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ABSTRACT
Large Vision-Language Models (LVLMs) exhibit remarkable capa-
bilities but struggle with "hallucinations"—inconsistencies between
images and their descriptions. Previous hallucination evaluation
studies on LVLMs have identified hallucinations in terms of objects,
attributes, and relations but overlooked complex hallucinations that
create an entire narrative around a fictional entity. In this paper,
we introduce a refined taxonomy of hallucinations, featuring a new
category: Event Hallucination. We then utilize advanced LLMs
to generate and filter fine-grained hallucinatory data consisting of
various types of hallucinations, with a particular focus on event
hallucinations, laying the groundwork for integrating discriminative
and generative evaluation methods within our universal evaluation
framework. The proposed benchmark distinctively assesses LVLMs’
ability to tackle a broad spectrum of hallucinations, making it a
reliable and comprehensive tool for gauging LVLMs’ efficacy in
handling hallucinations. We will release our code and data.

KEYWORDS
Hallucination, Event, Evaluation, Large Vision Language Models.

1 INTRODUCTION
Large Language Models (LLMs) such as GPT-4 [30], LLaMA [40],
and LLaMA2 [41] have markedly enhanced capabilities in natural
language understanding (NLU) and generation (NLG). Building on
these advancements, recent Large Vision-Language Models (LVLMs)
have shown increased proficiency in handling both textual and visual
information, sparking significant interest among researchers. [2, 6, 9,
18, 24, 26, 45, 47].

Despite the promising developments in LVLMs, they broadly face
the pivotal obstacle of hallucination, which refers to the discrepancy
between factual content in images and the associated generated
textual descriptions. As hallucination poses significant concerns for
the LVLMs’ reliability and robustness [12, 20, 23, 28, 39, 42, 46],
researchers have devised strategies for hallucinations evaluation to
bolster the practical deployment of LVLMs, including discriminative
and generative methods. The former method directly prompts candi-
date LVLMs to determine the presence of a particular hallucination,
whereas the latter assesses the text produced by these candidate
LVLMs.
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Event Hallucination:  
 "Some zebras are seen in the wild, playfully  interacting 
with each other, while a bird gracefully flies over them. At 
the same time, a kangaroo is hopping near the zebras, 
seemingly foraging  "

Attribute Hallucination:  
 "Some zebras chillin in the wild with a black bird flying 
over.  "

Relation Hallucination:  
 "Some zebras chillin in the wild with a bird standing on 
one's back."

Object Hallucination:  
 "Some zebras and elephents chillin in the wild with a bird 
flying over."

Figure 1: Different types of hallucination. Event hallucination,
which involves more complex vision-language discrepancy com-
pared to other types of hallucination, is commonly overlooked by
previous efforts.

Prior research [13, 17, 28] has delineated vision-language mis-
matches as issues of non-existent objects, incorrect object attributes,
or inaccurate object relations, yet it does not encompass the full
spectrum of hallucinations observed in LVLMs. For example, as
depicted in Figure 1, LVLM outputs can exhibit more intricate hal-
lucinations, such as "At the same time, a kangaroo is hopping near
the zebras, seemingly foraging." This type of hallucination invents a
fictional target and weaves an entire narrative around it, including its
attributes, relationships, and actions. We categorize these intricate
narratives as event hallucinations. Our preliminary experiments
indicate that the occurrence of event hallucinations significantly
escalates as the output length of LVLMs increases, underscoring its
significance as a hallucination phenomenon that warrants attention.
However, there is an absence of fine-grained hallucination evaluation
benchmarks for LVLMs that comprehensively address the various
types of hallucinations—such as artificial objects, relationships, at-
tributes, and events—while also accommodating both discriminative
and generative evaluation methods.

To this end, we propose a universal, fine-grained hallucination
evaluation framework for LVLMs. This framework comprehensively
evaluates a broad spectrum of hallucination types, encompassing
objects, relationships, attributes, and notably, events with discrim-
inative and generative evaluation methodologies. Specifically, we
first develop an automatic annotation pipeline for fine-grained hal-
lucinations, which leverages the sophisticated capabilities of GPT4
to generate and filter hallucinatory data. This pipeline then serves
as a solid foundation for unifying discriminative and generative
evaluation methodologies in our framework:

• For the discriminative evaluation, we construct a dataset
that features image captions with hallucinations generated
through our pipeline. Candidate LVLMs are presented with
uniform question templates to determine if a given caption,
produced by us, manifests a specific type of hallucination
relative to the image content.
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Benchmark Tasks Discriminative Hallucination Generative Hallucination
Dis Gen Object Attribute Relation Event Object Attribute Relation Event

POPE [20] ✓ × ✓ × × × × × × ×
NOPE [29] ✓ × ✓ × × × × × × ×
CIEM [14] ✓ × ✓ × × × × × × ×
M-HalDetect [13] × ✓ × × × × ✓ ✓ ✓ ×
GAVIE [23] × ✓ × × × × ✓ ✓ × ×
FAITHScore [17] × ✓ × × × × ✓ ✓ ✓ ×
HaELM [44] × ✓ × × × - - - - ×
MMHal-Bench [38] × ✓ × × × - - - - ×
AMBER [43] ✓ ✓ ✓ ✓ ✓ × ✓ × × ×
Hal-Eval ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Hallucination Evaluation Benchmarks for LVLMs.

• For the generative evaluation, our pipeline facilitates the
creation of a large-scale hallucinatory dataset. This dataset
serves to fine-tune an LVLM into a specialized evaluator,
Hal-Evaluator. This evaluator assesses LVLM-generated
descriptions and associated images, identifying various
hallucination types without needing reference captions.

We conduct thorough experiments and analysis with six leading
LLMs within our framework, assessing their performance in terms
of hallucination under both discriminative and generative paradigms.
Our key findings are:

• The existing three categories of hallucinations (object, at-
tribute, relation) overlook the existence of event-type hallu-
cinations and are, therefore, insufficient to encompass all
types of hallucinations.

• Utilizing Chain-of-Thought (COT) significantly helps mod-
els minimize hallucinations during discriminative evalua-
tions, particularly those involving relationships and events.

• The incidence of hallucinations, especially event halluci-
nations, increases with the length of the output. Length
control becomes a crucial aspect of generative evaluations,
affecting comparative performance trends among LVLMs
under varied output lengths.

• The suitability of evaluation methodology varies according
to the type of hallucinations. Using discriminative and gen-
erative evaluations together gives a fuller view of tendencies
to LVLM hallucination.

• The hallucinatory samples used to train our evaluator also
serve as effective supervised fine-tuning data for LVLMs,
contributing to reducing hallucinations and enhancing their
benchmark performance.

In summary, we introduce a novel hallucination category (event
hallucination) of LVLMs, a universal and fine-grained evaluation
framework for LVLMs that spans various hallucination types and
unifies discriminative and generative approaches (as shown in Table
1), along with some groundbreaking insights to guide future research
on vision-language hallucination.

2 PRELIMINARY: HALLUCINATION IN
LVLMS

Previous works have characterized misalignment of hallucination
as claims of non-existent objects, incorrect object attributes, or
inaccurate object relations. However, we find that this only partially

object
41.6% relation

21.8%

attribute
29.7%

event
6.9%

Short Image Description

object 34.0%

relation
25.2%

attribute
22.3%

event
18.4%

Long Image Description

Figure 2: The left sub-figure shows the ratios of various halluci-
nations in mPLUG-owl’s image descriptions with token lengths
under 20. The right sub-figure presents these ratios for descrip-
tions exceeding 20 tokens.

covers the spectrum of hallucinations present in LVLMs. For instance,
as shown in the left part of Figure 8, the outputs of LVLMs include
more complex hallucinations: " to chase after a squirrel that has
invaded its playtime ." We refer to these complex hallucinations
as event hallucinations. To further clarify the concept of different
hallucinations, we provide strict definitions for four different types
of hallucinations in this paper:
Object hallucination: The LVLM inaccurately describes an object
that does not exist in the image. This could be a misidentification,
where the model correctly detects an object’s presence but incorrectly
labels it, or an additional non-existent object, where the model asserts
the presence of an object that does not exist.
Attribute hallucination: The LVLM correctly identifies an object
that exists in the image, but inaccurately describes the attributes of
that object. Attributes could include color, size, shape, position, or
any other characteristic that defines the object.
Relation hallucination: The LVLM incorrectly describes the re-
lationship between two or more objects that clearly exists in the
image. This could involve misrepresenting spatial relationships (e.g.,
describing an object as being on top of another when it’s actually
beside it), functional relationships (e.g., stating that a person is
riding a bicycle when they are standing next to it), or other types of
interactions or connections between objects.
Event hallucination: The LVLM not only describes a non-existent
target but also constructs complete events around the non-existent
target, including its attributes, relations, and actions. This type of
hallucination involves a complex interplay of objects, attributes, and
relations and often forms a narrative or sequence of actions that does
not align with the actual content of the image.

2
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Event Hallucination Evaluation:  
Caption:  "a dog carrying a frisbee in its mouth, running excitedly on a grass lawn to chase 
after a squirrel that has invaded its playtime.  "
Prompt:  Is the content of the image matching the caption description?

Attribute Hallucination Evaluation:  
Caption:  "A dog carrying a frisbee in its mouth running on a withered grass lawn.  
"
Prompt:  Is the content of the image matching the caption description?

Relation Hallucination Evaluation:  
Caption:  "A dog carrying a frisbee in its mouth flying over a grass lawn.  "
Prompt:  Is the content of the image matching the caption description?

Object Hallucination Evaluation:  
Caption:  "A cat carrying a Frisbee in its mouth running on a grass lawn.  "
Prompt:  Is the content of the image matching the caption description?

Discriminative Hallucination Evaluation

       Please descript this image in detials.

Hal-Evaluator

The image features a brown dog flying over a grassy field  and a small stream, with 
a  black frisbee in its mouth to chase after a squirrel that has invaded its playtime.

Candidate 
LVLM

There are four kinds of hallucinations in the response of the LVLM:
(1) Object Hallucination: small stream, 
(2) Relation Hallucination :  flying over
(3) Attribute Hallucination:   a  black frisbee.
(4) Event Hallucination:  chase after a squirrel that has invaded its playtime.
Here is a revised reponse:
“ The image features a brown dog running through a grassy field, holding a purple 
frisbee in its mouth.”

Hal-Evaluator

Generative Hallucination Evaluation

Figure 3: This figure provides a schematic of the discriminative evaluation and generative evaluation used in Hal-Eval.

Building upon these definitions, we further investigate the propor-
tion of different types of hallucinations present within the output of
LVLMs. As depicted in Figure 2, we collected 5,000 image-caption
pairs from COCO [22]. We had them described by mPLUG-owl
[45] and LLaVA [26], respectively. Subsequently, we provided both
the ground truth image descriptions and the model-generated de-
scriptions to GPT-4 [30], prompting it to inspect whether these
descriptions encompassed hallucinations and to categorize them
based on Object, Attribute, Relationship, and Event hallucinations
(For more details about the experiment, please refer to our Supple-
mental Material D.1.). We tabulated the proportions of different
types of hallucinations at varying description lengths. As Figure 2
demonstrates, we noted a significant increase in the share of event
hallucinations as the length of the description extends. This experi-
mental observation substantiates our finding: The existing three
categories of hallucinations (object, attribute, relation) overlook
the existence of event-type hallucinations. They are, therefore,
insufficient to encompass all types of hallucinations.

3 METHOD
We proposed a comprehensive and universal hallucination evaluation
benchmark, Hal-Eval. As shown in Figure 3, Hal-Eval includes
both Discriminative Evaluation and Generative Evaluation and can
effectively evaluate different types of hallucinations. In the following
subsection, we will initially introduce a fine-grained hallucination
annotation pipeline. This pipeline is employed to construct both
the evaluation dataset for Hal-Eval and a large-scale hallucination
detection dataset known as Hal-Data. Hal-Data, in turn, serves as the
training data for the Hal-evaluator, an evaluation model designed to
perform generative hallucination evaluations. Subsequently, we will
delve into an in-depth discussion of the discriminative evaluation
process. Finally, we will elucidate the training procedure for the
Hal-evaluator and outline how generative evaluations are conducted
using this model.

3.1 Automatic Fine-grained Hallucination
Annotation Pipeline

The existing multimodal hallucination research lacks large-scale
datasets with fine-grained annotations specific to hallucinations. To
address this issue, we design an automatic fine-grained hallucination
annotation pipeline featuring annotations for four hallucination types
and specific hallucination content.
Data Annotation. We annotated image-text paired data based on
GPT-4. We initially established a rigorous definition for various types
of hallucinations as we mentioned in Section 2. Building upon this
groundwork, we engaged GPT-4 to rephrase the collated image-text
pairs in line with the diverse classifications of hallucinations. This
step involved injecting distinctive hallucinatory elements into the
original captions. The outcome of this procedure was a collection of
image descriptions enriched with specified hallucination categories.
Moreover, we delegated to GPT-4 the responsibility of annotating the
position of specific hallucinatory content in the image description.
Please refer to the supplemental material C.2 for more details.
Data Filtering. Following the initial annotation phase, we identified
that the quality of the labeled data remained unsatisfactory. Random
sampling revealed that approximately 30% of the annotated dataset
still harbored noise that failed to meet our stringent labeling criteria.
Hence, we proceeded to craft a tailored prompt to commission GPT-4
for the task of purging and refining the noisy annotations, a process
thoroughly outlined in the supplemental material C.3. Subsequent to
GPT-4’s meticulous cleanup operation, a manual verification process
ascertained that over 97% of the data accorded with the stipulated
annotation standards.

3.2 Discriminative Evaluation
3.2.1 Constructing Evaluation Dataset. Data Collection: Previ-
ous benchmarks such as POPE [20] predominantly utilized manually
annotated datasets like COCO [22]. However, the COCO dataset
is frequently employed to construct general benchmarks such as

3
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VQA v2 and visual grounding. These benchmarks are often used
for instruction finetuning of LVLM models, which results in eval-
uation data being in the same domain as the models’ finetuning
data. This overlap hinders a true assessment of the models’ zero-shot
hallucination capabilities. To address this issue, we divided our
evaluation dataset into two parts: in-domain data from the COCO
2014 validation and COCO 2017 test sets and an out-of-domain
dataset randomly sampled from web-based data like CC [5], SBU
[32], LAION [36].
Data Annotation: We used the automatic annotation process detailed
in Section A to annotate both in-domain and out-of-domain evalu-
ation datasets, resulting in 5,000 detailed annotations each. These
annotations identify hallucination types and content. An annotated
sample is represented as 𝑆 = {𝐼 ,𝐶𝑇 ,𝐶𝑂 ,𝐶𝑅,𝐶𝐸 ,𝐶𝐴}, where I is the
image, 𝐶𝑇 is the correct image caption, and 𝐶𝑂 ,𝐶𝑅,𝐶𝐸 ,𝐶𝐴 denote
captions with Object, Relation, Event, and Attribute hallucinations,
respectively.

3.2.2 Evaluation Process. In prior work, the discriminative evalu-
ation method proposed for evaluating a specific type of hallucination
asked LVLMs if the content of that type existed in the image. For
instance, evaluating object hallucinations inquires about the presence
of a specific object. In contrast, we have proposed a more natural
questioning method, which is as follows:
Prompting LVLMs. Assuming a sample as S, the form of the prompt
is as follows:
<Image> I
Caption: 𝐶 ∈ {𝐶𝑇 ,𝐶𝑂 ,𝐶𝑅,𝐶𝐸 ,𝐶𝐴}.
Question: Does the description in the caption accurately reflect the
content of the image?

By controlling the different types of caption 𝐶, we can evaluate
different types of hallucinations based on a unified prompt tem-
plate. For example, we can set 𝐶 = 𝐶𝐴 to evaluate Attribute-type
hallucinations.
Evaluation Metric. Similar to POPE [20], we also use Accuracy,
Precision, Recall, F1 score, and "Yes" ratio as the evaluation metrics.
Here, Accuracy represents the number of correctly answered cases,
while Precision and Recall, respectively, indicate the proportion of
correctly answered questions with responses "Yes" or "No." The F1
score integrates the outcomes of Precision and Recall, which we
select as the primary evaluation metric. The "Yes ratio" serves as a
reference for analyzing model behaviors.

3.3 Generative Evaluation
3.3.1 Overview . Regarding generative evaluation, current evalua-
tion methods either rely on proprietary models that require subscrip-
tion fees, such as GPT-4, or depend on fine-tuned large language
models (LLMs) that necessitate additional ground truth annota-
tions—a process that is prohibitively expensive. This significantly
restricts the scalability of evaluating models. In response, we propose
Hal-Evaluator, a reference-free, open-source evaluation model de-
signed specifically to detect hallucinatory content. Hal-Evaluator is
fine-tuned on LLaVA 1.5 [24], which is also an LVLM; as illustrated
in Figure 3, it takes as input the description of an image provided
by the LVLMs under evaluation, as well as the corresponding image
itself. Following this, it evaluates whether the description contains

hallucinations. If hallucinations are detected, they provide the spe-
cific content and categorization of the hallucinations. Ultimately, it
can even modify the hallucinated information in the description to
output an accurate depiction. In this way, our generative evaluation
eliminates the need for additional reference annotation, enabling
hallucination evaluation based solely on the content of the image.

To train the Hal-Evaluator, which is capable of effectively iden-
tifying different types of hallucinations, a large-scale, fine-grained
hallucinatory image-text dataset is necessary as it facilitates the re-
finement of training for Hal-Evaluator intended to detect and correct
hallucinatory content. However, no dataset of this scale with detailed
annotations currently exists. Therefore, we initially constructed Hal-
Data, the first large-scale, fine-grained dataset with hallucination
annotations, based on the pipeline mentioned in Subsection A.

3.3.2 Instruction finetuning of Hal-Evaluator. This dataset, referred
to as Hal-Data, was generated using an automatic hallucination
annotation pipeline and comprises 2 million instances. Hal-Data is
split into two parts: Hal-Data 130k, which includes 130,000 GPT-4
annotated and curated image-text pairs, each consisting of an image,
a valid image caption, and a hallucination description; and Hal-Data
2M, which includes 2 million image-text pairs created by our caption
model trained on the 130,000 high-quality captions from Hal-Data
130k. Below, we detail the creation process for Hal-Data.
Data Collection for Hal-Data 130k: To ensure diversity and com-
prehensiveness, we initially compiled about 200,000 images from
various sources, including 80,000 in-domain COCO dataset images
[22], 80,000 web images from sources like CC [5], SBU [32], and
LAION [36], and 40,000 image-text datasets from ShareGPT4-V [7]
to match the style of LVLM outputs. We then used AFHA to annotate
this data, resulting in a final collection of 130,000 meticulously
annotated GPT4 instances, named Hal-Data 130k.
Generation for Hal-Data 2M: We further selected a subset of 2
million image-caption pairs from current public datasets (see Appen-
dix B.1 for more details) and constructed a large-scale hallucination
dataset named Hal-Data 2M. Due to the high cost of using GPT-4, we
fine-tuned the open-source large-scale language model LLaMA2 13B
[40] on Hal-Data 130k and employed it to modify the image captions
of Hal-Data 2M by introducing different types of hallucinations and
annotating them.

Based on Hal-Data, we fine-tuned LLaVA 1.5 13B [24], recent
SOTA LVLM, with 2M instruction data specifically designed for
detecting and correcting hallucinations in image captions, leading to
the development of Hal-Evaluator. (For more details, please refer to
our supplemental material D.1.)

3.3.3 Generative Evaluation Based in Hal-Evaluator. As illus-
trated in Figure 3, the input to Hal-Evaluator consists of two parts:
an image and the corresponding textual description by the candidate
LVLM to be evaluated. We prompt Hal-Evaluator to first determine
if the text description contains hallucinations based on the image
content. If hallucinations are detected, Hal-Evaluator will identify
the type of hallucination and its content. Ultimately, Hal-Evaluator
can also correct the hallucinatory content in the image description,
providing a revised depiction of the image.
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3.3.4 Evaluation Metric. To evaluate the generative hallucination
of LVLMs, we prompt them to describe images from both an in-
domain 5K dataset and an out-of-domain 5K dataset mentioned
in Subsection 3.2.1 with short length and longer length. These
descriptions, coupled with the respective images, are then fed into
the pre-trained Hal-Evaluator. Our procedure involves prompting Hal-
Evaluator to evaluate the existence and category of any hallucinatory
content. Accuracy serves as the principal metric for our evaluation,
which measures the proportion of outputs correctly identified as
free from hallucinations. Suppose the number of all outputs is 𝑁 ,
the outputs that contain hallucinations are 𝑁ℎ , and the accuracy
is calculated as 𝐴 =

𝑁−𝑁ℎ

𝑁
. Moreover, we track the probability of

various types of hallucinations encapsulated in the hallucination
ratio. For instance, the number of outputs containing the object
hallucination is 𝑁𝑜

ℎ
, and the object ratio 𝑟𝑜 is calculated as 𝑟𝑂 =

𝑁𝑜
ℎ

𝑁ℎ
.

4 EXPERIMENTS
Hal-Eval is divided into two distinct segments: Discriminative Evalu-
ation and Generative Evaluation. We have opted to assess five widely
utilized open-source LVLMs: MiniGPT-4 [47], InstructBLIP [9],
mPLUG-owl [45], LLaVA [26], LLaVA1.5 [24] and one close-source
LVLM: GPT4-V [31].

4.1 Discriminative Evaluation
4.1.1 Main Results. As shown in Table 2, we evaluate the perfor-
mance of five models on different types of hallucinations following
the method outlined in Subsection 3. First, LLaVA1.5 and LLaVA ex-
hibit a more pronounced predilection for hallucinations when tested
against out-of-domain datasets as opposed to in-domain datasets.
This trend could possibly be ascribed to the prevalent incorporation
of COCO [22] during the instruction tuning phase of the models.
Moreover, we noticed that the results derived from the POPE [20]
metric indicate a significant tendency among most models to favor
"yes" responses. In contrast, within our discriminative evaluations,
such a penchant is exclusively noted in the InstructBLIP. This dis-
tinction serves to underscore that Hal-eval can effectively avoid the
bias of the model towards answering "yes". In the end, our findings
indicate that, with the exception of GPT-4, the performance of the cur-
rently accessible open-source LVLMs in discriminative evaluations
is subpar. These models face challenges in accurately discerning and
interpreting hallucinatory content within image descriptions.

4.1.2 Analysis of Discriminative Evaluation. Data Reliability
Analysis: Our proposed evaluation dataset comprises 5,000 in-
domain and 5,000 out-of-domain images, which we annotated based
on the AFHA framework. To verify the accuracy of the annotations,
we randomly sampled 100 cases each from both the in-domain and
out-of-domain data for manual validation (Please refer to supple-
mental material C for more details). We found that after GPT-4’s
annotation and filtering process, the annotation accuracy rate in the
COCO dataset reached 98%. Meanwhile, the annotation accuracy for
the out-of-domain dataset stood at 97%. This high level of accuracy
in both datasets underscores the effectiveness of our annotation
process.
Effectiveness of Chain-Of-Thought (COT) for Mitigating Discrim-
inative Hallucination: For discriminative evaluation, we employed a

Dataset Type Model AccuracyPrecisionRecall F1 Yes (%)

In-domain

Object

mPLUG-Owl 49.8 49.8 44.7 47.1 44.1
LLaVA 52.6 55.5 26.3 35.7 23.6
MiniGPT-4 50.4 50.3 46.5 48.3 40.2
InstructBLIP 50.0 50.0 99.0 66.5 98.0
LLaVA 1.5 62.2 76.1 35.6 48.5 23.3
GPT4-V 85.3 87.0 80.2 85.3 52.4

Attribute

mPLUG-Owl 49.9 49.9 44.7 47.2 44.6
LLaVA 52.8 55.9 26.3 35.8 23.5
MiniGPT-4 51.1 51.1 46.5 48.7 39.4
InstructBLIP 49.8 49.8 99.0 66.3 98.1
LLaVA 1.5 62.2 76.1 35.6 48.5 23.3
GPT4-V 84.1 88.2 79.3 83.7 48.3

Relation

mPLUG-Owl 50.4 50.5 44.7 47.4 44.7
LLaVA 52.7 55.7 26.3 35.8 23.7
MiniGPT-4 50.4 50.1 46.5 48.2 40.0
InstructBLIP 49.8 49.9 99.0 66.3 97.7
LLaVA 1.5 55.4 59.1 35.6 44.4 22.1
GPT4-V 83.5 80.2 88.7 83.3 49.2

Event

mPLUG-Owl 49.7 49.7 44.6 47.0 44.8
LLaVA 51.5 53.0 26.3 35.1 24.8
MiniGPT-4 32.6 50.0 46.5 48.2 40.3
InstructBLIP 49.6 49.7 99.0 66.2 84.3
LLaVA 1.5 62.7 77.9 45.6 58.9 22.8
GPT4-V 86.3 86.1 80.5 87.2 51.6

Out-of-domain

Object

mPLUG-Owl 50.3 50.4 43.6 46.8 43.4
LLaVA 50.7 52.7 9.0 15.3 7.2
MiniGPT-4 50.3 51.7 53.6 52.6 25.0
InstructBLIP 50.0 50.0 100.0 66.6 100.0
LLaVA 1.5 59.2 86.2 21.9 35.0 18.2
GPT4-V 84.7 87.4 80.9 86.1 51.4

Attribute

mPLUG-Owl 50.4 50.5 43.6 46.8 42.9
LLaVA 51.8 66.5 9.0 15.8 6.2
MiniGPT-4 50.0 51.5 53.6 52.6 24.7
InstructBLIP 50.0 50.0 100.0 66.6 100.0
LLaVA 1.5 58.1 79.4 21.9 34.4 13.8
GPT4-V 82.6 80.1 79.5 81.5 48.3

Relation

mPLUG-Owl 50.0 50.0 43.6 46.6 43.1
LLaVA 50.8 57.1 9.0 15.5 7.8
MiniGPT-4 49.7 50.9 53.6 52.2 24.6
InstructBLIP 50.0 50.0 100 66.6 100.0
LLaVA 1.5 53.7 60.2 21.9 32.2 12.7
GPT4-V 84.0 81.1 87.5 83.5 50.3

Event

mPLUG-Owl 50.1 50.1 43.6 46.6 43.3
LLaVA 46.2 31.2 9.0 14.0 13.2
MiniGPT-4 49.3 52.3 53.6 53.0 24.3
InstructBLIP 50.0 50.0 100 66.6 99.9
LLaVA 1.5 57.7 77.2 41.9 44.2 14.2
GPT4-V 85.3 83.2 84.5 84.5 50.3

Table 2: Results of LVLMs under evaluation of four hallucination
types on the in-domain dataset and out-of-domain dataset. Yes
denotes the proportion of answering “Yes” to the given question.

chain of thought (COT) approach to systematically evaluate whether
the LVLM matches the content of images with their respective cap-
tions (Refer to Appendix C.4 for more details). As shown in Figure 4,
we observed a significant reduction in discriminative hallucinations
on both in-domain and out-of-domain datasets after employing COT
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Model Length In-domain Out-of-domain
Object Ratio Relation Ratio Attribute Ratio Event Ratio Acc Object Ratio Relation Ratio Attribute Ratio Event Ratio Acc

MiniGPT-4 28.7 36.6 30.6 16.5 10.6 69.3 45.5 20.8 19.2 14.6 66.5
79.6 46.2 22.5 8.0 23.4 61.4 53.7 9.7 7.2 29.6 50.1

InstructBLIP 10.3 34.2 45.2 10.3 8.3 89.1 47.6 27.4 13.2 10.2 91.0
80.6 25.7 12.6 16.8 51.3 35.5 19.6 11.4 15.2 59.3 41.3

mPLUG-owl 28.3 45.5 24.6 16.3 13.4 45.4 40.5 21.2 18.5 19.4 43.5
78.3 46.2 9.5 12.5 31.7 27.3 45.9 9.3 4.6 40.2 29.5

LLaVA 37.3 40.1 18.5 4.5 37.1 47.4 34.9 23.2 24.4 17.8 46.3
88.3 45.7 9.4 3.1 42.1 23.3 38.3 7.2 2.2 52.6 26.3

LLaVA1.5 10.3 23.7 58.8 10.6 7.0 55.7 30.0 48.4 11.6 10.2 49.5
84.5 42.2 13.0 3.6 41.4 44.6 34.6 8.8 2.7 54.3 46.4

GPT4-V 21.5 27.7 18.8 20.6 14.0 92.7 23.7 27.8 17.6 29.4 89.7
80.2 32.9 21.0 16.6 30.4 77.6 30.9 18.0 13.6 38.4 73.1

Table 3: Generative Hallucination Evaluation for LVLMs.
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Figure 4: Comparison of LLaVA1.5 and LLaVA 1.5-COT. We
report the F1 score for both of them.

to LLaVA 1.5. Based on the above experiments, we have the following
finding:

Finding 1: Utilizing COT is particularly effective in reducing
discriminative hallucinations for LVLMs, especially for those
related to relationships and events.

We suggest that the increased effectiveness of COT with relation-
ship and event type hallucinations is due to their intrinsic reliance
on contextual understanding and inference-making.

4.2 Generative Evaluation
4.2.1 Main Results. As indicated in Table 3, our investigation has
revealed that contemporary models continue to have a significant
inclination toward producing hallucinations. MiniGPT-4 and Instruct-
BLIP, displayed robust in-domain accuracy, with the latter achieving
89.1% accuracy when the average output length was approximately
10 tokens. Both mPLUG-owl and LLaVA showed moderate perfor-
mance across all evaluated metrics, whether tested on in-domain or
out-of-domain data. GPT-4V achieved the best result, but we also
observed a notable decline in accuracy with increasing output length,
accompanied by a significant rise in the proportion of event-type
hallucinations. Furthermore, we found that when generating long
responses, all models became more prone to producing hallucination
content, with the incidence of event hallucinations rising markedly.

4.2.2 Analysis of Generative Evaluation. Correlations with Hu-
man Evaluations: To verify the correlation between the generative

Metric type 𝑟 (%) 𝜌 (%) 𝜏 (%)

BLEU-4 Gen -1.3 -7.1 -4.8
ROUGE-L Gen -6.7 -8.5 -7.4
GPT4-V Gen 42.2 38.5 31.3
CHAIR Gen 17.8 19.2 18.8
Hal-EML Gen 29.8 21.6 33.7

Hal-Eval-Gen Gen 47.34 37.20 43.43

Table 4: Correlation between each evaluation metric and human
judgment on LVLM hallucinations, measured by Pearson’s 𝑟 ,
Spearman’s 𝜌 , and Kendall’s 𝜏 .
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Figure 5: The left sub-figure displays the results of the discrim-
inative evaluation for GPT-4V and Hal-Evaluator. The right
sub-figure compares the ROUGE-L between hallucination con-
tent detected by GPT-4V and Hal-Evaluator with the annotated
hallucination content.
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Figure 6: The figure depicts the proportions of different types of
hallucinations in the outputs of InstructBLIP and LLaMA1.5,
as well as the gray line illustrating the variation in accuracy.

evaluation and human judgment, we conduct the following exper-
iments. We first select the test dataset from COCO 2014 [22] for
human evaluation. This test set comprises 50 images. Each image is
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Discriminative (Ave F1) Generative (Hallucination Ratio)
Object Relation Attribute Event Object Relation Attribute Event
52.8 52.6 51.8 54.3 38.3 12.7 8.8 41.2

Table 5: This table displays the average F1 scores for various
hallucination types in discriminative assessments and the average
hallucination rates for LVLM’s long outputs (>=80) in generative
assessments.

Model Dis Gen
ID OOD ID OOD length

LLaVA1.5 47.6 34.0 47.4 46.3 10.3
Hal-VL 69.7 71.85 70.9 60.4 10.5

Table 6: The evaluation results of Hal-VL on Hal-Eval. For the
discriminative evaluation, we have only listed the average F1
scores for different types of hallucination. For the generative
evaluation, we list the accuracy with short output length.

supplemented with five reference captions and object labels provided
by the COCO dataset. We selected three LVLMs – LLaVA [26],
mPLUG-owl [45], and instructBLIP [9] – to describe the content of
the test set, and we sought the annotation and evaluation from 15
human annotators to evaluate the presence of hallucinations in these
data. We made a comparison among five benchmarks: ROUGE-L
[21], BLEU-4 [33], CHAIR [35], Hal-EML [44], GPT4-V along with
the module of Hal-Eval – Hal-Eval-Generative. Table 4 delineates the
correlation between various evaluation metrics and human judgment
regarding LVLM faithfulness, gauged using Pearson’s 𝑟 , Spearman’s
𝜌 , and Kendall’s 𝜏 . Our generative evaluation distinctly stands out and
demonstrates a robust positive correlation, underlining the superior
alignment with human perceptions.
Effectiveness of Hal-Evaluator: To further verify the effectiveness
of Hal-Evaluator for hallucination detection, we evaluated Hal-
Evaluator and GPT-4V (as candidate LVLMs instead of evaluator
here) based on the discriminative evaluation of Hal-Eval scripted
in subsection 3.2.2, evaluating the detection of different types of
hallucinations in 5K coco data. The results disclosed that Hal-
Evaluator outperforms GPT-4V in hallucination detection ability, as
shown in the Sub-Figure 5 (a).
Analysis of Event Hallucination: We tasked GPT-4V and Hal-
Evaluator with detecting the hallucination content in image descrip-
tions of the evaluation dataset of Hal-Eval. We evaluated the overlap
between the hallucination content as identified by GPT-4V and Hal-
Evaluator and the annotated hallucination content that exists in the
descriptions. The overlap was quantified using the ROUGE-L score,
as shown in Sub-figure 5 (b). The experimental results show that
both GPT-4V and Hal-Evaluator can accurately identify the major-
ity of hallucinated content in image descriptions for the first three
types of hallucinations (object, attribute, relation). However, when
it comes to event hallucinations, GPT-4V struggles to pinpoint the
hallucinated content accurately, while Hal-Evaluator demonstrates
a reliable identifying capability. Considering that GPT-4V is the
current top-performing LVLM yet its difficulty in accurately identi-
fying event hallucinations, this underscores the intrinsic complexity
of event hallucinations and Hal-Evaluator’s reliability in detecting
event-type hallucinations.

Impact of LVLM output length on Generative Hallucination.
We investigate the potential correlation between the output length
of LVLMs and the occurrence of generative hallucinations. We
conducted the following experiments on LLaVA 1.5 and InstructBLIP.
Experiments were carried out on LLaVA 1.5 and InstructBLIP
wherein both models were prompted to describe the content of images
with outputs of varying token lengths, using the Hal-Evaluator to
detect and analyze the outputs at each length. The proportions of
different types of hallucinations and the accuracy of outputs without
hallucinations are visualized in Figure 6. Combining the results in
subsection 4.2.1, the following findings were observed:

Finding 2: The incidence of hallucinations, especially event
hallucinations, increases with the length of the output. Length
control becomes a crucial aspect of generative evaluations,
affecting comparative performance trends among LVLMs
under varied output lengths.

4.3 Comparative Analysis of Discriminative and
Generative Evaluations

As shown in Table 5, for event hallucination, most LVLMs perform
better in discriminative evaluation compared to other hallucina-
tion types. For example, we calculated the average F1 scores for
discriminative evaluations across all models for different types of
hallucinations, and the average F1 score for event types was 54.3,
which is higher than that for other hallucinations. This suggests that
models are more resistant to event-type hallucinations. However,
when evaluating the models using a generative evaluation approach,
we observed a higher frequency of event-type hallucinations in longer
output sequences, contradicting the results from discriminative eval-
uations. We believe this is mainly because event-type hallucinations
often contain more complex and rich information inconsistent with
the image content, making them easier for models to handle in dis-
criminative evaluations. However, this does not accurately reflect the
models’ ability to avoid event-type hallucinations effectively. Here-
fore, generative evaluation is a more effective method for assessing
event-type hallucinations. For other types of hallucinations, such as
objects, attributes, and relationships, research [20][29][14] indicates
that discriminative evaluations are sufficiently effective in reflecting
whether models tend to such hallucinations. In summary, we have
the following findings:

Finding 3: The suitability of evaluation methodology varies
according to the type of hallucinations. Using both discrimi-
native and generative evaluations together gives a fuller view
of tendencies to LVLM hallucination.

4.4 Utilizing Hal-Data for Supervised Fine-tuning
To validate whether Hal-Data can assist LVLM in eliminating halluci-
nations and improving performance through instructional fine-tuning,
we conducted the following experiment: we constructed instructional
data from Hal-Data 130K, and after combining this instructional
data with that of LLaVA1.5, we conducted joint fine-tuning training
and get the varient of LLaVA1.5 named Hal-VL.
Hallucination Benchmark: As shown in Table 6 , we evaluate
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Method Overall Hallucination Score in Each Question Type ↑
Score ↑ Rate ↓ Attribute Adversarial Comparison Counting Relation Environment Holistic Other

LLaVA-RLHF7B [39] 2.05 0.68 2.92 1.83 2.42 1.92 2.25 2.25 1.75 1.08
LLaVA7B [27] 1.55 0.76 1.33 0.00 1.83 1.17 2.00 2.58 1.67 1.83
Hal-VL 2.12 (↑ 0.56) 0.60 (↓ 0.16) 2.84 2.11 2.17 1.74 2.05 2.44 1.66 1.62

Table 7: Evaluation results for different MLLMs on MMHal-Bench.

General VQA General VQA (Zero-shot)

Method #Params VQAv2 GQA VizWizQA TextVQA SciQA

InstructBLIP [9] 8.2B - 49.2 34.5 50.1† 60.5
Shikra 7.2B 77.4 - - - -
Qwen-VL-Chat [3] 9.6B 78.2 57.5 38.9 61.5‡ 68.2
LLaVA [26] 7.2B 71.3 41.3 36.7 50.2† 61.5
MiniGPT-4 [47] 7.2B 65.2 30.8 30.2 52.3† 58.4
LLaVA1.5 [24] 7.2B 78.5 62.0 50.0 58.2† 66.8
Hal-VL 7.2B 79.3 62.8 50.7 60.1† 68.1

Table 8: Performance comparison on visual question answering.
For VQA, accuracy is reported. Note that specialists are fine-
tuned on each individual dataset. † denotes OCR inputs are
utilized. ‡ indicates the model has trained on the dataset.

(1) Object Hallucination (2) Relation Hallucination

(3) Attribute Hallucination (4) Event Hallucination

Figure 7: We tokenized the annotations of hallucination content
in Hal-Data 130K, and visualized them via a word cloud.

Hal-VL on Hal-Eval and achieve the best performance. In addition
to evaluations on Hal-Eval, as shown in Table 7, we also evaluate
Hal-VL with other hallucination benchmark like MMHal-Bench [37].
The experiments demonstrate that Hal-VL significantly outperforms
LLaVA 1.5. These results indicate Hal-Data effectively aid models
in mitigating hallucinations.
General benchmarks: We also evaluate Hal-VL on multiple general
benchmark such as VQA [11], GQA [16] and so on. As indicated in
the Table 8, we found that Hal-VL achieved significant advantages
on the vast majority of these benchmarks which suggesting Hal-Data
can not only mitigating hallucinations but also enhances the overall
model performance. These results support that:

Finding 4: The hallucinatory samples used to train our eval-
uator also serve as effective supervised fine-tuning data for
LVLMs, contributing to the reduction of hallucinations and
enhancement of their benchmark performance.

4.5 Visualization for Hal-Data
As shown in Figure 7, we tokenized the annotations of hallucination
content in Hal-Data 130K, and visualized them via a word cloud.
The results shown in the word cloud align with the definitions of
the hallucination content. For instance, the words in the word cloud
for object hallucinations are distinguishable nouns, and for attribute
hallucinations, they largely consist of features such as colors. This
supports the reliability and validity of our labeled dataset.

5 RELATED WORK
Large Vision Language Model: Based on LLMs, there are three
principal approaches to constructing LVLMs, all demonstrating
potential for robust zero-shot generalization in the vision-language
field. For instance, Flamingo [1] utilizes a fixed vision encoder
paired with a sizable language model featuring gated cross-attention
mechanisms for cross-modality matching. Meanwhile, PaLM-E [10]
incorporates visual features via linear layers directly into the pre-
trained PaLM [8] framework, which delivers strong performance
across a spectrum of practical applications. This integration strategy
is widely employed by models like LLaVA [27], Shikra [6], and
others. However, generating long visual sequences remains a notable
constraint of this technique. To mitigate this, BLIP-2 [19], inspired
by DETR [4], conceived a Q-former that effectively condenses the
length of visual feature sequences. This concept has since been
reflected in Kosmos-1 [15], mPLUG-Owl [45], and MiniGPT-4 [48].
Hallucination Evaluation: LVLM hallucination benchmarks specif-
ically aim at non-hallucinatory generation or hallucination discern-
ment. These benchmarks are classified according to the type of
evaluation approach they follow: Discriminative (Dis) or Genera-
tive (Gen). Discriminative Benchmark: POPE [20], NOPE [29],
and CIEM [14] are examples of discriminative benchmarks. Each
of these benchmarks exclusively directs attention towards object
hallucinations and utilizes accuracy as their primary evaluation met-
ric. The metric is calculated by querying the presence of objects
within images and comparing the model’s responses with the ground
truth. Generative Benchmarks: modern research predominantly
accentuates generative benchmarks over discriminative ones. Whilst
discriminative benchmarks focus mainly on object-level hallucina-
tions, generative benchmarks widen their scope to encompass a more
extensive range of hallucinations, such as attribute and relation hal-
lucinations [13, 17, 23, 38, 44]. AMBER [43] emerges as a holistic
benchmark that concludes both generative and discriminative tasks.

6 CONCLUSION
We introduce a new category, Event Hallucination, into the study
of LVLMs and develop a unique evaluation framework leverag-
ing advanced LLMs for data analysis. This approach enhances the
understanding and mitigation of hallucinations in LVLMs, mark-
ing a significant step forward in assessing and improving model
performance.
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