
Active Relation Discovery: Towards General and Label-aware OpenRE

Anonymous ACL submission

Abstract

Open Relation Extraction (OpenRE) aims to001
discover and label novel relations from open002
domains. Previous methods mainly suffer from003
two problems: (1) Insufficient capacity to dis-004
criminate between known and novel relations.005
When extending conventional test settings to006
a more general setting where test data might007
also come from seen classes, existing OpenRE008
approaches have a significant performance de-009
cline. (2) Secondary labeling must be per-010
formed before practical application. Exist-011
ing methods cannot label human-readable and012
meaningful types for novel relations, which is013
urgently required by the downstream tasks. To014
address these issues, we propose the Active015
Relation Discovery (ARD) framework, which016
utilizes relational outlier detection for discrimi-017
nating known and novel relations and involves018
active learning for labeling novel relations.019
Extensive experiments1 on three real-world020
datasets show that ARD significantly outper-021
forms state-of-the-art methods on both conven-022
tional and our proposed general OpenRE set-023
tings.024

1 Introduction025

Open Relation Extraction (OpenRE) aims at discov-026

ering and extracting potential novel relations from027

open-domain corpora. Novel relations are cropping028

up at a rate of tens of thousands per year (Shi and029

Weninger, 2018), while most of the rapidly emerg-030

ing relations are still unlabeled and under-explored,031

mixed with pre-defined relations. These relations032

cannot be well handled by supervised RE methods033

due to the fixed predefined relation schema.034

Some recent preliminaries have noticed the chal-035

lenge of learning emerging relations and explored036

methods for OpenRE. Previous works can be di-037

vided into two main paradigms: pattern-based and038

clustering-based methods. Specifically, pattern-039

based method (Angeli et al., 2015; Cui et al., 2018)040

1The source code will be available for reproducibility.

utilize statistical or neural approaches to heuristi- 041

cally extract relation patterns, then clustering-based 042

methods (Elsahar et al., 2017; Wu et al., 2019) are 043

proposed to aggregate instances representing the 044

same novel relation. 045

However, previous works mainly have two short- 046

comings in real scenarios: 047

(1) The widely used traditional setting can’t com- 048

prehensively reflect what OpenRE in the real world 049

entails. The traditional setup for OpenRE is that 050

models are judged based on their ability to discrim- 051

inate among unseen classes, assuming the absence 052

of known relation during the test phase. While the 053

ability to learn novel relations is, by all means, a 054

trait that any OpenRE model should possess, it is 055

merely one side. The other important, yet so far un- 056

studied, trait is the ability to discriminate between 057

the known and unseen relations. The relation dis- 058

tribution in the real world is intricate, mixed with 059

known and unseen relations. Therefore, it’s unreal- 060

istic to assume that we will never encounter known 061

relations during the test stage. 062

In the light of above facts, we evaluate existing 063

OpenRE model on a General OpenRE setting: test 064

data might also come from known relations. Em- 065

pirical experiments in Table 1 show that the state- 066

of-the-art OpenRE model (Wu and Weld, 2010; Hu 067

et al., 2020; Zhang et al., 2021) performs poorly 068

under this setting. 069

(2) The results produced by current OpenRE 070

models require secondary labeling before they can 071

be practically applied. In other words, for a certain 072

novel relation, the model cannot assign it a surface 073

name with a specific meaning. As the foundation 074

of a series of downstream tasks, labels with actual 075

meaning are urgently desired. However, due to the 076

absence of human knowledge, both pattern-based 077

and clustering-based methods lack the ability to 078

name novel relation types as human-readable and 079

meaningful. Pattern-based methods rely heavily on 080

the surface phrase, yet relations between entities 081
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are often not directly represented by the span in the082

sentence. Clustering-based methods merely cluster083

instances that express the same relations, but do084

not provide concrete representation of the novel085

relations. Both methods require manual re-labeling086

of the novel relations found. This gap between087

model and practice hinders model application in088

real-world scenarios.089

To address above mentioned issues, we propose090

the Active Relation Discovery (ARD) framework091

shown in Figure 1. Targeted improvements are092

made in two aspects: (1) To avoid the model being093

confused by the set of mixed known and novel re-094

lations, we developed a relational outlier detection095

algorithm that separates known and novel relations096

by treating novel relations as outliers, performing097

stably under the General OpenRE setting.098

(2) To assign meaningful labels to novel rela-099

tions, the incorporation of human knowledge is100

inevitable. To minimize the labor cost, we propose101

an active learning algorithm. Specifically, we intro-102

duce the representative instance, which denotes an103

instance can offer rich information of unknown re-104

lations. Only a handful of representative instances105

requires manual labeling, and then the model can106

automatically label the novel relations in a super-107

vised manner.108

In summary, our contributions are in three folds:109

(1) We reveal two major shortcomings of current110

OpenRE approaches, and introduce a new setting111

called General OpenRE, which can realistically112

measure the capabilities of the model.113

(2) We propose ARD, a practical framework that114

not only adapts to the General OpenRE utilizing115

relational outlier detection, but also exploits active116

learning to assign more meaningful and human-117

readable labels to novel relations.118

(3) We conduct extensive experiments on both119

conventional and General OpenRE settings to show120

that our framework can achieve significant improve-121

ments in three real-world datasets. Detailed analy-122

sis demonstrates the effectiveness of each part of123

ARD.124

2 Related Work125

Open Relation Extraction. Whereas supervised126

RE (Liu et al., 2013; Zhang and Wang, 2015)127

relies heavily on manual annotation and the in-128

herent inadequacy of predefined relation schema,129

OpenRE gains increasing attention. The method of130

OpenRE can be broadly divided into two categories:131

pattern-based and clustering-based. Pattern-based 132

approaches extract relation patterns from textual 133

corpora (Banko et al., 2007; Fader et al., 2011; 134

Stanovsky and Dagan, 2016). These methods apply 135

heuristic algorithms to describe relations between 136

marked entities with relation patterns consisting of 137

several key phrases in texts. Due to the ambiguity 138

of relations obtained by the pattern-based meth- 139

ods, the focus of research in recent years has been 140

primarily on clustering-based methods. 141

Clustering-based method (Shinyama and Sekine, 142

2006; Elsahar et al., 2017; Wu et al., 2019) clus- 143

ter instances in the feature space into novel rela- 144

tion types. Wu et al. (2019) enhances unsupervised 145

clustering-based methods by introducing Siamese 146

Network to measure instance similarity. 147

As described in Section 1, there are two main 148

problems with the current OpenRE: (1) They focus 149

only on the discrimination of novel relations, sup- 150

posing that test sets only have novel relations. (2) 151

The model output is not directly usable by down- 152

stream tasks. In response, we propose a General 153

OpenRE setup and incorporate outlier detection 154

and active learning into OpenRE. 155

Active Learning in Relation Extraction. The 156

key idea behind active learning (Settles, 2009) is 157

that the learning algorithm is allowed to ask for 158

true meaningful labels of some selected unlabelled 159

instances. Various criterion (Zhang et al., 2012; Fu 160

and Grishman, 2013; Qian et al., 2014) have been 161

proposed to choose these instances on traditional 162

supervised RE tasks. To our best knowledge, we 163

firstly integrate active learning into OpenRE, en- 164

abling meaningful tags of the novel relation type 165

with the addition of human knowledge. 166

Generalized Zero-Shot Learning(GZSL). The 167

motivation for the General OpenRE setting is sim- 168

ilar to that of the GZSL. Traditionally, ZSL ap- 169

proaches (Romera-Paredes and Torr, 2015; Zhang 170

and Saligrama, 2015) assume that only the unseen 171

classes are present in the test set. (Chao et al., 172

2016) first challenged this implausible setting and 173

proposed the GZSL setting: test data might also 174

come from seen classes. GZSL approaches (Rah- 175

man et al., 2018; Huang et al., 2019) focus on miti- 176

gating the strong bias caused by known classes and 177

preventing novel classes from being categorized 178

as one of the seen classes. While in our General 179

OpenRE setting, we concentrate more on the dis- 180

tinction between known and novel classes. 181
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Figure 1: An illustration of our proposed Active Relation Discovery (ARD) framework.

3 Task Formulation182

General OpenRE formulates the task slightly differ-183

ently from traditional OpenRE setting. The original184

train set is a large-scale manually annotated corpus185

X = {xrij |ri ∈ RK}, where relations in RK are186

pre-defined as “known relations”. Obviously, we187

assume that there exists a relation setRN that con-188

tains “novel relations” in another corpus without189

annotations. In the real-world scenario, we need to190

process the dataset whose instances express rela-191

tions both inRK andRN , distinguish known and192

novel relations, then label each instance.193

Under this fact, we first consider the novel rela-194

tion discovery, in which we solely focus on the195

mining of unseen relations. At this stage, We196

pre-train the model on X and obtain a trained en-197

coder E. Then for a concrete dataset (test set)198

X ′ = {xrij , x
′r′i
j |ri ∈ RK , r′i ∈ RN}. The model199

will unsupervisedly divide X ′ into a “known rela-200

tion set” XK and a “novel relation set” XN .201

XK can be easily labeled for sufficient informa-202

tion obtained from X . Secondly, we focus on the203

annotation of novel relations XN . In this phase, we204

integrate the intuition of active learning by utilizing205

limited labor to facilitate the novel relation annota-206

tion performance. Our model queries a small set of207

informative samples in XN for manual labeling and208

then trains a classifier to annotate novel relations.209

4 Methodology210

4.1 Overview211

The overview of the method is illustrated in Fig-212

ure 1. We will detailedly introduce our work into213

three components: (1) Relation representation,214

in which we extend to transform semantic rela-215

tions into low-dimension dense representations. (2)216

Relational Outlier Detection, where the model 217

automatically detects a novel relation set from real- 218

world datasets and feeds them into the active learn- 219

ing stage. (3) Relational Active Learning, where 220

the model selects the most informative instances to 221

train a powerful classifier for novel relation. 222

4.2 Relation Representation 223

Given a dataset X = {x1, ..., xn}, an instance x 224

is a word (token) sequence {w1, w2, ..., wn} with 225

two marked entities eh and et. We use triplets of 226

relation facts (eh, r, et) to denote that there is a 227

relation r between the marked entity pair. And xr 228

indicates an instance that expresses the relation r. 229

Specifically, we define four special markers ⟨eh⟩, 230

⟨/eh⟩, ⟨et⟩, and ⟨/et⟩ to locate the head entity and 231

the tail entity. We denote the indices of ⟨eh⟩ and 232

⟨et⟩ as START(h) and START(t). An instance is 233

represented as: 234

x = ..., ⟨eh⟩, wSTART(h)+1, ..., wEND(h), ⟨/eh⟩, ...,
⟨et⟩, wSTART(t)+1, ..., wEND(t), ⟨/et⟩, ...

(1) 235

We use pre-trained language model (i.e. BERT (De- 236

vlin et al., 2019)) to encode each token wt to the 237

corresponding representation ht ∈ Rd, where d is 238

denotes the dimension of representation vectors. 239

For an instance xi ∈ S, we use the concatenation 240

of representations of two start positions (wSTART(h) 241

and wEND(h)) as the representation of the relation: 242

hr(xi) = [hSTART(h),hSTART(t)], (2) 243

These extra tokens play a similar role like position 244

embeddings in conventional RE tasks (Zeng et al., 245

2015). The relation representation hr(xi) will be 246

utilized to predict the relation type r. 247

As mentioned previously,X are used to fine-tune 248

the pre-trained language model. Notably, along 249
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with the traditional cross-entropy loss, we inte-250

grate a supervised contrastive loss Lsup
out described251

in Khosla et al. (2020):252

Lsup
out =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
,

(3)253

Here, P (i) ≡ {p ∈ A(i) : ỹp = ỹi} is the set of254

indices of all positives in the mini-batch distinct255

from i. Contrastive loss allows for tighter cluster-256

ing of intra-class instances and a more dispersed257

distribution of inter-class instances. The essence258

behind the employment of contrastive loss is to259

gain relation representations that are more friendly260

to outlier detection and active learning. The perfor-261

mance of our relation representation on supervised262

RE can also be found in Appendix F.263

4.3 Relational Outlier Detection264

After pre-training, Eθ could encode an instance x265

into a dense vector hr(x) as the relation represen-266

tation. In the feature space, due to the similarity267

of the semantics, representations that express the268

same relation tend to densely gather (forming n269

separate clusters) and ones that express different270

relations tend to disperse. Figure 3 illustrated the271

distribution of different representations. Since the272

instances express unseen relations have not been273

pre-trained, in other words, the model has not seen274

the semantics, the instances are not projected near275

any clusters. We utilize this property to design lo-276

cal outlier factor (LOF) to reflect the local density277

of instances in the feature space.278

Formally, given any two representations279

hr(xi),hr(xj) of instances xi, xj , we denote280

d(hr(xi),hr(xj)) as the Euclidean distance be-281

tween them. Then, we define k-th distance, de-282

noted as dk(hr(xi)), to represent the distance from283

hr(xi) to the k-th nearest neighbour. The reach-284

ability distance between hr(xi) and hr(xj) is rep-285

resented as follows:286

rdk(hr(xi),hr(xj)) = max{dk(hr(xj)),
d(hr(xi),hr(xj))},

(4)287

We then compute the density to measure the288

average distance of reach-ability distance:289

denk(hr(xi)) = 1/

∑
hr(xj)∈Nk(hr(xi))

rdk(hr(xi), hr(xj))

|Nk(hr(xi))|
,

(5)290

where Nk(hr(xi)) denotes all the points whthin in291

k-th distance of hr(xi).292

The computation of local outlier factor is: 293

LOFk(hr(xi)) =

∑
hr(xj)∈Nk(hr(xi))

denk(hr(xj))
denk(hr(xi)

|Nk(hr(xi))|
,

(6) 294

where the larger LOF is, the more likely hr(xi) is 295

an outlier point, i.e, an instance that expresses a 296

novel relation. Our model could unsupervisedly 297

detect the instances with novel relations. 298

4.4 Relational Active Learning 299

To this end, the model could divide the real-world 300

dataset into a “known relation set" XK and an 301

“novel relation set" XN . In view of the fact that 302

XK can be conveniently and precisely annotated, 303

we focus on labeling meaningful types for discov- 304

ered instances in XN in this subsection. 305

To retrieve human-readable labels and avoid sub- 306

sequent secondary labeling, we need to incorporate 307

human knowledge into the relation learning phase 308

through active learning. Our primary goal is to find 309

a small part of instances with the most information 310

and artificially label them. Then we use the labeled 311

data to train a classifier in a supervised manner. 312

The problem of how to find instances with most 313

information essentially is the problem of how to 314

find the instances that are most likely to express 315

“novel relations”. Inspired by this, we propose the 316

following Relation Active Learning module: 317

In the beginning, we randomly label a small part 318

of data inXN . The labeled dataset is denoted asXL 319

and the rest of the unlabeled data is denoted as XU . 320

We assume that all the instances x are i.d.d accord- 321

ing to a latent distribution P (x). Correspondingly, 322

their labels are distributed by the conditional distri- 323

bution P (y|x). 324

Neural Encoder We adopt a neural encoder to 325

learn the distribution of XL and XU in the latent 326

feature space. Our framework is independent of the 327

choice of neural encoders, in this case, we adopt 328

BERT (Devlin et al., 2019) as the encoder. The 329

goal of the neural encoder is to encode XL and 330

XU into the same feature space and try to fool a 331

discriminator to correctly predict if the instance is 332

“representative”. The loss function of the encoder 333

is: 334

Le =− Ex∼PXL
[log(Dψ(Eθ(x)))]

− Ex∼PXU
[log(1−Dψ(Eθ(x)))],

(7) 335

Discriminator A binary classifier (or a discrimi- 336

nator): X → {−1, 1} is adopted to select the most 337
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informative samples. We utilize adversarial train-338

ing to leverage the information of both XL and XU .339

The discriminator is adversarially trained to accu-340

rately distinguish if the instance expresses a novel341

relation. The loss function is a flipped version of342

the encoder:343

Ld =− Ex∼PXL
[log(1−Dψ(Eθ(x)))]

− Ex∼PXU
[log(Dψ(Eθ(x)))],

(8)344

Naturally, we could jointly optimize the two ob-345

jective functions by allocate two parameters: L =346

λLe + λ′Ld.347

Active learning At each training step, we select348

k instances with the highest confidence of the dis-349

criminator as the most informative instances. Then350

the instances will be manually annotated and then351

used to train the classifier. At this point, the dis-352

cussion of manual annotations needs to be further353

developed. Considering the explosive growth of354

the number of relations, an annotating process that355

supports online and continual learning of novel re-356

lations needs to be designed. Thus, we propose357

a practical and easy-to-implement annotation pro-358

cedure. At the start, for each selected instance359

xi, the annotator only needs to judge if xi has the360

same relation class as any instances of XL. xi will361

be indexed as a novel relation if it doesn’t share362

the same relation with instances in XL, or labeled363

as one known relation. After the procedure, the364

standard of relations would be easy to design than365

before the active learning begins. This manner ef-366

fectively ensures the ability to continual learning367

and online learning of our framework, expediently368

fitting the real situation. Subsequently, XL will be369

fed into a classifier, which is a one-layer MLP with370

an output layer, optimized by cross-entropy objec-371

tive function, denoted as Lc and parameterized by372

γ:373

Lc =
∑
i∈|XL|

− log p(y
(i)
L |x

i
L, γ). (9)374

5 Experiments375

In this section, we verify the performance of the376

model on three large-scale OpenRE datasets and377

their variants, and at the same time, a series of aux-378

iliary experiments are carried out to prove the effec-379

tiveness of the model. Finally, we give a detailed380

analysis of the efficacy of our ARD framework.381

Algorithm 1 Training for Active Learner, λ, λ′, k
are hyper-parameters.

Input: Labeled data (XL, YL), unlabeled data
XU , initialized encoder model with θ, discrimi-
nator model with ψ, classifier with γ
while not converge do

Sample mini-batches (xL, yL) from (XL, YL)
Sample mini-batches (xU ) from (XU )
Compute Le by Eq. 7
Update θ w.r.t Le
Compute Ld by Eq. 8
Update ψ w.r.t Ld
Select k most informative instances
{x1, ..., xk} by the output of d
for i← 1 to k do do

if xi has the same relation as xrj ∈ XL then
Label xi with r and append xi to XL

else
Label xi with a new index and append xi
to XL

end if
end for
Update γ w.r.t Lc

end while

5.1 Baseline 382

To demonstrate the effectiveness of our ARD mod- 383

els, we compare our models with three state-of-the- 384

art models: (1) RSN-CV (Wu et al., 2019) employs 385

conditional entropy and virtual adversarial learn- 386

ing to train Siamese Network to measure instance 387

similarity. (2) SelfORE (Hu et al., 2020) utilizes 388

self-training to iteratively learn relation representa- 389

tions and clusters. (3) OHRE (Zhang et al., 2021) 390

integrate hierarchy information into relation repre- 391

sentations for better novel relation extraction. 392

5.2 Datasets and Setting 393

Datasets Three datasets and their variants are 394

used to evalutate our model: FewRel (Han 395

et al., 2018), New York Times Free- 396

base(NYT+FB) (Marcheggiani and Titov, 397

2016) and FewRel2.0 (Gao et al., 2019), the first 398

two of which have been widely used in previous 399

RE works (Simon et al., 2019; Hu et al., 2020; 400

Zhang et al., 2021). We follow the division of the 401

datasets from previous works. More details about 402

the dataset can be found in the Appendix A. 403

To verify the cross-domain capability of the 404

model comprehensively, we also use FewRel2.0 405
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dataset whose training and test sets are from com-406

pletely different domains. As an advanced ver-407

sion of FewRel, FewRel2.0 incorporates knowl-408

edge transferring.409

Datasets Processing As described above, in the410

original OpenRE setting, there are no overlapping411

relations in the training and test sets. The relations412

in the test set are all novel relations. To measure the413

performance of the model in our proposed General414

OpenRE setting, we resample the original dataset415

and gain two variants: noisy and imbalanced. In416

the test sets of the two variants, there are known417

relations with different distributions exist. In other418

words, the original dataset corresponds to the con-419

ventional setting and the noisy and imbalanced vari-420

ants to the general setting.421

To obtain the noisy variant, we randomly select422

40% samples from original training sets. Given423

that the number of samples for each novel relation424

is identical in FewRel and FewRel2.0, we further425

construct the imbalanced variant to explore the per-426

formance of the model in the presence of class im-427

balance. Specifically, we build on the noisy variant428

by randomly discarding a portion of the samples429

with different probabilities for each relation class430

in the test set, yielding class imbalance in test set.431

5.3 Evaluation Settings432

Following previous works, we apply instance-level433

evaluation metrics to evaluate the model, covering434

B3 (Bagga and Baldwin, 1998), V-measure (Rosen-435

berg and Hirschberg, 2007) and Adjusted Rand436

Index(ARI) (Hubert and Arabie, 1985).437

For quantitative validation, we divide XN into438

X trainN and X testN , which account for 40% and 60%439

respectively. The active learning module selects440

the instance with the most information in X trainN441

and trains the relation classifier. In the test phase,442

we merge XK and X testN , report metric scores on443

it. As the baselines are semi-supervised, X trainN is444

also applied to the training of the baseline models445

to ensure a fair comparison.446

For FewRel and NYT+FB, the seminal set size447

for Active Learning module is 32. The sample size448

k is 32 and we sample a total of 8 epochs. In other449

words, a whole of 288 samples is manually labeled.450

As for FewRel2.0, we choose a smaller sample size:451

k = 8 and keep semianl set size as 32. Finally, 96452

informative samples are annotated.453

5.4 Main Experiment 454

Table 1 shows the quantitative evaluation results 455

on three datasets and their variants, from which 456

we observe that: (1) Our ARD model outperforms 457

state-of-the-art models by a large margin. Specif- 458

ically, B3, V-measure and ARI increased by 15.2, 459

16.7, and 15.9 respectively compared to OHRE on 460

FewRel. Compared with other semi-supervised 461

methods, the gap is even larger, rises of over 25 are 462

achieved by ARD. This proves that ARD can effi- 463

ciently discover and learn representations of novel 464

relations at a fraction of the labor cost. (2) An 465

universal and consistent decline in performance of 466

baseline models from the original datasets to noisy 467

variants and then to unbalanced variants. This 468

demonstrates that the General OpenRE setting is 469

more challenging and more practical for the real 470

scenario. The F1 score for RSN-CV drops dramat- 471

ically from the original data to the noisy variant 472

by 19.5. In contrast, the ARD model outperforms 473

on both the noisy and imbalanced variants than on 474

the original dataset, even with a F1 score boost- 475

ing by 7.2 on FewRel. This indicates the relation 476

discovery procedure and relational active learning 477

is robust in different scenarios. (3) The state-of- 478

the-art models perform poorly on FewRel2.0. This 479

is entirely to be expected, as the instances in the 480

test set are from non-generic and low-resource do- 481

mains such as biomedicine. ARD, on the other 482

hand, still shows strong stability, confirming the 483

cross-domain capability of the model. Further, to 484

substantiate the applicability of our framework, we 485

perform deploy ARD to a real medical dataset, as 486

detailed in Appendix D. 487

5.5 Analysis on Active Learning 488

The Efficiency of Active Learing Table 2 shows 489

the results of our active learning approach com- 490

pared to various active learning baseline models 491

including DBAL (Gal et al., 2017), CoreSet (Sener 492

and Savarese, 2018), SRAAL (Zhang et al., 2020). 493

It can be observed that in each iteration, our model 494

outperforms the other models, indicating that our 495

method can consistently sample informative sam- 496

ples. Time efficiency analysis and case study can 497

be found in the Appendix G and Appendix C. 498

The Impact of Different Encoder and Scope of 499

Query Figure 2 shows the experimental results on 500

noisy FewRel with different encoders and query 501

ranges. The “query ranges” represents the ratio of 502

X trainN to XN , We also explore the impact of β- 503
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Data
-set Model B3 V-measure ARI

F1 Prec. Rec. V Hom. Comp.

FR
(Ori)

RSN-CV 57.3 51.5 64.5 69.4 66.3 72.8 44.9

SelfORE 57.5 57.4 57.6 63.1 63.3 63.0 53.8

OHRE 58.4 48.6 73.2 68.4 62.3 75.7 48.2

Ours 73.6 70.7 76.8 85.1 84.9 85.3 64.1

NYF
(Ori)

RSN-CV 45.1 35.0 63.6 61.1 54.0 70.3 31.7

SelfORE 54.3 52.0 56.9 71.0 70.2 71.8 54.6

OHRE 36.1 23.8 75.0 52.8 41.2 73.4 24.5

Ours 51.4 45.0 60.0 72.3 75.0 69.8 45.1

FR2.0
(Ori)

RSN-CV 26.7 17.2 59.4 48.1 38.3 64.8 10.0

SelfORE 35.3 24.6 62.5 60.0 51.9 71.3 27.0

OHRE 21.3 14.9 36.9 12.9 10.4 16.8 6.6

Ours 48.8 43.2 56.1 65.1 60.8 70.1 34.4

FR
(Noi)

RSN-CV 37.8 25.8 70.7 61.8 51.5 77.3 24.4

SelfORE 50.8 48.2 53.7 55.4 55.7 55.1 42.0

OHRE 28.3 17.4 75.9 56.8 44.8 77.7 21.3

Ours 80.8 75.7 86.7 90.2 89.0 91.4 71.3

NYF
(Noi)

RSN-CV 40.9 29.5 66.7 58.7 49.7 71.5 28.8

SelfORE 46.2 41.8 51.5 65.8 64.0 67.7 44.5

OHRE 32.6 21.8 64.7 44.4 34.5 62.3 24.3

Ours 71.3 60.8 86.2 72.9 70.5 75.5 51.0

FR2.0
(Noi)

RSN-CV 21.4 27.1 17.6 25.0 26.3 23.9 7.3

SelfORE 31.7 23.3 49.8 53.5 46.8 62.4 25.4

OHRE 20.7 12.6 57.9 46.8 36.8 64.3 11.2

Ours 55.0 52.8 57.4 69.3 65.1 74.0 38.5

FR
(Imb)

RSN-CV 35.9 23.5 75.4 61.4 50.0 79.5 22.6

SelfORE 46.4 42.8 50.6 51.8 52.1 51.5 36.9

OHRE 23.9 14.3 73.1 52.4 40.5 74.3 18.3

Ours 76.5 74.7 78.4 86.5 86.8 86.2 67.8

FR2.0
(Imb)

RSN-CV 20.5 14.8 33.5 26.5 21.6 34.4 7.9

SelfORE 30.9 22.0 52.0 52.8 45.4 63.2 23.8

OHRE 20.0 12.0 59.7 43.6 33.4 62.7 10.5

Ours 52.4 50.1 54.9 67.4 63.2 72.2 36.4

Table 1: Main results on three original datasets and their
variants. Ori, Noi, and Imb stand for original, noisy
and imbalanced respectively. Ori corresponds to the
conventional setting. Noi, and Imb refer to the general
setting. Results are the average of 3 experiments with
different random seeds.

VAE (Higgins et al., 2016) and BERT as encoders.504

As well, we report the results when using a random505

selection of 30% and the full amount of X trainN for506

training. From the results we observe that: (1) Gen-507

erally, the model performance is proportional to the508

size of X trainN . However, the results are improved509

marginally as the number of samples increase. But510

the model still yields better performance when the511

query range is 40%. (2) The comparisons between512

the VAE and the BERT encoder are in line with513

intuition. Although VAE is intuitive and can be514

more easily trained, BERT still shows superiority515

in empirical results. (3) The performance of the516

model trained with 288 samples (approximately517

F1

50.0

57.4

64.8

72.2

79.6

87.0

Epoch

#1 #2 #3 #4 #5 #6 #7 #8

40%(V)
40%(B)
20%(V)
20%(B)

表格 1

FewRel 1.0 20%(V) 40%(V) 20%(B) 40(B)

#1 54.18 58.21 59.9 66.0

2 64.55 65.45 64.88 69.0

3 65.59 69.17 69.14 70.5

4 67.66 71.74 72.1 72.7

5 68.95 73.94 75.1 75.5

6 73.94 74.11 76.4 78.5

7 74.84 76.31 76.9 79.5

8 76.93 77.16 79.4 80.8

100% -
30% -

Lowest Confidence Random Highest Confidence

70.59
69.95 69.07 68.30 69.11

78.39

76.51

77.46 78.82

80.31

77.90

81.13

80.42

86.9

79.5

𝒳train
N

𝒳train
N

Figure 2: F1-measure on noisy FewRel, (V) denotes the
β-VAE and (B) denotes the BERT encoder.

Dataset Model Epoch

#1 #2 #3 #4 #5 #6

FewRel

DBAL 58.8 64.8 71.6 70.4 74.1 76.9

CoreSet 60.1 61.8 66.1 68.4 70.9 75.4

SRAAL 61.9 64.7 65.7 69.8 73.7 73.9

Ours 66.0 69.0 70.5 72.7 75.5 78.5

NYY+FB

DBAL 47.4 48.6 51.4 53.3 54.9 55.5

CoreSet 45.4 49.5 52.0 55.3 56.8 59.2

SRAAL 50.2 51.9 54.0 55.6 56.2 56.9

Ours 56.8 62.5 66.6 68.3 69.3 69.9

FewRel2.0

DBAL 46.9 50.5 51.4 51.7 52.2 53.7

CoreSet 44.0 45.5 50.3 51.9 53.0 54.2

SRAAL 45.0 49.7 51.8 52.0 52.8 53.9

Ours 48.8 51.2 52.4 53.2 53.5 54.5

Table 2: F1-measure for various active learning methods
on noisy FewRel dataset.

8% of X trainN ) is similar to that of a random selec- 518

tion of 30%. When trained with the full amount 519

of X trainN , the F1 is 6.1% higher than ARD while 520

costing 12 times as much in human effort. The 521

results demonstrate the effectiveness of ARD. 522

The Impact of Different Sampling Strategies 523

In order to prove the effectiveness of the active 524

learning method, we conduct a further ablation 525

experiment. As mentioned above, our sampling 526

strategy is to select the k instances with the highest 527

confidence for manual labeling. In the ablation ex- 528

periment, we test two other sampling strategies: se- 529

lecting the k instances with the lowest confidence; 530

randomly selecting k instances. The comparison 531

results are shown in Table 3. 532

It can be seen that after being trained by in- 533

stances with the highest confidence, the model 534

achieves the most improvement. In contrast, in- 535

stances with the lowest confidence contribute very 536

little to improving the performance of the model. 537

Even with the continuous increase of training data, 538

the improvement is extremely little. The results 539
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Epoch Lowest Random Highest

#1 57.1 58.7 66.0
#2 57.1 60.4 69.0
#3 57.8 65.6 70.5
#4 57.6 67.2 72.7
#5 57.6 67.7 75.5
#6 58.1 67.7 78.5

Table 3: Comparisons of F1-measure between different
sampling strategies on noisy FewRel dataset.

Dataset Model Epoch

#1 #2 #3 #4 #5

FewRel
ARD 66.0 69.0 70.5 72.7 75.5

w/o LOF 62.8 64.4 68.5 70.5 73.4

NYT+FB
ARD 56.8 62.5 66.6 68.3 69.3

w/o LOF 47.7 53.8 57.2 60.3 64.4

FewRel2.0
ARD 48.8 51.2 52.4 53.2 53.5

w/o LOF 42.9 44.2 45.6 46.4 48.2

Table 4: Ablation experiment over novel relation dis-
covery module on noisy FewRel dataset.

prove that the active learning model does select the540

most informative instances.541

5.6 Analysis on Relational Outlier Detection542

ARD employs novel relation discovery module to543

distinguish between known and novel relations, pre-544

serving the active learning module to more effi-545

ciently select informative novel relations without546

being distracted by known relations. To demon-547

strate the effectiveness and significance of the novel548

relation discovery, we perform ablation experi-549

ments over LOF algorithm on three noisy variants.550

Table 4 shows the experimental results, and we551

note that: (1) Despite the robust learning ability552

of active learning on novel relations, the model553

performances show different degrees of degrada-554

tion after the removal of the LOF algorithm. (2)555

Average of decline of F1 scores in each epoch on556

the FewRel, NYT+FB, and FewRel2.0 datasets is557

2.82, 8.02, 6.36 respectively, with the most severe558

drop on NYT+FB. The phenomenon is intuitive, as559

the NYT+FB dataset contains the most known rela-560

tions; the more noise (known relations) there is, the561

more confused the active learning module becomes562

about the novel relations. The results demonstrate563

the novel relation discovery module plays a key564

role as “noise reduction”. The impact of different565

outlier detection algorithms and qualitative analysis566

can be seen in Appendix E567

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

(a) Train using only tradi-
tional cross-entropy loss.

0.00000000

0.25000000

0.50000000

0.75000000

1.00000000

0.00000000 0.25000000 0.50000000 0.75000000 1.00000000

(b) Plus contrastive loss.

Figure 3: t-sne visualization of relation representation.
The known and novel relations are distinguished by
circular and triangular symbols respectively.

5.7 Visualization of Relation Representations 568

In order to intuitively demonstrate the distribution 569

of novel relations relative to known relations and, 570

on the other hand, to illustrate the benefits of intro- 571

ducing contrastive loss, we visualize the relation 572

representation hr(x) after dimension reduction us- 573

ing t-SNE (Maaten and Hinton, 2008). 574

As illustrated in Figure 3, instances of the same 575

known relation type are densely clustered with a 576

high local density, while instances of novel rela- 577

tions distribute dispersedly. This fact strongly sup- 578

ports the premise of the LOF algorithm. Also, 579

comparing subfigures 3(a) and 3(b), we observe 580

that contrastive loss firmly constrains the distribu- 581

tion of intra-class instances. In pre-experiments on 582

FewRel, the introduction of contrastive loss boosts 583

the accuracy in distinguishing known and novel 584

relations from 79.3% to 83.9%. 585

6 Conclusion and Future Work 586

The paper proposes Active Relation Discovery 587

(ARD), which aims at accurately discovering and 588

meaningfully annotating new semantic relations 589

under the General OpenRE setting. By introducing 590

outlier detection and active learning, ARD solves 591

two problems: (1) Sufficient capabilities to dis- 592

tinguish between known and novel relations, with 593

robust performance under General OpenRE set- 594

tings. (2) Avoiding Secondary labeling of down- 595

stream tasks. Extensive experiments are conducted 596

to demonstrate the effectiveness of ARD. 597

As a pioneering work in OpenRE, several di- 598

rections can be further explored: (1) Better meth- 599

ods to discriminate and annotate novel relations in 600

General OpenRE setting. (2) Combination with 601

bootstrapping methods to partially replace active 602

learning. (3) Combination with lifelong learning to 603

continuously incorporate novel relations. 604
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A Datasets Used in Experiments 840

Three datasets and their variants are used to eval- 841

utate our model: FewRel (Han et al., 2018), New 842

York Times Freebase(NYT+FB) (Marcheggiani 843

and Titov, 2016) and FewRel2.0 (Gao et al., 2019), 844

the first two of which have been widely used in 845

previous RE works (Simon et al., 2019; Hu et al., 846

2020; Zhang et al., 2021). We follow the division 847

of the datasets from previous works. FewRel is one 848

of the largest RE dataset. As in the previous work, 849

we use the original train set of FewRel. The dataset 850

contains 80 relation categories and 700 instances of 851

each relation category. Among them, 64 relations 852

are divided into the training set and the remaining 853

16 relations are chosen as the test set. 854

NYT+FB dataset aligns entities from the New 855

York Times corpus with Freebase triplets. Follow- 856

ing the setting in (Simon et al., 2019), we filter 857

out sentence with non-binary relations and obtain 858

41,000 labeled sentences containing 262 relations. 859

The training and test sets comprise 212 and 50 860

relations respectively. 861

To verify the cross-domain capability of the 862

model comprehensively, we also use FewRel2.0 863

dataset whose training and test sets are from com- 864

pletely different domains. As an advanced ver- 865

sion of FewRel, FewRel2.0 incorporates knowl- 866

edge transferring. The test set of FewRel2.0 con- 867

tains data of 10 relations (100 samples for each 868

relation) in the biomedicine field, and the training 869

set is exactly the same as FewRel. The statistics of 870

the data set are shown in Table 5. 871

As described above, in the original OpenRE set- 872

ting, there are no overlapping relations in the train- 873

ing and test sets. That is, the relations in the test set 874

are all novel relations. For the purpose of measur- 875

ing the performance of the model in our proposed 876

General OpenRE setting, we resample the original 877

dataset and gain two variants: noisy and imbal- 878

anced. 879

To obtain the noisy variant, we randomly select a 880

random portion of the samples from the training set, 881

whose size equals to 40% of the original test set. 882

Given that the number of samples for each novel 883

relation is identical in FewRel and FewRel2.0, we 884

further construct the imbalanced variant to explore 885

the performance of the model in the presence of 886

class imbalance. Specifically, we build on the noisy 887

variant by randomly discarding a portion of the 888

samples with different probabilities for each novel 889

relation in the test set, yielding class imbalance in 890
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Dataset Setting Train Test

#CLS #SUM #CLS #SUM

FR
Ori 64 44,800 16 11,200

Noi 64 40,320 64+16 4,480+11,200

Imb 64 40,320 64+16 4,480+4,560

NYF
Ori 212 33,990 50 7,010

Noi 212 30,591 212+50 3,399+7,010

FR2.0
Ori 64 44,800 10 1,000

Noi 64 40,320 64+10 480+1,000

Imb 64 40,320 64+10 480+720

Table 5: Statistical results for the dataset. #CLS repre-
sents the number of relation types and #SUM stands for
the number of samples. In the addition equation x+ y
in the table, x and y are the statistics for the known and
novel relations separately.

test set. The discarding probabilities for different891

relations are shown in the Table 6.892

B Implementation Details and893

Hyper-parameter Choices894

To improve the experimental effect, we use895

BERTLARGE with 300M parameters in the re-896

lation representation module. We pre-train the897

BERT model on 3 epochs, and each epoch costs898

about 1 GTX 3090 GPU hour. For the discrim-899

inator, we constructed a 3-layer fully connected900

neural network. For active learning, λ and λ′901

are both 1. For optimization, different models902

use different optimizers. Specifically, BERT use903

AdamW (Loshchilov and Hutter, 2018) with a904

learning rate of 0.00002, for discriminator, we use905

Adam with a learning rate of 0.0005, and for task906

learner of active learning, SGD is utilized. For907

baseline models, we follow their original setting908

Dataset Relation ID P

FewRel
66-73 0.4

74-77 0.7

78-81 0.85

FewRel2.0

66-68 0.15

69 0.2

70 0.3

71-72 0.35

73 0.4

74-75 0.45

Table 6: The discarding probabilities for different rela-
tions.
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FewRel 1.0 40(B)

1 6.01873959281377E-12

2 7.71719917576557E-10

3 6.25544156590342E-07

4 5.91753457111679E-07

5 6.19683238804748E-06

6 3.48966421672964E-05

7 6.01829412384385E-05

8 1.08986449938342E-05

9 0.00038122741577318

10 0.00074974023581165

11 0.000483807906990917

12 0.001868550

13 0.00154349

14 0.00206628

15 0.0587783505

16 0.084086

17 0.0892532376

18 0.14216297246

19 0.22096589137

20 0.24073539

21 0.234084899166

22 0.274835394021

23 0.3498339

24 0.3223447

25 0.35319394104163
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Figure 4: The confidence of the discriminator in each
epoch for XU .

without modifying any parameters except the divi- 909

sion of the dataset. 910

C Case Study of Active Learning 911

As shown in Table 7, we report 8 cases selected 912

by discriminator in the first iteration on noisy 913

FewRel2.0 dataset, where 64 relations are pre- 914

trained and seen. With the highest confidence, the 915

discriminator successfully select sentences with 916

unseen relations. 917

D Practical Application on Real-world 918

Dataset 919

We apply the ARD framework in real-world sce- 920

narios to verify its practicability. With the increas- 921

ing number of publications about COVID-19, it 922

is a challenge to extract personalized knowledge 923

suitable for each researcher. Barros et al. (2020) 924

aims to build a new semantic-based pipeline for 925

recommending biomedical entities to scientific re- 926

searchers. In this work, the researchers utilize 927

MER (Couto and Lamurias, 2018) as NER anno- 928

tation server. As a result, 9,000 articles are auto- 929

matically annotated with relevant items/concepts 930

for COVID-19. And for further relation extraction 931

task, due to the expensive manual annotation costs, 932

the researchers merely take initial steps towards 933

the results, providing a small sample dataset of 934

ten documents, with all possible relationships be- 935

tween the four types of entities identified by NER 936

pipeline. Thus, we were able to establish ten dif- 937

ferent types of relations, encompassing the four 938

ontologies (CHEBI, DO, HPO, and GO). We fol- 939

low the relation types, and apply ARD framework 940

in the results. We take sample size k of 200 and 941

sample 25 epochs. Finally, a total of 139,479 re- 942

lations between entity pairs are automatically ob- 943
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Selected sentence Novel relation

Ectopic overexpression of mir-497 promotes chemotherapy resistance in
glioma cells by targeting pdcd4, a tumor suppressor that is involved in
apoptosis.

Biological process involves gene product

As full-length bid is a weaker apoptogen than tbid,we propose that the
phosphorylation of bid by jnks, followed by the accumulation of the full-
length protein, delays attainment of apoptosis, and allows the cell to evaluate
the stress and make a decision regarding the response strategy.

Biological process involves gene product

Pretreatment with dexamethasone 1 hour before cyclophosphamide injection
significantly down-regulated cyclophosphamide induced bladder nuclear
factor-u03bab dependent luminescence, ameliorated the grossly evident
pathological features of acute inflammation and decreased cellular immunos-
taining for nuclear factor-u03bab in the bladder.

Ingredient of

Trastuzumab emtansine (t-dm1), an antibody-drug conjugate comprising the
cytotoxic agent dm1, a stable linker, and trastuzumab, has demonstrated
substantial activity in human epidermal growth factor receptor 2 (her2),
-positive metastatic breast cancer, raising interest in evaluating the feasibility
and cardiac safety of t-dm1 in early-stage breast cancer (ebc).

Ingredient of

Here we looked for evidence of adult hippocampal neurogenesis using
immunohistochemical techniques for the endogenous marker doublecortin
(dcx) in 10 species of microchiropterans euthanized and perfusion fixed at
specific time points following capture.

Gene plays role in process

Here, we explored the effects of the novel class ii-specific "histone deacety-
lase inhibitors (hdacis) mc1568 and mc1575 on interleukin-8 (il-8) expres-
sion and cell proliferation in cutaneous melanoma cell line gr -m and uveal
melanoma cell line ocm-3 upon stimulation with phorbol 12-myristate 13-
acetate (pma).

Gene plays role in process

Data indicate that the structurally disordered and abnormally formed ecm of
uterine fibroids contributes to fibroid formation and growth.

Classified as

however, individuals heterozygous for both beta "e", "and", beta thalas-
saemia (hbe/beta thalassaemia) have a severe clinical disorder which in
some cases may approach that seen in homozygous beta thalassaemia and
which is by far the commonest form of symptomatic thalassaemia in the
indian subcontinent and south-east asia.

Classified as

Table 7: Cases selected by the confidence score of the discriminator and the novel relations, where red and blue
represent the head and tail entities

.

13



Relation Count

CHEBI-CHEBI 4680
CHEBI-HP 20455
GO-HP 17254
DO-DO 14430
CHEBI-DO 2415
HP-HP 48236
HP-DO 19770
GO-CHEBI 1285
GO-DO 3615
GO-GO 7303

Table 8: Statistical results of dataset for COVID-19.

Dataset Method

IF OneClassSVM LOF

FewRel 64.0 47.3 83.9

FewRel2.0 63.1 54.1 80.3

Table 9: F1-measure on noisy FewRel and FewRel2.0
with different outlier detection algorithms.

tained by ARD. The statistical results of the data944

are shown in Table 8. We also report the confidence945

of the discriminator in each epoch for XU . As can946

be observed from the Figure 4, the confidence is947

progressively increasing as the training epoch in-948

creases, which indicates that the model is becoming949

more confident in the classification results. In an950

ideal case, the confidence should converge toward951

0.5.952

E Impact of Different Outlier Detection953

Algorithms954

We compare LOF with two different algo-955

rithms for the relational outlier detection, in-956

cluding IsolationForest (Liu et al., 2008), and957

OneClassSVM (Schölkopf et al., 2001). We evalu-958

ate the F1-measure of these three algorithms solely959

on the discovery of novel relations, the results960

are reported in Table 9. Our LOF algorithm out-961

performs by large margins, achieving 83.9% F1-962

measure on FewRel dataset. The principle of the963

IsolationForest algorithm is to cut data points and964

isolate data points one by one. Thus the data needs965

more cuts to be isolated. The main reason for966

the poor performance of this algorithm is a large967

amount of the test data. For the same type of new968

relations, their distribution is relatively dense, and969

the number of cuts will also increase. Moreover, 970

the dimensions of relation representation are 2048, 971

while IsolationForest has poor processing capabili- 972

ties for high-dimensional features. Hence, it yields 973

relevant poor results. OneClassSVM aims to learn 974

a tight decision boundary from normal data and 975

treats points outside the decision boundary as ab- 976

normal points. In the relational feature space, the 977

distribution of known relations and novel relations 978

are complicated. Thus the OneClassSVM is likely 979

to learn an over-fitting decision boundary, resulting 980

in poor performance. 981

F Performance of our Relation 982

Representation on Supervised RE 983

To demonstrate the effectiveness of the relation 984

representation described in the Methodology sec- 985

tion, we conduct a series of experiments on su- 986

pervised RE task. First, we conduct extensive ex- 987

periments on the biomedical relation extraction 988

benchmark DDI’13 (Herrero-Zazo et al., 2013). 989

We make comparisons with various previous state- 990

of-the-art methods, which fall into two groups ac- 991

cording to the neural network architecture: con- 992

volutional neural network (CNN) based methods 993

and recurrent neural network (RNN) based meth- 994

ods. For the first group, we report the results of 995

SCNN (Zhao et al., 2016), CNN-bioWE (Liu et al., 996

2016) and MCCNN (Quan et al., 2016), which 997

uses syntax word embeddings, biomedical-related 998

embeddings and multi-channel word embeddings 999

for feature extraction, respectively. For recurrent 1000

based networks, we report the reults of Joint AB- 1001

LSTM (Sahu and Anand, 2018), Position-aware 1002

LSTM (Zhou et al., 2018), RvNN (Lim et al., 2018) 1003

and BERE (Hong et al., 2020). Joint AB-LSTM 1004

jointly trains two bidrectional LSTM (Bi-LSTM) 1005

with different pooling mechanisms: max-pooling 1006

for one Bi-LSTM and attentive pooling for the 1007

other. Position-aware LSTM adopt position infor- 1008

mation as attention mechanism for the training of 1009

LSTM. RvNN and BERE incorporates parse-tree 1010

information to enhance the performance of predic- 1011

tion. Each model is trained on the training dataset 1012

to predict a relation class of five pre-defined rela- 1013

tion types for the input sequence. 1014

To further evaluate the performance of our repre- 1015

sentation method on large-scale distantly annotated 1016

dataset, we conduct another set of experiments on 1017

the DTI dataset. As on the DTI dataset, previous 1018

literature has shown the superiority of BERE com- 1019
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Methods Pre. Rec. F1

SCNN 69.1 65.1 67.0
CNN-bioWE 75.7 64.7 69.8
MCCNN 75.9 65.2 70.2
Joint AB-LSTM 73.4 69.6 71.5
RvNN 74.4 69.3 71.7
Position-aware LSTM 75.8 70.4 73.0
BERE 76.8 71.3 73.9

Ours 92.3 84.4 86.8

Table 10: Results on DDI’13 dataset. The first seven
rows are the results of the previous state-of-the-arts
methods, and the bottom row is the performance of our
method in supervised relation learning.
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BERE: AUPR=0.504, F1=0.551
BERE-AVE: AUPR=0.386, F1=0.442
BERE-POOL: AUPR=0.542, F1=0.557
Ours: AUPR=0.818, F1=0.827

Figure 5: Precision-recall curve of BERE and our
model.

pared with CNN-based and RNN-based baselines,1020

we mainly take BERE as the baseline of our experi-1021

ments. For fair comparisons, we follow the settings1022

of BERE by using precision-recall curve, the area1023

under the precision-recall curve and the F1 score as1024

the evaluation metrics. We re-run the open-source1025

code of BERE and its two variants: BERE-AVE,1026

BERE-POOL. BERE-AVE adopt the average pool-1027

ing mechanism to aggregate the semantic informa-1028

tion over instances in a bag. BERE-POOL uses the1029

max-pooling strategy. The implementation details1030

of our model on the DTI dataset are identical to1031

the DDI’13 dataset. The precision-recall curve is1032

shown in Figure 5, which indicates the significant1033

performance of our representation method.1034

G Time Efficiency of Relational Active1035

Learning1036

In practice, it is often the time spent on man-1037

ual annotation that is the time-consuming bottle-1038

neck. Nevertheless, the sampling strategy for ac-1039

tive learner should also select samples in a time-1040

efficient manner as much as possible. We analysis 1041

the time efficiency of different active learning meth- 1042

ods. Table 11 shows the average time for differ- 1043

ent methods to sample once on the corresponding 1044

dataset. DBAL is the most competitive baselines 1045

in terms of their achieved mean time efficiency. 1046

Our method fell marginally behind DBAL, how- 1047

ever, our method is outperformed in accuracy by 1048

all other methods. 1049

Dataset Time(ms)

DBAL CoreSet SRAAL Ours

FewRel 157.0 1145.2 409.3 465.1

NYT+FB 157.9 74.3 132.7 101.9

FewRel2.0 181.4 209.4 418.4 9.2

Average 165.4 476.3 320.1 192.0

Table 11: Average time token to sample once on the
corresponding dataset.
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