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ABSTRACT

Low-Rank Adaptation (LoRA) has become a widely used method for parameter-
efficient fine-tuning of large-scale, pre-trained neural networks. However, LoRA
and its extensions face several challenges, including the need for rank adaptivity,
robustness, and computational efficiency during the fine-tuning process. We intro-
duce GeoLoRA, a novel approach that addresses these limitations by leveraging
dynamical low-rank approximation theory. GeoLoRA requires only a single back-
propagation pass over the small-rank adapters, significantly reducing computational
cost as compared to similar dynamical low-rank training methods and making it
faster than popular baselines such as AdaLoRA. This allows GeoLoRA to effi-
ciently adapt the allocated parameter budget across the model, achieving smaller
low-rank adapters compared to heuristic methods like AdaLoRA and LoRA, while
maintaining critical convergence, descent, and error-bound theoretical guarantees.
The resulting method is not only more efficient but also more robust to varying
hyperparameter settings. We demonstrate the effectiveness of GeoLoRA on several
state-of-the-art benchmarks, showing that it outperforms existing methods in both
accuracy and computational efficiency.

1 INTRODUCTION

Large-scale pre-trained and fine-tuned models have significantly advanced the performance of deep
learning models in assisting various natural language processing and computer vision tasks. However,
their deployment often incurs substantial computational and memory costs due to the enormous
number of trainable parameters. To address this, parameter-efficient fine-tuning (PEFT) methods
have been developed, which modify a subset of model parameters while keeping the rest frozen.
Among these, low-rank adaptation (LoRA) (Hu et al., 2021) has emerged as a prominent approach,
allowing efficient fine-tuning by injecting low-rank updates into pre-trained model weights. Despite
its efficiency, LoRA faces limitations in adaptively distributing the parameter budget across weight
matrices, and its performance is sensitive to the choice of hyperparameters (Zhang et al., 2023).

Recent works, such as AdaLoRA (Zhang et al., 2023), DyLoRA (Valipour et al., 2023), and ReLoRA
(Lialin et al., 2023), have attempted to improve LoRA by dynamically adjusting the rank of the
low-rank adapters during training. While these methods enhance parameter efficiency, they are
constructed as simultaneous descent methods and therefore do not guarantee convergence to optimal
low-rank adapters. Methods that guarantee convergence to optimal adapters exist (Schotthöfer et al.,
2022; Schotthöfer & Laiu, 2024; Zangrando et al., 2024). However, these require several gradient
tapes per iteration and, therefore, have an intrinsically higher run time per training step.

In this paper, we introduce GeoLoRA (Geometric Low-Rank Adaptation), a novel dynamical low-rank
training method for parameter-efficient fine-tuning. GeoLoRA leverages the dynamical low-rank
approximation theory from matrix differential equations (Koch & Lubich, 2007b; Ceruti et al.,
2022; 2023) and exploits the intrinsic low-rank geometry of the weight matrices to allocate the
parameter budget across the model adaptively. This dynamic allocation is facilitated by a novel
training strategy that updates the low-rank factors in parallel, contrasting with other recent methods
based on dynamical low-rank approximation theory (Schotthöfer et al., 2022; Schotthöfer & Laiu,
2024; Zangrando et al., 2024), which require individual gradient tapes computed sequentially per
each low-rank factor. Instead, GeoLoRA requires a single backprop pass over the small-rank adapters,
limiting its computational cost and making it faster than popular baselines such as AdaLoRA (Zhang

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2023). Moreover, GeoLoRA maintains the exact orthonormality of the low-rank factors,
avoiding the ill-conditioning issues associated with well-known high-curvature challenges arising in
low-rank optimization (Schotthöfer et al., 2022).

Through extensive experiments on the GLUE benchmark, Vision Transformers, and Stable Diffu-
sion, we show that GeoLoRA outperforms existing PEFT methods both in terms of accuracy and
computational efficiency.

Along with the experimental evaluation, we provide a thorough convergence analysis, showing
convergence to stationary points under standard assumptions, and a detailed error-bound analysis,
demonstrating that GeoLoRA’s low-rank adaptation remains close to its full-rank counterpart through-
out the training process. This robustness is critical in ensuring that the fine-tuning process does not
diverge, even under challenging conditions.

Overall, the main contributions of this work are as follows:

• We show that standard common training methods for low-rank adapters do not necessarily reach a
local optimum. (Section 3)

• We propose GeoLoRA, a dynamical low-rank training method for low-rank adapters that leverages
low-rank geometry and matrix differential equations to achieve adaptive parameter allocation.
(Section 4)

• GeoLoRA only requires a single gradient tape and one small-size SVD per training step, making it
competitive with existing baselines such as AdaLoRA.

• We provide a convergence analysis and error bound guarantees for GeoLoRA, ensuring robust
training behaviour and convergence to a stationary point. (Section 4.2)

• Extensive experimental results demonstrate the superior performance of GeoLoRA over existing
methods, with improved accuracy and training speed. (Section 5)

2 RELATED WORK

The growing size of neural networks has led to significant computational and memory challenges
during both training and deployment. Several strategies have been proposed to mitigate these issues,
including sparsification (Guo et al., 2016; Molchanov et al., 2017; He et al., 2017) and quantization
(Wu et al., 2016; Courbariaux et al., 2016). Among these, layer factorization has gained traction as
an effective approach to reducing memory requirements. Layer factorization techniques have been
applied successfully in both pre-training (Wang et al., 2021; Khodak et al., 2021; Schotthöfer et al.,
2022; Schotthöfer & Laiu, 2024; Zangrando et al., 2024; Zhao et al., 2024) and fine-tuning scenarios
(Hu et al., 2021; Valipour et al., 2023; Zhang et al., 2023; Hayou et al., 2024; Zhao et al., 2024; Lialin
et al., 2023), demonstrating their versatility across various tasks.

Low-rank adapters such as LoRA (Hu et al., 2021) have become a standard approach for PEFT by
applying low-rank corrections to pre-trained models. LoRA introduces a low-rank decomposition
to the weight matrices of the model, significantly reducing the number of trainable parameters
while preserving performance. Despite its efficiency, LoRA’s effectiveness heavily relies on the
selection of hyperparameters such as learning rates and parameter budgets (Zhang et al., 2023; Hayou
et al., 2024). These limitations have spurred the development of rank-adaptive methods. AdaLoRA
(Zhang et al., 2023) is a popular extension of LoRA, which dynamically adjusts the rank of the
low-rank adapters during training. By incorporating an orthogonality regularizer and SVD-like
adaptation, AdaLoRA aims to address the challenges of rank selection and adaptation. It outperforms
static low-rank methods by automatically allocating parameter budgets based on the importance
of each matrix component. DyLoRA (Valipour et al., 2023) provides an alternative approach that
hierarchically adjusts the rank during training, demonstrating that higher-rank adapters can lead to
better performance than very low-rank ones. DoRA (Mao et al., 2024) proposes to sample a set
of rank-1 updates for each LoRA layer and to combine them into a rank-r update. Optimal rank-1
components are chosen during fine-tuning using an importance score based on the norm of the LoRA
layer.

Beyond fine-tuning, low-rank methods have been successfully applied during the training and pre-
training phases of neural networks. Techniques such as Pufferfish (Wang et al., 2021), intrinsic
dimension reduction (Aghajanyan et al., 2020), and DLRT (Schotthöfer et al., 2022) suggest that
large deep learning models have an inherently low intrinsic dimensionality, making them amenable to
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low-rank approximations. These methods propose reducing the number of parameters during training,
potentially improving both efficiency and generalization. Recent works in dynamical low-rank training
have explored the use of geometric properties of the low-rank parameter space to improve training
stability and convergence. For example, the geometry-aware training approach for tensor layers in
Tucker format (Zangrando et al., 2024) dynamically adapts the rank of the factorized layers, ensuring
robust convergence even when the initial rank estimation is inaccurate. This method leverages the
Riemannian geometry of the parameter space to avoid the ill-conditioning commonly encountered
in low-rank training. ReLoRA (Lialin et al., 2023) introduces a parameter-efficient training method
by using multiple low-rank updates to effectively train high-rank networks. This method allows
training larger models with significant memory savings and training speed improvements compared
to conventional methods. GaLore (Zhao et al., 2024) introduces a memory-efficient training strategy
by projecting gradients onto a low-rank subspace. This approach achieves significant memory savings
while maintaining performance.

3 LOW-RANK OPTIMIZATION: WHAT CAN GO WRONG

This section aims to discuss the nature of the critical points and optimization trajectories obtained
when using gradient-based strategies for low-rank parameters, and why a straightforward application
of gradient-based steps to factorized adapters may lead to suboptimal results.

Consider a neural network layer of the form

z = σ(Wptx+ USV ⊤x), (1)

where σ is an arbitrary activation function, Wpt ∈ Rn×n are the frozen pre-trained weights, and
U, V ∈ Rn×r, S ∈ Rr×r are the rank-r adapter weights, with input x. For simplicity, we omit
the bias term. Low-rank adapters of the form W = USV ⊤ ∈ Rn×n have gained popularity in
recent approaches such as (Zhang et al., 2023), although our discussion extends to other equivalent
formulations like W = AB (Hu et al., 2021). The objective of the training process is to minimize
a loss function L(W ) to find an optimal adapter weight W⋆. For full-rank matrices (r = n),
optimality requires that ∇WL(W⋆) = 0. However, when r < n, this condition is generally
unattainable due to the reduced parameter space. In this scenario, we seek a matrix W⋆ that is locally
optimal within the low-rank parameter space, meaning no further reduction in the loss function L is
possible in the neighborhood of W⋆. A necessary condition for local optimality can be expressed as
P (W⋆)∇L(W⋆) = 0, see e.g., (Sato, 2021, Theorem 3.4). For orthonormal U and V , the projection
operator P (USV ⊤)Z := UU⊤Z(I − V V ⊤) + ZV V ⊤ represents the orthonormal projection of Z
onto the tangent space at USV ⊤. If W⋆ is not a saddle point, then this condition ensures that no
search direction within the tangent space of W⋆ can further decrease the loss. See also Appendix J.
Note that this only guarantees local optimality, a limitation shared by all gradient-based optimizers.

Current training methods for low-rank adapters aim to optimize the low-rank factors with a single
backpropagation pass to compute all the required gradients simultaneously. This boils down to
integrating the following gradient flow equations for each individual factor

U̇ =−∇UL = −(∇WL)V S ,

V̇ =−∇V L = −(∇WL)⊤US⊤ ,

Ṡ =−∇SL = −U⊤∇WLV ,

(2)

where we use the chain rule and the decomposition W = USV ⊤ to derive the expressions
for ∇U,S,V L. Here, we have omitted the dependence on the time variable t, i.e., U, S, V =
U(t), S(t), V (t) for improved readability, and we use dots to denote time derivatives. An explicit
time discretization with a time step size equal to the learning rate λ leads to the simultaneous gradient
descent updates commonly employed in conventional training methods for LoRA. At first glance, this
procedure appears effective, as a single update step will decrease the loss if we freeze all but one of the
low-rank factors. However, in practice, LoRA training modifies all low-rank factors simultaneously,
raising the question of how this affects the overall optimization trajectory.
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(a) Gradient flow of simultaneous gradient descent. (b) Riemannian gradient flow.

Figure 1: Illustration of simultaneous vs. Riemannian gradient flow. The projector of the simultaneous
gradient flow converges to a point W⋆ such that P̂ (W⋆)∇L = 0. Since P̂ is not an orthogonal
projection, the gradient is not orthogonal to the tangent plane, i.e., W⋆ is suboptimal. For Riemannian
gradient flows, the adapter converges to a point W⋆ such that P (W⋆)∇L = 0. Since P is the
orthogonal projection on the tangent space, W⋆ is a local optimum, i.e., no directions exist in the
tangent space TW⋆

M, which further decrease the loss. Here, M denotes the space of low-rank
adapters, and TW⋆

M represents the tangent space at the optimal adapter weight W⋆.

To address this, consider the evolution equation for W = USV ⊤, derived directly using the chain
rule and eq. (2)

Ẇ = U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤

(2)
= −∇WLV S2V ⊤ + UU⊤∇WLV V ⊤ − U(S⊤)2U⊤∇WL =: −P̂ (W )∇WL . (3)

The operator P̂ (USV ⊤)Z := ZV S2V ⊤ − UU⊤ZV V ⊤ + U(S⊤)2U⊤Z again represents a linear
mapping onto the tangent space at W = USV ⊤. Note that this projection depends on the individual
low-rank factors U , S, and V , but we use the notation P̂ (W ) for brevity. Simultaneous descent
methods approximate the gradient flow of eq. (3), which ideally converges to a solution W⋆ such
that P̂ (W⋆)∇L(W⋆) = 0. However, P̂ is orthogonal only when U and V are orthonormal and
S = I , where I denotes the identity matrix. If these conditions are not met, the resulting optimization
process may not find an optimal weight within the low-rank parameter space. This is because
P̂ (W⋆)∇L(W⋆) = 0 does not imply P (W⋆)∇L(W⋆) = 0, thus there could still be some decrease
direction along the tangent space as depicted in Figure 1.

To construct methods that converge to an optimal low-rank solution, an alternative approach is to
evolve the adapter W along the projected gradient flow Ẇ (t) = −P (W (t))∇L(W (t)). In this case,
the corresponding evolution equations for the low-rank factors take the form

U̇ = −(I − UU⊤)∇WLV S−1 ,

V̇ = −(I − V V ⊤)∇WL⊤US−⊤ ,

Ṡ = −U⊤∇WLV ,

(4)

assuming that U and V are orthonormal (Koch & Lubich, 2007b).

While the evolution defined in eq. (4) guarantees convergence to an optimal low-rank adapter, the
presence of the S−1 term on the right-hand side introduces stiffness in the gradient flow. This stiffness
can significantly slow down convergence, especially when the singular values in S vary greatly in
magnitude. Robust solutions to address the stiffness problem and ensure convergence without being
hindered by the S−1 term have been proposed Schotthöfer et al. (2022); Zangrando et al. (2024);
Schotthöfer & Laiu (2024). However, these methods require multiple gradient tape evaluations per
training update, which makes them computationally more expensive than traditional LoRA training
techniques with simultaneous updates.

To overcome these limitations, we propose GeoLoRA, a novel training method for low-rank adapters
that only requires a single gradient tape evaluation per update while ensuring convergence to an
optimal low-rank solution, following the projected gradient flow in eq. (4). This approach retains
the computational efficiency of conventional LoRA methods while achieving comparable or even
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superior performance. By eliminating the need for multiple gradient tape evaluations, GeoLoRA
offers a practical and scalable solution for training low-rank adapters effectively.

Before presenting the proposed training method, we illustrate different behaviours of different low-
rank adaptation strategies using a toy example. Consider the problem of matching a rank-r target
matrix Wtarget ∈ Rn×n with a low-rank adapter W , formulated as:

min
W

1

2
∥Wtarget −W∥2

F
. (5)

We compare the convergence behavior of six different training methods for n = 5000, r = 5, and a
learning rate of λ = 0.1:

1. Full fine-tuning (FT) (blue),
2. DLRT from (Schotthöfer et al., 2022) (orange),
3. The proposed GeoLoRA method (green),
4. Fixed rank LoRA from Hu et al. (2021) (red),
5. AdaLoRA from (Zhang et al., 2023) (brown),
6. Fixed rank AdaLoRA (purple).

100 101 102 103

Iteration
10 6

10 5

10 4

10 3

10 2

10 1

100

101

||W
ta

rg
et

W
|| F

Training Setup
Full FT
DLRT FT
GeoLoRA FT
LoRA FT
SVD LoRA FT
AdaLoRa FT

In this experiment, the fixed rank approaches (4, 6) use a rank of 50. All adapters W are initialized to
zero, with S0 = 0 for the SVD-based methods (2, 3, 5, 6) and B = 0 for LoRA-based methods (4).

The results show that the proposed GeoLoRA method (3) converges as quickly as full fine-tuning.
In contrast, method (2) (DLRT) takes approximately twice as long due to the sequential updates of
the basis and coefficient matrices1. LoRA-type methods (4, 5, 6) exhibit slower convergence due to
the suboptimality of the underlying gradient flow defined in eq. (2). AdaLoRA (5) solves the same
gradient flow as method (6) but plateaus at a loss of 5× 10−4, corresponding to the regularization
parameter for the terms ∥U⊤U − I∥2F + ∥V ⊤V − I∥2F that enforce the orthonormality of U and V .
We had to fix the minimum rank to 5 for AdaLoRA to prevent stalling of the optimization due to rank
underestimation, an issue not observed in methods (2) and (3), where rank augmentation avoided this
problem.

4 THE PROPOSED METHOD

In this section, we introduce GeoLoRA (Geometric Low-Rank Adaptation) a novel low-rank fine-
tuning method that integrates rank adaptivity, low-rank optimality, and memory and compu-
tational efficiency. Our method builds upon the parallel geometric low-rank integrator originally
designed for model order reduction in high-dimensional PDEs (Ceruti et al., 2023), and it is equipped
with loss descent, approximation bounds, and convergence guarantees. Notably, it improves upon
existing dynamical low-rank methods, e.g. (Schotthöfer & Laiu, 2024; Zangrando et al., 2024; Schot-
thöfer et al., 2022) by updating basis and coefficients in parallel opposed to a sequential basis update
and coefficient step. Moreover, only a single backward pass per iteration step is required through a
novel evaluation strategy of robust gradients, thus doubling the wall-time performance. GeoLoRA is,
therefore, the first low-rank training method solving the optimal gradient flow eq. (4) with training
times per iteration comparable to standard simultaneous descent approaches to low-rank adaptation
such as LoRA and AdaLoRA (Hu et al., 2021; Zhang et al., 2023). In particular, it improves upon
these methods by providing robustness and convergence guarantees and demonstrating an overall
improved performance and robustness to hyperparameters in numerical examples.

Starting from an initial factorization U0, V0, S0 with initial rank r0, where S0 is diagonal and full-rank,
GeoLoRA performs the following steps (also summarized in Algorithm 1):

1The loss plateaus appear since the loss value remains constant during a basis update and only decreases
during a coefficient update. This accounts for the fact that two gradient tapes need to be computed.
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Algorithm 1: Single iteration of GeoLoRA.
The functions optimizer_step, basis_augmentation, and truncation are detailed
in Algorithm 2 in the appendix.
Input :Initial orthonormal bases U, V ∈ Rn×r and diagonal S ∈ Rr×r;
τ : singular value threshold for rank truncation;
λ: learning rate.

1 Evaluate L(USV ⊤) /* Forward evaluate */
2 GU ← ∇UL(USV ⊤); GS ← ∇SL(USV ⊤); GV ← ∇V L(USV ⊤) /* Backprop */

3

 Snew ← optimizer_step(S,GS , λ)
Knew ← optimizer_step(US,GUS

−⊤, λ)
Lnew ← optimizer_step(V S⊤, GV S

−1, λ)
/* in parallel */

4

{
Ũ ← basis_augmentation(U,Knew)

Ṽ ← basis_augmentation(V,Lnew)
/* in parallel */

5 Ŝ ←
[

Snew Lnew,⊤Ṽ

Ũ⊤Knew 0

]
∈ R2r×2r /* Assemble new coefficient matrix */

6 U, S, V, S−1 ←truncation(Ŝ, [U | Ũ ], [V | Ṽ ])

1. Perform a (stochastic) gradient step to compute the new variables Snew ∈ Rr0×r0 , Lnew ∈ Rn×r0 ,
and Knew ∈ Rn×r0 , as follows:

Snew = S0 − λ∇SL(U0S0V
⊤
0 )

Knew = U0S0 − λ∇UL(U0S0V
⊤
0 )S−⊤

0

Lnew = V0S
⊤
0 − λ∇V L(U0S0V

⊤
0 )S−1

0 .

(6)

We will see in Theorem 3 that using these variables mitigates the stiffness of the system in eq. (4)
while approximating the optimal gradient flow. Note that the right-hand side gradients ∇UL, ∇V L,
and ∇SL can be evaluated with only one backward pass through the network using standard algo-
rithmic differentiation techniques, halving the computational cost of existing geometric methods
such as (Schotthöfer et al., 2022; Zangrando et al., 2024). Evaluation of the inverse S−1

0 induces no
computational overhead since S0 is diagonal at the start of each iteration.

2. Augment the current bases U0, V0 to twice their rank using the gradient dynamics of the loss,
which is encoded in Knew and Lnew, i.e.

Û = [U0, Ũ ] = ortho([U0,K
new]) ∈ Rn×2r0 and V̂ = [V0, Ṽ ] = ortho([V0, L

new]) ∈ Rn×2r0 .
(7)

Here “ortho” denotes a column orthonormalization procedure such as the QR-algorithm. This
augmentation step provides the low-rank adapter with a larger search space to increase the rank of
its adaptation if the initial rank-guess r0 was insufficient to fully capture the problem. Doubling the
rank implies that in log(n) training iterations any rank can be captured by a rank one initialization,
eliminating the need for tuning r as a hyperparameter, see Figure 2.

3. Assemble the augmented coefficient matrix

Ŝ ←
[

Snew Lnew,⊤Ṽ

Ũ⊤Knew 0

]
∈ R2r0×2r0 (8)

where we obtain the block entries Snew, Lnew, and Knew from eq. (6).

4. Truncate redundant singular values si of Ŝ and the corresponding singular vectors, i.e. basis
functions of Û , V̂ , using the criterion

2r∑
i=r1+1

s2i < ϑ, (9)

where r1 is the new rank of the factorization and ϑ is a tresholding hyperparameter. The singular values
si are obtained via the SVD of Ŝ = PΣQ⊤ ∈ R2r0×2r0 . Then we determine the new factorization as

6
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S1 = diag(s1, . . . , sr1) ∈ Rr1×r1 , U1 = ÛP(1,...,r1) ∈ Rn×r1 and V1 = V̂ Q(1,...,r1) ∈ Rn×r1 . The
truncation threshold ϑ is chosen relative to the nuclear norm of the specific layer’s current singular
values, i.e. ϑ = τ∥Ŝ∥2F . Other norms, such as the 1-norm of the singular values si, are possible as
well. Thus, the truncation threshold determines how aggressively to prune each layer individually.
Analogously, the following global threshold similar to the one used in e.g. (Zhang et al., 2023; Ghadiri
et al., 2023; Idelbayev & Carreira-Perpinan, 2020)

L∑
ℓ=1

2rℓ∑
i=ℓ+1

s2i,ℓ <
τ

1− τ

L∑
ℓ=1

r1,ℓ∑
i=1

s2i,ℓ, (10)

can be considered by summing the singular values across all the layers ℓ = 1, . . . , L. To directly
control the parameter budget, order s2i,ℓ by descending by magnitude and selecting the largest ones
first until either eq. (10) is violated or the budget is depleted.

4.1 PARAMETER INITIALIZATION

LoRA-type adapters (Hu et al., 2021) initilize the low rank matrices B,A with zero initialization of
B, and Gaussian initialization of A. This ensures that the fine-tuning indeed starts at the pretrained
state of the network, i.e., σ(Wptx+ α

rA0B
⊤
0 x) = σ(Wptx). For consistency with this initialization,

the bases U0 and V0 can be initialized as random but orthonormal, whereas the coefficient matrix S0

has zero-initialization. In this first solve of eq. (6), we set S−1
0 as the identity matrix. As a result,

the first solve of eq. (6) is inconsistent with the optimal dynamics of eq. (4). However, all following
iterations evolve the low-rank trajectory according to the optimal gradient flow. Since in the first
iterations of a LoRA fine-tuning, the adapter is typically close to the original solution but far from
the fine-tuning optimum, this inconsistency is irrelevant to the overall convergence behavior of the
method. Alternatively, the required gradients can be computed with three individual gradient tapes in
the first iteration, which does not require the inversion of S0.

The proposed method can readily be used for dynamic low-rank compression (Schotthöfer et al.,
2022; Zangrando et al., 2024) of pre-trained networks, where we consider a layer z = σ(Wx), and
approximate W ≈ U0S0V

⊤
0 . Here, the initial parameters U0, S0, V0 are obtained by a truncated

singular value composition of W . Finally, for low-rank pre-training of an untrained network
with given architecture, i.e. predetermined layer dimensions n, but unknown rank r, the factors
U0, V0 are initialized randomly, but orthonormal and S0 is initialized randomly, but diagonal for easy
initialization of S−1

0 .

4.2 ANALYSIS

In the following, we analyze Algorithm 1 under the general assumption that L is L-smooth with
constant L and bounded with constant B.

For brevity of exposition we denote W r
t = UtStV

⊤
t as the low-rank factorization at iteration t

evaluated with Algorithm 1, whereas Wt denotes the full-rank solution obtained by “full fine-tuning”
with stochastic gradient descent. Further, we denote by f(W r

t , ξt) the stochastic gradient of the
network loss L w.r.t the low-rank weight W r

t at iteration t, obtained by batch-gradient descent.
The i.i.d random variable ξt models the randomness in the training data batch at iteration t. Lastly,
recall that P (W r

t )Z denotes the orthogonal projection of the matrix Z onto the tangent plane of the
manifold of rank-r matrices at the point W r

t .

Algorithm 1 is an optimizer on low-rank manifolds: Theorem 1 shows, that the proposed scheme
with stochastic gradients indeed decreases the training loss in each iteration, while optimizing on a
manifold, and Theorem 2 yields stochastic convergence to a locally optimal stationary point.
Theorem 1 (Stochastic descent estimate). Algorithm 1 with stochastic (mini-batch) gradients fulfills

Eξt+1 [L(W r
t+1)] ≤ L(W r

t )− λ

(
1− Lλ2

2

)
Eξ1 [∥P (W r

t )f(W
r
t , ξt)∥2] + LEξ1 [∥W r

t+1 − Ŵ r
t ∥] .

(11)

where W r
t , Ŵ r

t , W r
t+1 are the low-rank weight matrices at the start of iteration t+ 1, before, and

after the truncation step, respectively.
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The proof is provided in Appendix D. The above theorem yields a loss descent guarantee up to the
two last terms on the right-hand side. The first term of the right hand side induces the step size
criterion λ ≤ 2

L , which resembles the step size criterion of full gradient descent, where the two
right hand side terms read −λ(1 − Lλ

2 )∥f(Wt)∥2. This shows that the low-rank optimizer allows
similar learning rates as a full fine-tuning setup, eliminating the need for the α

r scaling parameter
of LoRA. The last term models the error introduced by the truncation step and is bounded by the
user-determined cutoff threshold ϑ, as Eξ1 [∥W r

t+1 − Ŵ r
t ∥] ≈ ϑ. As the solution stabilizes in rank,

the error term vanishes, and we obtain the following main convergence result:
Theorem 2 (Convergence). Let L ≥ 0 and W r

1 , . . . ,W
r
T be the solutions generated by Algorithm 1

over T steps. Let the learning rate sequence {λt} satisfy the Robbins-Monro conditions∑
t λt = +∞

∑
t λ

2
t < +∞ ,

and each step λt the step size restriction λt ≤ 2
L . Further assume

∑T−1
t=1 E[∥W r

t+1 − Ŵ r
t ∥] ≤ D <

∞, i.e. after some time, the solution W r
t is contained in a manifold of rank r. Then we have

lim inf
T→∞

E[∥P (W r
t )f(W

r
t )∥2] = 0 ,

where the expected value is taken over all ξt.

The proof is provided in Appendix E. Additionally, the solution trajectory of Algorithm 1 is close to
the (full-rank) trajectory of the dynamical system

Ẇ (t) = −∇WL(W (t)), (12)
i.e., the gradient flow of full training or fine-tuning:
Theorem 3 (Error-bound). For an integer k, let t = kλ. Let W (t) be the solution of eq. (12), and let
W r

t be the factorized low-rank solution after k steps with Algorithm 1. Assume that for any Z in a
neighborhood of W (t), we have ∥(I − P (Z))∇L(Z)∥ < ε, i.e., the gradient flow is close to TZMr.
Then,

∥W (t)−W r
t ∥ ≤ c1ε+ c2λ+ c3ϑ/λ . (13)

Moreover, let WRF (t) denote the solution of the Riemannian flow of eq. (4). Then,
∥WRF (t)−W r

t ∥ ≤ c4ε+ c2λ+ c3ϑ/λ (14)
where the constants c1, c2, c3, c4 depend only on L and B.

The proof is provided in Appendix G. We refer to Appendix F for an interpretation of Algorithm 1 as
an integrator of the gradient flow of eq. (12).

Finally, we point out that the single-layer case discussed so far is not restrictive, and all the theo-
retical results above can be directly transferred to the multilayer setting by means of the following
proposition:
Proposition 1 (Global structure preservation). The application of Algorithm 1 for multiple LoRA lay-
ers corresponds to the numerical integration of an augmented single matrix system on the adjacency
matrix of the computational graph

Ẇ = −P (W)Π∇L(W)

Where Π is a linear projection that depends only on the structure of the neural network architecture.
Moreover, the application of Algorithm 1 to this system, leads to the global truncation strategy
proposed in Section 4.

The proof of Proposition 1 can be found in Appendix I together with the relative derivation of the
global truncation strategy.

5 NUMERICAL RESULTS

DeBERTa for GLUE. We evaluate the performance of GeoLoRA by fine-tuning the 183 million
parameter transformer DeBERTaV3-base (He et al., 2023) on the GLUE Benchmark (Wang et al.,
2019) and compare the results in Table 2. For details on the methods, implementation, hyperparameter
choices, and benchmark setup, please refer to Appendix B.1. In most cases, GeoLoRA outperforms
other methods on the benchmark, achieving better metrics with significantly fewer trainable parame-
ters. This reduction in trainable parameters allows GeoLoRA to process substantially more samples
during training and evaluation compared to AdaLoRA.
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Table 1: Method comparison for low-rank finetuning. We compare the computational cost of a single
training step for an n× n layer matrix of rank r. In the table, “local optimality” refers to the property
P (W⋆)∇L(W⋆) = 0 for the computed adapter W⋆, as discussed in Section 3.

Method compute (per iteration) memory (per iteration) # gradient evals. rank adaptive local optimality

Full FT O(n2) O(n2) 1 - ✓

GeoLoRA O(2nr + (2n+ 1)r2 + r3) O(4nr + 3r2) 1 ✓ ✓
AdaLoRA (Zhang et al., 2023) O(2nr + (2n+ 1)r2 + r3) O(2nr + 3r2) 1 ✓ ✗
DLRT (Schotthöfer et al., 2022) O(6nr + (2n+ 5)r2 + 9r3) O(4nr + 3r2) 3 ✓ ✓
LoRA (Hu et al., 2021) O(2nr) O(2nr) 1 ✗ ✗

Table 2: DeBERTaV3-base fine-tuning on GLUE. We compare with full fine-tuning (Full FT),
Houlsby adapter (Houlsby et al., 2019) (HAdapter), Pfeiffer adapter (Pfeiffer et al., 2021) (PAdapter),
LoRA (Hu et al., 2021), AdaLoRA (Zhang et al., 2023), DoRA (Mao et al., 2024), LoRA+(Hayou
et al., 2024), and Bitfit(Zaken et al., 2022). We report target metrics and computational performance
(higher is better) for the median of 5 runs using different random seeds. Best results per dataset are
shown in bold. Results for BitFit, HAdapter, PAdapter were taken from (Zhang et al., 2023).

Method (# Params) MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Mean
(Acc) (Acc) (Mcc) (F1) (Acc) (Acc) (Acc) (Corr)

Full FT (184M) 89.90 95.63 69.19 89.80 94.03 83.75 89.46 91.60 87.92

BitFit (0.1M) 89.37 94.84 66.96 84.95 92.24 78.70 87.75 91.35 85.77
HAdapter (1.22M) 90.13 95.53 68.64 89.27 94.11 84.48 89.95 91.48 87.94
PAdapter (1.18M) 90.33 95.61 68.77 89.40 94.29 85.20 89.46 91.54 88.07
LoRA r=8 (1.33M) 90.29 95.29 68.57 90.61 93.91 85.50 89.75 89.10 87.87
LoRA+ r=8 (1.33M) 90.39 95.367 70.56 90.65 94.05 85.59 89.65 88.07 88.04
DoRA r=8 (1.33M) 90.11 94.30 68.50 90.71 94.31 85.05 89.32 91.38 87.96
AdaLoRA target r=8 (1.27M) 90.44 95.64 68.76 90.65 94.11 86.00 89.44 91.41 88.30
AdaLoRA, matched parameters to GeoLoRA 90.21 (0.75M) 95.64 (1.27M) 68.59 (1.07M) 90.48 (0.72M) 93.93 (0.72M) 85.92 (1.16M) 88.21 (0.74M) 90.91(0.74M) 88.28 (0.89M)
GeoLoRA 90.38 (0.7M) 95.98 (1.17M) 69.03 (0.98M) 90.53 (0.69M) 94.23 (0.70M) 85.93 (1.19M) 90.10 (0.75M) 91.58 (0.71M) 88.47 (0.86M)

Evaluation and train time comparison

AdaLoRA (eval/train) [it/sec] 12.4/4.3 17.6/6.7 24.6/8.1 9.2/3.2 4.9/1.6 10.3/3.2 9,9/3.1 21.1/8.5 13.75/4.83
GeoLoRA (eval/train) [it/sec] 17.1/4.9 21.3/8.3 37.4/9.1 12.0/3.8 5.9/1.8 13.2/3.7 12.6/3.7 21.3/8.3 17.6/5.6

Performance analysis. The proposed method from Algorithm 1 combines low-rank optimality
guarantees with computational efficiency gains compared to existing low-rank optimization methods,
as shown in Table 1. For a rank r adapter, the computational cost of gradient evaluation (i.e., eq. (6)) is
equivalent to that of AdaLoRA, which updates U , S, and V directly, and is similar to a standard LoRA
update. The cost of basis augmentation isO(nr2) due to the QR decomposition in eq. (7), comparable
to evaluating the orthonormality regularization terms in AdaLoRA. Rank truncation is performed via
an SVD of S at a cost of O(r3), where typically r ≪ n. The complexity analysis shows comparable
per-iteration costs for LoRA, AdaLoRA, and GeoLoRA. In Table 2, we also report the number of
iterations computed per second during training and evaluation for both GeoLoRA and AdaLoRA,
demonstrating that GeoLoRA outperforms AdaLoRA across almost all GLUE benchmarks. We
note that training and inference speed depend on both layer ranks and sequence lengths, and the
performance difference is less pronounced for benchmarks with longer sequences.

Vision transformer for object classification. We compare GeoLoRA and AdaLoRA on fine-
tuning the Vit-base-patch16-224 Vision Transformer, pre-trained on the Imagenet-1k dataset, and
fine-tuned on Cifar10, Cifar100, and Tiny-Imagenet. GeoLoRa "local" uses a layer-wise rank
truncation, and "global" uses the same global rank budget as AdaLoRA. Details on implementation
and hyperparameters are provided in Appendix B.2. Table 3 shows that GeoLoRA achieves higher
validation accuracy than AdaLoRA, while using fewer trainable parameters.

Ablations. In Figure 2, we examine how the performance of GeoLoRA is influenced by the initial
rank and learning rate. Figure 2(a, b) demonstrate that GeoLoRA dynamically recovers the intrinsic
rank of the low-rank adaptation, regardless of the initial rank, highlighting the robustness of the
method with respect to this hyperparameter. Notably, GeoLoRA can extend the adapter rank to full
rank if necessary within logarithmic time, while truncating in constant time (in terms of optimization
iterations). We provide a detailed discussion of the rank distribution across transformer layers in
Appendix B.2. Similarly, Figure 2(c, d) show that GeoLoRA is less sensitive to learning rate variations
compared to AdaLoRA.

Dreambooth stable diffusion. Finally, we test GeoLoRA on fine-tuning Stable Diffusion (Rombach
et al., 2021) using Dreambooth (Ruiz et al., 2023) on their original datasets. Implementation details
are provided in Appendix B.3. In Table 4, we compare the validation loss and number of parameters
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Table 3: Vit-base-patch16-224 fine-tuning on Cifar10, 100 and
Tiny-Imagenet. We compare LoRa, AdaLoRA to GeoLoRA with
local and global budgeting reporting the median of 5 runs using
different random seeds. GeoLoRa "local" uses a layer-wise rank
truncation, and "global" uses the same global rank budget as
AdaLoRA.

Method Cifar 10 [%] Cifar 100 [%] Tiny-Imagenet [%]
# Params Acc [%] # Params Acc [%] # Params Acc [%]

LoRA 0.47M (r=3) 98.47 0.47M (r=3) 91.47 0.99M (r=6) 87.34
AdaLoRA 0.47M 98.51 0.45M 91.44 0.9M 87.21
GeoLoRA, local 0.47M 98.55 0.35M 91.63 0.92M 88.09
GeoLoRA, global 0.48M 98.51 0.47M 91.62 0.75M 88.07

Table 4: Stable Diffusion on
Dreambooth benenchmark. We
compare LoRA and GeoLoRA re-
porting the median of 5 runs. r0
for AdaLoRA is the initial rank,
while r is the target rank.

Method Val. Loss # Params

LoRA (r = 5) 0.275 3.0 M
LoRA (r = 3) 0.281 1.8 M
AdaLoRA (r0 = 8, r = 5) 0.245 4.7M

AdaLoRA (r0 = 8, r = 3) 0.247 1.78M

GeoLoRA (τ = 0.02) 0.242 2.6M
GeoLoRA (τ = 0.1) 0.257 1.4M
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(a) Validation accuracy over epochs.
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(b) Trainable parameters over epochs.
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Figure 2: Top panels (a, b): GeoLoRA-adapted ViT-32b fine-tuned on Cifar10 with different initial
layer ranks, using a learning rate of 1e−3 and τ = 0.3. The total number of trainable parameters
converges to a similar steady state, regardless of the initial rank. The differences in validation
accuracy between runs are smaller than the variance observed within individual setups. Bottom
panels (c, d): GeoLoRA- and AdaLoRA-adapted ViT-32b fine-tuned on Cifar10 with different rank
budgets and learning rates. Fields marked with nan indicate that training diverged within the first
epoch. GeoLoRA demonstrates significantly greater robustness than AdaLoRA, particularly with
high learning rates.

between LoRA and GeoLoRA, showing that GeoLoRA consistently achieves lower validation loss
with fewer trainable parameters.

6 CONCLUSION

We introduced GeoLoRA (Geometric Low-Rank Adaptation), a novel adaptive low-rank fine-tuning
method that combines computational efficiency with robustness. Based on geometric principles
from dynamical low-rank approximation theory, the method comes with guarantees of convergence
and local optimality. By leveraging a parallel update strategy of the low-rank adapters, the method
requires only a single backward pass per iteration, achieving inference and training speed comparable
or superior to existing baselines such as AdaLoRA, and much more efficient than previous geometric-
aware strategies. Our experiments on the GLUE benchmark, Vision Transformers, and Stable
Diffusion demonstrate that GeoLoRA outperforms existing PEFT methods in both accuracy and
efficiency, with fewer trainable parameters. These results, alongside strong theoretical guarantees,
position GeoLoRA as a robust solution for efficient model adaptation.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning, 2020.

Gianluca Ceruti, Jonas Kusch, and Christian Lubich. A rank-adaptive robust integrator for dynamical
low-rank approximation. BIT Numerical Mathematics, 2022. URL https://doi.org/10.
1007/s10543-021-00907-7.

Gianluca Ceruti, Jonas Kusch, and Christian Lubich. A parallel rank-adaptive integrator for dynamical
low-rank approximation, 2023. URL https://arxiv.org/abs/2304.05660.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv:1602.02830, 2016.

Mehrdad Ghadiri, Matthew Fahrbach, Gang Fu, and Vahab Mirrokni. Approximately optimal
core shapes for tensor decompositions. In International Conference on Machine Learning, pp.
11237–11254. PMLR, 2023.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances
in neural information processing systems, 29, 2016.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models,
2024.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing, 2023. URL https://arxiv.org/
abs/2111.09543.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397, 2017.

Arsen Hnatiuk, Jonas Kusch, Lisa Kusch, Nicolas R. Gauger, and Andrea Walther. Stochas-
tic aspects of dynamical low-rank approximation in the context of machine learning. Op-
timization Online, 2024. doi: https://optimization-online.org/?p=25971. URL https://
optimization-online.org/?p=25971.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/houlsby19a.html.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yerlan Idelbayev and Miguel A. Carreira-Perpinan. Low-rank compression of neural nets: Learning
the rank of each layer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and Nicolo Fusi. Initialization and regularization
of factorized neural layers. In International Conference on Learning Representations, 2021.

O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM Journal on Matrix Analysis
and Applications, 29(2):434–454, 2007a. ISSN 0895-4798. doi: 10.1137/050639703. URL
https://doi.org/10.1137/050639703.

Othmar Koch and Christian Lubich. Dynamical low-rank approximation. SIAM Journal on Matrix
Analysis and Applications, 29(2):434–454, 2007b.

11

https://doi.org/10.1007/s10543-021-00907-7
https://doi.org/10.1007/s10543-021-00907-7
https://arxiv.org/abs/2304.05660
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://optimization-online.org/?p=25971
https://optimization-online.org/?p=25971
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.1137/050639703


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates, 2023.

Yulong Mao, Kaiyu Huang, Changhao Guan, Ganglin Bao, Fengran Mo, and Jinan Xu. Dora:
Enhancing parameter-efficient fine-tuning with dynamic rank distribution. 2024. URL https:
//api.semanticscholar.org/CorpusID:270062642.

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for
resource efficient inference. In International Conference on Learning Representations, 2017.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning, 2021. URL https://arxiv.
org/abs/2005.00247.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 2023. URL
https://arxiv.org/abs/2208.12242.

Hiroyuki Sato. Riemannian optimization and its applications, volume 670. Springer, 2021.

Steffen Schotthöfer, Emanuele Zangrando, Jonas Kusch, Gianluca Ceruti, and Francesco
Tudisco. Low-rank lottery tickets: finding efficient low-rank neural networks via ma-
trix differential equations. In Advances in Neural Information Processing Systems,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf.

Steffen Schotthöfer and M. Paul Laiu. Federated dynamical low-rank training with global loss
convergence guarantees, 2024. URL https://arxiv.org/abs/2406.17887.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter efficient
tuning of pre-trained models using dynamic search-free low-rank adaptation, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding, 2019. URL
https://arxiv.org/abs/1804.07461.

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient
models at no extra cost. Proceedings of Machine Learning and Systems, 3:365–386, 2021.

Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II, volume 375. Springer
Berlin Heidelberg New York, 1996.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4820–4828, 2016.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models, 2022. URL https://arxiv.org/abs/
2106.10199.

Emanuele Zangrando, Steffen Schotthöfer, Gianluca Ceruti, Jonas Kusch, and Francesco Tudisco.
Rank-adaptive spectral pruning of convolutional layers during training. In Advances in Neural
Information Processing Systems, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning, 2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024.

12

https://api.semanticscholar.org/CorpusID:270062642
https://api.semanticscholar.org/CorpusID:270062642
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/2208.12242
https://proceedings.neurips.cc/paper_files/paper/2022/file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf
https://arxiv.org/abs/2406.17887
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 2: Various auxiliary functions

1 def optimizer_step(P : param, G: gradient, λ: learning rate):
2 P new ← P − λG /* May use momentum and weight decay */
3 return P new

4 def basis_augmentation(B: old basis, GB: basis dynamics):
5 [B | B̃]← qr([B | GB ])

6 return B̃

7 def truncation(Ŝ: augmented coefficient, Û : augmented basis, V̂ : augmented co-basis ):
8 Pr1 ,Σr1 , Qr1 ← truncated svd(S̃) with threshold ϑ to new rank r1

9 U ← ÛPr1 ; V ← V̂ Qr1 /* Basis update */
10 S ← Σr1 ;S

inv ← Σ−1
r1 /* Coefficient update with diagonal Σr1 */

11 return U, S, V, Sinv

A ALGORITHM FOR AUXILIARY FUNCTIONS

We present the auxiliary function for Algorithm 1 in Algorithm 2.

B ADDITIONAL INFORMATION FOR THE NUMERICAL TEST CASES

B.1 GLUE BENCHMARK

B.1.1 DATASET DESCRIPTION

We compare GeoLoRA to several fine-tuning methods from recent literature in the General Language
Understanding Evaluation (GLUE) benchmark (Wang et al., 2019). The GLUE benchmark is a
collection of diverse natural language understanding tasks designed to evaluate the performance
of models in comprehending and processing human language. GLUE provides a comprehensive
assessment by including tasks that cover a range of linguistic phenomena, such as textual entailment,
sentiment analysis, sentence similarity, and more. The benchmark consists of nine different tasks:

• CoLA (Corpus of Linguistic Acceptability): Classifying whether a sentence is grammatically
correct or not.

• SST-2 (Stanford Sentiment Treebank): Sentiment analysis task where the goal is to classify the
sentiment of a sentence as positive or negative.

• MRPC (Microsoft Research Paraphrase Corpus): Identifying if two sentences are paraphrases of
each other.

• STS-B (Semantic Textual Similarity Benchmark): Measuring the degree of semantic similarity
between two sentences on a scale from 1 to 5.

• QQP (Quora Question Pairs): Determining if a pair of questions are semantically equivalent.
• MNLI (Multi-Genre Natural Language Inference): Classifying the relationship between a pair of

sentences (entailment, contradiction, or neutral).
• QNLI (Question Natural Language Inference): Determining if a sentence provides a correct answer

to a given question.
• RTE (Recognizing Textual Entailment): Binary classification task for entailment and contradiction.
• WNLI (Winograd Schema Challenge): Resolving pronoun reference ambiguity in sentences.

Specific Focus: MRPC (Microsoft Research Paraphrase Corpus)

We present the benchmark overview in Table 5. To recapitulate, the F1 score is defined in dependence
of precision score P and recall score R. The model precision P is given by

P :=
PT

PT + PF
, (15)
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Table 5: Summary of GLUE benchmark tasks

Corpus Task #Train #Dev #Test #Label Metrics
Single-Sentence Classification (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman cor

where PT is the number of true positive and PF is the number of false positive examples. The recall
R is the ratio

R :=
PT

PT +NF
, (16)

where NF are the false negatives. The F1 score combines these two metrics to

F1 :=
2PR

P +R
. (17)

B.1.2 REFERENCE IMPLEMENTATIONS

Full finetuning (FT): This is the most common approach for model finetuning and transfer learning.
Here, the model is initialized with pre-trained weights and all model parameters are updated with
gradient descent.

Bitfit (Zaken et al., 2022): Here, the model is initialized with pre-trained weights, but only bias
terms are updated with gradient descent.

Adapter tuning (Houlsby et al., 2019; Pfeiffer et al., 2021): Two-layer adapters are inserted between
transformer blocks. In (Houlsby et al., 2019), the adapter is inserted between the self-attention module
and the feed-forward module and equipped with a residual connection. In (Pfeiffer et al., 2021), the
adapter is applied after the feed-forward module and the layer-norm module. To maintain conistency
with the notation of (Zhang et al., 2023), we call the method of (Houlsby et al., 2019) HAdapter and
the method of (Pfeiffer et al., 2021) PAdapter.

LoRA (Hu et al., 2021): As stated in Section 3, LoRA applies additive corrections to selected weight
matrices, i.e. z = σ(Wptx + α

rAB⊤x) for A,B ∈ Rn×r. We apply LoRA to key Wk, query Wq

and value Wv matrices of all attention blocks, and to both feed-forward layers Wf1 and Wf2 .

AdaLoRA (Zhang et al., 2023): As stated in Section 3, AdaLoRA applies additive corrections
to selected weight matrices, i.e. z = σ(Wptx + α

r USV ⊤x) with arbitrary activation σ, frozen
pre-trained weights Wpt ∈ Rn×n, rank r adapter weights U, V ∈ Rn×r, S ∈ Rr×r. An SVD-based
truncation mechanism is used to select layer ranks. Alternatively, the loss-sensitivity of singular
vectors can be used for layer rank selection. Just like LoRA, we apply AdaLoRA to key Wk, query
Wq and value Wv matrices of all attention blocks, and to both feed-forward layers Wf1 and Wf2 .

We use the implementation of (Zhang et al., 2023, Appendix C) to compute the results for the
presented reference methods and use their reported hyper-parameter choices: We compare the
baselines under different budget levels, for example, given the total trainable parameters as 0.3/0.6/1.2
million. In order to match the parameter budget, we select the hidden dimensions of adapters from {8,
16, 32, 64}, set the rank r of LoRA as {2, 4, 8}, and choose the final budget b(T ) of AdaLoRA from
{144, 288, 576}. Then we set b(0) as 1.5 times of b(T ) for AdaLoRA and select the regularization
coefficient γ from {0.1, 0.3, 0.5}. We set the exponential moving average parameters β1 and β2 of
AdamW as their default value 0.85. We select the learning rate from {5e−5, 8e−5, 1e−4, 2e−4}.
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B.1.3 IMPLEMENTATION DETAILS

We implement GeoLoRA as similar as possible as Adalora to achieve a fair comparison. That is,
we add an adapter of the form z = σ(Wptx + USV ⊤x) to the key Wk, query Wq and value Wv

matrices of all attention blocks, and to both feed-forward layers Wf1 and Wf2 . For each adapter, we
employ Algorithm 1 to update the layer weights and ranks.

In Table 6, we display the hyper-parameter choices of GeoLoRA

Table 6: Hyper-parameter setup for the GLUE benchmark.

Dataset Learning Rate Batch Size # Epochs τ inital rank

MNLI 5× 10−4 32 7 0.15 10
RTE 1.2× 10−3 32 50 0.15 10
QNLI 1.2× 10−3 32 5 0.15 10
MRPC 1× 10−3 32 30 0.15 10
QQP 5× 10−4 32 5 0.15 10
SST-2 8× 10−4 32 24 0.15 10
CoLA 5× 10−4 32 25 0.15 10
STS-B 2.2× 10−3 32 25 0.15 10

B.2 OBJECT CLASSIFICATION BENCHMARKS FOR THE VIT-BASE-PATCH16-224 VISION
TRANSFORMER

We present in Table 3 results for finetuning the vit-base-patch16-224 vision transformer, which is
pretrained on the imagenet-1k-dataset. The pretrained weights are downloaded from the torch-vision
python package. For both AdaLora and GeoLoRA, we augment the key, query, and value matrices
from attention layers as well as the three fully connected layers of each transformer block with a
low-rank adapter. The biases of each layer are trainable. Additionally, the classifier is augmented
with a low-rank adapter. The classifier is low-rank by construction, and we fix the rank as the number
of classes. We fine-tune the vision transformer on Cifar10, Cifar100 and Tiny-Imagenet.

The hyperparameter settings to generate the results of Table 3, Figure 3 and Figure 4 are given in
Table 7.

Table 7: Hyper-parameter setup for fine-tuning vit-base-patch16-224 vision transformer with Ge-
oLoRA.

Dataset Learning Rate Batch Size # Epochs τ inital rank

Cifar10 1× 10−3 256 5 0.2 16
Cifar100 1× 10−3 256 5 0.25 32
TinyImageNet 1× 10−4 256 5 0.15 32

Figure 3 and Figure 4 show the rank distribution across layers for both AdaLoRA and GeoLoRA with
global budget, for learning rate λ = 1e−3 and λ = 1e−4 and budgets ranging from b = 200, . . . , 600
total ranks for the network. Both methods prefer to allocate higher ranks to the deeper layers of the
vision transformer, and prefer fully-connected layers over attention layers. Both methods pefer the
first fully connected layer of a transformer block over the second. Overall GeoLoRA tends to assert
higher ranks to single layers, compared to AdaLora, that distributes ranks more heterogeneously. The
effects are more pronounced for smaller learning rates.
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(a) GeoLoRA: mean b=200
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(b) AdaLoRA: mean b=200
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(c) GeoLoRA: mean b=300
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(d) AdaLoRA: mean b=300
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(e) GeoLoRA: mean b=400
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(f) AdaLoRA: mean b=400
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(g) GeoLoRA: mean b=500
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(h) AdaLoRA: mean b=500
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(i) GeoLoRA: mean b=600
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(j) AdaLoRA: mean b=600

Figure 3: Rank distribution of Vit-32b finetuned on Cifar10 for 5 epochs at learning rate 1e−3 using
GeoLoRA and AdaLoRA.
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(a) GeoLoRA: mean b=200
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(b) AdaLoRA: mean b=200
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(c) GeoLoRA: mean b=300
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(d) AdaLoRA: mean b=300
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(e) GeoLoRA: mean b=400
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(f) AdaLoRA: mean b=400
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(g) GeoLoRA: mean b=500
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Figure 4: Rank distribution of Vit-32b finetuned on Cifar10 for 5 epochs at learning rate 1e−4 using
GeoLoRA and AdaLoRA.

B.3 STABLE DIFFUSION ON DREAMBOOTH,

In this numerical example, we apply low-rank adapters to all linear and attention layers of the U-Net
and the text encoder networks. The hyperparameters for LoRA and GeoLoRA are the same, apart

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

from the fact that we start with adapters of rank 8 for both Unet and text encoder. We train for 5 full
epochs, using adamW as an optimizer, with (β1, β2) = (0.9, 0.999), initial learning rate 5× 10−6

and weight decay set to 10−2.
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C OVERVIEW FOR THE NUMERICAL ANALYSIS

C.1 NOTATION

We provide an overview of the notation used throughout the main manuscript and the appendix.

• W ∈ Rn×n is the full-rank weight matrix of a neural network layer or adapter.
• Z ∈ Rn×n is an arbitrary matrix.
• Mr = {Z ∈ Rn×n : rank(Z) = r} is a manifold of rank r matrices.
• TZMr is the tangent space ofMr at Z for any Z ∈ Rn×n.
• W r = USV ⊤ ∈Mr is a rank-r approximation of a matrix W .
• Ŵ r = Û ŜV̂ ⊤ ∈Mr is a rank-r approximation of a matrix W with augmented basis.
• U, V ∈ Rn×r is the orthonormal basis and co-basisMr.
• Û = [U0, Ũ ] ∈ Rn× 2r is the augmented basis. (Analogously for V̂ .)
• U0 ∈ Rn×r is the basis at the beginning of the iteration. (Analogously for V0.)
• Ũ ∈ Rn×r is the basis augmentation, obtained by [U0, Ũ ] = ortho([U0,K

new]) ∈ Rn×2r0 . (Analo-
gously for Ṽ .)

• S ∈ Rr×r is the coefficient matrix so assemble the low-rank approximation W r from U, V .
• P (Z) is the orthogonal projection onto TZMr.
• PU = UU⊤ is the orthogonal projection onto the range of orthonormal U ∈ Rn×r.
• PV = V V ⊤ is the orthogonal projection onto the range of orthonormal V ∈ Rn×r.
• When applied to vectors, ∥·∥ denotes the Euclidean norm (ℓ2-norm). When applied to matrices, ∥·∥

denotes the Frobenius norm.
• L(W ; ξ) denotes the loss function dependent on weight matrix W and data sample randomness ξ.

Commonly abbreviated by L(W ).
• f(W ; ξ) = −∇WL(W ; ξ) is the negative stochastic loss gradient w.r.t W . Commonly abbreviated

by f(W ).
• F (W ) = Eξ[f(W, ξ)] the expectation of the random loss gradient, called the deterministic gradient.

C.2 RECAP OF COMMONLY USED PROPERTIES

We recapitulate repeatedly used properties of the mathematical objects and notations introduced
above.

• Per definition, we have for any Z ∈ Rn×n

P (W r)Z = UU⊤Z + ZV V ⊤ − UU⊤ZV V ⊤ (18)
• Since TZMr is a subspace of Rn×n for any Z ∈ Mr we can decompose the gradients F

and f into F (Z) = M(Z) + R(Z) and f(Z) = f(Z) + r(Z) for any Z ∈ Rn×n, where
M(Z),m(Z) ∈ TZMr.

C.3 GLOBAL ASSUMPTIONS

The following provides a comprehensive overview of the global assumptions for made in the analysis
section and proofs of the provided theorems. The assumptions are common in literature, see e.g.
(Hnatiuk et al., 2024)
Assumption 1. There is an ε > 0 such that ∥R(Z)∥ , ∥r(Z)∥ ≤ ϵ for all Z ∈Mr

Assumption 2. F and f are bounded by a constant B > 0 and L-continuous w.r.t. ∥·∥ with constant
L > 0.
Assumption 3. There is a constant C > 0 such that ∥F (Z)− f(Z)∥ ≤ C.
Assumption 4. At initial time, we assume that the difference of a full-rank weight matrix W0 and its
low-rank counterpart W r

0 is bounded by ∥W0 − Y0∥ ≤ δ for δ > 0.
Assumption 5. For all times, we have w.l.o.g L(t) > 0.

D DESCENT DIRECTION

We first state a few auxiliary lemmas, which provide common inequalities that will be used in the
following analysis.
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Lemma 1. (Hnatiuk et al., 2024, Lemma 5.2) For any two matrices Y1, Y2 ∈ Rn×n and an L-smooth
L with constant L it holds

L(Y1)− L(Y2) ≤ −⟨Y1 − Y2, f(Y2)⟩+
L

2
∥Y1 − Y2∥2 , (19)

where f(Y ) = −∇Y L(Y ). Furthermore, it holds

L(Y1)− L(Y2) ≤ −⟨Y1 − Y2, F (Y2)⟩+
L

2
∥Y1 − Y2∥2 , (20)

where F (Y ) = −E[∇Y L(Y )].

The following results are primarily based on (Hnatiuk et al., 2024) and use the reformulation of
truncated terms as proposed in (Zangrando et al., 2024). For ease of notation, we use f(W r

t ) =
f(W r

t , ξt). Hence, randomness is not explicitly stated in our notation. Note that in this case, the
factorized solution W r

1 = U1S1V
⊤
1 is random since it depends on f(W r

1 ). When using expected
values, we explicitly write down the corresponding random variable. That is, Eξ[·] is the expected
value for a random variable ξ. We denote the random variable in step T as ξT and denote E[·] :=
Eξ1,··· ,ξT [·].
Theorem 4. (Restatement of Theorem 1) Algorithm 1 with stochastic (mini-batch) gradients fulfills

Eξt+1 [L(W r
t+1)] ≤ L(W r

t )− λ

(
1− Lλ2

2

)
Eξ1 [∥P (W r

t )f(W
r
t , ξt)∥2] + LEξ1 [∥W r

t+1 − Ŵ r
t ∥] .

(21)

where W r
t , Ŵ r

t , W r
t+1 are the low-rank weight matrices at the start of iteration t+ 1, before, and

after the truncation step, respectively. The step size is given by λ.

Proof. Without loss of generality, we restrict ourselves to time steps t = 0 and write f(W r
0 ) shorthand

for f(W r
t=0, ξt). By definition of the coefficient matrix assembly in eq. (8), we get respectively

• Ũ Ũ⊤f(W r
0 )V0V

⊤
0 for the right hand side of the Snew block

• U0U
⊤
0 f(W r

0 )Ṽ Ṽ ⊤ for the right hand side of the Lnew block

• Ũ Ũ⊤f(W r
0 )V0V

⊤
0 for the right hand side of the Knew block

• and zero for the lower right block.

Since the augmented bases are orthonormal, we can write for W r
0 = U0S0V0

Ŵ r
0

(8)
= W r

0 + λU0U
⊤
0 f(W r

0 )V0V
⊤
0 + λŨŨ⊤f(W r

0 )V0V
⊤
0 + λU0U

⊤
0 f(W r

0 )Ṽ Ṽ ⊤

=W r
0 − λU0U

⊤
0 f(W r

0 )V0V
⊤
0 + λÛÛ⊤f(W r

0 )V0V
⊤
0 + λU0U

⊤
0 f(W r

0 )V̂ V̂ ⊤

=W r
0 − λU0U

⊤
0 f(W r

0 )V0V
⊤
0 + λf(W r

0 )V0V
⊤
0 + λU0U

⊤
0 f(W r

0 )

(18)
= W r

0 + λP (W r
0 )f(W

r
0 ).

By Lemma 1 we have

L(Ŵ r
0 )− L(W r

0 ) ≤ −⟨f(W r
0 ), Ŵ

r
0 −W r

0 ⟩+
L

2
∥Ŵ r

0 −W r
0 ∥2. (22)

Therefore, plugging the above equation into eq. (22) yields

L(Ŵ r
0 )− L(W r

0 ) ≤ − λ⟨f(W r
0 ), P (W r

0 )f(W
r
0 )⟩+

Lλ2

2
∥P (W r

0 )f(W
r
0 )∥2 (23)

= − λ⟨P (W r
0 )f(W

r
0 ), P (W r

0 )f(W
r
0 )⟩+

Lλ2

2
∥P (W r

0 )f(W
r
0 )∥2 (24)

= − λ

(
1− Lλ2

2

)
∥P (W r

0 )f(W
r
0 )∥2 . (25)
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where the second line is obtained by definition of the orthogonal projection. Comparing the loss
before Ŵ r and after W r

1 truncation yields for some s ∈ (0, 1) using the mean value theorem and the
Cauchy-Schwarz inequality,

L(W r
1 ) ≤ L(Ŵ r

0 + ⟨∇L(sW r
1 + (1− s)Ŵ r),W r

1 − Ŵ r
0 ⟩ ≤ L(Ŵ r

0 ) + L∥W r
1 − Ŵ r

0 ∥. (26)

Plugging eq. (26) into eq. (23) then gives

L(W r
1 )− L(W r

0 ) ≤ −λ
(
1− Lλ2

2

)
∥P (W r

0 )f(W
r
0 )∥2 + L∥W r

1 − Ŵ r
0 ∥,

where L is the Lipschitz constant of F . Hence, taking the expected value yields

Eξ1 [L(W r
1 )] ≤ L(W r

0 )− λ

(
1− Lλ2

2

)
Eξ1 [∥P (W r

0 )f(W
r
0 )∥2] + LEξ1 [∥W r

1 − Ŵ r
0 ∥] .

E CONVERGENCE

Theorem 5. (Restatement of Theorem 2) Let L ≥ 0 and W r
1 , . . . ,W

r
T be the solutions generated by

Algorithm 1 over T steps. Let the learning rate sequence {λt} satisfy the Robbins-Monro conditions:∑
t λt = +∞

∑
t λ

2
t < +∞ .

Further assume
∑T−1

t=1 E[∥W r
t+1 − Ŵ r

t ∥] ≤ D < ∞, i.e. after some time, the solution W r
t is

contained in a manifold of rank r. Then we have

lim inf
T→∞

E[∥P (W r
T )f(W

r
T )∥2] = 0 ,

where the expected value is taken over all ξt.

Proof. By taking the expected value over ξ1, . . . , ξT in eq. (21) and denoting the corresponding
expected value as E[·] we get

E[L(W r
t+1)]− E[L(W r

t )] ≤ −λtE[∥P (W r
t )f(W

r
t )∥2] +

Lλt
2

2
E[∥P (W r

t )f(W
r
t )∥2]

+LE[∥W r
t+1 − Ŵ r

t ∥]

=− λt

(
1− Lλt

2

)
E[∥P (W r

t )f(W
r
t )∥2] + LE[∥W r

t+1 − Ŵ r
t ∥] .

Using a telescoping sum until t = T then yields

−L(Y0) ≤ E[L(W r
t )]− L(Y0) ≤ −

T−1∑
t=1

λt

(
1− Lλt

2

)
E[∥P (W r

t )f(W
r
t )∥2]

+ L

T−1∑
t=1

E[∥W r
t+1 − Ŵ r

t ∥] .

Rearranging gives
T−1∑
t=1

λt

(
1− Lλt

2

)
E[∥P (W r

t )f(W
r
t )∥2] ≤ L(Y0) + L

T−1∑
t=1

E[∥W r
t+1 − Ŵ r

t+1∥] .

≤ L(Y0) + LD .

Using the assumptions ∥P (W r
t )f(W

r
t )∥ ≤ B and

∑T−1
t=1 E[∥W r

t+1 − Ŵ r
t+1∥] ≤ D. Now, when

T →∞, then the right-hand side remains bounded, implying that

lim inf
T→∞

E[∥P (W r
t )f(W

r
t )∥2] = 0 .
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F EFFICIENT EVALUATION OF THE RIGHT HAND SIDE OF THE LOW-RANK
DYNAMICS

Algorithm 1 creates a trajectory in the low-rank parameter space, that robustly follows the full-rank
solution of the gradient flow of the neural network training. In particular, Theorem 6 yields a
time-continuous representation of Algorithm 1.
Theorem 6. The evolution equations eq. (6) are explicit Euler discretizations of a dynamical system
which is equivalent to

Ṡ = −∇SL(U0S(t)V
⊤
0 ), S(t = 0) = S0,

K̇ = −∇KL(K(t)V ⊤
0 ), K(t = 0) = U0S0,

L̇ = −∇LL(U0L(t)
⊤), L(t = 0) = S⊤

0 V0,

(27)

where L is the stochastic loss given random data samples.

Proof. Consider the continuous time dynamics of K̇, where we omit explicit time dependence on
U, S, V and K for the sake of brevity, i.e.,

K̇ = ˙(US)

= U̇S + UṠ

(4)
= −(I − UU⊤)∇WL(USV ⊤)V S−1S − UU⊤∇WL(USV ⊤)V

= −(I − UU⊤)∇WL(USV ⊤)V − UU⊤∇WL(USV ⊤)V

= (UU⊤ − I)∇WL(USV ⊤)V − UU⊤∇WL(USV ⊤)V

= −∇WL(USV ⊤)V

(28)

Further, using the chain rule, we observe

∇UL(USV ⊤) = ∇WL(USV ⊤)∇U (USV ⊤) = ∇WL(USV ⊤)V S⊤ .

Thus, −∇UL(USV ⊤)S−⊤ = −∇WL(USV ⊤)V = K̇. Lastly we have by the chain rule K̇ =
−∇WL(USV ⊤)V = −∇KL(USV ⊤), which yields

K̇ = −∇UL(USV ⊤)S−⊤ = −∇KL(KV ⊤) .

Analogously we obtain for L̇

L̇ = −∇V L(USV ⊤)S−1 = −∇LL(UL⊤) ,

which concludes the proof.

Note that using an explicit Euler time discretization for eq. (27) directly yields eq. (6), the update
step of GeoLoRA.

G ROBUST ERROR BOUND OF THE LOW-RANK SYSTEM

We show the robust error bound for Algorithm 1 applied to a single layer, and then extend the result
to a network containing multiple layers treated with Algorithm 1.
Theorem 7. (Restatement of Theorem 3) For an integer k, let t = kλ. Let W (t) be the solution of
eq. (12), and let W r

t be the factorized low-rank solution after k steps with Algorithm 1. Assume that
for any Z in a neighborhood of W (t), we have ∥(I − P (Z))∇L(Z)∥ < ε, i.e., the gradient flow is
close to TZMr. Then,

∥W (t)−W r
t ∥ ≤ c1ε+ c2λ+ c3ϑ/λ . (29)

Moreover, let WRF (t) denote the solution of the Riemannian flow of equation 4. Then,

∥WRF (t)−W r
t ∥ ≤ c4ε+ c2λ+ c3ϑ/λ (30)

where the constants c1, c2, c3, c4 depend only on L and B.
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Proof. Let us first investigate the local error. That is, we choose the solution at a given time t0 of
the full-rank gradient flow of eq. (12), denoted as W (t0), as a given iteration of GeoLoRA, which
we denote as W r

0 . Hence, W (t0) = W r
0 =: W0 ∈ Mr. We are then interested in bounding the

distance between the full-rank flow at t1 = t0 + λ to the GeoLoRA solution after a single iteration
with learning rate λ. To simplify notation, we denote Û = [U0|Ũ ] ∈ Rn×2r0 , V̂ = [V0|Ṽ ] ∈ Rn×2r0

and denote the projections onto these augmented basis vectors as PÛ = Û Û⊤ and PV̂ = V̂ V̂ ⊤.
Moreover, c denotes a generic constant that only depends on L and B. It is important to note that
this constant does not depend on S−1

k , since we never perform Taylor expansions of the individual
low-rank factors.

Let us denote the augmented solution of GeoLoRA before truncation as Ŵ r = Û ŜV̂ ⊤. Similarly,
W r

1 is the truncated solution after iteration 1. Then, the local error is bounded by

∥W (t1)−W r
1 ∥ ≤

∥∥W (t1)− PÛW (t1)PV̂

∥∥+∥∥∥PÛW (t1)PV̂ − Ŵ r
∥∥∥+

∥∥∥Ŵ r −W r
1

∥∥∥ .
In the following, we bound the three norms individually in three corresponding steps.

Step 1 - Bounding
∥∥W (t1)− PÛW (t1)PV̂

∥∥: Using the triangle inequality, we obtain∥∥W (t1)− PÛW (t1)PV̂

∥∥ ≤∥∥W (t1)− PÛW (t1)
∥∥+

∥∥PÛW (t1)(I − PV̂ )
∥∥

=
∥∥(I − PÛ )W (t1)

∥∥+
∥∥W (t1)(I − PV̂ )

∥∥ ,
using orthonormality of Û .

First term: Consider the first term with the dynamics Ẇ (t) = f(W ) in mind,∥∥(I − PÛ )W (t1)
∥∥

(I)
≤

∥∥(I − PÛ )(W0 + λf(W0))
∥∥+ cλ2

≤
∥∥(I − PÛ )(W0 − λP (W0)f(W0) + λ(I − P (W0))f(W0))

∥∥+ cλ2

≤
∥∥(I − PÛ )W0

∥∥+ λ
∥∥(I − PÛ )P (W0)f(W0)

∥∥+ λ
∥∥(I − PÛ )(I − P (W0))f(W0))

∥∥+ cλ2

(II)
= λ

∥∥(I − PÛ )P (W0)f(W0)
∥∥+ λ

∥∥(I − PÛ )(I − P (W0))f(W0))
∥∥+ cλ2

(III)
≤ λ

∥∥(I − PÛ )P (W0)f(W0)
∥∥+ λε+ cλ2

(IV)
≤ λ

∥∥∥(I − PÛ )f(W0)V̂ V̂ ⊤
∥∥∥+ λε+ cλ2.

using Taylor expansion in (I), W0 ∈Mr in (II), Assumption 1 in (III), and eq. (18) in (IV).

By construction of the basis augmentation, we obtain

(I − PÛ )K
new = (I − PÛ )U0S0 = 0. (31)

From eq. (31) we can directly conclude that
∥∥(I − PÛ )f(W0)V0V

⊤
0

∥∥ = 0. Thus we obtain

λ
∥∥∥(I − PÛ )f(W0)V̂ V̂ ⊤

∥∥∥ =λ
∥∥(I − PÛ )f(W0)V0V

⊤
0

∥∥+ λ
∥∥∥(I − PÛ )f(W0)Ṽ Ṽ ⊤

∥∥∥
≤ λϵ,

where we used for the second term that Ṽ is in the orthogonal complement of V0. Hence,∥∥(I − PÛ )W (t1)
∥∥ ≤ cλ2 + λε .

Second term: The same derivation for the co-range using the evolution for L(t) yields∥∥W (t1)(I − PV̂ )
∥∥ ≤ cλ2 + λε.

Step 2 - Bounding
∥∥∥PÛW (t1)PV̂ − Ŵ r

∥∥∥: We have by the assembly of the augmented S matrix in
eq. (8),

Ŵ r = Û ŜV̂ ⊤ = U0S
newV ⊤

0 + Ũ Ũ⊤KnewV ⊤
0 + U0L

new,⊤Ṽ Ṽ ⊤,
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from which we obtain the error bound between the projected W (t1) and Ŵ r:∥∥∥PÛW (t1)PV̂ − Ŵ r
∥∥∥ ≤ ∥∥∥PÛW (t1)PV̂ − U0S

newV ⊤
0 + Ũ Ũ⊤KnewV ⊤

0 + U0L
new,⊤Ṽ Ṽ ⊤

∥∥∥
(I)

≤
∥∥U⊤

0 W (t1)V0 − Snew
∥∥+

∥∥∥Ũ⊤W (t1)V0 − Ũ⊤Knew
∥∥∥

+
∥∥∥U⊤

0 W (t1)Ṽ − Lnew,⊤Ṽ
∥∥∥+

∥∥∥Ũ⊤W (t1)Ṽ
∥∥∥ .

where we use orthonormality of Û ,V̂ in (I). All terms on the right-hand side can be bounded by λ2

and ε terms:

First term: We have∥∥U⊤
0 W (t1)V0 − Snew

∥∥ (I)
=

∥∥∥∥∫ t1

t0

U⊤
0 (f(W (t))− f(W0))V0 dt

∥∥∥∥
(II)
≤

∫ t1

t0

∥f(W (t))− f(W0)∥ dt

(III)
=

∫ t1

t0

∥f(W (t0))− f(W0)∥ dt+ cλ2

(IV)
= cλ2

where we use in (I) Snew = S0 −U⊤
0 ∇WL(W0; ξ)V0 = −U⊤

0 f(W0)V0. We use the orthonormality
of U0, V0 in (II), perform a Taylor expansion of the full-rank flow in (III), and finally use that
W (t0) = WS(t0) in (IV).

Second and third term: We have∥∥∥Ũ⊤W (t1)V0 − Ũ⊤Knew
∥∥∥ (I)
≤

∫ t1

t0

∥∥∥Ũ⊤(f(W (t))− f(W0))V0

∥∥∥ dt

(II)
≤

∫ t1

t0

∥f(W (t0))− f(W0)∥ dt+ cλ2

= cλ2 ,

where we use the K-step of GeoLoRA in (I) and a Taylor expansion of the full-rank flow in (II).∥∥∥U⊤
0 W (t1)Ṽ − Lnew,⊤Ṽ

∥∥∥ can be bounded analogously.

Fourth term: Lastly, we obtain for the fourth term,∥∥∥Ũ⊤W (t1)Ṽ
∥∥∥ =

∥∥∥∥Ũ⊤W (t0)Ṽ +

∫ t1

t0

Ũ⊤f(W (t))Ṽ dt

∥∥∥∥
(I)
≤

∫ t1

t0

∥∥∥Ũ⊤f(W (t))Ṽ
∥∥∥ dt

≤
∫ t1

t0

∥∥∥Ũ⊤f(W (t0))Ṽ
∥∥∥ dt+ cλ2

(II)
≤ λε+ cλ2 .

with Ũ⊤W (t0)Ṽ = 0 by the construction of the augmented matrix Ŝ used in (I), and in (II), we use
Assumption 1.

Step 3 - Bounding of
∥∥∥Ŵ r −W r

1

∥∥∥: By construction of the truncation step we directly obtain∥∥∥Ŵ r −W r
1

∥∥∥ ≤ ϑ

In conclusion, we obtain for a single iteration of Algorithm 1
∥W (t1)−W r

1 ∥ ≤
∥∥W (t1)− PÛW (t1)PV̂

∥∥+∥∥∥Û Û⊤W (t1)PV̂ − Ŵ r
∥∥∥+

∥∥∥Ŵ r −W r
1

∥∥∥
≤ c̃1λϵ+ c̃2λ

2 + ϑ
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To conclude, the global error in the training epochs follows by using the Lipschitz continuity of the
gradient flow: We move from the local error in time to the global error in time by a standard ODEs
argument of Lady Windermere’s fan (Wanner & Hairer, 1996, §II.3); With t = kλ and denoting the
adapter computed with GeoLoRA at iteration k as W r

t we then have

∥W (t)−W r
t ∥ ≤ c1ϵ+ c2λ+ c3ϑ/λ .

This bounds the distance between the full-rank flow and GeoLoRA. The result trivially extends
to the Riemannian flow of equation 4. Denote by WRF(t) the solution of the Riemannian flow
ẆRF(t) = −P (WRF(t))∇WL(WRF(t)). Then, since ∥W (t)−WRF(t)∥ ≤ cϵ, it directly follows
that

∥WRF(t)−W r
t ∥ ≤ c4ϵ+ c2λ+ c3ϑ/λ .

H VISUALIZATION OF THE STIFFNESS OF THE BASIC LOW-RANK SYSTEM

Consider Equation (5) in the case for n = 20. We set the target matrix

W =


0 15 0 . . .
−2 0 0 . . .
0 0 0 . . .
...

...
...

. . .

 ∈ R20×20,

which has rank r = 2 and singular values σ1 = 15 and σ2 = 2 We compare SVD-lora, AdaLora, and
GeoLoRA, both with an ansatz of form Wans = USV ⊤ initialized as

U, V =

[
I
0

]
∈ R20×4, S =

10 0 0 0
0 1e− 2 0 0
0 0 1e− 4 0
0 0 0 1e− 6

 ∈ R4×4

where U ,V are orthonormal, and the S matrix has a fast decaying singular spectrum.

AdaLora and GeoLoRA use a relative singular value truncation threshold τ = 0.15 for rank truncation.
We found that learning rate λ = 0.178 is the maximal learning rate before AdaLora and SVD-Lora
become unstable, whereas GeoLoRA allows for arbitrary large learning rates, and we set λ = 0.1.
We present the trajectories of the S-matrix elements of the corresponding methods in Figure 5 for up
to 1000 iterations or until single precision accuracy is reached. As seen in Figure 5, AdaLora and
SVD-Lora exhibit heavy oscillations in the trajectories of the S-matrix elements - leading to slow
convergence. Adalora - although using orthonormalization by regularization of the low-rank basis is
not able to stabilize the training, leading to overestimation of the rank, which is r = 5 at final time
and a final loss value of 1.6. Similarly SVD-Lora exhibits even stronger oscillations and is not able
to find the right matrix approximation. In contrast, GeoLoRA identifies the correct rank r = 2 and
the corresponding correct singular values 15 and 2.

I STRUCTURE PRESERVATION

The goal of this section is to clarify the formulation of Algorithm 1 in relation with the previous
related literature. In particular, we want to show that the proposed algorithm can be seen as an
efficient structure preservation formulation of a projected gradient flow (Koch & Lubich, 2007a) for
training neural networks. In this section, to achieve full generality, we will denote with Yi either the
pretrained matrices or the low-rank adapters.
As already mentioned in the previous section, gradient descent can be seen an forward Euler dis-
cretization of the gradient system

Ẏi = −∇YiL(Y1, . . . , YL), i = 1, . . . , L
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(a) SVD-Lora, S matrix
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(b) AdaLora, S matrix
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(c) GeoLoRA, S matrix

Figure 5: Time-trace of the matrix elements of SVD-Lora (a) AdaLora (b) and the proposed method
GeoLoRA (c) to solve Equation (5). SVD-Lora was trained with learning rate λ = 0.00178, which is
the largest learning rate for which the optimization remained stable, GeoLoRA allows larger learning
rates, set to λ = 0.1. GeoLoRA converges fast to single precision accuracy, whereas SVD-LORA still
has a loss value of 1.7 after 1000 iterations, due to the heavy oscillations in it’s S matrix trajectory
(a). Adalora reduces the oscillations, however incorrectly identifies the rank and fails to converge due
to the influence of the additional singular values.

The neural network fY1,...,YL
naturally induces a weighted graph, where nodes are neurons and

weights are connections among them and for which the adjacency matrix can be written as:

Y :=


0 Y1 0 · · · 0
0 0 Y2 · · · 0
...

...
...

. . .
...

0 0 0 · · · YL

0 0 0 · · · 0

 ∈ R|N |×|N|

where |N | =
∑L

i=1 di is the total number of neurons of the neural network.
The matrix Y now represents the adjacency matrix of the computational graph, and the block structure
is given by the layers. A model with a general full adjacency matrix Y , would in general have
non-zero connections between two generic layers i, j, descriebed by the block Yij . Let’s consider the
model

fY(x) = zL(x), z0(x) = x, zℓ+1 = σi

(∑
i

Yi,ℓ+1z
i
)

Notice that for Y upper diagonal, the previous model would be a feedforward network. Given this
observation, under the assumption that fY(x) is well defined as an eventual fixed point, we can now
see the loss function as a function of the full adjacency matrix, with an abuse of notation we will call
it again L(Y). Usual training would superimpose the sparse graph with the same structure of Y , but
let’s consider for a moment the gradient flow

Ẏ = −∇L(Y)
Clearly, the flow does not preserve the sparsity of the adjacency matrix Y , even for sparse initial
conditions. Using the theory developed in (Koch & Lubich, 2007a) directly on this gradient flow
would lead to neural networks with a non-feedforward topology. Moreover, given the size of |N |
for modern neural networks, it can be expensive to compute QR or SVD decomposition of the basis
matrices. Luckily, the sparsity structure is a simple linear constraint represented by the mask matrix

M :=


0 11⊤ 0 · · · 0
0 0 11⊤ · · · 0
...

...
...

. . .
...

0 0 0 · · · 11⊤

0 0 0 · · · 0

 ∈ R|N |×|N|

and the linear operator Π(A) =M⊙A.

A system preserving the sparsity pattern is given naturally by the ODE

Ẏ = −Π∇L(Y)
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However, it is not obvious that by projecting this last system on the manifold of rank-r matricesMr

the block structure is preserved. Fortunately, it is indeed the case, described by the following lemma:
Proposition 2. (Block structure preservation of the flow)
Consider the gradient flow with sparse initial condition

Ẏ = −P (Y)Π∇L(Y), Y(0) = Y0 ∈ range(Π)

Then Y(t) ∈ range(Π) for all t ≥ 0.

Proof. It is necessary and sufficient to prove that P (Y(t))Π∇L(Y(t)) ∈ range(Π) for all t ≥ 0,
i.e. that ΠP (Y(t))Π∇L(Y(t)) = P (Y(t))Π∇L(Y(t)). The key to prove this is to observe that for
Z ∈ range(Π), we have P (Y)Z ∈ range(Π). In fact, given Z ∈ range(Π), we can write a SVD
of Z as

Z =


0 U1 0 · · · 0
0 0 U2 · · · 0
...

...
...

. . .
...

0 0 0 0 UL

I 0 0 · · · 0




0 0 0 · · · 0
0 S1 0 · · · 0
...

...
...

. . .
...

0 0 0 SL−1 0
0 0 0 · · · SL




I 0 0 · · · 0
0 V ⊤

1 0 · · · 0
...

...
...

. . .
...

0 0 0 V ⊤
L−1 0

0 0 0 · · · V ⊤
L



and we have UU⊤, V V ⊤ ∈ range(Π). Thus, by direct calculation we can show that
UU⊤Z,ZV V ⊤, UU⊤ZV V ⊤ ∈ range(Π) and thus P (Y)Z = UU⊤Z+ZV V ⊤−UU⊤ZV V ⊤ ∈
range(Π). Since Π∇L(Y(t)) ∈ range(Π) by construction for all t ≥ 0, we get the desider result.
Thanks to this last proposition, following again the line of work in (Koch & Lubich, 2007a), it is pos-
sible to restrict the parameterization in the tangent space to a block-structured one as in Proposition 1.
In this way, we get the following coherence theorem:
Proposition 3. Consider the gradient flow with sparse initial condition

U = Ẏ = −P (Y)Π∇L(Y), Y(0) = Y0 ∈ range(Π)

Consider now the parametrization Y = USV ⊤ with

U =


0 U1 0 · · · 0
0 0 U2 · · · 0
...

...
...

. . .
...

0 0 0 0 UL

I 0 0 · · · 0

 , S =


0 0 0 · · · 0
0 S1 0 · · · 0
...

...
...

. . .
...

0 0 0 SL−1 0
0 0 0 · · · SL

 , V =


I 0 0 · · · 0
0 V1 0 · · · 0
...

...
...

. . .
...

0 0 0 VL−1 0
0 0 0 · · · VL


where U⊤

i Ui = I, V ⊤
i Vi = I . Then, by imposing the Gauge conditions U̇i

⊤Ui = 0, V̇i
⊤Vi = 0, the

projected flow Ẏ = −P (Y)Π∇L(Y) can be rewritten in block fashion as follows:

Ṡi(t) = −U⊤
i (t)∇YiL(U(t)S(t)V (t)⊤)Vi(t),

U̇i(t) = −
(
I − PUi(t)

)
∇Yi
L(U(t)S(t)V (t)⊤)Vi(t)Si(t)

−1,

V̇i(t) = −
(
I − PVi(t)

)
∇YiL(U(t)S(t)V (t)⊤)Ui(t)Si(t)

−⊤, i = 1, . . . , L

Proof. Thanks to the previous proposition, we know that the variation P (Y)Π∇L(Y) ∈ range(Π)
for all t ≥ 0. Then, we have Y(t) ∈ range(Π) for all times, and thus we can decompose it using a
block SVD as described in the statement of the proposition. Moreover, by the self-adjointness of Π,
Galerkin condition can be written as:

⟨Ẏ +∇L(Y), q⟩ = ⟨U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ +∇L(Y), q⟩ = 0, ∀q ∈ TYMr ∩ range(Π)

Since q ∈ TYMr ∩ range(Π), we can represent it as q = δUSV ⊤ + UδSV ⊤ + USδV ⊤, with
δU, δV, δS with the same block structure of U, S and V . By writing the last conditions on a basis of
TYMr ∩ range(Π), we get

⟨U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ +∇L(Y), δUSV ⊤⟩ = 0

⟨U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ +∇L(Y), UδSV ⊤⟩ = 0

⟨U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ +∇L(Y), USδV ⊤⟩ = 0
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Thanks to the Gauge conditions U̇⊤U = 0, V̇ ⊤V = 0 and to the properties of the Frobenius inner
product, the last system becomes

⟨U̇SS⊤ +∇L(Y)V S⊤, δU⟩ = 0

⟨U⊤UṠV ⊤V + U⊤∇L(Y)V, δS⟩ = ⟨Ṡ + U⊤∇L(Y)V, δS⟩ = 0

⟨S⊤SV̇ ⊤ + S⊤U⊤∇L(Y), δV ⊤⟩ = 0

and from this equations we get the known

U̇ = −(I − UU⊤)∇L(Y)V S−1

Ṡ = −U⊤∇L(Y)V
V̇ = −(I − V V ⊤)∇L(Y)⊤US−⊤

By writing this equations block-by-block, we get the desidered result.

This last proposition clarifies how to connect the single matrix setting with the multi-matrix setting,
showing that the presentation of Algorithm 1 is in fact coherent with the single matrix setting.
Moreover, investigation of this setting leads naturally to the global truncation strategy.

I.1 TRUNCATION STRATEGY

The global truncation strategy proposed in the main manuscript is in fact coherent with the single
matrix formulation presented in the previous section. In fact, one can assemble the rank augmented S
matrix as:

Ŝ(t = 1) =


Ŝ1 0 0 · · · 0

0 Ŝ2 0 · · · 0
...

...
...

. . .
...

0 0 0 ŜL−1 0

0 0 0 · · · ŜL


and then truncate the smallest singular values up to required precision. This can be efficiently done
by computing an SVD on each diagonal block, giving effectively an SVD of the global matrix. In
particular, if Ŝi = PiΣiQ

⊤
i we get that

Ŝ = blockdiag(P1, . . . , PL)blockdiag(Σ1, . . . ,ΣL)blockdiag(Q1, . . . , QL)
⊤

Since the matrix blockdiag(Σ1, . . . ,ΣL) is effectively diagonal, by assuming the diagonal is in-
creasingly ordered, it is natural to globally truncate the ranks according to the minimal k such
that ∑2rL

i=k+1 σ
2
i∑2rL

i=1 σ
2
i

<
τ

1− τ

Which corresponds in throwing away the smallest singular values of Ŝ until we reach the desired
relative error. By rewriting this criterion on the singular values of each matrix Ŝi, we get exactly the
global criterion proposed in Section 4.

J OPTIMALITY ON THE LOW-RANK MANIFOLD

We remark below that if W⋆ is a local minimum, then P (W⋆)∇L(W⋆) = 0. In particular, since
P (W )∇L(W ) is the Riemannian gradient with respect to the ambient metric, then the following
holds by definition of the gradient:

∂δWL(W ) = ⟨P (W )∇L(W ), δW ⟩
where ∂δWL(W ) is the directional derivative of L along the direction δW . Thus, P (W⋆)∇L(W⋆) =
0 if and only if ∂δWL(W ) = 0 for all δW ∈ TWM and this happens if and only if ∇L(W ) ∈
(TWM)⊥. So geometrically, if W⋆ is a local minimum, then P (W⋆)∇L(W⋆) = 0 means that among
all available directions, there are none that decrease the loss.
For simultaneous descent, the same condition doesn’t hold, in fact, the algorithm’s stationary
points satisfy P̂ (W⋆)∇L(W⋆) = 0, which given the non-orthogonality does not, in general, imply
P (W⋆)∇L(W⋆) = 0, so there could be descent directions unexploited by the method.
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