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Abstract

Open Relation Extraction (OpenRE) aims to
discover and label novel relations from open
domains. Previous methods mainly suffer from
two problems: (1) Insufficient capacity to dis-
criminate between known and novel relations.
When extending conventional test settings to
a more general setting where test data might
also come from seen classes, existing OpenRE
approaches have a significant performance de-
cline. (2) Secondary labeling must be per-
formed before practical application. Exist-
ing methods cannot label human-readable and
meaningful types for novel relations, which is
urgently required by the downstream tasks. To
address these issues, we propose the Active
Relation Discovery (ARD) framework, which
utilizes relational outlier detection for discrimi-
nating known and novel relations and involves
active learning for labeling novel relations.
Extensive experiments' on three real-world
datasets show that ARD significantly outper-
forms state-of-the-art methods on both conven-
tional and our proposed general OpenRE set-
tings.

1 Introduction

Open Relation Extraction (OpenRE) aims at discov-
ering and extracting potential novel relations from
open-domain corpora. Novel relations are cropping
up at a rate of tens of thousands per year (Shi and
Weninger, 2018), while most of the rapidly emerg-
ing relations are still unlabeled and under-explored,
mixed with pre-defined relations. These relations
cannot be well handled by supervised RE methods
due to the fixed predefined relation schema.

Some recent preliminaries have noticed the chal-
lenge of learning emerging relations and explored
methods for OpenRE. Previous works can be di-
vided into two main paradigms: pattern-based and
clustering-based methods. Specifically, pattern-
based method (Angeli et al., 2015; Cui et al., 2018)

I'The source code will be available for reproducibility.

utilize statistical or neural approaches to heuristi-
cally extract relation patterns, then clustering-based
methods (Elsahar et al., 2017; Wu et al., 2019) are
proposed to aggregate instances representing the
same novel relation.

However, previous works mainly have two short-
comings in real scenarios:

(1) The widely used traditional setting can’t com-
prehensively reflect what OpenRE in the real world
entails. The traditional setup for OpenRE is that
models are judged based on their ability to discrim-
inate among unseen classes, assuming the absence
of known relation during the test phase. While the
ability to learn novel relations is, by all means, a
trait that any OpenRE model should possess, it is
merely one side. The other important, yet so far un-
studied, trait is the ability to discriminate between
the known and unseen relations. The relation dis-
tribution in the real world is intricate, mixed with
known and unseen relations. Therefore, it’s unreal-
istic to assume that we will never encounter known
relations during the test stage.

In the light of above facts, we evaluate existing
OpenRE model on a General OpenRE setting: test
data might also come from known relations. Em-
pirical experiments in Table 1 show that the state-
of-the-art OpenRE model (Wu and Weld, 2010; Hu
et al., 2020; Zhang et al., 2021) performs poorly
under this setting.

(2) The results produced by current OpenRE
models require secondary labeling before they can
be practically applied. In other words, for a certain
novel relation, the model cannot assign it a surface
name with a specific meaning. As the foundation
of a series of downstream tasks, labels with actual
meaning are urgently desired. However, due to the
absence of human knowledge, both pattern-based
and clustering-based methods lack the ability to
name novel relation types as human-readable and
meaningful. Pattern-based methods rely heavily on
the surface phrase, yet relations between entities



are often not directly represented by the span in the
sentence. Clustering-based methods merely cluster
instances that express the same relations, but do
not provide concrete representation of the novel
relations. Both methods require manual re-labeling
of the novel relations found. This gap between
model and practice hinders model application in
real-world scenarios.

To address above mentioned issues, we propose
the Active Relation Discovery (ARD) framework
shown in Figure 1. Targeted improvements are
made in two aspects: (1) To avoid the model being
confused by the set of mixed known and novel re-
lations, we developed a relational outlier detection
algorithm that separates known and novel relations
by treating novel relations as outliers, performing
stably under the General OpenRE setting.

(2) To assign meaningful labels to novel rela-
tions, the incorporation of human knowledge is
inevitable. To minimize the labor cost, we propose
an active learning algorithm. Specifically, we intro-
duce the representative instance, which denotes an
instance can offer rich information of unknown re-
lations. Only a handful of representative instances
requires manual labeling, and then the model can
automatically label the novel relations in a super-
vised manner.

In summary, our contributions are in three folds:

(1) We reveal two major shortcomings of current
OpenRE approaches, and introduce a new setting
called General OpenRE, which can realistically
measure the capabilities of the model.

(2) We propose ARD, a practical framework that
not only adapts to the General OpenRE utilizing
relational outlier detection, but also exploits active
learning to assign more meaningful and human-
readable labels to novel relations.

(3) We conduct extensive experiments on both
conventional and General OpenRE settings to show
that our framework can achieve significant improve-
ments in three real-world datasets. Detailed analy-
sis demonstrates the effectiveness of each part of
ARD.

2 Related Work

Open Relation Extraction. Whereas supervised
RE (Liu et al., 2013; Zhang and Wang, 2015)
relies heavily on manual annotation and the in-
herent inadequacy of predefined relation schema,
OpenRE gains increasing attention. The method of
OpenRE can be broadly divided into two categories:

pattern-based and clustering-based. Pattern-based
approaches extract relation patterns from textual
corpora (Banko et al., 2007; Fader et al., 2011;
Stanovsky and Dagan, 2016). These methods apply
heuristic algorithms to describe relations between
marked entities with relation patterns consisting of
several key phrases in texts. Due to the ambiguity
of relations obtained by the pattern-based meth-
ods, the focus of research in recent years has been
primarily on clustering-based methods.

Clustering-based method (Shinyama and Sekine,
2006; Elsahar et al., 2017; Wu et al., 2019) clus-
ter instances in the feature space into novel rela-
tion types. Wu et al. (2019) enhances unsupervised
clustering-based methods by introducing Siamese
Network to measure instance similarity.

As described in Section 1, there are two main
problems with the current OpenRE: (1) They focus
only on the discrimination of novel relations, sup-
posing that test sets only have novel relations. (2)
The model output is not directly usable by down-
stream tasks. In response, we propose a General
OpenRE setup and incorporate outlier detection
and active learning into OpenRE.

Active Learning in Relation Extraction. The
key idea behind active learning (Settles, 2009) is
that the learning algorithm is allowed to ask for
true meaningful labels of some selected unlabelled
instances. Various criterion (Zhang et al., 2012; Fu
and Grishman, 2013; Qian et al., 2014) have been
proposed to choose these instances on traditional
supervised RE tasks. To our best knowledge, we
firstly integrate active learning into OpenRE, en-
abling meaningful tags of the novel relation type
with the addition of human knowledge.

Generalized Zero-Shot Learning(GZSL). The
motivation for the General OpenRE setting is sim-
ilar to that of the GZSL. Traditionally, ZSL ap-
proaches (Romera-Paredes and Torr, 2015; Zhang
and Saligrama, 2015) assume that only the unseen
classes are present in the test set. (Chao et al.,
2016) first challenged this implausible setting and
proposed the GZSL setting: test data might also
come from seen classes. GZSL approaches (Rah-
man et al., 2018; Huang et al., 2019) focus on miti-
gating the strong bias caused by known classes and
preventing novel classes from being categorized
as one of the seen classes. While in our General
OpenRE setting, we concentrate more on the dis-
tinction between known and novel classes.
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Figure 1: An illustration of our proposed Active Relation Discovery (ARD) framework.

3 Task Formulation

General OpenRE formulates the task slightly differ-
ently from traditional OpenRE setting. The original
train set is a large-scale manually annotated corpus
X = {mg’\n € R}, where relations in Ry are
pre-defined as “known relations”. Obviously, we
assume that there exists a relation set R that con-
tains “novel relations” in another corpus without
annotations. In the real-world scenario, we need to
process the dataset whose instances express rela-
tions both in R and R, distinguish known and
novel relations, then label each instance.

Under this fact, we first consider the novel rela-
tion discovery, in which we solely focus on the
mining of unseen relations. At this stage, We
pre-train the model on & and obtain a trained en-
coder E. Then for a concrete dataset (test set)

= {:c |m € Ri,r, € Rn}. The model
Wlll unsuperv1sedly divide X’ into a “known rela-
tion set” X' and a “novel relation set” X .

Xx can be easily labeled for sufficient informa-
tion obtained from X. Secondly, we focus on the
annotation of novel relations Xy . In this phase, we
integrate the intuition of active learning by utilizing
limited labor to facilitate the novel relation annota-
tion performance. Our model queries a small set of
informative samples in A’y for manual labeling and
then trains a classifier to annotate novel relations.

4 Methodology

4.1 Overview

The overview of the method is illustrated in Fig-
ure 1. We will detailedly introduce our work into
three components: (1) Relation representation,
in which we extend to transform semantic rela-
tions into low-dimension dense representations. (2)

Relational Outlier Detection, where the model
automatically detects a novel relation set from real-
world datasets and feeds them into the active learn-
ing stage. (3) Relational Active Learning, where
the model selects the most informative instances to
train a powerful classifier for novel relation.

4.2 Relation Representation

Given a dataset X = {x1,...,2,}, an instance x
is a word (token) sequence {wj, wa, ..., w, } with
two marked entities e;, and e;. We use triplets of
relation facts (ep, 7, ;) to denote that there is a
relation 7 between the marked entity pair. And ="
indicates an instance that expresses the relation 7.
Specifically, we define four special markers (ey,),
(/en), (es), and (/e;) to locate the head entity and
the tail entity. We denote the indices of (e) and
(er) as START(h) and START(t). An instance is
represented as:

Tr=... 7wEND(h)7</eh>7~~~:

y WEND(t) 5 </€t>7-~-

7<eh>7wSTART(h)+17-~~ (1
<€t>7 WSTART (t) 41 «++
We use pre-trained language model (i.e. BERT (De-
vlin et al., 2019)) to encode each token w; to the
corresponding representation h; € R?, where d is
denotes the dimension of representation vectors.
For an instance x; € S, we use the concatenation
of representations of two start positions (WstarT(n)
and wgNp(p)) as the representation of the relation:

hy(zi) = 2

[hstaRT(h)> PsTART(1)]

These extra tokens play a similar role like position
embeddings in conventional RE tasks (Zeng et al.,
2015). The relation representation b, (x;) will be
utilized to predict the relation type 7.

As mentioned previously, X are used to fine-tune
the pre-trained language model. Notably, along



with the traditional cross-entropy loss, we inte-
grate a supervised contrastive loss L described
in Khosla et al. (2020):

Lot =3 tpy 2 low

peP( )

exp (zi - 2p/T)

> acac) &P (2i - za/T)’
3

Here, P(i) = {p € A(i) : Yp = ¥i} is the set of
indices of all positives in the mini-batch distinct
from ¢. Contrastive loss allows for tighter cluster-
ing of intra-class instances and a more dispersed
distribution of inter-class instances. The essence
behind the employment of contrastive loss is to
gain relation representations that are more friendly
to outlier detection and active learning. The perfor-
mance of our relation representation on supervised
RE can also be found in Appendix F.

4.3 Relational Outlier Detection

After pre-training, Eg could encode an instance x
into a dense vector h,.(x) as the relation represen-
tation. In the feature space, due to the similarity
of the semantics, representations that express the
same relation tend to densely gather (forming n
separate clusters) and ones that express different
relations tend to disperse. Figure 3 illustrated the
distribution of different representations. Since the
instances express unseen relations have not been
pre-trained, in other words, the model has not seen
the semantics, the instances are not projected near
any clusters. We utilize this property to design lo-
cal outlier factor (LOF) to reflect the local density
of instances in the feature space.

Formally, given any two representations
h,(x;), h.(x;) of instances z;,z;, we denote
d(hy(z;), hy(x;)) as the Euclidean distance be-
tween them. Then, we define k-th distance, de-
noted as dy(h,(x;)), to represent the distance from
h,(z;) to the k-th nearest neighbour. The reach-
ability distance between h,(z;) and h,(x;) is rep-
resented as follows:

rdg (R (25), By (25)) = max{dy(h,(z;)),
d(hy(zi), hr(z5))},

We then compute the density to measure the
average distance of reach-ability distance:

“4)

deny (he (2:)) = 1/Zh (o) €Ny (i () " (B (22), P (25)

“novel relations”

| Ny (B (4))]
&)

where Ny (h,(z;)) denotes all the points whthin in
k-th distance of h,(x;).

The computation of local outlier factor is:
S, deny, (hr(z;))
(25)EN (R (2:)) “deng (R (z;)
[Nk (b (:))] ’
(6)
where the larger LOF is, the more likely h,(z;) is
an outlier point, i.e, an instance that expresses a
novel relation. Our model could unsupervisedly
detect the instances with novel relations.

LOFy (hy(z;)) =

4.4 Relational Active Learning

To this end, the model could divide the real-world
dataset into a “known relation set" Xz and an

“novel relation set" X. In view of the fact that

Xx can be conveniently and precisely annotated,
we focus on labeling meaningful types for discov-
ered instances in X in this subsection.

To retrieve human-readable labels and avoid sub-
sequent secondary labeling, we need to incorporate
human knowledge into the relation learning phase
through active learning. Our primary goal is to find
a small part of instances with the most information
and artificially label them. Then we use the labeled
data to train a classifier in a supervised manner.
The problem of how to find instances with most
information essentially is the problem of how to
find the instances that are most likely to express
. Inspired by this, we propose the
following Relation Active Learning module:

In the beginning, we randomly label a small part
of data in Xy. The labeled dataset is denoted as X7,
and the rest of the unlabeled data is denoted as Ap;.
We assume that all the instances « are i.d.d accord-
ing to a latent distribution P(x). Correspondingly,
their labels are distributed by the conditional distri-
bution P(y|x).

Neural Encoder We adopt a neural encoder to
learn the distribution of X7, and A in the latent
feature space. Our framework is independent of the
choice of neural encoders, in this case, we adopt
BERT (Devlin et al., 2019) as the encoder. The
goal of the neural encoder is to encode X, and
Xy into the same feature space and try to fool a
discriminator to correctly predict if the instance is

“representative”. The loss function of the encoder

is:

Le= 8(Dy(Eg(x)))]
(1 = Dy (Ey(2)))],
Discriminator A binary classifier (or a discrimi-
nator): X — {—1, 1} is adopted to select the most

— EIN PXL [lO

(N
—E,~ Px,, [lo



informative samples. We utilize adversarial train-
ing to leverage the information of both X7, and AY;.
The discriminator is adversarially trained to accu-
rately distinguish if the instance expresses a novel
relation. The loss function is a flipped version of
the encoder:

Lg=—Eqnpy, [log(l = Dy(Ep(x)))]

. ®)
— Eonpy, log(Dy (Eg ()],
Naturally, we could jointly optimize the two ob-
jective functions by allocate two parameters: £ =
Mo + NLy.
Active learning At each training step, we select
k instances with the highest confidence of the dis-
criminator as the most informative instances. Then
the instances will be manually annotated and then
used to train the classifier. At this point, the dis-
cussion of manual annotations needs to be further
developed. Considering the explosive growth of
the number of relations, an annotating process that
supports online and continual learning of novel re-
lations needs to be designed. Thus, we propose
a practical and easy-to-implement annotation pro-
cedure. At the start, for each selected instance
x;, the annotator only needs to judge if z; has the
same relation class as any instances of X7. x; will
be indexed as a novel relation if it doesn’t share
the same relation with instances in X7, or labeled
as one known relation. After the procedure, the
standard of relations would be easy to design than
before the active learning begins. This manner ef-
fectively ensures the ability to continual learning
and online learning of our framework, expediently
fitting the real situation. Subsequently, X, will be
fed into a classifier, which is a one-layer MLP with
an output layer, optimized by cross-entropy objec-

tive function, denoted as £, and parameterized by
v:

Lo=Y" —logpy |zt 7). ©)
i€| X

S Experiments

In this section, we verify the performance of the
model on three large-scale OpenRE datasets and
their variants, and at the same time, a series of aux-
iliary experiments are carried out to prove the effec-
tiveness of the model. Finally, we give a detailed
analysis of the efficacy of our ARD framework.

Algorithm 1 Training for Active Learner, \, \', k
are hyper-parameters.

Input: Labeled data (X7, Y7 ), unlabeled data
Xy, initialized encoder model with 6, discrimi-
nator model with ), classifier with ~
while not converge do
Sample mini-batches (zr,,yz) from (Xg,Y7)
Sample mini-batches (z¢7) from (A7)
Compute L. by Eq. 7

Update 6 w.r.t L,

Compute L4 by Eq. 8

Update ¢ w.r.t Ly

Select k£ most informative instances

{z1, ...,z } by the output of d
for i < 1to k dodo
if z; has the same relation as :c§ € X, then
Label z; with r and append z; to X,
else
Label z; with a new index and append z;
to A,
end if
end for
Update v w.r.t L,
end while

5.1 Baseline

To demonstrate the effectiveness of our ARD mod-
els, we compare our models with three state-of-the-
art models: (1) RSN-CV (Wu et al., 2019) employs
conditional entropy and virtual adversarial learn-
ing to train Siamese Network to measure instance
similarity. (2) SelfORE (Hu et al., 2020) utilizes
self-training to iteratively learn relation representa-
tions and clusters. (3) OHRE (Zhang et al., 2021)
integrate hierarchy information into relation repre-
sentations for better novel relation extraction.

5.2 Datasets and Setting

Datasets Three datasets and their variants are
used to evalutate our model: FewRel (Han
et al, 2018), New York Times Free-
base(NYT+FB) (Marcheggiani and Titov,
2016) and FewRel2.0 (Gao et al., 2019), the first
two of which have been widely used in previous
RE works (Simon et al., 2019; Hu et al., 2020;
Zhang et al., 2021). We follow the division of the
datasets from previous works. More details about
the dataset can be found in the Appendix A.

To verify the cross-domain capability of the
model comprehensively, we also use FewRel2.0



dataset whose training and test sets are from com-
pletely different domains. As an advanced ver-
sion of FewRel, FewRel2.0 incorporates knowl-
edge transferring.

Datasets Processing As described above, in the
original OpenRE setting, there are no overlapping
relations in the training and test sets. The relations
in the test set are all novel relations. To measure the
performance of the model in our proposed General
OpenRE setting, we resample the original dataset
and gain two variants: noisy and imbalanced. In
the test sets of the two variants, there are known
relations with different distributions exist. In other
words, the original dataset corresponds to the con-
ventional setting and the noisy and imbalanced vari-
ants to the general setting.

To obtain the noisy variant, we randomly select
40% samples from original training sets. Given
that the number of samples for each novel relation
is identical in FewRel and FewRel2.0, we further
construct the imbalanced variant to explore the per-
formance of the model in the presence of class im-
balance. Specifically, we build on the noisy variant
by randomly discarding a portion of the samples
with different probabilities for each relation class
in the test set, yielding class imbalance in test set.

5.3 Evaluation Settings

Following previous works, we apply instance-level
evaluation metrics to evaluate the model, covering
B3 (Bagga and Baldwin, 1998), V-measure (Rosen-
berg and Hirschberg, 2007) and Adjusted Rand
Index(ARI) (Hubert and Arabie, 1985).

For quantitative validation, we divide X'y into
Xtrain and X4, which account for 40% and 60%
respectively. The active learning module selects
the instance with the most information in X%/ ain
and trains the relation classifier. In the test phase,
we merge X and X5, report metric scores on
it. As the baselines are semi-supervised, Xﬁ}’“i" is
also applied to the training of the baseline models
to ensure a fair comparison.

For FewRel and NYT+FB, the seminal set size
for Active Learning module is 32. The sample size
k is 32 and we sample a total of 8 epochs. In other
words, a whole of 288 samples is manually labeled.
As for FewRel2.0, we choose a smaller sample size:
k = 8 and keep semianl set size as 32. Finally, 96
informative samples are annotated.

5.4 Main Experiment

Table 1 shows the quantitative evaluation results
on three datasets and their variants, from which
we observe that: (1) Our ARD model outperforms
state-of-the-art models by a large margin. Specif-
ically, B3, V-measure and ARI increased by 15.2,
16.7, and 15.9 respectively compared to OHRE on
FewRel. Compared with other semi-supervised
methods, the gap is even larger, rises of over 25 are
achieved by ARD. This proves that ARD can effi-
ciently discover and learn representations of novel
relations at a fraction of the labor cost. (2) An
universal and consistent decline in performance of
baseline models from the original datasets to noisy
variants and then to unbalanced variants. This
demonstrates that the General OpenRE setting is
more challenging and more practical for the real
scenario. The F'1 score for RSN-CV drops dramat-
ically from the original data to the noisy variant
by 19.5. In contrast, the ARD model outperforms
on both the noisy and imbalanced variants than on
the original dataset, even with a F'1 score boost-
ing by 7.2 on FewRel. This indicates the relation
discovery procedure and relational active learning
is robust in different scenarios. (3) The state-of-
the-art models perform poorly on FewRel2.0. This
is entirely to be expected, as the instances in the
test set are from non-generic and low-resource do-
mains such as biomedicine. ARD, on the other
hand, still shows strong stability, confirming the
cross-domain capability of the model. Further, to
substantiate the applicability of our framework, we
perform deploy ARD to a real medical dataset, as
detailed in Appendix D.

5.5 Analysis on Active Learning

The Efficiency of Active Learing Table 2 shows
the results of our active learning approach com-
pared to various active learning baseline models
including DBAL (Gal et al., 2017), CoreSet (Sener
and Savarese, 2018), SRAAL (Zhang et al., 2020).
It can be observed that in each iteration, our model
outperforms the other models, indicating that our
method can consistently sample informative sam-
ples. Time efficiency analysis and case study can
be found in the Appendix G and Appendix C.

The Impact of Different Encoder and Scope of
Query Figure 2 shows the experimental results on
noisy FewRel with different encoders and query
ranges. The “query ranges” represents the ratio of
Xiran 1o Xy, We also explore the impact of (3-
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Table 1: Main results on three original datasets and their
variants. Ori, Noi, and Imb stand for original, noisy
and imbalanced respectively. Ori corresponds to the
conventional setting. Noi, and Imb refer to the general
setting. Results are the average of 3 experiments with
different random seeds.

VAE (Higgins et al., 2016) and BERT as encoders.
As well, we report the results when using a random
selection of 30% and the full amount of X" for
training. From the results we observe that: (1) Gen-
erally, the model performance is proportional to the
size of X'{F™". However, the results are improved
marginally as the number of samples increase. But
the model still yields better performance when the
query range is 40%. (2) The comparisons between
the VAE and the BERT encoder are in line with
intuition. Although VAE is intuitive and can be
more easily trained, BERT still shows superiority
in empirical results. (3) The performance of the
model trained with 288 samples (approximately
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Figure 2: F1-measure on noisy FewRel, (V) denotes the
[B-VAE and (B) denotes the BERT encoder.

Dataset Model Epoch
#1 #2 #3 #4 #5 #6
DBAL 588 648 716 704 741 769
FewRel  CoreSet 60.1 61.8 66.1 684 709 754
SRAAL 619 647 657 698 737 739
Ours 66.0 69.0 705 727 755 785
DBAL 474 486 514 533 549 555
NYY+FB CoreSet 454 495 520 553 568 592
SRAAL 502 519 54.0 556 562 569
Ours 56.8 62.5 66.6 683 69.3 69.9
DBAL 469 505 514 51.7 522 537
FewRel2.0 CoreSet 44.0 455 50.3 519 53.0 54.2

SRAAL 450 49.7 518 520 528 539
Ours 488 51.2 524 532 535 545

Table 2: F1-measure for various active learning methods
on noisy FewRel dataset.

8% of X]{}"am) is similar to that of a random selec-
tion of 30%. When trained with the full amount
of Xﬁ’“m, the F'1 is 6.1% higher than ARD while
costing 12 times as much in human effort. The
results demonstrate the effectiveness of ARD.
The Impact of Different Sampling Strategies
In order to prove the effectiveness of the active
learning method, we conduct a further ablation
experiment. As mentioned above, our sampling
strategy is to select the k instances with the highest
confidence for manual labeling. In the ablation ex-
periment, we test two other sampling strategies: se-
lecting the k instances with the lowest confidence;
randomly selecting k instances. The comparison
results are shown in Table 3.

It can be seen that after being trained by in-
stances with the highest confidence, the model
achieves the most improvement. In contrast, in-
stances with the lowest confidence contribute very
little to improving the performance of the model.
Even with the continuous increase of training data,
the improvement is extremely little. The results



Epoch Lowest Random Highest

#1 57.1 58.7 66.0
#2 57.1 60.4 69.0
#3 57.8 65.6 70.5
#4 57.6 67.2 72.7
#5 57.6 67.7 75.5
#6 58.1 67.7 78.5

Table 3: Comparisons of F1-measure between different
sampling strategies on noisy FewRel dataset.

Dataset Model Epoch
#1 #2  #3  #4 #5
FewRel ARD 66.0 69.0 705 727 1755
wloLOF 628 644 685 705 734
Nypp ARD 568 625 666 683 69.3
w/o LOF 47.7 538 572 603 644
FewRel2.0 ARD 488 512 524 532 535

w/o LOF 429 442 456 464 482

Table 4: Ablation experiment over novel relation dis-
covery module on noisy FewRel dataset.

prove that the active learning model does select the
most informative instances.

5.6 Analysis on Relational Outlier Detection

ARD employs novel relation discovery module to
distinguish between known and novel relations, pre-
serving the active learning module to more effi-
ciently select informative novel relations without
being distracted by known relations. To demon-
strate the effectiveness and significance of the novel
relation discovery, we perform ablation experi-
ments over LOF algorithm on three noisy variants.
Table 4 shows the experimental results, and we
note that: (1) Despite the robust learning ability
of active learning on novel relations, the model
performances show different degrees of degrada-
tion after the removal of the LOF algorithm. (2)
Average of decline of F'1 scores in each epoch on
the FewRel, NYT+FB, and FewRel2.0 datasets is
2.82, 8.02, 6.36 respectively, with the most severe
drop on NYT+FB. The phenomenon is intuitive, as
the NYT+FB dataset contains the most known rela-
tions; the more noise (known relations) there is, the
more confused the active learning module becomes
about the novel relations. The results demonstrate
the novel relation discovery module plays a key
role as “noise reduction”. The impact of different
outlier detection algorithms and qualitative analysis
can be seen in Appendix E

e 9
A ﬁAAﬁMAAR@ A@ %A&A ’ > @

A A. § MGA ‘ @

@ Ak ®
(<] ‘ 1)

° % s é’% o of

o iy ® ® . ® AA%@

o oHOL: & )

(a) Train using only tradi- (b) Plus contrastive loss.

tional cross-entropy loss.

Figure 3: t-sne visualization of relation representation.
The known and novel relations are distinguished by
circular and triangular symbols respectively.

5.7 Visualization of Relation Representations

In order to intuitively demonstrate the distribution
of novel relations relative to known relations and,
on the other hand, to illustrate the benefits of intro-
ducing contrastive loss, we visualize the relation
representation k., (x) after dimension reduction us-
ing t-SNE (Maaten and Hinton, 2008).

As illustrated in Figure 3, instances of the same
known relation type are densely clustered with a
high local density, while instances of novel rela-
tions distribute dispersedly. This fact strongly sup-
ports the premise of the LOF algorithm. Also,
comparing subfigures 3(a) and 3(b), we observe
that contrastive loss firmly constrains the distribu-
tion of intra-class instances. In pre-experiments on
FewRel, the introduction of contrastive loss boosts
the accuracy in distinguishing known and novel
relations from 79.3% to 83.9%.

6 Conclusion and Future Work

The paper proposes Active Relation Discovery
(ARD), which aims at accurately discovering and
meaningfully annotating new semantic relations
under the General OpenRE setting. By introducing
outlier detection and active learning, ARD solves
two problems: (1) Sufficient capabilities to dis-
tinguish between known and novel relations, with
robust performance under General OpenRE set-
tings. (2) Avoiding Secondary labeling of down-
stream tasks. Extensive experiments are conducted
to demonstrate the effectiveness of ARD.

As a pioneering work in OpenRE, several di-
rections can be further explored: (1) Better meth-
ods to discriminate and annotate novel relations in
General OpenRE setting. (2) Combination with
bootstrapping methods to partially replace active
learning. (3) Combination with lifelong learning to
continuously incorporate novel relations.
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A Datasets Used in Experiments

Three datasets and their variants are used to eval-
utate our model: FewRel (Han et al., 2018), New
York Times Freebase(NYT+FB) (Marcheggiani
and Titov, 2016) and FewRel2.0 (Gao et al., 2019),
the first two of which have been widely used in
previous RE works (Simon et al., 2019; Hu et al.,
2020; Zhang et al., 2021). We follow the division
of the datasets from previous works. FewRel is one
of the largest RE dataset. As in the previous work,
we use the original train set of FewRel. The dataset
contains 80 relation categories and 700 instances of
each relation category. Among them, 64 relations
are divided into the training set and the remaining
16 relations are chosen as the test set.

NYT+FB dataset aligns entities from the New
York Times corpus with Freebase triplets. Follow-
ing the setting in (Simon et al., 2019), we filter
out sentence with non-binary relations and obtain
41,000 labeled sentences containing 262 relations.
The training and test sets comprise 212 and 50
relations respectively.

To verify the cross-domain capability of the
model comprehensively, we also use FewRel2.0
dataset whose training and test sets are from com-
pletely different domains. As an advanced ver-
sion of FewRel, FewRel2.0 incorporates knowl-
edge transferring. The test set of FewRel2.0 con-
tains data of 10 relations (100 samples for each
relation) in the biomedicine field, and the training
set is exactly the same as FewRel. The statistics of
the data set are shown in Table 5.

As described above, in the original OpenRE set-
ting, there are no overlapping relations in the train-
ing and test sets. That is, the relations in the test set
are all novel relations. For the purpose of measur-
ing the performance of the model in our proposed
General OpenRE setting, we resample the original
dataset and gain two variants: noisy and imbal-
anced.

To obtain the noisy variant, we randomly select a
random portion of the samples from the training set,
whose size equals to 40% of the original test set.
Given that the number of samples for each novel
relation is identical in FewRel and FewRel2.0, we
further construct the imbalanced variant to explore
the performance of the model in the presence of
class imbalance. Specifically, we build on the noisy
variant by randomly discarding a portion of the
samples with different probabilities for each novel
relation in the test set, yielding class imbalance in



Dataset Setting Train Test
#CLS #SUM #CLS #SUM
Ori 64 44,800 16 11,200
FRO " Noi 64 40320 64416 4.480+11,200
Imb 64 40320 64+16 4,480+4,560
Nyp O 212 33,990 50 7,010
Noi 212 30,591 212450 3,399+7,010
Ori 64 44800 10 1,000
FRZ0 " Noi 64 40320 64+10 480+1,000
Imb 64 40320 64410 4804720

Table 5: Statistical results for the dataset. #CLS repre-
sents the number of relation types and #SUM stands for
the number of samples. In the addition equation = + y
in the table, x and y are the statistics for the known and
novel relations separately.

test set. The discarding probabilities for different
relations are shown in the Table 6.

B Implementation Details and
Hyper-parameter Choices

To improve the experimental effect, we use
BERT1Arge Wwith 300M parameters in the re-
lation representation module. We pre-train the
BERT model on 3 epochs, and each epoch costs
about 1 GTX 3090 GPU hour. For the discrim-
inator, we constructed a 3-layer fully connected
neural network. For active learning, A and )\
are both 1. For optimization, different models
use different optimizers. Specifically, BERT use
AdamW (Loshchilov and Hutter, 2018) with a
learning rate of 0.00002, for discriminator, we use
Adam with a learning rate of 0.0005, and for task
learner of active learning, SGD is utilized. For
baseline models, we follow their original setting

Dataset Relation ID P
66-73 0.4

FewRel 74 77 0.7
78-81 0.85
66-68 0.15
69 0.2

FewRel2.0 0.3
71-72 0.35
73 0.4
74-75 0.45

Table 6: The discarding probabilities for different rela-
tions.

12

0.32 N
0.24 /
0.16 f
0.08 ’/
0.00 /
#1 #3 #5 #T #O #11#13#15#1TH#19#H21#23 #25

Epoch

Figure 4: The confidence of the discriminator in each
epoch for Ay.

without modifying any parameters except the divi-
sion of the dataset.

C Case Study of Active Learning

As shown in Table 7, we report 8 cases selected
by discriminator in the first iteration on noisy
FewRel2.0 dataset, where 64 relations are pre-
trained and seen. With the highest confidence, the
discriminator successfully select sentences with
unseen relations.

D Practical Application on Real-world
Dataset

We apply the ARD framework in real-world sce-
narios to verify its practicability. With the increas-
ing number of publications about COVID-19, it
is a challenge to extract personalized knowledge
suitable for each researcher. Barros et al. (2020)
aims to build a new semantic-based pipeline for
recommending biomedical entities to scientific re-
searchers. In this work, the researchers utilize
MER (Couto and Lamurias, 2018) as NER anno-
tation server. As a result, 9,000 articles are auto-
matically annotated with relevant items/concepts
for COVID-19. And for further relation extraction
task, due to the expensive manual annotation costs,
the researchers merely take initial steps towards
the results, providing a small sample dataset of
ten documents, with all possible relationships be-
tween the four types of entities identified by NER
pipeline. Thus, we were able to establish ten dif-
ferent types of relations, encompassing the four
ontologies (CHEBI, DO, HPO, and GO). We fol-
low the relation types, and apply ARD framework
in the results. We take sample size k of 200 and
sample 25 epochs. Finally, a total of 139,479 re-
lations between entity pairs are automatically ob-



Selected sentence Novel relation

Ectopic overexpression of mir-497 promotes chemotherapy resistance in  Biological process involves gene product
glioma cells by targeting pdcd4, a tumor suppressor that is involved in
apoptosis.

As full-length bid is a weaker apoptogen than tbid,we propose that the Biological process involves gene product
phosphorylation of bid by jnks, followed by the accumulation of the full-

length protein, delays attainment of apoptosis, and allows the cell to evaluate

the stress and make a decision regarding the response strategy.

Pretreatment with dexamethasone 1 hour before cyclophosphamide injection — Ingredient of
significantly down-regulated cyclophosphamide induced bladder nuclear

factor-uO3bab dependent luminescence, ameliorated the grossly evident

pathological features of acute inflammation and decreased cellular immunos-

taining for nuclear factor-u03bab in the bladder.

Trastuzumab emtansine (7-dm/), an antibody-drug conjugate comprising the  Ingredient of
cytotoxic agent dml, a stable linker, and trastuzumab, has demonstrated

substantial activity in human epidermal growth factor receptor 2 (her2),

-positive metastatic breast cancer, raising interest in evaluating the feasibility

and cardiac safety of t-dm1 in early-stage breast cancer (ebc).

Here we looked for evidence of adult hippocampal neurogenesis using Gene plays role in process
immunohistochemical techniques for the endogenous marker doublecortin

(dcx) in 10 species of microchiropterans euthanized and perfusion fixed at

specific time points following capture.

Here, we explored the effects of the novel class ii-specific "histone deacety- Gene plays role in process
lase inhibitors (hdacis) mc1568 and mc1575 on interleukin-8 (il-8) expres-

sion and cell proliferation in cutaneous melanoma cell line gr -m and uveal

melanoma cell line ocm-3 upon stimulation with phorbol 12-myristate 13-

acetate (pma).

Data indicate that the structurally disordered and abnormally formed ecm of ~ Classified as
uterine fibroids contributes to fibroid formation and growth.

however, individuals heterozygous for both beta "e", "and", beta thalas- Classified as
saemia (hbe/beta thalassaemia) have a severe clinical disorder which in

some cases may approach that seen in homozygous beta thalassaemia and

which is by far the commonest form of symptomatic thalassaemia in the

indian subcontinent and south-east asia.

Table 7: Cases selected by the confidence score of the discriminator and the novel relations, where red and blue
represent the head and tail entities
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Relation Count
CHEBI-CHEBI 4680
CHEBI-HP 20455
GO-HP 17254
DO-DO 14430
CHEBI-DO 2415
HP-HP 48236
HP-DO 19770
GO-CHEBI 1285
GO-DO 3615
GO-GO 7303

Table 8: Statistical results of dataset for COVID-19.

Dataset Method

IF  OneClassSVM LOF
FewRel 64.0 47.3 83.9
FewRel2.0 63.1 54.1 80.3

Table 9: F1-measure on noisy FewRel and FewRel2.0
with different outlier detection algorithms.

tained by ARD. The statistical results of the data
are shown in Table 8. We also report the confidence
of the discriminator in each epoch for Ay;. As can
be observed from the Figure 4, the confidence is
progressively increasing as the training epoch in-
creases, which indicates that the model is becoming
more confident in the classification results. In an
ideal case, the confidence should converge toward
0.5.

E Impact of Different Outlier Detection
Algorithms

We compare LOF with two different algo-
rithms for the relational outlier detection, in-
cluding IsolationForest (Liu et al., 2008), and
OneClassSVM (Scholkopf et al., 2001). We evalu-
ate the F1-measure of these three algorithms solely
on the discovery of novel relations, the results
are reported in Table 9. Our LOF algorithm out-
performs by large margins, achieving 83.9% F1-
measure on FewRel dataset. The principle of the
IsolationForest algorithm is to cut data points and
isolate data points one by one. Thus the data needs
more cuts to be isolated. The main reason for
the poor performance of this algorithm is a large
amount of the test data. For the same type of new
relations, their distribution is relatively dense, and
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the number of cuts will also increase. Moreover,
the dimensions of relation representation are 2048,
while IsolationForest has poor processing capabili-
ties for high-dimensional features. Hence, it yields
relevant poor results. OneClassSVM aims to learn
a tight decision boundary from normal data and
treats points outside the decision boundary as ab-
normal points. In the relational feature space, the
distribution of known relations and novel relations
are complicated. Thus the OneClassSVM is likely
to learn an over-fitting decision boundary, resulting
in poor performance.

F Performance of our Relation
Representation on Supervised RE

To demonstrate the effectiveness of the relation
representation described in the Methodology sec-
tion, we conduct a series of experiments on su-
pervised RE task. First, we conduct extensive ex-
periments on the biomedical relation extraction
benchmark DDI’13 (Herrero-Zazo et al., 2013).
We make comparisons with various previous state-
of-the-art methods, which fall into two groups ac-
cording to the neural network architecture: con-
volutional neural network (CNN) based methods
and recurrent neural network (RNN) based meth-
ods. For the first group, we report the results of
SCNN (Zhao et al., 2016), CNN-bioWE (Liu et al.,
2016) and MCCNN (Quan et al., 2016), which
uses syntax word embeddings, biomedical-related
embeddings and multi-channel word embeddings
for feature extraction, respectively. For recurrent
based networks, we report the reults of Joint AB-
LSTM (Sahu and Anand, 2018), Position-aware
LSTM (Zhou et al., 2018), RvNN (Lim et al., 2018)
and BERE (Hong et al., 2020). Joint AB-LSTM
jointly trains two bidrectional LSTM (Bi-LSTM)
with different pooling mechanisms: max-pooling
for one Bi-LSTM and attentive pooling for the
other. Position-aware LSTM adopt position infor-
mation as attention mechanism for the training of
LSTM. RvNN and BERE incorporates parse-tree
information to enhance the performance of predic-
tion. Each model is trained on the training dataset
to predict a relation class of five pre-defined rela-
tion types for the input sequence.

To further evaluate the performance of our repre-
sentation method on large-scale distantly annotated
dataset, we conduct another set of experiments on
the DTT dataset. As on the DTI dataset, previous
literature has shown the superiority of BERE com-



Methods Pre. Rec. F1

SCNN 69.1 651 670
CNN-bioWE 757 647 69.8
MCCNN 759 652 702
Joint AB-LSTM 734 696 71.5
RvNN 744 693 7T1.7
Position-aware LSTM 758 704 73.0
BERE 76.8 713 739
Ours 92.3 844 86.8

Table 10: Results on DDI’ 13 dataset. The first seven
rows are the results of the previous state-of-the-arts
methods, and the bottom row is the performance of our
method in supervised relation learning.
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Figure 5: Precision-recall curve of BERE and our
model.

pared with CNN-based and RNN-based baselines,
we mainly take BERE as the baseline of our experi-
ments. For fair comparisons, we follow the settings
of BERE by using precision-recall curve, the area
under the precision-recall curve and the F score as
the evaluation metrics. We re-run the open-source
code of BERE and its two variants: BERE-AVE,
BERE-POOL. BERE-AVE adopt the average pool-
ing mechanism to aggregate the semantic informa-
tion over instances in a bag. BERE-POOL uses the
max-pooling strategy. The implementation details
of our model on the DTI dataset are identical to
the DDI’13 dataset. The precision-recall curve is
shown in Figure 5, which indicates the significant
performance of our representation method.

G Time Efficiency of Relational Active
Learning

In practice, it is often the time spent on man-
ual annotation that is the time-consuming bottle-
neck. Nevertheless, the sampling strategy for ac-
tive learner should also select samples in a time-
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efficient manner as much as possible. We analysis
the time efficiency of different active learning meth-
ods. Table 11 shows the average time for differ-
ent methods to sample once on the corresponding
dataset. DBAL is the most competitive baselines
in terms of their achieved mean time efficiency.
Our method fell marginally behind DBAL, how-
ever, our method is outperformed in accuracy by
all other methods.

Dataset Time(ms)

DBAL CoreSet SRAAL Ours
FewRel 157.0 11452  409.3 465.1
NYT+FB 1579 743 132.7 101.9
FewRel2.0 1814 209.4 418.4 9.2
Average 1654 4763 320.1 192.0

Table 11: Average time token to sample once on the
corresponding dataset.



