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Abstract

We consider reconstruction algorithms using points trdakeer a sequence
of (at least three) images, to estimate the positions of #meecas rfotion
parameters), the 3D coordinatesr (cture parameters), and the calibration
matrix of the camerasé@libration parameters).

Many algorithms have been reported in literature, and treegeneed to
know how well they may perform. We show how the choice of agsions
on the camera intrinsic parameters (either fixed, or withobabilistic prior)
influences the precision of the estimator.

We associate a Maximum Likelihood estimator to each typessfimp-
tions, and derive analytically their covariance matritedependently of any
specific implementation. We verify that the obtained caace matrices are
realistic, and compare the relative performance of each tf@stimator.

1 Introduction

The problem of 3D reconstruction from images has drawn cemable attention. We
focus on the problem of reconstruction franatched points (corners). The parameters
of interest are thetructure parametersi.e. the 3D coordinates of the points, timetion
parameters that describe the positions of the cameras; andcthidration parameters
that describe the intrinsic characteristics of the used@sn The case of known intrin-
sic parameters has been thoroughly studied in photogramifigX]. Work on uncali-
brated reconstruction progressed dramatically in receatywith the works of Hartley
[4], Faugeras [2], Maybank [8], Pollefeys et al [7], who skealAhow to obtain projective,
affine, and, finally, euclidean reconstructions from urralied views. We are interested
in euclidean reconstruction. Many algorithms have beepgsed, differing e.g. on the
assumptions concerning the calibration parameters anwtion. In some studies [1, 11]
some intrinsic parameters are fixed to trivial values. Wetwarcompare, in terms of
precision, the effect of these assumptions and the preceibieved in the calibrated
case. A study of critical (pathological) cases for selfimaltion can be found in [10],
and the achievable precision in the calibrated case is aslelden [5]. One contribution
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of this paper is to compare the precisions of calibrated amdalibrated reconstruction.
Although the former always performs better, experimeatesihows that when more than
ten images are available un-calibrated reconstructiciopas honorably.

Errors in the localization of image features introduce eviio the reconstruction.
Some algorithms are numerically unstable, intrinsicallyjn conjunction to particular
setups of points and/or of cameras. However, an in-depttysifithe precision of these
algorithms has not been presented. The issue of the acoofracgalibrated reconstruc-
tion has been raised and studied repeatedly, but alwaysiagsbto a particular algo-
rithm. Our aim is to give a more general treatment to the dgoesthile remaining as
independent as possible of any particular implementation.

1.1 Scope of the paper:

Most algorithms combine an “algebraic” part, and an optatian part that solves for
a ML [4] (or related [9]) estimate. ML estimators are oftepoged [9] to converge to
the solution only if started close from it. It is the purpo$éte “algebraic” algorithm to
provide the starting position. In this paper, we study thezmion of the ML estimatonot
that of the algebraic algorithm. The true parameters arsidered as random variables
with a distribution that is defined from the observationse ML estimator is defined by
the observation model, independently from any specificrilyn; we derive analytically
its covariance matrix in various cases of interest :

1.1.1 Full reconstruction from the observations only:

This is the most general case, but the estimation is ofterenigally ill-posed. For exam-
ple, in [1] some intrinsic parameters are highly correlatét some of the motion param-
eters, and the focal length is correlated to the depth (cineses the fact that zooming is
almost indistinguishable from forward motion).

1.1.2 Determination of a reduced set of parameters :

If some calibration parameters are fixed, they may be remfyeetdthe estimated vector.
This simplifies the study and implementation of the estimatod -presumably- amelio-
rate the numerical stability. Typical assumptions are pitatls are rectangular or square,
or that the principal point coincides with the image centdr, [7]. We verify in Section 4.1
the effect on precision of fixing the intrinsic parameteither to values obtained from
a pre-calibration step or to trivial values (correspondimgquare pixels and centered
principal point).

1.1.3 Full reconstruction with probabilistic prior knowle dge

The likelihood function may be modified to take into accousgriori knowledge ex-
pressed probabilistically, e.g. assuming that eithecstne or calibration follow a known
distribution. A prior on structure serves most often toies precisely the intrinsic pa-
rameters, and is then calledlibration from a known object.

A prior on the calibration parameters, may come either froprexious calibration
step, or from assuming that the camera parameters folloviéalt distribution, e.g. the



expected value of the principal point is the center of thegeand that its standard devi-
ation is approximately 10 percent of the image $iz€his is the probabilistic counterpart
of fixing the principal point to image center, as in Sectich2. In terms of the theoretical
precision, priors are preferable to fixed parameters.

We will write analytically the covariance matrices corresging to the studied cases
in egs. (11) to (13). The diagonal terms correspond to thnees of the individual
estimated parameters. The validity of our analytical eggigns is verified by comparing
the theoretical and the observed behavior of a reconsbrualigorithm, in Section 4.1.
One important contribution of this paper lies in showing hioy the variances of the
considered estimators are in practice.

2 Observation Model

2.1 Notations

We consider that a set d? points has been tracked over a sequencd @fnages. The
following notation is adopted :

e pe{l,2,---,P}andn € {1,2,---, N} are the indices used for numbering points
and images, respectively.

e x, € R?is the vector of the coordinates, in the world frame, ofpmpoint. Its
components are,;, fori € {1,2,3}. The symbolt’ shall denote all the,;, for
i€ 1.3,andp € 1..P.

The projection of these 3D points in the image depends ondla¢ive orientation and
position of the camera . Let

e A, =[a, a,2a,3]’ be the rotation matrix relating world coordinates to coerdi

nates in the:t image frame. It can be uniquely defined by 3 parametgys )V
will represent all thew,,, forn € 1..N.

e T, bethe coordinates of the world frame origin, expresseda'nrllﬁ cameraframe.
T will representT’;...T,,.

Assuming that the camera has unit focal length, squaregimdl a centered principal
point, thepth pointx,, produces the (noiseless) observatians = (Gp1, tnp2):

- an;X, +1t; .
Uppi = ——— 1 €4{1,2 1
i = e €12} ®

Taking into account the intrinsic parameters and noisalgiel
uy, = B1,,C + ¢y, (2

with

1Lenz and Tsai [6] cite values of this order of magnitude.



e B = [by, b,]*the 2-by-2 matrix that models the skew, pixel size and carfueal
length.

e C = [c1, ca]Tthe pixel coordinates of the principal point.

® £,y = [enp1,enp2]’ the observation noise, which is assumed to have Gaussian,
independent and identically distributed terms, with vacieo?>.

Let/ denote all the observations,,;, fori € {1,2},p € {1---P}andn € {1---N};
the intrinsic parameter8 andC, will be notedK. An asterisk denotes the true values of
the parametersy™, W*, T*andK*. The problem is defined as estimating the structure,
camera orientation and position, and intrinsic paramgefesm the observationd. We
write as a single vector, all the parameter® := (X, 0V, T, K). For a given®, the

prediction of the (n, p, z’)th observation is defined as :

ap;Xy + tni

'Unpi(e) = biﬁnp(@)—FCi where ﬂnm(@) = (3)

ap3Xy + tng

2.2 Likelihood function :

An estimator of the parameters is a functién ¢/ — © , that associates a parameter
vector© to a data set/. The Maximum Likelihood estimator is defined by a global
minimum of the (inverted) log-likelihood, taken as a fupctiof © :

QWU,0) = Z 2%2(“”’"' — vnpi(©))? + Constant (4)

npi

This function doesot have a uniqgue minimum : it is well-known that the recon-
struction is defined only up to a similarity. A way of resolgithe ambiguity is to con-
strain the structure parameters to be centeped %, = 03) and have unit mean norm
(32, |Ixpll* = 3P), the camera matriB to be lower triangular, and the first camera
frame to coincide with the world frameA( = Is). After removing the first rotation
matrix, and the upper right coefficient Ia from the parameter vect®, the restricted
parameter set is defined as the zeros of the function :

T
5(6) = I: Zp ||XP||2 - 3P7 Ep xph Zp 'rp27 Ep xp3 ] (5)
There are still some critical setups yielding a continuurvlbfestimates, even within
the setS—1({04}). Uniqueness conditions have been studied in [10]. In thisler we
consider that the minima @} that verify S(©) = 0 are isolated. Note that constraints are
not needed when using a prior on the structure.

Probabilistic prior on a subset of the parameters: Assuming prior knowledge on the
parameters leads to adding a term to the log-likelihoodtfan@) (¢4, ©): a prior on the
structure ¥* ~ N (Ap, X x) adds the following term :

(X — X)) TS (X — Ap)

A prior on the calibration is treated likewise.



3 Covariance of estimators

We show how the covariance matrix of Maximume-Likelihoodresitor derives from its
definition. This derivation, which can be found, e.g. in [8]then applied to the problem
of estimating structure, motion and calibration.

3.1 Definition of the estimators :

The maximum likelihood estimate is defined by :
O = arge min Q(U,0)  subject toS(0) =

At the minimum, the derivative of) is a linear combination of the derivatives of con-
straints. R R
DeQU,©) +ADeS(0) =0, sizge) (6)

whereDg is the differentiation operator. Assuming that the obséownoise, and\© =
© — ©* are not too large, the first order developmenfand@ in (©*,4/*) is a good
approximation. The following holds:

0=S(0%
D@Q(Z/{, é)

1

S(0) + DeS(0)ABO = DeS(0)A0, 7)
DeQU*,0%) + D36 QU,0)A0 + D,Q(U, O)e

1

Note that the linear development can be done eith@rat0*) or at(/, ©). eq.s (6) and
(7) may be written in matrix form :

T H = DjeQU*,0%)
{ g OG } [ AAG } - [ gs ] , where F = D2,QU*,0*) (8)
4x4 4 G = D@S(@*),

This equation uniquely defines© -if the matrix is invertible- as a linear transformation
of the noise:. The covarianceis :

cov | 201 _ [H G' ] '[e*FFT 0][H G7
Al T @ o 0 0]l G o

]1, (©)

We now specialize the above formulas to our case. The definiti) gives :

De,@Q = ank De, Vnpk (Vnpk — Unpk)/0°
D(2=)-®j Q = # Enpk D®iUnka@j”nkarD%),-@jUnpk(Unpk — Unpk) (10)
Dz@ unka = D@ivnl)k /02

At (0*,U*), one hasv,,r = unpk, and thus the second order termsmj) Q
are eliminated. In what follows, these terms are systemlfitieliminated. Noting ‘that
DoQT - De@Q = D3 Q/a?, and replacing in egs. (9) yields.



(11)

COV[AG}:{H GT}_l{H OHH GT}—1

A G 0 0 0 G 0

If the estimated quantities have very different orders ognitade, their estimators
may become numerically unstable, and the theoretical @vees irrelevant. The param-
eterization is chosen to avoid these pitfalls, by takingekyeected unit square module of
the parameters to e 1, since this is the module of the,; parameters. FdK, based
on our experience, and on remarks by Lenz and Tsai [6], wenee$that the parameters
ba1, oo — 1, C1 andCs all have approximately an expected absolute valug hfwhich
leads us to the parameterizati&h= 10[ba1 /b11, b22/b11 — 1, C1, Ca, log f], wheref is
the focal length. Neither the rotation paramef@/snor the translation parametefare
normalized in the present work, but their order of magnitisdeasonable.

3.1.1 Covariance when a prior is used :

A prior on the structure , X* ~ N(Xp,Xx), modifies the likelihood function, as dis-
cussed before. The tert, — X)X ' is added to the differential ap with respect to
X, DxQ, andE;{lis added taD% » @, the second differential of) with respect taY'.
This prior renders the constraint defined in eq. (5) irrehévaall the parameters can be
uniquely determined without having to restrict the paranset. Furthermore, the dif-
ferential of @ in (©*,U*) is not (in general) zero anymore. Altogether, this yields th
normal equations :

X (X — &%)

HT*AO = Fe +
Osn+s

-1
,  where H*”:H+{EX 0}

0 0
is the modified matrix of second derivatives. The covariafdbe estimate is then :
CovA© = (H*) "HT*(H*) ' = (H*) ™" (12)

A prior on the calibration parameters is treated likewise, but one keeps the con-
straintsS, and the matrix ofz of derivative :

Hk Gr
1% 9

ABO

Cov{ A

-1
0 0 G 0} (13)

Htk 0] [H+k GT

3.1.2 Fixed parameters :

Fixing K = K, for some valu&, # K*, and assuming th&* ~ N (K, Xx), the
covariance matrix of the estima@® = (X, W, T), takes the form:
Cov [ AO, ] _ [ H, GT r [ HT + HixSxHL. 0 } { Hy, GT ]—1
A G1 O4xa 0 0 Gi 0
(14)
Where andH,,G; are the appropriate sub-blocksEfandG.



4 Experimental Results

Measure of error:  We study separately the errors on the parameteryV, 7 andK.
For X andK, which are normalized for having(||x,||*) = 1, andE(||K||*) ~ 1, the

error measures ar€E(||xp —x3||?) and / E(||K — K*[|?). ForT, \/E(||t — t*|[?)
is used. FolV, the measure is the standard deviation of the angle formitkea axes
of the true and the estimated camera framg<;(||w,, — w3||?). When a prior on the
structure is used, and the first camera may be different fl@ridentity matrix,w,, is

taken as the difference between the first camera andthuamera.

4.1 Validation of the analytical expressions of covariance

The covariance matrices (11)-(14) are obtained using theoapnations (7) and (10); we
must verify that they are valid in practice. This is done bylementing the considered
estimator, and verifying that the error committed is caesiswith the predictions. We
have built100 “general position” setups of 10 points seen in 5 images. Dieeris 40dB.
For each setup, the corresponding theoretical covariaateamsY. o, are computed. The
observation$/(©)are contaminated by i.i.d. Gaussian noiseiatB, and a ML estimate
© is determined The error committed on each individual patanaf © is scaled by the
corresponding theoretical standard deviation. Theseegashould follow a lawV (0, 1)

if the theoretical variances were correct. The histograrnhefresulting values is shown
in Figure 1 together with a reference Gaussian density cuffver that noise level, the
theoretical and true covariances are very similar, and welade that the theoretical
variances are realistic.

4.2 Variance of estimators:

Short-Range : We compare the relative precisions using a real-world secgief 5 im-
ages of a static scene, with fixed intrinsic parameters anlda#@-matched points on a
calibration grid. This setup is a close-up of Figure 1 , takem ~ .75 — 1m. Total rota-
tion is~ 30 degrees. Since the 3D point positions are known, one magveV, 7 and
K with precision, and later use these values as ground-ffind precision of this calibra-
tion step, as determined by eq. (12), is shown on the firsiifable 1. We assumed that
the observation noise had varianiee— 4, based on the residualrap,-(@) — Upp; Which
have varianc@e — 5. We further assumed that the standard deviation of the errdine
ground-truth was ot %, corresponding te= 2mm. We label the lines of the table in the
following manner :

e Calib contains results obtained when calibrating.
¢ ML : Maximum-Likelihood estimator, with covariance defineceip (11).
e TP (Trivial Prior) andCP (Calibration Prior) are for estimators with a prior Bnh

e TF andCF denote the estimators with fixed intrinsic parameters,iwatrvalues
(TF), or values obtained by a previous calibration s€p)

2Noise level, in decibels is defined as dB —10 log, o (var(e)/var(u)).



HISTOGRAM of SCALED ERRORS w/ REFERENCE GAUSSIAN DDF
T T T T T T

L L L L L

-4 -3 -2 -1 0 1 2 3 4
IMAGE NOISE : 40dB

SCALED ERROR HAS VARIANCE 1.02 (should be 1.00)

Figure 1: .
Left : Histogram of scaled errors of the ML estimator. In abscissa
is the error, divided by the theoretical standard deviation The Gaussian
density function is superposed for comparison. The observariance is
1.02, while parameters¥, W, T and K have variances in[0.98,1.09].
Right : An image from the Long-Range sequence.

The most important features apparent from this table are :
e The ML estimator (second line) gives totally wrong the in$it parameters.

e The precision obtained with calibration information (fhuand sixth lines) is much
better than that obtained without (second, third and fifild).

¢ Without pre-calibration, the use of a trivial prior (thirithé) provides much better
estimates than either the ML or the trivially-fixed-paraerd€TF) estimators (sec-
ond and fifth lines).

Long-Range : the grid (shown on right, in Figure 1) is seen alot®jimages, from
1.5 — 2.5m, and the maximum camera-camera distanee is3m. The variances of the
five tested estimators are displayed in Table 1. FotR@ndCF (fourth and sixth lines)
estimators, the covariance of the prior is that of shorzeazalibration. The ML estimator
and the estimator with trivial prior (second and third lipperform nearly as well as the
estimators that use prior calibration (fourth and sixtledn The estimator with fixed
trivial parameters, however, appears to behave relatpadyly. The first point appears to
be due to the increased number of images used.

4.3 Influence of the number of images :

Figure 2 plots the base 10 logarithm of the variance in stinecand in intrinsic parame-
ters, as a function of the number of images used. Long segaariaincalibrated images



| | ShortRange N =5,P =48 | LongRangg N =12, P =48 |
X w t K X w t K
Calib || 0.0079| 0.20| 0.0350| 0.0872| 0.008 | 0.34| 0.556| 0.239
ML 0.429 | 2.66| 1.08 3.30 0.0816| 0.68 | 1.44 | 0.440
TP 0.134 | 1.00| 0.437 | 0.767 | 0.0774| 0.65| 1.35 | 0.373
CcpP 0.084 | 0.61| 0.0705| 0.0867|| 0.0646| 0.54 | 0.329| 0.0844
TF 0.299 | 2.54| 1.63 1.00 0.148 | 1.83| 7.10 | 1.00
CF 0.0840| 0.61 | 0.0706| 0.0872|| 0.0646| 0.54 | 0.330| 0.0872

Table 1: Each column contains te&pected standard deviatiorof either the structure
X, orientationw, position t or calibration parameterk. w is expressed in degrees.

allow as good 3D reconstruction as short calibrated seqsemdereas short uncalibrated
sequences give poor results. In all cases, it is better t@ugeial prior than to fix the
intrinsic parameters to trivial values.

ERROR IN STRUCTURE vs. NUMBER OF IMAGES ERROR IN INTRINSIC PARAMETERS vs. NUMBER OF IMAGES

ML

|

LOG10 of VARIANCE of STRUCTURE ESTIMATOR

LOG10 of VARIANCE of INTRINSIC PARAMETER ESTIMATOR

Q

” L L L L L L I L L
2 4 6 12 14 16 2 4 6

. . )
8 10 8 10 12 14 16
Number of images Number of images

Figure 2: Log (base 10) of the error on the structure parammatend calibration param-
eters K. The curves are taggédL , TP, CP, TF and CF as explained in the text. Thirty
setups were generated, each with twelve 3D points, gemgkeaat&aussian white noise,
and then normalized. The camera orientations have Euléesimglependently uniformly
distributed in+7 /4, £7/4, £ /8]. The scene-camera distance is 6 to 12 times the size of
the scene. The precision of the camera calibration is thatlble 1, and the observations
noise has varianck — 4.

5 Conclusions:

We have presented analytical expressions of the covariaateces of the estimators,
and verified experimentally their validity. We compared pirecision of various 3D-
from-matched-points algorithms, and showed how it depemdhe physical setup. To
summarize :



¢ Pre-calibration, if one may assume that the intrinsic patens do not vary, greatly
improves the precision of reconstruction. When realistiibcation parameters are
available, they can be fixed : compare the “CP” and “CF” limethe tables above.

e Long sequences of uncalibrated images allow as good 3D s&cmtion as short
calibrated sequences. Therefore it shows the potentidityjodeuclidean recon-
struction obtained from long uncalibrated sequences.

We are presently working to better analyze the influence®ttguence length, number
of points and noise in image measurements. On the analgiitslthe present work could
be extended to variable intrinsic parameters .
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