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Abstract
TCP is known to perform poorly in cellular network environ-
ments. Yet, most mobile applications are explicitly built on
the conventional TCP stack or implicitly leverage TCP tun-
nels to various cellular middleboxes, including performance-
enhancing proxies, application-specific edge proxies, VPN
proxies and NAT boxes. Despite significant advances in the
design of new congestion control (CC) protocols for cellular
networks, deploying these protocols without bypassing the
underlying TCP tunnels has remained a challenging propo-
sition. This paper proposes the design of a new Application
Layer Congestion Control (ALCC) framework that allows any
new CC protocol to be implemented easily at the application
layer, within or above an application-layer protocol that sits
atop a legacy TCP stack. It drives it to deliver approximately
the same as the native performance. The ALCC socket sits on
top of a traditional TCP socket. Still, it can leverage the large
congestion windows opened by TCP connections to carefully
execute an application-level CC within the window bounds of
the underlying TCP connection. This paper demonstrates how
ALCC can be applied to three well-known cellular CC pro-
tocols: Verus, Copa, and Sprout. For these protocols, ALCC
can achieve comparable throughput and delay characteristics
(within 3-10%) as the native protocols at the application layer
across different networks and traffic conditions. ALCC al-
lows a server-side implementation of these protocols with
no client modifications and with zero bytes overhead. The
ALCC framework can be easily integrated with off-the-shelf
applications such as file transfers and video streaming.

1 Introduction

According to Cisco’s recent Global Mobile Data Forecast
Update [13], approximately 50% of the global data traffic
is generated by mobile devices. Mobile applications primar-
ily rely on TCP as the basic transport protocol, and TCP is
known to perform poorly in cellular networks [14, 50, 51].
Packet losses are frequent events over cellular networks due
to varying link rates, fading, burst scheduling, and unpre-
dictable user mobility. TCP congestion control responds
poorly to such losses, unnecessarily reducing the sending
rate by half, thus sacrificing valuable network bandwidth. To
cope with the above issue, cellular network operators often
significantly over-provision their network buffers (at least

10x the bandwidth-delay product) and rely on lower layer re-
transmissions to shield the end-to-end TCP connection from
these losses. But this is known to result in bufferbloat [17], a
phenomenon in which end-to-end packet delays are very high
due to the large buffers being kept full most of the time. Over
the past decade, several new congestion control protocols
have been proposed to replace TCP [4, 14, 50, 51]. Despite
their superior performance over TCP, none of these solutions
have gained wide deployment over real network conditions.
Some factors limit the adoption of these new solutions:

• Cellular networks adopt specific packet-filtering and
packet-shaping middleboxes that often limit the type
of protocol traffic allowed in the network (e.g. UDP
packets may be blocked), thus forcing algorithms to use
TCP.

• Most mobile applications are built using advanced API
calls, which explicitly establish HTTPS tunnels to spe-
cific cloud services or secure Remote Procedure Call
(RPC) to middleboxes. Both of these use the standard-
ized TLS/SSL layer, tightly coupled with the underlying
TCP layer [43], which again makes it difficult to circum-
vent TCP.

• New congestion control protocols need to be ideally en-
abled/installed during Operating System (OS) upgrades,
which are infrequent due to slow-release cycles and
mainly due to their potential interruption in existing set-
tings.

Elaborating on the first two points, there are many differ-
ent scenarios that illustrate the fact that an underlying TCP
connection at the edge is unavoidable: i) server-client TCP
connection that goes through a NAT proxy in the cellular
network; ii) a secure server-client connection that traverses an
active middlebox that performs header inspection and HTTPS-
specific operations; iii) a server-client connection that tra-
verses a middlebox that splits TCP connections [18, 42]; iv) a
mobile transfer service using a cloud service API where the
traffic between the client and server is explicitly routed via
the cloud service; and, v) communication using non-standard
socket interfaces to transmit/receive packets. In all these
scenarios, there is an underlying TCP connection between
the mobile client and a middlebox at the edge of the cellu-
lar network. These connections suffer from the bufferbloat
problem due to the excessive buffer provisioning by the cellu-
lar providers. TCP tunnels are very commonly used for: (i)
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mobile devices that are behind a NAT/Proxy [9]; (ii) Evolved
Packet Core (3GPP) for supporting cellular networking func-
tions; (iii) Third-party applications/services built for using
secure tunnels to middleboxes. Mobile applications and ser-
vices have no control and visibility over the underlying TCP
tunnels and are exposed to the standard send/recv interface as
in a TCP connection. This illustrates an ossification of TCP
in the context of mobile communications.

Another problem that plagues existing solutions to conges-
tion control is that of implementation. Most solutions require
kernel modifications and re-implementations depending on
the underlying datapath [35]. The existing brittle develop-
ment ecosystem that is dependent on TCP has forced new
congestion control protocols to be primarily built on top of
UDP, such as QUIC [20]. However, any application requir-
ing reliability or security support will need substantial code
changes to integrate with these protocol stacks. Moreover,
QUIC is not designed to address the bufferbloat problem in
mobile environments and also suffers from packet reordering
issues in cellular networks [41].

And finally, existing solutions do not provide options to im-
plement CC algorithms quickly over application layer proto-
cols such as HTTP and HTTPS. Again, due to the widespread
deployment of such protocols over TCP, any framework that
provides this capability would enhance the ease of imple-
mentation of new CC algorithms. Thus, this paper addresses
the following question: Can we provide a framework for de-
ploying new congestion control algorithms easily in mobile
devices at the user-space that leverage the broad deployment
of TCP and operate on top of the TCP and application-layer
protocol stacks while offering similar performances as their
native kernel implementations? Such a framework would be
able to facilitate the rapid innovation, deployability and evo-
lution of new protocols for mobile applications at the appli-
cation layer and above, without modifying any aspect of the
conventional cellular network architecture.

To address this question, we present Application-level Con-
gestion Control (ALCC), a framework that executes CC pro-
tocols at the application-level to achieve similar performance
as the native protocol while operating on top of an under-
lying TCP stack with multiple applications support. The
ALCC framework enables careful packet pacing at the ap-
plication layer regardless of the underlying TCP congestion
window, thus limiting the traffic sent down to the TCP stack
and thereby enforcing the sending rate of the application-
layer congestion control protocol. Most TCP variants tend
to ramp up to larger windows while significantly driving up
the packet delays in cellular networks. ALCC constrains the
application-level sending window to reduce bufferbloat in
the system and maintains a low end-to-end packet delay. In
the TCP tunneling context, ALCC specifically addresses the
cross-congestion control interaction between the user-level
CC and the underlying CC of the TCP tunnel in two ways:
(a) When the underlying transmission layer socket issues a

blocking signal, ALCC uses this signal to control the trans-
mission rate; (b) The blocking signal also affects the behavior
of the higher layer protocols to adapt to the varying signal.

ALCC solves many of the issues highlighted earlier. Since
it makes use of existing TCP stacks, it is quickly deployable
on a large scale. It provides a quick solution to implementing
new or existing algorithms without significant effort. ALCC
can also be implemented over application layer protocols on
mobile devices, thus making deployment on mobile devices
significantly easier than before. Another essential advan-
tage of ALCC is that it can support specific protocols like
Verus and Copa with server-side integration alone without
any client-side modifications and zero-byte header. For pro-
tocols like Sprout that require receiver feedback integration,
ALCC needs to incorporate client-side changes. ALCC pro-
vides customized APIs which indirectly expose the same TCP
Berkeley socket APIs to the application layer—making it easy
to integrate into existing applications. For recently developed
CC protocols [4, 50, 51], we demonstrate how easily these
protocols can be blended into the ALCC framework and main-
tain the application layer congestion window in contrast to
the underlying TCP congestion window. We show that these
protocols within the ALCC framework imitate the original
protocols’ performances and attributes while sustaining com-
parable throughput and packet delay characteristics (within
3−10%) irrespective of the underlying TCP flavors.

The paper makes the following key contributions:

• A framework to implement CC protocols within or above
the application layer that sits on top of the legacy TCP
stack. This facilitates rapid innovation, deployability,
and the evolution of new protocols for mobile applica-
tions.

• Show how new CC protocols may be integrated easily
into ALCC (with minimal code changes) and demon-
strate that these protocols achieve the same performance
as their native implementations through rigorous testing.

• Integrate the ALCC framework into existing off-the-
shelf real-world applications such as the Bftpd FTP
server.

• Show how ALCC can support server-side integration
for specific protocols without the need to modify the
applications’ client implementation. It also does not add
any additional overhead (zero-byte overhead).

• Show how ALCC can support both client and server-side
integration for specific protocols completely independent
of a kernel module to intercept packets at the kernel.
Both client and server are modified to support their own
Acknowledgement and sequence numbers.

• A light ALCC Android library to assist client-side inte-
gration of congestion control protocols for mobile appli-
cations. An Android App that supports the ALCC java
library for uplink file transfers.
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2 Why ALCC?

We motivate the need to create a configurable framework for
implementing new CC algorithms in the userspace on top of
the conventional TCP substrate exposed by cellular networks.

Middleboxes, Tunneling, and API Gateways: Cellular
network operators have deployed various types of middle-
boxes to make efficient use of their network resources and
provide end-to-middle-to-end security for potential threats.
This ubiquity has led to middle-box ossification, making them
key control points in the cellular network architecture. Many
of these middleboxes explicitly break the end-to-end connec-
tivity model and support split TCP connections implicitly or
explicitly [18]. As a result, many applications that run on
cellular networks are implicitly tied to an underlying TCP
connection, which runs on legacy TCP software, which is
hard to change easily.

Recent years have seen a massive expansion in tunneling
protocols, enabling the creation of Virtual Private Networks
(VPNs), providing the illusion of a physical network to the
user. Many users worldwide resort to mobile VPN clients to
bypass censorship or access geo-blocked content, and more
commonly, for privacy and security reasons. Even though
VPNs encapsulate messages to traverse middleboxes, the
encapsulation tunnel is terminated at the VPN server. The
end-to-end CC is disrupted, and transport over encrypted tun-
nels may not allow other network entities to participate in CC.
Finally, many mobile applications leverage API gateways that
rely on HTTP variants and AMQP-like interfaces [2], essen-
tially relying on an underlying TCP substrate to a gateway
node. Netflix [32] and Amazon [1] are well-known public
services that have adopted such API gateways.

Large delays in cellular networks: Mobile applications
over TCP are known to experience considerable delays due to
the complexity of the underlying cellular architecture. Recent
cellular architectures [6] are known to employ large buffers
to protect against packet losses.

This issue is well studied in prior work [10, 50, 51], which
demonstrates that all known variants of TCP suffer from ex-
tensive delays in cellular networks since they aggressively
set a large congestion window leading to excessive buffering
at the base station and the gateway nodes. This is a crucial
element of the motivation for designing a framework such as
ALCC since ALCC is designed to throttle the sending rate
in the underlying TCP connection thereby significantly re-
ducing bufferbloat and packet delays and improving overall
performance.

2.1 ALCC vs. popular related frameworks

Since the in-kernel implementations of congestion control
protocols is a challenging task, especially at scale, many new
congestion control protocols require useful libraries not sup-
ported by the kernel (i.e., libboost and alglib in Verus [51],

or Bayesian forecasts in Sprout [50]). These rely on im-
plementing these protocols within the userspace over UDP
instead. UDP, however, lacks the required security support
that is needed by many applications. Besides, many fire-
walls and middleboxes are configured to drop UDP traffic
due to the lack of congestion control or explicit connection
setup/tear-down. This hinders the deployment aspects of the
implemented UDP-based congestion control protocols. In
contrast, TCP does not suffer from this problem, making it
the perfect candidate for deployment. Hence, a possible solu-
tion that could combine the deployment benefits of TCP while
allowing better congestion control logic is highly desirable.

ALCC leverages the kernel’s TCP implementation while
allowing developers to implement their congestion control
logic within the userspace, effectively controlling the data
flow down to the TCP stack and enforcing the application-
level congestion logic to dominate TCP’s default congestion
control. ALCC shares similar goals as other popular frame-
works in literature today, such as Congestion Control Plane
(CCP) and Google’s QUIC. Next, we will discuss the main
differences between ALCC and these frameworks. Table 1
shows high-level comparisons to QUIC and CCP.

2.1.1 ALCC vs. CCP

ALCC, in spirit, shares some of the design goals of CCP [35],
in the sense of providing developers with a way to easily im-
plement congestion control protocols within the userspace,
thus enhancing the pace of development and ease of main-
tenance of congestion control algorithms. However, ALCC
addresses a fundamentally different problem relevant to cellu-
lar networks: the middleboxes may use TCP tunnels and split
TCP connections for performance reasons. In these scenarios,
by throttling the traffic through the TCP connections, ALCC
can reap significant benefits in performance. Unlike CCP,
ALCC leverages the kernel TCP implementation without di-
rectly modifying the datapath. This allows ALCC to benefit
from the wide deployment popularity of TCP.

ALCC has two implementations: 1) Kernel-based: that
shares flow-level information (such as end-to-end delay, bytes
in flight, etc.), as well as information from each TCP Ack
(such as sequence number, bytes Acked, etc.) with the ALCC
userspace program so that the CC algorithm can make use
of them. 2) Non-kernel-based: both the client and server
rely on their own sequence and acknowledgment numbers.
However, this implementation requires modifying the client
to send acknowledgments back to the server upon receiving
the sequence number set in the packet header by the server.

The CCP framework implements CC algorithms in two
pieces: i) datapath logic and ii) the actual CC logic. The
datapath logic is a small piece of code written in a LISP-like
syntax that exposes the kernel datapath variables required
to be reported to the CC algorithm at what temporal gran-
ularity. On the other hand, the actual CC logic to control
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Table 1: High-level comparison of QUIC, CCP and ALCC frameworks

Frameworks
Features QUIC CCP ALCC

Congestion Control Userspace implementation Userspace implementation Userspace implementation
Supported Transport UDP Any data path including UDP & TCP TCP only
Reliability Externally configurable Externally configurable TLS/SSL + TCP dependable (not configurable)

End Hosts Support
Mandatory Client & Server
implementation

Supports Client only, Server only,
or both implementations

Supports Server only or both
Client and Server implementations

Re-transmission Mechanism
QUIC’s packet number with
directly encoded transmission order

- Based on TCP sequence numbers (ACKs)
- Re-configurable

Based on TCP sequence numbers (ACKs).

Design
- Crypto handshake to minimize setup RTT
- Pluggable Congestion Control Interface

Control Plane agent in the userspace
enforcing rate and congestion window
decisions via datapath modification.

Dominant userspace congestion control
loop running atop TCP.

the sending window is implemented in Rust or Python. In
contrast, ALCC maintains a straightforward framework that
enables CC algorithms to be easily ported by replacing native
socket function calls (such as send() and recv()) with calls
to the corresponding functions exposed by the ALCC library
implemented in C++

2.1.2 ALCC vs. QUIC

QUIC’s primary design goal focuses on “speeding up the web”
by enabling multiplexed, encrypted, connection-oriented and
reliable transport over UDP. However, the latest IETF Internet-
Draft about the “Applicability of the QUIC Transport Proto-
col” necessitates QUIC’s fallback to TCP [30]. It states that
somewhere between 3% and 5% of networks block all UDP
traffic. Therefore, all applications running on top of QUIC
must either be prepared to accept connectivity failure on such
networks or be engineered to fall back to some other trans-
port protocol. In the case of HTTP, this fallback is TLS
over TCP. QUIC has undoubtedly earned increased adoption
and is currently the foundation for emerging protocols, e.g.,
HTTP3. An increasing number of distinct QUIC implementa-
tions exist today [21], including the mvfst framework from
Facebook [26] (based on IETF QUIC’s draft 29), with vary-
ing design goals, covering multiple programming languages.
However, QUIC has not yet reached a stable RFC. From our
observations in multiple discussion forums from developers
trying to implement different congestion control algorithms
over QUIC, it is a rather complex and not-so-straightforward
task due to how a particular QUIC framework is designed,
making it very difficult to integrate new congestion control
protocols.

QUIC encrypts most of its packet header to avoid protocol
entrenchment. However, a few fields are left unencrypted
to allow a receiver to look up the local connection state and
decrypt incoming packets. The main challenge for QUIC is
to traverse firewalls that fail to detect QUIC packets and end
up dropping them. QUIC falls back to TCP during persistent
connection failures. Recent advancements in QUIC have
resulted in some firewalls allowing initial packets but then
blocking subsequent packets [39]. The most fundamental
issue with QUIC is turning UDP into a connection-based

protocol. This issue is intensified by middleboxes and firewall
NAT services that hinder the process.

In contrast, ALCC allows a straightforward set of primi-
tives and function calls to integrate any congestion control
protocol within the framework. In fact, in this paper, we have
combined three different congestion control protocols within
the framework in just a few days. Additionally, once a conges-
tion control protocol is integrated within ALCC, it becomes
part of the library where any application can choose the suit-
able CC protocol. ALCC also makes it simple for applications
to be integrated by exposing the same TCP Berkeley socket
API.

3 Application-Level Congestion Control

To address the deployment challenges of recently proposed
cellular CC protocols, we offer Application-level Congestion
Control (ALCC) as a framework to execute these protocols
at the application layer without modifying the underlying
transport layer. ALCC explores the question: Can we derive
the performance benefits of new CC algorithms by deploying
them at the application layer on top of traditional TCP stack?

The aim is to find a way for a new CC algorithm to interact
with existing legacy TCP stacks in a controlled manner. The
goal is to get the advantages of both the new CC algorithms
and the widespread deployment of the legacy TCP-based un-
derlying architecture. We achieve this by leveraging TCP’s
buffers and using them to mimic the CC algorithm’s sending
behavior in the application layer.

3.1 Flying under the TCP radar

Each of many recently proposed protocols such as Sprout [50],
Copa [4], and Verus [51] claim that their CC responds more
efficiently in cellular network environments than existing
protocols. Yet, despite their superior performance in a cellular
context, actually deploying these protocols at scale remains a
challenging task.

We suggest migrating these new CC protocols to the ap-
plication layer to operate over the widely used TCP stack
(without any modifications to TCP). To better understand
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how this is achieved, let us first explore the following hy-
pothesis: the effective congestion window can be actively
controlled from the application layer (i.e., pacing application
data lower than TCP’s CWND). It is well known that the
widely used TCP flavors, such as Cubic and Reno, maintain
unnecessary large CWNDs and cause high packet delays. We
evaluate two experiments that aim to test the following hy-
pothesis: is the TCP CWND affected by the amount of data
sent from the application layer? Does it still maintain a large
CWND even if there is not enough data to exploit this large
CWND fully? If this hypothesis holds, then the application
layer can efficiently send data without incurring high packet
delays or causing congestion/packet loss. This is achieved
by throttling the application data flow to keep it below TCP’s
CWND. The control done in the experiments is achieved by
limiting the application data flow sent down to the transport
layer (we have chosen the standard TCP Cubic [23]). Unless
otherwise stated, the tests were conducted on an experimen-
tal Mininet testbed consisting of a fixed bandwidth link of
12 Mbit/s, a client, a server and a router. In the first exper-
iment, we implemented a shim layer within the application
layer that maintains a static congestion window set to the
theoretically required window to saturate the network link.
In the second experiment, we implemented the shim layer
to randomly choose the congestion window every second.
Both experiments were tested on Ubuntu 18.04.1 with kernel
version 4.15.0. Figure 1 compares the congestion windows
of these two simple application layer protocols with the un-
derlying TCP Cubic window. The solid lines represent the
application layer window, and the dashed lines are the TCP
Cubic congestion window. The figure confirms our earlier
hypothesis that the TCP Cubic window is unnecessarily high,
even higher than the application layer window. We made sim-
ilar observations for TCP Reno and Bic. The bottom figure
highlights the fact that we can arbitrarily control the sending
window within TCP Cubic’s envelope.
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Figure 1: Application layer control and TCP Cubic CWND

Figure 2 shows how the application layer can control the

TCP Cubic congestion window to achieve better performance.
Here, the application layer maintains a static congestion win-
dow and is compared against a legacy TCP Cubic network
stack. We observe that the legacy TCP Cubic congestion
window increases significantly over time, causing high packet
delays. In contrast, controlling the window at the application
layer (while still running on top of the TCP stack) achieves
similar throughput without causing high packet delays. These
results tentatively prove the hypothesis we discussed earlier
by highlighting that one can perform a second CC loop within
the application layer while leveraging TCP’s limitation of
maintaining a large congestion window. This motivates the
idea of running CC protocols within the application layer
without having to replace the TCP stack. An interesting ob-
servation in Figures 1 and 2 is the static behavior of TCP
cubic CWND. This phenomenon is explained in Section 5.7.
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Figure 2: Application layer control with static CWND vs.
legacy TCP Cubic throughput, delay and CWND.

3.2 Overview of ALCC
The core idea of ALCC is to perform CC at the application
layer by staying under the TCP radar. ALCC’s primary
function is to replace the congestion window of TCP with the
congestion window computed at the application layer by a
new CC protocol. Based on this calculated window, ALCC
tightly constrains the application data flow to the transport
layer; the congestion window of ALCC is the minimum of the
window size computed by the new CC protocol and the one
of the underlying TCP protocol.

In essence, the ALCC framework emulates the cellular CC
protocol at the application layer and computes the transmit
window of the protocol. ALCC relies on the TCP socket
interface feedback to implicitly learn the transmit window of
the underlying TCP variants’ protocol. For every packet trans-
mission, if the TCP socket reports a full buffer and blocks on
a potential transfer (or indicates full buffer in a non-blocking
socket), ALCC delays the next packet transmission. More
precisely, when the ALCC send function tries to send Bytes
to the TCP socket, it will get a block signal in the form of an
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error message (given the non-blocking flag set for the TCP
socket). This stops ALCC from sending data down the TCP
socket until the socket becomes available. Meanwhile, ALCC
can still receive data from the Application if there is room in
the ALCC buffer. However, if the ALCC buffer is also full,
ALCC sends a block signal to the Application to stop sending
new data. This blocking signal serves as an indication from
the underlying TCP stack that the network might be congested
and as a result the ALCC protocol needs to slow down.

The basic version of ALCC maintains a separate layer of
acknowledgments at the application layer to keep track of the
number of outstanding packets at the application level. This
enables the ALCC layer to determine the packet transmission
rate at the application level. Similar to Verus and Copa, ALCC
can also support a server-side implementation where only the
server can execute the CC protocol, and the client runs a
native TCP connection with no application layer CC. In this
case, the server needs to rely on TCP layer acknowledgments
to track the outstanding window of packets.

The simple design of ALCC allows it to transmit at a lower
rate than the TCP window and correspondingly achieve better
delay characteristics. Surprisingly this strategy enables ALCC
to achieve similar delay-throughput trade-offs as the native
CC protocols while maintaining the fairness properties of
TCP. By controlling the sending window, ALCC can reduce
network buffer sizes and hence end-to-end delays without
sacrificing throughput in comparison to standard TCP.

4 Realizing ALCC

The ALCC framework is implemented as a C++ library that
acts as a shim layer connecting the application layer and the
transport layer1. In other words, the ALCC C++ library is
implemented in the userspace as a wrapper around the default
Linux Berkeley sockets TCP implementation. It is designed
to expose the same socket API to the application layer. This
is performed to facilitate a smooth and easy integration of the
ALCC library into existing applications. We describe three
different implementations:

• Server-side ALCC library: This is the default ALCC im-
plementation, which relies on the native TCP acknowl-
edgments instead of the implemented CC protocol’s ac-
knowledgments. Here, the client is kept unmodified.
This is realized by an ALCC kernel component that is
implemented as a Linux kernel module. The ALCC ker-
nel module is implemented with Netfilter and NetLink,
and it acts as a cross-layer module to filter TCP acknowl-
edgments and send them to the userspace program.

• Client/Server ALCC library: This is a special implemen-
tation extended from the above, without the use of the

1The ALCC implementation is open-sourced and the code base is freely
available on https://github.com/comnetsAD/ALCC.

kernel module. It relies on the implemented CC pro-
tocol’s acknowledgments, and the client code is also
required to use the library to send back acknowledg-
ments. This implementation is meant for protocols that
rely on external signals apart from acknowledgments,
where some additional data needs to be shared by the
client to the sending process.

• Mobile Java ALCC library: This implementation is
meant for Android mobile phones that allows them to
use ALCC to send data efficiently in the uplink direc-
tion. This implementation is similar to the Client/Server
ALCC library, where it does not rely on a kernel module
but rather implements its own acknowledgment mecha-
nism.

A significant benefit of the default Server-side ALCC li-
brary is its single-side (server only) modification, which does
not require any client changes. This is an exceptional advan-
tage because it simplifies the deployment significantly, where
ALCC relies on the underlying TCP stack for packet sequence
numbers and acknowledgments. This is perfect for support-
ing the implementation of CC protocols such as Copa and
Verus in the downlink direction, where TCP’s acknowledg-
ments would suffice. On the other hand, CC protocols such as
Sprout do require additional information to be sent back to the
sender from the receiver in addition to the acknowledgments.
This is why we implemented the second library to deal with
integrating these protocols. For example, Sprout’s receiver
sends back the observed packet arrival times as the primary
signal to determine the network condition.

4.1 Server-side ALCC library
4.1.1 ALCC Userspace Module

The userspace module is where the core part of ALCC is im-
plemented; it is responsible for executing the application-layer
CC protocols. We will call the ALCC userspace module as
the “ALCC library”. The application uses the ALCC library
to open an ALCC socket instead of a TCP socket. The ALCC
framework of the library is shown in Figure 3a. The main
philosophy of the ALCC library is to provide placeholder
functions to integrate any CC implementation easily. The
idea is to split the CC implementation into three processes:
i) basic CC logic, ii) sending-related functionality, and iii)
receiving-related functionality. The sending mechanism of
ALCC also opens a standard TCP socket to send data down
to the transport layer. The ALCC library is implemented as a
C++ class, where the core part of the implementation consists
of a:

1. Circular queue implementation

2. Sending thread (ALCCSocket::pkt_sender)

3. Receiver thread (ALCCSocket::ack_receiver)

6
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4. CC logic thread (ALCCSocket::CC_logic())

The circular queue is used to store the data sent down from
the application layer so that ALCC can pace the MTU-sized
packet sending based on the CC sending mechanisms. In-
troducing an intermediate queue allows ALCC to leave the
sending mechanism of the application unchanged. Like the
standard TCP send buffer, the ALCC framework blocks the
application once the intermediate queue is full, which may
occur if the underlying TCP sending kernel buffer is full.
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Figure 3: ALCC library framework architecture.

The sending thread is responsible for sending data packets
from the ALCC queue down to the TCP stack using a regular
TCP socket. It paces the data sent down by relying on the
CC logic thread’s decisions to regularly determine the so-
called “application layer congestion window” (analogous to
the transport layer congestion window). The application layer
congestion window is computed by the CC protocol running
within the ALCC library. The receiver thread implements the
CC protocol logic when receiving an acknowledgment. As
stated earlier, ALCC does not implement its own acknowledg-
ment but rather relies on the underlying TCP ACKs. These
ACKs are sent by the ALCC kernel module running within
the Linux kernel. For the application layer, ALCC exposes
two function calls: alcc_accept() and alcc_send() that
are meant to replace TCP’s accept() and send() functions.
These are the only modifications required at the application
to use ALCC. The new function calls are intentionally kept
similar to the default TCP ones—in terms of the arguments
they use—to ease the integration as:

i n t a l c c _ a c c e p t ( i n t sockfd , s t r u c t s o c k a d d r * addr ,
s o c k l e n _ t * a d d r l e n )

i n t a l c c _ s e n d ( i n t sockfd , c o n s t c h a r * b u f f e r , i n t
b u f l e n , i n t f l a g s )

Alternatively, we can also simply use the LD_PRELOAD [19]
trick to change the TCP socket system calls accept() and
send() to the ALCC calls, which makes ALCC even more
usable since there won’t be a need to replace the system calls
within the applications.

Within the alcc_accept() function, the basic TCP
accept function call is performed, and the corresponding

TCP socket is passed to the ALCC framework object instanti-
ation. This socket is then used by the ALCC object to send
and receive data. As for the alcc_send() function call, it
mainly accepts the data from the application and then inserts
it to the ALCC internal buffer to be sent later by the ALCC
sender thread.

4.1.2 ALCC Kernel Module

A couple of recent delay-based CC protocols, such as Verus
and Copa, rely on their own acknowledgments to infer what
is happening in the network. Their native implementations
rely on the UDP protocol as the underlying transport proto-
col. With the introduction of the ALCC library, and because
ALCC runs on top of TCP sockets, an opportunity arises
to simplify the integration efforts in real-world applications.
Some of the ultimate design goals behind any successful pro-
tocol are simplicity and efficiency. To achieve a zero-byte
overhead and server-side only modifications, we modified
the Verus and Copa implementation within ALCC to rely
on TCP ACKs rather than on their own. In our implemen-
tation, the TCP ACKs are retrieved through an ALCC ker-
nel module that we built using the Linux kernel framework
known as Netfilter [5]. Netfilter offers packet manipulation
via various hooks into the network layer. We have used the
NF_IP_PRE_ROUTING hook, triggered by any incoming
traffic soon after entering the network stack, and before the
kernel performs any routing choices for packet sending. Fig-
ure 3b shows an example of multiple components fitting to-
gether to provide an insight into how filtering and communi-
cation between the kernel module and the userspace module
are achieved. When an IP packet arrives at the network layer,
the kernel sends the packet to the Netfilter module, which
then transfers it to the iptables module. The latter holds a set
of rules defined by the ALCC kernel module to specify the
actions to be taken when the desired packet is detected. It
first inspects the transport layer type within the IP packet. In
the case of TCP, it extracts the TCP header and checks the
destination port number. If an ALCC socket has already regis-
tered that destination port, the hook function extracts the ACK
details and sends it to the respective ALCC userspace process.
For the kernel-to-userspace delivery, the ip_queue module
uses Netlink sockets. We have implemented a signaling pro-
tocol between the ALCC userspace module and the kernel
module. When a new application opens an ALCC socket, the
ALCC socket first opens a legacy TCP socket, which gives
back to the ALCC framework the actual port number used
with this socket. The ALCC userspace module would then
send a port_registration message to the kernel module
to register its process id with the associated port number. The
ALCC kernel-module maintains a mapping table between
the different port numbers and their corresponding ALCC
userspace process IDs. When the ALCC flow is finished,
it sends a port_release message to the kernel module to
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remove the registered port number. When CC protocol de-
signers use the ALCC library to integrate/implement their
protocol, there will be no requirement to implement any func-
tionality within the ALCC kernel module.

4.1.3 CC protocols integration into ALCC

To evaluate the ALCC framework’s performance, we ported
two protocols into the ALCC library – Verus and Copa. In
addition to the significant benefits of running a CC proto-
col within the application layer, the time and effort taken to
integrate such a protocol are equally crucial.
Verus integration: The Verus integration was straightforward
since its threads fit well in the structure of the ALCC library
class. Verus has four main threads: a sending thread, a re-
ceiver thread, a logic thread, and a delay profile thread. When
it came to porting the Verus code base into ALCC, one of
the main changes was integrating the receiver thread and the
Verus acknowledgments. Verus uses a header that consists of
a sequence number, CWND when the packet was sent and
the sent time. Since the main target of ALCC was to simplify
the integration effort and keep it bound only to the server-
side, we relied on the underlying TCP’s sequence numbers
and acknowledgments instead of using Verus’s own sequence
numbers and acknowledgments. We also created two different
mappings within the ALCC library to store both the conges-
tion window at the time the packet was sent and the sent time
(so as not to carry these fields within the Verus header, thus
allowing us to remove the Verus header all together).

Two main challenges in relying on TCP’s ACKs were ob-
taining the sequence numbers at the application layer (since
TCP runs at the kernel), and TCP’s sequence numbers are
bytes-offset. In contrast, Verus’s sequence numbers are sim-
ple integers. The first challenge was solved using the ALCC
kernel module. The second challenge was solved by main-
taining a mapping between TCP sequence numbers and the
sequence numbers of Verus. During the initial phase, ALCC
must listen for the first sequence number exchanged between
the client and the server during the TCP handshake, since
TCP chooses the starting sequence numbers at random. The
Verus code base took about a day to port into ALCC.
Copa integration: We leveraged the generic CC implemen-
tation of Copa [3]. The main challenge was that Copa’s
code implements four different CC protocols: Copa, Remy,
kernel CC (Cubic on Linux), UDT’s [22] TCP AIMD im-
plementation and PCC (deprecated). All of these proto-
cols, including Copa, were implemented using UDT’s class.
The challenge was to extract Copa’s codebase and any addi-
tional required code from the UDT class. Luckily, the main
Copa’s implementation was bounded to the markoviancc.cc
and markoviancc.hh files. As for the main logic of the
sending/receiving packets we extracted the code from the
ctcp.hh, specifically CTCP<T>::send_data function. This
function handles the sending of packets and then checks if

any data is pending to be received. We had to split the func-
tion into two halves, where the sending code was moved into
ALCC’s sending thread, and the packets’ acknowledgments
handling logic was moved into the receiver thread. We had
to duplicate some of the variables that were used by both
parts. We faced some challenges within the receiver logic
because TCP is a byte stream protocol where TCP sometimes
acknowledges multiple packets in a cumulative acknowledg-
ment. Since Copa’s receiver logic was built to handle a single
packet acknowledgment, we first figured out how many pack-
ets are being ACKed and then wrap Copa’s receiver logic with
a loop that can handle the multiple acknowledgments. Ad-
ditionally, Copa uses a map for unacknowledged_packets,
which before was protected since the sender and receiver logic
were part of the same function and were executed one after
the other. Due to the split in the ALCC framework, we had
to protect this map from corruption by simultaneous access
by both threads, which was achieved using mutex locks. Like
Verus, we had to add mapping to store Copa’s packet sent
times to compute the packet delays. We also had to handle
TCP’s byte-offset sequence numbers and map them to Copa’s
integer-based sequence numbers. The porting of Copa’s code-
base took about two working days.

4.2 ALCC without a kernel module (Clien-
t/Server ALCC library)

This library implementation is very similar to the above im-
plementation, except for the following key aspects. First, this
library does not require the ALCC kernel module since it
relies on acknowledgments sent by the client-side CC proto-
col implementation rather than the TCP ACKs. Second, the
ALCC userspace module is almost identical to the server-side
library implementation, except for how the acknowledgments
are handled. Given that we no longer have access to the TCP
Kernel, there was no way to rely on TCP’s sequence num-
bers and acknowledgments. Instead, the ALCC userspace
sender module relies on acknowledgments sent by the client
to the application. In the client-side modification, the ALCC
library modifies the TCP receive function call to first read
the CC protocol header from within the TCP socket and then
send back an ACK as a separate packet to the server. The
CC protocol packet payload is then read and returned to the
client app as valid application data. Of course, here, due
to the byte-stream nature of TCP, the CC protocol payload
length is determined from the packet header. The above ACK
mechanism is simply an application layer acknowledgment
implementation. Where each ALCC packet will have its own
sequence number, and ALCC would record the exact time
when that packet (i.e., sequence number) was sent into the
network. Then at the client-side, for each received ALCC
packet, the client would send back an ACK with the corre-
sponding sequence number. Upon receiving such an ACK at
the ALCC sender, ALCC can calculate the round-trip time by
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taking the difference between the receive and the stored send
times. This RTT is then internally used by the CC algorithms,
whether Verus or Copa, to update the sending rate. Next, we
highlight the noticeable pros and cons of ALCC with and
without the kernel module as follows:

• ALCC with kernel module requires only server-side mod-
ification, whereas server and client-side changes are re-
quired in the non-kernel ALCC.

• ALCC non-kernel version significantly reduces the CPU
utilization. In contrast, ALCC with kernel module in-
creases the CPU utilization by two folds compared to
the utilization of native CC protocol.

• Adding a kernel module to mobile phones can be chal-
lenging due to constraints imposed by the mobile oper-
ating systems. Therefore a non-kernel implementation
would be a more straightforward alternative for ALCC
implementation in mobile phones.

4.3 Implementing ALCC on a mobile device
Mobile operating systems, such as Android, impose restric-
tions on modifying the underlying TCP stack, not providing
access to kernel modules. To integrate ALCC into a mo-
bile OS, we have developed a preliminary Java library that
supports running ALCC atop application layer protocols to
circumvent the aforementioned restrictions. This approach
has multiple advantages, such as maintaining the TLS/SSL
connections and keeping the underlying TCP implementa-
tion untouched or transparent to (reverse) proxies that might
intercept the connection along the way.

The main task of the library is to send the chunked applica-
tion data packets as separate TCP packets/frames and receive
acknowledgments from the server to obtain the round-trip
time estimates. Unlike the desktop Linux implementation,
which uses a kernel module for cross-layer communication,
we implemented our own acknowledgment mechanism in this
Android library by adding a custom header with sequence
numbers, thus obviating the need for a kernel module. We
also extended the ALCC server library to send back ALCC
acknowledgments with the sequence numbers. This library
would be handy for mobile applications such as video confer-
encing, live streaming, or social media apps.

Integrating an existing version of a CC protocol into the
Android ALCC library can be challenging because many of
these protocols leverage several external libraries currently
not supported by the Android OS. Ideally, alternative libraries
can be utilized or even implemented to overcome the miss-
ing/unsupported ones. However, this can be an exhaustive
and time-consuming task, which is out of scope for this paper.
Thus, to be able to quickly provide a proof-of-concept imple-
mentation of one of the new cellular CC protocols into the
ALCC Android library, we relied on using the Model-Driven
Interpretable (MDI) congestion control [29] approach. MDI

allows approximating any congestion control algorithm as a
general discrete-time Markov model by a 2-dimensional state
space, represented in the form of a state-transition probability
matrix for that algorithm. Each state is a tuple of the relative
change in the network delay and the sending window size.
The matrix describes transition probabilities between every
pair of states and is obtained by training the algorithm on a
large set of network configurations. MDI versions of popular
algorithms mimic the actual throughput and delay character-
istics of algorithms on real traces. Thus, using the publicly
available Markov models trained independently over diverse
network conditions, the behavior of many algorithms atop
ALCC on Android.2 can easily and effectively be replicated.

We have built an Android App that utilizes the java Android
ALCC library to upload files from the phone memory to the
server. The App relies on MDI as the main congestion control
logic. We have utilized a transition probability matrix of Verus
that was trained over 1000 cellular traces as described in
[29]. Figure 4 shows the throughput and delay performances
of the Android ALCC app(using Verus MDI) compared to
the TCP cubic performance measured using an upload of
the same file with scp3 from a laptop that was tethered to
the Android phone. Several experiments were conducted to
upload a large video file to the server using the App, and a
laptop tethered to the Android phone over a real 3G network.
It is observed that the throughput for both Android ALCC and
the scp upload TCP are approximately alike when analyzing
several experiment runs. However, the delays achieved using
the Android ALCC library are much lower in comparison
to the scp ALCC version. This also highlights the foremost
advantage of the ALCC framework when testing congestion
control algorithms for uplink in cellular networks.
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Figure 4: ALCC (with MDI on Android) vs TCP cubic (on
Android): Throughput and Delay performances over real 4G
cellular network.

2https://github.com/comnetsAD/MDI
3scp is linux program that is used to copy files between a local and a

remote system or between two remote systems.
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4.4 Integration into off-the-shelf Applications

In this section, we discuss and highlight the integration efforts
of the ALCC library into existing off-the-shelf applications.
To demonstrate that the ALCC library can easily be integrated
into real applications, we chose a number of off-the-shelf
applications as a proof-of-concept examples for the integra-
tion: FTP using the Bftpd server [45], web using the Ryuuk
concurrent web server [34], and video streaming using the
RTMPServer for Adobe Flash player [31].

First, we started integrating ALCC into the bftpd server
application. Since easy integration was one of the main
motivations behind designing the ALCC framework, we ex-
posed three different ALCC functions to act as a replace-
ment for their TCP counterpart within the application imple-
mentation, these are: alcc_accept(), alcc_send(), and
alcc_close(). We searched within the bftpd application for
the location where they instantiate the TCP socket, mainly
looking for the TCP accept() call, which we found inside
the command.c file. We then simply replaced the accept()
call with alcc_accept(). The latter is implemented to in-
stantiate the ALCC object, which would create the ALCC
queue and the multiple ALCC threads. We then replaced the
send() function call with our own alcc_send(). However,
due to the byte-stream nature of TCP, we had to enclose the
sending function in a while loop that can guarantee the com-
plete sending of all the required bytes. Finally, we had to
replace the TCP close() call with the alcc_close() call
so that we can make sure that all data stored within the ALCC
queue are sent first before terminating the connection. For
the RTMPServer and the Ryuuk web-server integration, we
had to do the same as above. We replaced the above three
TCP function calls with their ALCC counterparts. That is
mainly found inside the main.cc file for the RTMPServer,
and the SocketListener.cpp and SocketStream.cpp for
the web-server.

5 Evaluation

Our evaluation demonstrates that the ALCC framework, with
three different integrated CC protocols (Verus, Sprout, and
Copa), can achieve the same throughput and delay distribu-
tion characteristics as their native protocols regardless of the
underlying TCP transport protocol. The evaluation were con-
ducted on an Ubuntu 18.04.1 machine with kernel version
4.15.0, with Intel Xeon(R) CPU E3-1246 v3 @3.50GHz x 8
with an 8GB RAM.

Applications that run on top of the ALCC stacks would nat-
urally observe similar behavior as the native protocol under
different network conditions. The main goal of our evaluation
is to demonstrate how the integrated CC protocols within the
ALCC framework closely match their native protocol perfor-
mance including their temporal characteristics. To demon-
strate reproducible results and control for different aspects

of the evaluation under the same network conditions, we col-
lected a diverse set of cellular network traces and used the
network emulation environment Mahimahi [36] that enabled
us to test different protocol implementations across different
network conditions in a controlled manner. Our ALCC im-
plementation runs over real mobile networks, and we have
conducted several tests running various off-the-shelf applica-
tions with ALCC over 4G networks.

5.1 Channel Traces
We compare the performances of Verus, Sprout and Copa
over different TCP variants (Cubic, Bic, and Reno) within
the ALCC framework. The experiments are conducted using
the Mahimahi network emulator with various channel traces,
some taken from published papers and others recorded from
real cellular networks. 4G Verizon: taken from [50] and
represents a recorded channel over Verizon’s 4G network
in the US. Rapidly changing network: inspired by [14],
this trace represents a highly fluctuating channel, where the
magnitude is varied randomly every 5 seconds. 3G Etisalat:
taken from [51] and represents a recorded channel over the
Etisalat 3G network while driving on a highway at 120 km/h.

Other channel traces are collected by setting up a server
located at a University campus and four Android smartphones.
A bi-directional setup was used to monitor the downlink and
uplink channels using a 3G HSPA+ cellular network. Both
the server and client concurrently send UDP packets of 1400
bytes. Data rates of 2.5 Mbps and 5 Mbps were set for uplink
and downlink, respectively. However, these data rates do not
necessarily indicate the maximum capacity of the cellular
network. We assume that the channel is not over-saturated
by using these data rates, and packet-buffering is minimized
under perfect channel conditions. Measurements of three
different scenarios are captured with varying properties of
mobility. The scenarios are City Drive, Campus Walk, High-
way Drive, and Beachfront Walk. The channel traces are
generated from the packet arrival timestamps at the receiver
and the inter-arrival times between consecutive packet arrivals.
Additionally, the channel traces from all our four phones were
combined into one large trace to emulate significant user con-
tention.

5.2 ALCC-Verus vs. Verus
This section highlights the performance comparison of the
ALCC-Verus implementation on top of legacy TCP Cubic
stack and the native Verus. We examine the throughput and
packet delay for both cases. The experiment is conducted
using the Mahimahi emulator using multiple channel traces,
with a bottleneck buffer size of 2 MB. We only show the re-
sults for four of the traces due to space limitation (City drive,
3G highway drive, Beachfront walk, and rapidly changing
channel). Figure 5 shows the comparison of the achieved
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instantaneous throughput and delay over time for the selected
four channel traces, where the upper part of each sub-figure
depicts the throughput, and the lower part of the figure high-
lights the delay performance in logarithmic scale. The results
show that both protocols deliver almost identical throughput
and packet delays on all channel traces. It can be observed
that ALCC-Verus inherits Verus properties, such as avoiding
network buffer overfilling, while fully saturating the link ca-
pacity. Worth mentioning here that the ALCC-Verus used in
these experiments ran on top of TCP Cubic.

(a) Highway drive (b) Rapidly changing channel

(c) City drive (d) Beachfront walk

Figure 5: Instantaneous throughput and delay over time.

To accurately measure the performance similarity between
the ALCC-Verus and Verus, we computed the Probability
Density Function (PDF) for both the throughput and the delay
using the Seaborn kernel density estimate [47]. These PDFs
were calculated over 20 independent runs for each channel
trace to obtain statistical significance. Figure 6 shows the
PDFs for the selected channel traces, where the above part
of each sub-figure shows the throughput PDF, whereas the
lower part shows the delay PDF. From the comparison, it can
be noticed that the ALCC-Verus PDF, depicted in red, does
match the shape of the original Verus PDF shown in blue
for all channel traces. Apart from some negligible marginal
delays, variations are seen in the distribution of the rapidly
changing network delay. Figure 7 shows an overall summary
of the results comparing the different values of the results
population. Each protocol is depicted by a circular shape rep-
resenting the operational region of the protocol circumscribed
by the 25% and 75% percentile of the obtained throughput
and delay, where the crosses (x) indicate the median values.
The lower and upper part of the shape represents the 25% and
75% of the throughput, respectively (y-axis) whereas the left
and right part of the shape represents the 25% and 75% of
the delay, respectively (x-axis). The results show that even
though ALCC-Verus runs on top of TCP, it is still capable

of achieving similar statistical performance in terms of delay
and throughput with a minor delay penalty not exceeding 15%
in the worst case scenario (i.e., rapidly changing channel).

(a) Highway drive (b) Rapidly changing channel

(c) City drive (d) Beachfront walk

Figure 6: ALCC-Verus vs. Verus: Throughput/delay PDF

(a) Highway drive (b) Rapidly changing channel

(c) City drive (d) Beachfront walk

Figure 7: Summary of throughput and delay (population)

5.3 ALCC-Sprout vs. Sprout
This section highlights the performance of the Client/Server
ALCC library implementation using Sprout as the use-case
scenario. We evaluated ALCC-Sprout over multiple other
channel traces, and it has shown similar results to the one
discussed in this section. However, we have not presented
them in the paper due to the page limitation.

Figure 8 shows the performance comparison of ALCC-
Sprout vs. Sprout; this was performed using the rapidly
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Figure 8: ALCC Sprout vs. Sprout: Throughput/delay
(Rapidly changing channel)

changing network trace. The instantaneous throughput and
delay results, depicted by Figure 8a, demonstrate that ALCC-
Sprout matches the original Sprout performance, thoroughly
saturating the channel capacity and having similar delay char-
acteristics. This can be further proven by the PDF results
shown in Figure 8c, where the ALCC-Sprout PDF matches
the distribution of the native Sprout protocol. Finally, the pop-
ulation summary results show that the ALCC-Sprout version
incurs a slightly higher end-to-end delay than the original ver-
sion for both the 25% and 75% of the population. However,
the difference over the median is marginal.

5.4 ALCC-Copa vs. Copa

Figure 9 shows the throughput and delay comparison of na-
tive Copa versus ALCC-Copa (running on top of TCP Cubic).
We chose to show the results achieved over the following
channel traces: 4G Verizon, 3G highway drive, Campus walk,
and beachfront walk, performing 20 independent runs per
trace with the same characteristics defined in the previous
subsection. Although we show the results for these four chan-
nel traces, the other traces show similar performance and are
omitted due to space restrictions. Similar to the ALCC-Verus
results, it can be observed in Figure 9 that ALCC-Copa does
achieve nearly equivalent instantaneous throughput and de-
lay to Copa. The PDFs of the throughputs and delays of the
two protocols are shown in Figure 10. It can be seen that
ALCC-Copa achieves near-identical distributions to Copa.
Figure 11 shows that the operational region of the protocols
does match in all traces, despite some minimal difference in
the highway traces. Moreover, from the median values, it
is evident that ALCC-Copa achieves the same throughput,
deriving all properties of the original Copa.

(a) Campus Walk (b) 3G Etisalat highway

(c) 4G Verizon (d) Beachfront walk

Figure 9: ALCC-Copa vs. Copa: Instantaneous throughput
and delay over time.

(a) Campus walk (b) 3G Etisalat highway

(c) 4G Verizon (d) Beachfront walk

Figure 10: ALCC-Copa vs. Copa: Throughput/delay PDF.

5.5 ALCC with Multiple TCP Flavors

In the previous sections, we have demonstrated that three
different ALCC protocols achieve similar throughput and de-
lay characteristics to their native protocols while operating
on top of TCP Cubic. In this section, we investigate if the
same holds if the ALCC protocols operate on top of other
popular TCP variants such as TCP Bic, and TCP Reno. Fig-
ure 12 and 13 show the overall operating region results and
the throughput and delay PDFs for both ALCC-Verus and
ALCC-Copa, respectively. The results show a comparison to
different underlying TCP flavors. These experiments were
conducted over all the channel traces; however, we show the
results of two traces per protocol. The results confirm that
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ALCC does exhibit similar delay and throughput characteris-
tics irrespective of the underlying TCP flavors.

(a) Campus walk (b) 3G Etisalat highway

(c) 4G Verizon (d) Beachfront walk

Figure 11: Summary of throughput and delay (population).

(a) Campus walk (b) 3G Etisalat highway

(c) Campus Walk (d) 3G Etisalat highway

Figure 12: ALCC Verus vs. Verus: Throughput/delay popula-
tion and PDFs over different TCP flavors.

5.6 CPU utilization
Benchmarking the CPU utilization is essential for evaluat-
ing the ALCC framework compared to the native CC proto-
cols. We demonstrate the userspace CPU overhead–caused
by ALCC–by running both Copa and Verus with and without
the ALCC framework. This evaluation is done over a cellu-
lar network environment, utilizing the 4G Verizon channel
trace in the Mahimahi emulator. TCP Cubic is used as the

(a) 4G Verizon (b) 3G Etisalat highway

(c) 4G Verizon (d) 3G Etisalat highway

Figure 13: ALCC Copa vs. Copa: Throughput/delay popula-
tion and PDFs over different TCP flavors.

underlying transport layer protocol. We measured the average
userspace CPU utilization for Verus and Copa (with/without
ALCC) running over a server with Intel Xeon E3-1246 v3
Octa-core (8 Core) 3.50 GHz Processor. The results have
shown an increase in the CPU utilization for both Verus and
Copa, ranging from 1.5x – 2x compared to the native ver-
sions without ALCC. Similar observations were also reported
by the authors of CCP [35], which is mainly caused by the
Inter-Process Communication (IPC) overhead. In ALCC, the
cross-layer TCP ACKs are being sent from the kernel mod-
ule to the userspace ALCC module. We have implemented
another version of ALCC that does not rely on the Netfilter
hooks to extract packet information at the kernel. Instead,
the new implementation relies on its own Ack and sequence
number mechanism. As such, this implementation requires a
client-side modification to read and acknowledge the received
packets appropriately at the ALCC level.
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Figure 14: CPU utilization comparison over highwayGold
channel trace.

As shown in Figure 14, the average increase in CPU uti-
lization for ALCC with no kernel module is approximately
11% compared to the native version. In comparison, ALCC
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with kernel module is almost 2x the CPU utilization com-
pared to native Copa. This is because the current ALCC
implementation is not optimized to reduce the Inter-Process
Communication (IPC) and the cross-layer TCP Acks sent
from the kernel; further optimizations can reduce the CPU
overhead significantly.

For the Java Android ALCC library, the CPU utilization
should be significantly lower than the server-side implementa-
tion. In this library, we do not rely on a kernel module to get
the acknowledgment. Given that native Copa or Verus can not
operate on the native Android mobile in the uplink direction,
phone measuring the CPU overhead was not feasible.

5.7 ALCC in real cellular network

We further investigate how ALCC performs in a cellular net-
work. We evaluated Verus as the primary congestion control
in ALCC with Cubic as the underlying default TCP transport
layer protocol. Figure 15 shows the logical diagram and the
experiment setup. The client machine is tethered to an android
phone via a USB connection. The Android Phone has 3G and
4G wireless support. The wireless setting is switched between
3G and 4G according to the experiments. A server is placed in
another location that is physically connected through Ethernet
to a home network with a fiber-to-home connection provided
by the local ISP.
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Figure 15: A real cellular network setup between the client
and server for ALCC performance testing.

It is interesting to observe that in both cellular scenarios—
3G and 4G— ALCC always operate with a smaller CWND
than the underlying TCP CWND (green vs. red curve). The
results also highlight that there are negligible packet losses
observed by TCP due to the cellular networks’ link-level re-
transmission and Automatic Repeat-reQuest (ARQ) recovery
mechanisms. This allows the underlying TCP cubic to open a
larger CWND, allowing ALCC to operate sleekly beneath it.
Figure 16 and 17 show the CWND comparison of ALCC with
TCP cubic as an underlying transport along with the native
protocols. It is observed that the underlying TCP CWND

stays static after a specific time, which explains the negli-
gible packet losses in the cellular networks due to the over-
dimensioned buffers. However, TCP’s congestion window
is expected to grow persistently instead of remaining steady
in the case of no packet loss. Although, [28] describes this
phenomenon as a deliberate cap on the maximum advertised
receive window (tcp_rmem_max) by smartphone vendors.
We believe that this phenomenon is a result of the maximum
size of the TCP send buffer. To confirm the above hypothesis,
we studied the correlation between TCP’s CWND and the
TCP send buffer size (defined by the SO_SNDBUF). We
performed multiple experiments using a file transfer scenario
between an FTP server (bftpd) and a separate Linux FTP
client. The server was configured to use TCP CUBIC and
to systematically increase the TCP send buffer size in each
experiment, mainly to 100KB, 500KB, 1MB, and 5MB. We
monitored TCP’s CWND in each case and confirmed that the
maximum send buffer size of TCP directly correlates with the
flat value of the TCP CWND as shown in Figure 18.
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Figure 16: ALCC Verus and underlying TCP Cubic CWND
analysis over a 3G network.

Figure 19 shows the throughput and delays performance of
ALCC Verus compared to native Verus in a real 3G cellular
setting, as shown in Figure 15. Although it is impossible to
have the same channel conditions in real cellular setting eval-
uations; However, we tested ALCC Verus and native Verus
for a stationary user over a 3G cellular network, relying on
repeating the experiments multiple times to give us the same
statistical fairness when comparing both native and ALCC
protocols. We observe that both the throughput performances
of ALCC Verus and native Verus are statistically similar, as
shown in Figure 19. However, it can be observed that the
delay performance of the native Verus protocol is slightly
higher and occasionally suffers from multi-second delays.
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Figure 17: ALCC Verus and underlying TCP Cubic CWND
analysis over a 4G network.
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Figure 18: TCP CUBIC’s flat CWND behavior with different
TCP send buffer sizes.

5.8 ALCC under Packet Losses

We have not observed severe packet losses by testing ALCC
in a real 3G/4G cellular network as shown in Figure 16 and
17. This is because, in cellular networks, most transport
layer losses are concealed from TCP by the underlying Ra-
dio Link Control (RLC) and MAC layers’ re-transmissions
and are further reduced by excessive buffering at the cellular
base stations. However, we further investigate the ALCC’s
CWND behavior in a lossy channel by enforcing statistical
packet losses via the MahiMahi network emulator. A 4G
Verizon channel trace is used with an enforced 1% stochastic
loss, a high error rate in cellular contexts, especially after the
lower-layer recovery within the cellular network [12] [24].
Understandably, the underlying TCP congestion window is
a bottleneck for ALCC, and ALCC can not send beyond the
CWND offered by the underlying TCP. This is an explicit
limitation of ALCC. Figure20 shows that ALCC could not
achieve similar performance to the native CC protocol in a
lossy packet channel. This is because the underlying TCP
cubic drastically reduces its CWND during a packet loss.
Even if ALCC congestion control logic operates differently in
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Figure 19: ALCC Verus atop Cubic Vs. Verus throughput
and delay comparison in a real 3G cellular network.

handling packet losses, it is not permitted to control conges-
tion due to the restrained CWND allowed by the underlying
TCP. As a result, ALCC follows the same behavior of the
underlying TCP.

Figure 20: ALCC Verus Vs. Verus Throughput a and delay
comparison with no loss and 1% enforced statistical packet
loss

5.8.1 Potential Solutions

The idea of setting a high CWND for the underlying TCP via
a dynamically Loadable Kernel Module (LKM) could be one
potential solution to the above challenge. However, alteration
in the main kernel itself requires a great effort because of the
sheer complexity of many shared data structures among the
TCP and network stack. A subset of the TCP parameters can
be easily adjusted in Linux by using tools likesysctl. However,
it is challenging to restrict the kernel’s default TCP congestion
control protocol to maintain a static high CWND in real-
time. TCPTuner [33] is one such software package that may
be utilized as an effortless bind. TCPTuner is a pluggable
CUBIC congestion control module that allows congestion
parameters control via a Graphical User Interface (GUI). The
two control parameters α and β affect the CUBIC growth
function, where α controls the increase in CWND and β

15



Journal of Systems Research (JSys) 2022

regulates the multiplicative decrease in CWND upon a loss
event. Although β in the current implementation can not be
set to 0 (which means an 0% reduction in the CWND). It
may be assigned to a minimal value to maintain a CWND
large enough for ALCC to operate smoothly, even in a lossy
environment.

In general, the sysfs filesystem provides an interface to
kernel data structures. The sys/module/ subdirectory con-
tains one subdirectory for each module loaded into the kernel.
Therefore, sysfs is the doorway to access all the writable pa-
rameters of any pluggable congestion control module. We
seek to adopt similar methods described above to design an
efficient loadable kernel module to assist ALCC by keeping
the underlying TCP CWND to a high static value as part of
our future work.

5.9 ALCC over VPN Tunnels
We investigate the performance of ALCC and native protocols
with competing flows which may or may not use ALCC over
a real-world VPN tunneling scenario. Figure 21 shows the
experimentation setup. A Linksys dd-wrt router with an
integrated VPN server is used, where two separate external
BFPTD servers were connected to the router. The client
connects to the VPN server over the Internet, creating a TCP
tunnel.

 

 

VPN Server 

BFTPD server 1 

BFTPD server 2 

Client 

 

VPN Tunnel 

Internet 

Figure 21: A VPN tunnel scenario between client and
server(s)

ALCC with competing TCP flows: The experiment involves
independently evaluating the performance of ALCC Copa
(atop TCP Cubic) and native Copa (natively implemented
over UDP) when sharing a tunnel bandwidth of 40Mbps with
a competing TCP flow. These experiments investigate the
protocols’ fairness/friendliness to a competing TCP flow in
a tunneling scenario. In the experiment, the TCP flow en-
ters and exits the tunnel following an On/Off pattern, where
it co-exists with an ALCC Copa or Copa flow for random
periods. Figure 22 shows that ALCC Copa flows—depicted
in red—are fair to competing TCP connections—depicted in
blue—over the tunnel compared to the native Copa flows—
displayed in green.
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Figure 22: ALCC Copa and Copa Performance comparison
over a tunnel with co-existing TCP flow.

ALCC with competing UDP flows: We further analyzed
ALCC performance over the tunnel with co-existing UDP
flows. The data rate of the UDP flow is restricted at each
ingress in the tunnel. The aim is to examine the dominating
nature of UDP flows when sharing bandwidth with competing
ALCC flows. In the experiment, UDP flows are restricted
to follow an On/Off pattern with varying data rates between
10Mbps and 30Mbps. Figure 23 and 24 show that the native
UDP flows over the tunnel are not fair to competing TCP
flows—not sharing the bottleneck bandwidth equally. It is ob-
served that the UDP flows dominate the tunnel by sending at
its maximum data rate at each ingress, taking a large fraction
of the tunnel bandwidth.

The key finding from this experiment is that congestion
control protocols built on top of UDP exhibit an unfriendly
nature over the tunnel when competing for bandwidth with
co-existing TCP flows from the same host. The ALCC imple-
mentation currently supports congestion control for a single
flow from the end-host. For multiple ALCC flows from the
same host, a congestion control manager is required for fair
bandwidth sharing. We consider this as an essential extension
of the ALCC framework in the future.

0 50 100 150 200 250 300
Time (s)

0

20

40

Th
ro

ug
hp

ut
 (

M
bp

s) alccCopa UDP flow

Figure 23: ALCC Copa Vs. UDP flow over a tunnel.
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Figure 24: ALCC Verus Vs. UDP flow over a tunnel.
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6 Related Work

Over the years, numerous TCP versions have been proposed
[7, 8, 11, 16, 23, 27, 44, 46, 48] to optimize transport protocol
performance. The default TCP Cubic revises the additive
increase, multiplicative decrease (AIMD) practice of TCP to
promptly saturate the link in high bandwidth-delay product
(BDP) networks. But Cubic is inefficient to trace time-varying
wireless link capacities properly. However, delay-based con-
gestion control protocols, such as TCP Vegas [7], have earned
increased attention in the context of cellular networks due to
its performance concerning non-congestion induced losses.

Several other protocol designs focus on learning optimal
performance, despite variations in the network environment.
The essential approach is to search for actions directly to max-
imize throughputs and reducing delays. Remy [49] employs
off-line training to achieve the optimal mapping connecting
network conditions and the CWND adjusting function. In
contrast, the performance-oriented congestion control (PCC)
protocol [14] utilizes online learning to determine the send-
ing rate for maximizing the value of a utility function based
on feedback from the receiver in real-time. PCC Vivace [15],
which followed after PCC [14], leverages ideas from online
(convex) optimization in machine learning to do rate control
while alleviating the bufferbloat problem. However, Vivace’s
performance in LTE networks suffer due to noisy environ-
ments. 3G and LTE network measurements [25, 38] have
demonstrated that variations in the physical properties of the
radio channel can cause significant performance differences.
Due to highly variable channel fluctuations, cellular networks
often use deep buffers, which leads to significant self-inflicted
packet delays due to bufferbloat. Bufferbloat can be avoided
by employing Active Queue Management (AQM) schemes
like CoDel [37] and PIE [40], however, despite achieving low
packet delays, these schemes suffer from under-utilization
of link capacity. Without AQM, Cubic and NewReno rely
only on packet drops as a sign of congestion. With deep
packet buffers, this signal is too infrequent for active adap-
tation to varying link conditions. Protocols like Sprout [50]
and Verus [51] overcome the spareness of packet drops by uti-
lizing RTT and send/receive rate information with prediction
strategies to conclude accessible link capacity. Sprout [50]
is designed for real-time streaming applications that demand
high throughput and consistently low packet delays over cellu-
lar networks. Verus [51] is a delay-based congestion control
protocol designed for highly fluctuating mobile networks.
Verus makes decisions on changing delay profile curve over
time and adapts to the instantaneous properties of the channel
conditions. BBR [10], also proposed by Google has shown
good results over cellular networks. BBR uses the round trip
propagation time and bandwidth of the bottleneck link to find
the optimum operating point for CC. UDP based data Transfer
Protocol (UDT) [22] is a user-space framework that carries the
protocol design, used for configuring and evaluating new CC

algorithms. Unlike ALCC, UDT is a UDP-based approach
that employs a CC algorithm targeting shared networks.

7 Conclusions

This paper was motivated by the difficulty we face in de-
ploying new CC protocols for cellular networks. Despite
significant advances in CC research for cellular environments,
mobile applications are deeply wedded to the legacy TCP
stack due to a variety of factors. This paper describes the
design and implementation of the ALCC framework to enable
migrating CC protocols to the application layer and derive
similar performance to the native protocol on top of the legacy
TCP stack. We have demonstrated the efficacy of ALCC by
integrating three different recent CC protocols (Verus, Copa
and Sprout) and showing that the ALCC version of these
protocols have very similar performance characteristics (i.e.
throughput and delay distributions) achieved by their original
versions. We have also demonstrated how easy it is to inte-
grate any CC protocol into ALCC, as well as to incorporate
the ALCC framework into existing applications.
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