely, Real (R),
Clipart (C), Art (A), and Product (P). We use the same 1-shot and 3-shot splits as (Saito et al.,
2019) and evaluate adaptation performance for all 12 pairs of domains. We report the classification
accuracies for all the experimental sets and the corresponding mean accuracy.

Implementation details. The proposed PACL is a general SSDA framework that can incorporate
most existing UDA methods and leverage landmark samples to improve adaptation performance.
Depending on the UDA method built upon, we can get different PACL variants. But for ease and
fairness of evaluation, we conducted most of our experiments with the PACL variant that is based
on MME (Saito et al., 2019)1. Note that although MME is proposed for SSDA, it can be viewed
as an UDA method that naively merges labeled target samples into labeled source samples for the
cross-entropy loss optimization. Since we do this in the same way, MME is still compatible with our
framework. We adopt exactly the same training procedures and hyper-parameters as MME, except
the way to sample labeled data in each mini-batch. Rather than naively sampling data across the
whole labeled set, we perform class-balanced sampling: In each mini-batch, we randomly sample
M classes with Ns and Nt images for each class from source and target domains, respectively. We
set M =10, Ns =10, Nt =1 for 1-shot setting, and Nt =3 for 3-shot setting. We set the balancing
hyper-parameters of different losses as λ1 = 0.1 and λ2 = 1 in Eq. (10), and the confident threshold
σ = 0.8 for pseudo labeling (Eq. (9)) for all experiments.

4.1 COMPARATIVE RESULTS

We compare with the following methods, DANN (Ganin et al., 2016), ADR (Saito et al., 2017),
CDAN (Long et al., 2018), ENT (Grandvalet & Bengio, 2005), MME (Saito et al., 2019), and FAN
(Kim & Kim, 2020). All these methods are either specifically designed or tailored to address the
SSDA problem to make fair comparison. We also report results of the baseline method “ST” which
trains models with labeled samples from source and target domains, without domain alignment.

DomainNet. Table 1 shows that PACL significantly outperforms existing methods in all the exper-
imental settings. Specifically, with AlexNet as the feature extraction model, PACL attains 8.6 and
9.4 point gains for the 1-shot and 3-shot settings, respectively, over MME which PACL is based
on. With ResNet-34, the improvements are 6.4 and 7.5 for the 1-shot and 3-shot settings, respec-

1Unless otherwise specified, we use “PACL” to represent this variant in short.
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Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck MCA
1-shot

ST 82.6 52.8 75.0 57.6 72.7 39.7 80.5 53.3 59.0 64.1 77.5 12.6 60.6
MME 86.6 60.1 80.8 61.9 84.0 69.6 87.0 72.4 73.0 50.9 79.4 14.7 68.4
PACL 94.9 81.5 88.9 81.3 95.9 92.4 92.2 83.3 95.2 77.4 88.4 2.3 81.1

3-shot
ST 74.0 71.7 71.2 64.7 78.5 71.8 69.6 51.4 73.7 49.4 80.8 19.8 64.7

MME 87.2 67.3 74.9 64.5 86.9 85.5 78.8 75.8 84.4 48.0 80.8 19.9 71.2
PACL 95.9 82.9 88.6 84.9 95.9 92.1 93.3 83.7 95.4 79.3 88.0 19.5 83.3

Table 2: Results on the VisDA2017 dataset.
1-shot 3-shot

S+T 44.1 50.0
DANN 45.1 50.3
ADR 44.5 49.5
CDAN 41.2 46.2
ENT 38.8 50.9
MME 49.2 55.2
FAN - 55.6
PACL 52.4 59.1

Table 3: Results on Office-Home.

Method AlexNet ResNet-34
1-shot 3-shot 1-shot 3-shot

ST 29.1 33.3 46.3 50.1
MME 33.3 37.9 61.0 61.9
MME + PA 37.3 39.2 62.4 63.8
MME + PA + SA 39.7 42.2 65.2 67.6
MME + PA + SA + CA 45.0 48.4 68.1 71.6

Table 4: Ablation study for the adaptation from Real to
Sketch on the DomainNet dataset.

tively. PACL also performs significantly better than the most recent method FAN in both settings
with both backbone networks. These results substantiate the effectiveness of PACL on mitigating
domain shifts by comprehensively exploring the few labeled target samples.

VisDA2017. We can see from Table 2 that PACL, built upon on MME, reaches significant gains over
MME. The average gains over all class are 12.7 for the 1-shot setting and 12.1 for the 3-shot setting,
with the peak gain 31.3 points reached in the sktbrd class for the 3-shot setting. These tremendous
improvements convincingly evidence the effectiveness of PACL.

Office-Home. We show in Table 3 the mean accuracy over all the 12 sets of cross-domain evaluation
experiments for the 1-shot and 3-shot settings. The complete table with results for each set of
experiment can be found in the Appendix. From Table 3, we can see that PACL attains remarkable
performance boosts over existing methods as well, although the gains are not as significant as those
on the other two datasets.

4.2 ADDITIONAL EMPIRICAL ANALYSIS

Ablation study. Built upon existing UDA methods, PACL includes the following new mod-
ules/techniques to address the SSDA problem, namely, the Prototypical Alignment (PA) module, the
Strong Augmentation (SA) technique that aims to enhance PA and the Consistency Alignment (CA)
module. Table 4 shows the ablation study on the adaptation from Real to Sketch on the Domain-
Net dataset. We can see that all the new modules/techniques contribute to the ultimate performance
promotions, thus substantiating their effectiveness.
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Figure 2: (a): Accuracy with different numbers of labeled samples per class in target domain. (b):
Sensitivity analysis with respect to the confident threshold σ (Eq. (9)). (c): t-SNE visualization
of the learned features of 3 randomly selected classes. Different colors represent different classes.
Shapes “Y”, “?” and “ ” represent source samples, labeled target samples, and unlabeled target
samples, respectively.
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Method Net Setting MCA
Source-only ResNet-101 UDA 52.4

HAFN ResNet-101 UDA 73.9
SAFN ResNet-101 UDA 76.1

1-shot 3-shot
HAFN + ST ResNet-101 SSDA 77.0 79.3
SAFN + ST ResNet-101 SSDA 77.5 79.2

PACL (HAFN) ResNet-101 SSDA 83.9 85.3
PACL (SAFN) ResNet-101 SSDA 83.3 84.5

ST ResNet-34 SSDA 60.6 64.7
MME ResNet-34 SSDA 68.4 71.2

PACL (MME) ResNet-34 SSDA 81.1 83.3

Table 5: Flexibility evaluation on
VisDA2017.

Plug-and-play evaluation. As mentioned above, PACL
is agnostic to UDA methods built upon. To evaluate this,
we apply PACL as a plug-and-play component on differ-
ent existing UDA methods and see how much adaption
performance can be improved. Table 5 shows the results
of three UDA methods before and after empowered by
PACL, namely HAFN (Xu et al., 2019a), SAFN (Xu et al.,
2019a), and MME (Saito et al., 2019). Note that to rigor-
ously evaluate the effectiveness of PACL, we adopt ex-
actly the same training procedures as the UDA methods
when we apply PACL on them. We can see from Table 5
that PACL indeed significantly promotes the performance
of existing UDA methods and their naive SSDA extensions (e.g., “HAFN+ST” stands for training
HAFN additionally with a few labeled target samples for the supervised learning part). For example,
“PACL (HAFN)” raises the result of the UDA method HAFN from 73.9 to 83.9 with one sample per
class labeled and further to 85.3 with 3 samples per class labeled. These significant and consistent
improvements with different UDA methods, different backbone networks and different numbers of
landmarks convincingly substantiate the effectiveness of PACL on boosting adaptation performance
with minimal labeling effort.

Impact of the number of landmarks. We have shown the superior performance of the standard
1-shot and 3-shot settings above. We wonder how performance changes with the number of land-
marks increased. We study this on the adaptation from Real to Sketch on DomainNet. We can see
from Fig. 2 (a) that all the three methods enjoy performance boosts with more target samples la-
beled. Comparatively speaking, PACL consistently reaches the best performance for all the cases.
This substantiates the benefit of our method of flexibly exploiting different amount of labeled target
samples to help address the domain shift problem.

Sensitiveness with parameters. A common drawback of pseudo labeling based methods is that it is
always non-trivial to select the proper confident threshold above which a label prediction is regarded
as reliable. However, this problem is less severe in our method because incorrect predictions are not
reused, so that errors shall not be accumulated. Existing pseudo labeling methods usually maintain a
confident pseudo label set that is usually progressively enlarged every several training epochs and is
reused immediately thereafter. We instead generate pseudo labels on the fly in each mini-batch and
discard all of them once finished. So, the harmful impact of incorrect pseudo labels can be diluted
with a wider range of classification predictions. We conduct a sensitivity analysis on the adaptation
from Real to Sketch on the DomainNet dataset under the 3-shot setting. The result is shown in Figure
2 (b). We can see that our method is not very sensitive to the confidence threshold and maintains a
fair performance as long as the threshold is pretty high.

Feature visualization. To qualitatively evaluate the alignment results, we plot the t-SNE (Maaten &
Hinton, 2008) visualization of the features produced by PACL for the adaptation from Real to Sketch
on DomainNet in the 3-shot setting. We can see from Figure 2 (c) that the learned features exhibit
favorable clustering structure. Features from different domains lie closely if they belong to the same
classes while being apart otherwise. This plot further supports that both feature discriminabilty and
domain alignment are well fulfilled by the learned model.

5 CONCLUSION

We propose in this paper a novel semi-supervised domain adaptation (SSDA) framework within
which existing unsupervised domain adaptation (UDA) methods can effectively utilize a few labeled
samples from target domain to further mitigate domain shifts. The proposed framework includes a
Prototypical Alignment (PA) module which achieves class-wise domain alignment. The PA module
is further enhanced by a data augmentation based technique that produces highly perturbed images
to mitigate overfitting. A Consistency Alignment (CA) module is incorporated into the framework
which enforces consistency regularization on the classifier. Experiments show that the proposed
framework reaches state-of-the-art SSDA performance and consistently promotes adaptation perfor-
mance of various UDA methods with diverse numbers of labeled target samples. Ablation study
verifies the contributing roles of all the novel alignment components.
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Algorithm 1. Proposed SSDA framework
Input: Source set S = {Xs,Ys}, labeled target set Tl = {Xt,Yt} and unlabeled target set U = {Xu}.
Output: Domain adaptative model h.
while not done do

1. Sample from S ∪ Tl labeled images Bl = {{si,j}Ns
i=1, {ti,j}Nt

i=1, yj}
M
j=1. and sample from U

unlabeled images Bu = {ui}Nu
i=1. We further denote Bl = Bs ∪ Bt with

Bs = {{si,j}Ns
i=1, yj}

M
j=1 and Bt = {{{ti,j}Nt

i=1, yj}
M
j=1.

2. Apply strong data augmentation Φ on Bs, Bt and Bu, producing B′
s = Φ(Bs), B′

t = Φ(Bt)
and Bs

u = Φ(Bu). Meanwhile, apply weak data augmentation ψ on Bu and get Bw
u = ψ(Bu).

3. Calculate target prototypes {ck}Mk=1 for each class from B′
t using Eq. (3).

4. Calculate prototypical loss with {ck}Mk=1 using Eq. (6).
5. Calculate cross-entropy loss with B′

s and B′
t using Eq. (2).

6. Calculate unsupervised alignment loss with B′
s and Bw

u using an existing UDA method.
7. Calculate self-supervised alignment loss with Bs

u and Bw
u using Eq. (9).

8. Optimize the model h using Eq. (10).
end while

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Our Semi-Supervised Domain Adaptation (SSDA) framework is general such that any existing unsu-
pervised domain adaptation (UDA) method can be incorporated and has the adaptation performance
improved. We verify this by employing three UDA methods, i.e., MME (Saito et al., 2019), HAFN
(Xu et al., 2019a) and SAFN (Xu et al., 2019a), which results in three variants of our methods,
“PACL (MME)”, “PACL (HAFN)”, and “PACL (SAFN)”, respectively. To make fair comparison,
we use the official implementations2 of the three UDA methods and follow strictly the same training
rules and procedures, except the mini-batch sampling strategy. We have introduced the implemen-
tation details specific to our framework in the main text. Here we give a more complete description
about the implementation of each of our variant.

PACL (MME): Following MME, we use the ImageNet pre-trained models to initialize both the
AlexNet and Resnet-34 backbones. For AlexNet, the last linear layer are replaced with randomly
initialized linear layer. For ResNet34, the last linear layer are replaced with two fully-connected
layers. The models are optimized with the momentum optimizer. We set the initial learning rate as
0.01 for all fully-connected layers while use a smaller learning rate 0.001 for other layers includ-
ing convolution layers and batch-normalization layers. The learning rate decay policy is the same
as in (Ganin & Lempitsky, 2015). Each mini-batch consists of labeled source, labeled target and
unlabeled target images. As mentioned in the main text, we perform class balanced sampling for
labeled images. For unlabeled images, following MME, we sample in each mini-batch 24 images
for ResNet-34 and 32 for AlexNet.

PACL (HAFN). We initialize our backbone with ImageNet pre-trained model. Following HAFN,
we perform two-step training, where in the first step we train the model with only labeled data from
the source domain; in the second step, we conduct domain adaptive training. For both steps, SGD is
employed for model optimization and the learning rate is 10−3. We train both stages with 10 epochs.

PACL (SAFN): Everything is same as “PACL (HAFN)” except the UDA term is a different one. So,
the implementation details are almost the same, except that we perform only adaptive training and
the model is trained with 50 epochs.

A.2 PSEUDO CODE

Algorithm 1 outlines the main step of the proposed method.

2MME: https://github.com/VisionLearningGroup/SSDA_MME. HAFN and SAFN:
https://github.com/jihanyang/AFN.git.
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Figure 3: Analysis of the number of class and number of source sample per class in each mini-batch.

R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean
One-shot

S+T 37.5 63.1 44.8 54.3 31.7 31.5 48.8 31.1 53.3 48.5 33.9 50.8 44.1
DANN 42.5 64.2 45.1 56.4 36.6 32.7 43.5 34.4 51.9 51.0 33.8 49.4 45.1
ADR 37.8 63.5 45.4 53.5 32.5 32.2 49.5 31.8 53.4 49.7 34.2 50.4 44.5
CDAN 36.1 62.3 42.2 52.7 28.0 27.8 48.7 28.0 51.3 41.0 26.8 49.9 41.2
ENT 26.8 65.8 45.8 56.3 23.5 21.9 47.4 22.1 53.4 30.8 18.1 53.6 38.8
MME 42.0 69.6 48.3 58.7 37.8 34.9 52.5 36.4 57.0 54.1 39.5 59.1 49.2
PACL 50.3 70.71 52.2 61.4 41.2 39.3 57.8 39.1 59.1 55.8 41.7 59.9 52.4

Three-shot
S+T 44.6 66.7 47.7 57.8 44.4 36.1 57.6 38.8 57.0 54.3 37.5 57.9 50.0
DANN 47.2 66.7 46.6 58.1 44.4 36.1 57.2 39.8 56.6 54.3 38.6 57.9 50.3
ADR 45.0 66.2 46.9 57.3 38.9 36.3 57.5 40.0 57.8 53.4 37.3 57.7 49.5
CDAN 41.8 69.9 43.2 53.6 35.8 32.0 56.3 34.5 53.5 49.3 27.9 56.2 46.2
ENT 44.9 70.4 47.1 60.3 41.2 34.6 60.7 37.8 60.5 58.0 31.8 63.4 50.9
MME 51.2 73.0 50.3 61.6 47.2 40.7 63.9 43.8 61.4 59.9 44.7 64.7 55.2
FAN 51.9 74.6 51.2 61.6 47.9 42.1 65.5 44.5 60.9 58.1 44.3 64.8 55.6
PACL 55.4 75.7 56.0 67.0 52.5 46.4 67.4 48.5 66.3 60.8 45.9 67.3 59.1

Table 6: Results on the Office-Home dataset.

A.3 ANALYSIS OF SAMPLING STRATEGIES

As mentioned in the main text and also outlined in Algorithm 1, we perform class-balanced sam-
pling for labeled data: In each mini-batch, we sample M classes with Ns source images and Nt

target images for each class, which results in a mini-batch of size M ∗ (Ns + Nt). We study the
impact of batch size to the performance by varying these numbers. Since Nt is a constant for the
1-shot setting (Nt = 1) and 3-shot setting (Nt = 3), we only vary the values of M and Ns. When
evaluating one parameter, we fix the other one. The results of applying our framework on MME
(Saito et al., 2019), i.e., “PACL (MME)”” on the adaptation experiment between Real and Sketch
from the DoaminNet datasets are shown in Figure 3. We can see from this figure that the proposed
method is quite robust with the two hyper-parameters. There are fairly small change (less than 2%)
when their values are changed from 5 to 25.

A.4 COMPLETE RESULTS ON OFFICE HOME

Table 6 shows the complete results on the office-home dataset, where we can see that PACL reaches
the best performance for all the sets of adaptation experiments.

A.5 COMPLETE RESULTS ON VISDA2017 FOR FLEXIBILITY ANALYSIS

Table 7 shows the complete results on the VisDA2017 dataset for flexibility analysis. We can see
that PACL consistently improves various existing UDA methods by large margins with different
backbone networks and different number of landmark samples.

A.6 CODE

Attached in the supplementary material is the code for the proposed PACL framework. Following
the instructions there can reproduce our results.
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Method Net plane bcycl bus car horse knife mcycl person plant sktbrd train truck MCA
UDA

Source-only ResNet-101 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN ResNet-101 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN ResNet-101 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD ResNet-101 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
HAFN ResNet-101 92.7 55.4 82.4 70.9 93.2 71.2 90.8 78.2 89.1 50.2 88.9 24.5 73.9
SAFN ResNet-101 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1

SSDA (1-shot)
HAFN + ST ResNet-101 92.6 64.6 88.0 66.3 93.6 84.6 90.8 80.9 90.8 60.1 88.0 24.5 77.0
SAFN + ST ResNet-101 95.5 64.0 80.1 63.2 93.0 87.3 91.1 78.9 90.0 66.6 89.4 30.6 77.5

PACL (HAFN) ResNet-101 97.4 78.7 90.0 86.6 97.7 90.2 94.2 78.0 93.8 80.7 93.8 25.2 83.9
PACL (SAFN) ResNet-101 96.7 76.5 88.4 90.3 97.1 91.9 95.4 74.9 91.6 82.9 94.8 19.5 83.3

SSDA (3-shot)
HAFN + ST ResNet-101 93.8 77.9 87.9 68.6 94.2 88.8 92.0 82.3 91.1 62.1 82.8 30.6 79.3
SAFN + ST ResNet-101 95.4 75.5 83.0 67.9 94.4 87.6 88.5 78.6 93.2 66.7 86.1 33.9 79.2

PACL (HAFN) ResNet-101 98.2 80.3 87.5 86.8 97.6 86.0 94.0 73.8 96.3 91.6 94.1 37.6 85.3
PACL (SAFN) ResNet-101 97.6 83.7 86.1 91.7 97.5 91.3 92.5 59.1 94.9 90.9 95.9 32.5 84.5

SSDA (1-shot)
ST ResNet-34 82.6 52.8 75.0 57.6 72.7 39.7 80.5 53.3 59.0 64.1 77.5 12.6 60.6

MME ResNet-34 86.6 60.1 80.8 61.9 84.0 69.6 87.0 72.4 73.0 50.9 79.4 14.7 68.4
PACL (MME) ResNet-34 94.9 81.5 88.9 81.3 95.9 92.4 92.2 83.3 95.2 77.4 88.4 2.3 81.1

SSDA (3-shot)
ST ResNet-34 74.0 71.7 71.2 64.7 78.5 71.8 69.6 51.4 73.7 49.4 80.8 19.8 64.7

MME ResNet-34 87.2 67.3 74.9 64.5 86.9 85.5 78.8 75.8 84.4 48.0 80.8 19.9 71.2
PACL (MME) ResNet-34 95.9 82.9 88.6 84.9 95.9 92.1 93.3 83.7 95.4 79.3 88.0 19.5 83.3

Table 7: Flexibility analysis of PACL on the VisDA2017 dataset. “ST” refers the baseline method
which trains a model using labeled samples from both source and target domains; no alignment
technique is applied. “HAFN + ST” and “SAFN + ST” denote the naive extensions of the methods
HAFN and SAFN from UDA to SSDA, by further including labeled target data for the cross-entropy
loss optimization. “PACL (MME)”, “PACL (HAFN)”, and “PACL (SAFN)” are the methods corre-
sponding to incorporating the UDA methods into our framework.
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