Published in Transactions on Machine Learning Research (08/2023)

Learning to Boost Resilience of Complex Networks via Neu-
ral Edge Rewiring

Shanchao Yang shanchaoyang@link. cuhk.edu.cn
School of Data Science
The Chinese University of Hong Kong, Shenzhen

Kaili Ma klma@cse.cuhk.edu.hk
Department of Computer Science and Engineering
The Chinese University of Hong Kong

Baoxiang Wang briangwang@cuhk.edu.cn
School of Data Science
The Chinese University of Hong Kong, Shenzhen

Tianshu Yu yutianshu@cuhk.edu.cn
School of Data Science
The Chinese University of Hong Kong, Shenzhen

Hongyuan Zha zhahy@cuhk.edu.cn
School of Data Science

The Chinese University of Hong Kong, Shenzhen

Shenzhen Institute of Artificial Intelligence and Robotics for Society

Reviewed on OpenReview: https: //openreview. net/ forum? 1d=moZv0z5cze

Abstract

The resilience of complex networks refers to their ability to maintain functionality in the face
of structural attacks. This ability can be improved by performing minimal modifications to
the network structure via degree-preserving edge rewiring-based methods. Existing learning-
free edge rewiring methods, although effective, are limited in their ability to generalize to
different graphs. Such a limitation cannot be trivially addressed by existing graph neural
networks (GNNs)-based learning approaches since there is no rich initial node features for
GNNs to learn meaningful representations. In this work, inspired by persistent homology,
we specifically design a variant of GNN called FireGNN to learn meaningful node repre-
sentations solely from graph structures. We then develop an end-to-end inductive method
called ResiNet, which aims to discover resilient network topologies while balancing network
utility. ResiNet reformulates the optimization of network resilience as a Markov decision
process equipped with edge rewiring action space. It learns to sequentially select the ap-
propriate edges to rewire for maximizing resilience. Extensive experiments demonstrate
that ResiNet outperforms existing approaches and achieves near-optimal resilience gains on
various graphs while balancing network utility.

1 Introduction

Network systems, such as infrastructure systems and supply chains, are susceptible to malicious attacks,
which necessitates addressing their vulnerability through the concept of network resilience. Network resilience
serves as a metric to assess the ability of a network system to withstand failures and defend itself against
attacks (Schneider et al., [2011). Figure |1| visualizes this scenario that the failures of a dozen of nodes could
jeopardize the connectivity and utility of the EU power network. Maintaining network resilience is crucial in

https://openreview.net/forum?id=moZvOx5cxe

Published in Transactions on Machine Learning Research (08/2023)

o .)
° . ° 1 e . o . o - .
e N O o . . .o 1O | e, —e— Original
o 0,0 o 0@ .0 o © . . o o Res
° oo oO . o o o esiNet
o] 0 o - o]
. . O 0, o . :
o O o o <) % o o o ° Y 0,
.) B %
o oy OOO ° o o o © ? o o ¥ %
o ° ° o e o = ",
< 0 O o o o o O 0.6 *
& S o o, o o ¢} | %
o o P P
A@) “ 0, » O Nl '8N ° o s ° °or° . 3 " *,
) RIA © o o o ° ° O o o i **,
. ° o ° o Qo o o T 0.4 ",
@) O o o *- o ©° 9 £ "
o ° o . ¢ ° . o °) £ :
o O o o ° o o . 3 "
o e o O .) ° o © ° ° . o \
o, o ° o) @) * ° o © o ° e o 0. 3 “©
o J . o L% o o . S
° O go° ° o ° o o © 1) e
o © e} ° o © o o e,
st oot e%0, S et
o o
° o0 7 ° o ® o o P 0 20 10 60 80 100
& o= o o e Number of removed nodes
(a) Original EU network (b) EU network after attacks (c) Remaining LCC size under attack

Figure 1: The EU power network under the adaptive degree-based attack which removes the most critical node
recursively with (a) original EU network with 217 nodes, (b) remaining EU network after a series of attacks on
40 nodes, and (c) the change of the normalized size of the largest connected component (LCC). The node size is

proportional to its degree and the node color is given by DBSCAN (Ester et al., [1996)).

ensuring that networked systems continue to function and provide an acceptable level of utility, even when
confronted with natural disasters or targeted attacks. Consequently, the study of the resilience of complex
networks has found widespread applications in various fields, including ecology (Sole & Montoyal, |2001)),
biology (Motter et al.l [2008), economics (Haldane & Mayl, [2011)), and engineering (Albert et al., |2004).

To enhance network resilience, numerous learning-free optimization methods have been proposed, typically
falling into heuristic-based (Schneider et all 2011; (Chan & Akoglul 2016; [Yazicioglu et al., |2015; Rong &/
and evolutionary computation (Zhou & Liu, 2014) categories. These methods aim to improve
the resilience of complex networks by making minimal modifications to graph topologies using a degree-
preserving atomic operation known as edge rewiring (Schneider et al., 2011} |Chan & Akoglu, [2016; Rong &/
2018)). Specifically, for a given graph G = (V, E) and two existing edges AC' and BD, an edge rewiring
operation alters the graph structure by removing AC and BD and adding AB and CD, where AC, BD € E
and AB,CD,AD,BC ¢ E. Edge rewiring possesses several advantageous properties when compared to
simple addition or deletion of edges although edge addition generally outperforms edge rewiring
. First, edge rewiring preserves node degrees, ensuring capacity constraints are not violated and
incurring less network costs (Freitas et all, [2022). Second, edge rewiring minimizes utility degradation in
terms of graph Laplacian measurement and thus preserves important graph properties, which may not be
the case with edge addition or deletion (Jaume et al.,|2020; Ma et al., 2021)).

Despite their success, learning-free methods share the following limitations:

o Transduction. Existing methods for selecting edges for rewiring are transductive, meaning that they
search for robust topologies specific to each individual graph instance. This search procedure is
performed independently for each graph and does not generalize across graphs, even if the graphs
only differ slightly in structure.

o Local optimality. Combinatorially choosing two edges to rewire in order to achieve globally optimal
resilience is an NP-hard problem (Mosk-Aoyama, [2008). Previous studies rely primarily on greedy
algorithms, resulting in local optimality in practice (Chan & Akoglul [2016).

o Utility Loss. Rewiring operation in network resilience optimization may result in significant degra-
dation of the network utility, potentially compromising the network’s overall functionality.

To the best of our knowledge, there is currently no learning-based inductive method for optimizing network
resilience via edge rewiring. One of the key challenges lies in the fact that many network science tasks,
including resilience optimization, often involve pure network topologies without rich node features. Learning
paradigms based on Graph Neural Networks (GNNs) have demonstrated their effectiveness in solving a wide

Published in Transactions on Machine Learning Research (08/2023)

Ag?nt /

a t+2k+1

AC-BD

AB-CD \ < >\() /

Figure 2: Action backtracking in successive edge rewirings. The graph G4 o is shown, where AC and BD represent
existing edges. To preserve the node degree, at step ¢t + 2k, one edge rewiring removes AC' and BD from Giyax
and introduces AB and CD, resulting in the new graph Giyor+1. However, in cases where GNNs fail to provide
distinguishable edge representations on graphs lacking rich features, the agent may select AB and C'D for rewiring
at step t + 2k + 1, leading to a cycle of action backtracking between Giyor and Giyor41-

@

range of graph-related tasks when rich features are available in an inductive manner (Li et al.l 2018} [Joshi
et al., [2019; Khalil et al., 2017} [Nazari et all [2018; Peng et all [2020). However, it remains challenging to
adapt these approaches to tasks that rely solely on topological structures, particularly those that require
distinguishable node/edge representations for sequentially constructing a solution. For instance, Boffa et al.
(2022) demonstrated a significant performance degradation of GNNs when solving the Traveling Salesman
Problem (TSP) without incorporating node coordinate features. Similarly, we have empirically observed
that the popular combination of GNNs and reinforcement learning (RL) fails to optimize network resilience
via edge rewiring, even though a similar framework has been successfully employed to improve the resilience
via edge additions (Darvariu et al.,|2021; [2023). Unlike edge addition, which can alter the node degree, edge
rewiring preserves the node degree, leading to a graph task with fewer rich features. Therefore, the RL agent
gets trapped in an undesired infinite action backtracking loop without meaningful edge representations, as
illustrated in Figure 2l A more detailed analysis can be found in Appendix

Therefore, devising a novel graph neural network (GNN) that can effectively handle network resilience
optimization tasks without relying on rich features is a challenging endeavor. In this study, we address the
aforementioned limitation of GNNs in modeling graphs without rich features. We propose the first inductive
learning-based method for discovering resilient networks through successive edge rewiring operations. To
accomplish this, we introduce a specialized variant of GNN called Filtration enhanced GNN (FireGNN).
FireGNN draws inspiration from persistent homology and persistence diagrams (Edelsbrunner & Harer}, [2008;
Aktas et al. [2019; Hofer et al., 2020; [Horn et al., |2022)). Persistent homology is a mathematical framework
that measures the lifetime of specific topological properties within a simplicial complex as simplices are added
or removed. The sequence of subcomplexes constructed during this process, known as filtration, provides
valuable information about the network’s resilience quality (Horak et al.,[2009). Motivated by this, FireGNN
generates a filtration by iteratively removing the node with the highest degree from the original graph,
resulting in a series of subgraphs. By employing this filtration process, FireGNN learns to aggregate node
representations from each subgraph, enabling the acquisition of meaningful representations. This innovative
approach enhances the representative power of FireGNN and addresses the challenge of modeling graphs
without rich features. Due to the ability of FireGNN to learn these meaningful representations, ResiNet
successfully avoids becoming trapped in undesired infinite action backtracking loops, a common failure case
observed in other GNN.

The main contributions of this paper can be summarized as follows:

1) We propose ResiNet, the first learning-based method designed to enhance network resilience via
edge rewiring without relying on rich node features. ResiNet employs an inductive approach to
preserve degrees while minimizing utility loss during the resilience optimization process. It formulates
resilience optimization as a sequential decision-making process for neural edge rewirings. Extensive
experiments demonstrate that ResiNet achieves near-optimal resilience while effectively balancing
network utilities, outperforming existing approaches by a significant margin.

Published in Transactions on Machine Learning Research (08/2023)

2) FireGNN, our technical innovation serving as the graph feature extractor, can learn meaningful
representations from pure topological structures. FireGNN provides sufficient training signals to
train an RL agent to learn successive edge rewiring operations inductively.

2 Related Work

GNNs for graph-related tasks with rich features. GNNs are powerful tools to learn from relational
data with rich features, providing meaningful representations for downstream tasks. Several successful
applications using GNNs as backbones include node classification (Kipf & Welling|, 2017; Hamilton et al.l
2017), link prediction (Li et al., 2020a; [Kipf & Welling} [2017)), graph property estimation (Xu et al.,[2019; |Kipf
& Welling) 2017} [Li et al., [2020a; Bodnar et al., 2021), and combinatorial problems on graphs (e.g., TSP (Li]
et al.l 2018; Joshi et al., [2019; Khalil et al., |2017; [Hudson et al., 2022), vehicle routing problem (Nazari
et al., 2018} [Peng et al., [2020), graph matching (Yu et al., 2021)) and adversarial attack on GNNs (Ma et al.
2021} Dai et al. [2018)). However, till now, it remains unclear how to adapt GNNs to graph tasks without
rich feature (Zhu et all 2021) like the resilience optimization task that we focus on. Current topology-based
GNNs like TOGL (Horn et al., 2022) rely on distinct node features for calculating the filtration, while our
proposed FireGNN addresses this by creating a sequential-related filtration and learning to aggregate them.

Network resilience. Modern network systems are threatened by various malicious attacks, such as the
destruction of critical nodes, critical connections and critical subset of the network via heuristics/learning-
based attack (Fan et all 2020} [Iyer et al. 2013} |Grassia et all 2021} [Fan et all [2020)). Network resilience
was proposed and proved as a suitable measurement for describing the robustness and stability of a network
system under such attacks (Schneider et al., 2011). Around optimizing network resilience, various defense
strategies have been proposed to protect the network functionality from crashing and preserve network’s
topologies to some extent. Commonly used manipulations of defense include adding additional edges
et al., [2019; (Carchiolo et al. 2019; [Darvariu et al. [2021; 2023)), protecting vulnerable edges
2014) and rewiring two edges (Schneider et al., [2011; |Chan & Akoglu, [2016; Buesser et al, [2011). Among
these manipulations, edge rewiring fits well to real-world applications as it induces fewer functionality changes
to the original network and does not impose additional loads to the vertices (degree-preserving) (Schneider]
let all [2011; Rong & Liul 2018} |Yazicioglu et al., 2015). By now, there has been no learning-based inductive
edge rewiring strategy for the resilience task.

Extended related work. The related work on network utility, graph structure learning, graph rewiring,
multi-views graph augmentation for GNNs and deep graph generation is deferred to Appendix [A]

3 Problem Definition

An undirected graph is defined as G = (V, E), where V = {1,2,..., N} is the set of N nodes, E is the
set of M edges, A € {0,1}V*V is the adjacency matrix, and F € RN¥*? is the d-dimensional node feature
matri The degree of a node is defined as d; = Zjvzl A;j, and a node with degree 0 is called an isolated
node. Let G denote the set of graphs with the same node degrees as G.

Let Gg denote the set of graphs with the same node degrees as GG. Given the network resilience metric
R(G) (Schneider et all 2011) and the utility metric £(G) (Latora & Marchiori, |2003)), the objective of
boosting the resilience of G is to find a target graph G* € G, which maximizes the network resilience while
balancing the network utility. Formally, the problem of maximizing the resilience of complex networks is
formulated as

G* =argmax (1 —a) - R(G)+a-EG),
G'€Gg

where a € R is the scalar weight that balances the resilience and the utility.

1For a graph with pure topological structure, node feature matrix is not available.

Published in Transactions on Machine Learning Research (08/2023)

To satisfy the constraint of preserving degree, edge rewiring is the default atomic operation for obtaining
new graphs G from G. Combinatorially, a total of T successive steps of edge rewiring has the complexity
of O(E?T).

Following the conventional setting in network science, resilience metrics used in our experiments include graph
connectivity-based (Schneider et al., [2011)) and spectrum-based measurements (adjacency matrix spectrum
and Laplacian matrix spectrum). Utility metrics consist of global efficiency and local efficiency (Latora &
Marchiori, [2001)). The details of metrics are presented as follows.

Resilience metrics Two kinds of resilience metrics are considered:

o The graph connectivity-based resilience measurement is defined as (Schneider et al., [2011))

R(G) =+ Y s(@),

where s(q) is the fraction of nodes in the largest connected remaining graph after removing ¢ nodes
from G according to certain attack strategy. The range of possible values of R is [1/N,1/2], where
these two extreme values correspond to a star network and a fully connected network, respectively.

o The algebraic connectivity (AC) is the second smallest eigenvalue of the Laplacian matrix of G.

Utility metrics The global and local communication efficiency are used as two representative measure-
ments of the network utility, which are widely applied across diverse applications of network science, such
as transportation and communication networks (Latora & Marchiori, [2003)).

The average efficiency of a network G is defined inversely proportional to the average over pairwise distances
(Latora & Marchiori, 2001) as
1 1
EG) = ———— Z -
NN =1) 2=, d.))
where d(i,7) is the length of the shortest path between a node i and another node j.

Based on the average efficiency, the global efficiency and local efficiency are defined as
o The global efficiency of a network G is defined as (Latora & Marchiori, |2001])

EG
Eglobal(G) = E(C;(Z-de)al) 5

where G9! is the “ideal” fully-connected graph on N nodes and the range of Egopai(G) is [0, 1].

e The local efficiency of a network G measures a local average of pairwise communication efficiencies
and is defined as (Latora & Marchiori, 2001])

1
Elocal (G) = Nz E(Gz) 3
eV

where G; is the local subgraph including only of a node i’s one-hop neighbors, but not the node i
itself. The range of Ejocqi(G) is [0, 1].

4 Proposed Approach: ResiNet

In this section, we formulate the task of boosting network resilience via edge rewiring as a reinforcement
learning task by learning to select two edges and rewire them successively. We first present the graph
resilience-aware environment design and describe our innovation FireGNN in detail. Finally, we present the
graph policy network that guides the edge selection and rewiring process.

Published in Transactions on Machine Learning Research (08/2023)

Y & L. N
o] OO 1 esiNe @

o O O o-Q
i [
Co == Q = O O OO Qo
o-0 [O Ou] o0
State G, Node embedding First edge embedding Eyc= argmax f(S;,a
O : n Q ﬂ
@ o @ O a FireGNN
O O _ _ @ O ResiNet “ [Q O O[
©® o v e R RRe)
State (0 Env step:
ate G " . '
and rewalrid1 R, Rew HX]? Snjimcl]? D to KEBD = argmax f(S5;,a) Second edge embedding /

Figure 3: Overview of the architecture of ResiNet to select two edges for edge rewiring.

4.1 Boosting Network Resilience via Edge Rewiring as Markov Decision Process

To satisfy the constraint of preserving the node degree, the resilience optimization of a given graph is based
on edge rewiring. We formulate the network resilience optimization problem via successive edge rewiring
operations into the Markov decision process (MDP) framework. The Markov property denotes that the
graph obtained at time step ¢+ 1 relies only on the graph at time step ¢ and the rewiring operation, reducing
the complexity from original O(E?T) to O(TE?). Then we further reduce the complexity to O(TE) by
designing an autoregressive edge selection module shown as follows.

As shown in Figure [3] ResiNet performs the resilience optimization in an auto-regressive step-wise way
through a sequence of edge rewiring actions. Given an input graph, the agent first decides whether to
terminate or not. If not, it selects one edge from the graph to remove, receives the very edge it just selected
as the auto-regression signal, and then selects another edge to remove. Four nodes of these two removed
edges are re-combined, forming two new edges to be added to the graph. The optimization process repeats
until the agent decides to terminate.

After formulating the resilience optimization task as a MDP, reinforcement learning (RL) can be employed
as a viable solution approach. RL enables an agent to learn optimal decision-making by interacting with an
environment. The environment can be modeled as an MDP, comprising a set of states, actions, transition
probabilities, and rewards. At each time step, the agent observes the current state, selects an action, and
receives feedback in the form of a reward signal and the subsequent state. The ultimate objective of the agent
is to learn a policy, which is a mapping from states to actions, that maximizes the cumulative reward over
time. Herein, we provide a detailed description of the design for the state representation, action selection,
transition dynamics, and reward structure.

State. The fully observable state is formulated as S; = G4, where G; is the current input graph at step t.
The widely-used node degree feature cannot significantly benefit the network resilience optimization of a
single graph due to the degree-preserving rewiring. Therefore, we construct node features for each input
graph to aid the transductive learning and inductive learning, including

o The distance encoding strategy (Li et al.l 2020b)). Node degree feature is a part of it.

o The 8-dimensional position embedding originating from the Transformer (Vaswani et al., [2017) as
the measurement of the vulnerability of each node under attack. If the attack order is available, we
can directly encode it into the position embedding. If the attack order is unknown, node degree, node
betweenness, and other node priority metrics can be used for approximating the node importance
in practice. In our experiments, we used the adaptive node degree for the position embedding.

Published in Transactions on Machine Learning Research (08/2023)

Action. ResiNet is equipped with a node permutation-invariant, variable-dimensional action space. Given
a graph G, the action a; is to select two edges and the rewiring order. The agent first chooses an edge
e; = AC and a direction A — C. Then conditioning on the state, e1, and the direction the agents chooses
an edge ea = BD such that AB,CD,AD,BC ¢ E and a direction B — D. The heads of the two edges
reconnect as a new edge AB, and so does the tail CD. Although G, is undirected, we propose to consider the
artificial edge directions, which effectively avoids the redundancy in representing action space since A — C,
B — D and C — A, D — B refer to the same rewiring operation. The choice of the direction of ey is
randomized (this randomized bit is still an input of choosing ez). Therefore, our proposed action space
effectively reduces the size of the original action space by half and still leads to a complete action space. In
this way, the action space is the set of all feasible pairs of (ej,e2) € E?

Transition dynamics. The formulation of the action space implies that if the agent does not terminate
at step t, the selected action must form an edge rewiring. This edge rewiring is executed by the environment,
and the graph transits to the new graph.

Note that in some other work, infeasible operations are also included in the action space (to make the
action space constant through the process) (You et al., 2018} Trivedi et al., [2020). This reduces the sample
efficiency and causes biased gradient estimations (Huang & Ontandn, 2020). ResiNet takes advantage of the
state-dependent variable action space composed of only feasible operations.

Reward. ResiNet aims to optimize resilience while balancing the utility, forming a complicated and pos-
sibly unknown objective function. Despite this, by Wakuta| (1995), an MDP that maximizes a complicated
objective is up to an MDP that maximizes the linear combination of resilience and utility for some coefficient
factor. This fact motivates us to design the reward as the step-wise gain of such a linear combination as

Ry =(1—0a) (R(Gry1) = R(Gr)) + - (E(Grpa) — E(G))

where R(G) and £(G) are the resilience function and the utility function, respectively. The cumulative
reward th:ol R; up to time T is then the total gain of such a linear combination.

4.2 FireGNN

Motivated by graph filtration in persistent homology (Edelsbrunner & Harer} |2008]), we design the filtrated
graph enhanced GNN termed FireGNN to model graphs without rich features, or even with only topology.
For a given input graph G, FireGNN transforms G from the static version to a temporal version consisting
of a sequence of subgraphs, by repeatedly removing the node with the highest degree. Observing a sequence
of nested subgraphs of G grants FirGNN the capability to observe how G evolves towards being empty.
Then FireGNN aligns and aggregates the node, edge, and graph embedding from each subgraph, leading to
meaningful representations in node, edge, and graph levels. Formally, the filtration in FireGNN is constructed
as

Gr=D =gk g = argmax DEGREE (v;)
v; €GF)

V,)=cOcaWc...ca®™ =q
G=[6c0,6",...,¢"M],
where G*) denotes the remaining graph after removing N — k nodes with highest node degrees, vj, denotes
the node with highest degree in current subgraph G(*), DEGREE(:) measures the node degree, G is the

original graph, and G contains no edge. The sequence of the nested subgraphs of G is termed the filtrated
graph G. We illustrate the filtration process on a toy dataset in Figure

Node embedding. Regular GNN only operates on the original graph G to obtain the node embedding
for each node v; as h(v;) = ¢(GN) = G);, where ¢(-) denotes a standard GNN model. In FireGNN, by
using the top K + 1 subgraphs in a graph filtration, the final node embedding h(v;) of v; is obtained by

h(v;) = AGGy (h(N’K)(vi), o B D (),) (vi)) ,

Published in Transactions on Machine Learning Research (08/2023)

Figure 4: Filtration Process in FireGNN on BA-15. The original graph is decomposed into sequential-related sub-
graphs.

where AGG y(-) denotes a node-level aggregation function, h(*)(v;) is the node embedding of 7 in the k-th
subgraph G*) obtained by passing G to a backbone GNN, and K € [N]. In practice, h*)(v;) is discarded
when calculating h(v;) if v; is isolated or not included in G,

Edge embedding. The directed edge embedding h(k)(eij) of the edge from node i to node j in each
subgraph is obtained by combining the embeddings of the two end vertices in G(*) as

R (e;;) = my (AGGN—>E (h(k)(vi)vh(k)(vj)>>)

where AGGy_ g(-) denotes an aggregation function for obtaining edge embedding from two end vertices
(typically chosen from min, max, sum, difference, and multiplication). my(-) is a multilayer perceptron
(MLP) model that ensures the consistence between the dimensions of edge embedding and graph embedding.

The final embedding of the directed edge e;; of the filtrated graph G is given by
h(eij) = AGGp (h(NfK)(eij)v . ~7h(N71)(6ij)vh(N)(eij)> ;
where AGGg(+) denotes an edge-level aggregation function.

Graph embedding. With the node embedding h(*) (v;) of each subgraph G*) available, the graph embed-
ding h(®)(G) of each subgraph G*) is calculated by a readout functions (e.g., mean, sum) on all non-isolated
nodes in G*) as

h®) (@) = READOUT (h(k)(vi)> Vo € G® and d > 0.

The final graph embedding of the filtrated graph G is given by
h(G) = AGCe (h“V*K)(G), . .,h<N*1>(G),h<N>(G)) :

where AGGg(+) denotes a graph-level aggregation function.

4.3 Edge Rewiring Policy Network

Having presented the details of the graph resilience environment and FireGNN, in this section, we describe
the policy network architecture of ResiNet in detail, which learns to select two existing edges for rewiring at
each step. At time step t, the policy network uses FireGNN as the graph extractor to obtain the directed
edge embedding h(e;;) € R2IF1Xd and the graph embedding h(G) € R? from the filtrated graph Gy, and
outputs an action a; representing two selected rewired edges, leading to the new state G;1 with reward R;.

To be inductive, we adapt a special autoregressive node permutation-invariant dimension-variable action
space to model the selection of two edges from graphs with arbitrary sizes and permutations. The detailed

Published in Transactions on Machine Learning Research (08/2023)

mechanism of obtaining the action a; based on edge embedding and graph embedding is presented as follows,
further reducing the complexity from O(TE?) to O(TE).

Auto-regressive latent edge selection. An edge rewiring action a; at time step ¢ involves the prediction

of the termination probability aff’) and the selection of two edges (agl) and aEZ)) and the rewiring order. The

action space of a,EO) is binary, however, the selection of two edges imposes a huge action space in O(|E|?),
which is too expensive to sample from even for a small graph. Instead of selecting two edges simultaneously,

aEO), agl), a§2)), where agl) and a,EQ) are two existing edges which
(1)

do not share any common node (recall that a;”’ and aiz) are directed edges for an undirected graph). Thus

the probability of a; is

we decompose the joint action a; into a; = (

P(als:) = P(al”|s0)P(a) [se, al”)P(al? 54,0, alV).

Predicting the termination probability. The first policy network mo(-) takes the graph embedding
as input and outputs the probability distribution of the first action that decides to terminate or not as
]P’(ago)|st) = mo(h(QG)), where m(+) is implemented by a two-layer MLP. Then the probability of the first
subaction is given as

a!” ~ Bernoulli(P(a!” |s;)) € {0,1}.

Selecting edges. If the signal ago) given by the agent decides to continue to rewire, two edges are then

selected in an auto-regressive way. The signal of continuing to rewire ago) is input to the selection of two
edges as a one-hot encoding vector I.. The second policy network 7 (-) takes the graph embedding and . as
input and outputs a latent vector I; € R? to determine the selection of edges. To account for the variability
in the action space across different graphs, we employ the pointer network (Vinyals et al., [2015)) that offers
the advantages of handling variable-sized outputs, flexible action selection, and end-to-end training. The
pointer network measures the proximity between /1 and each edge embedding h(e;;) in G to obtain the first
edge selection probability distribution. Then, to select the second edge, the graph embedding h(G) and the
first selected edge embedding h(egl)) and [. are concatenated and fed into the third policy network mo(-).
mo(+) obtains the latent vector Iy for selecting the second edge using a respective pointer network. The overall

process can be formulated as

Lo=m([h(G), L), Plai”|seal”) = fi(li, hlei;))
lo = mo([A(G), h(ef), 1)), P(al s, af,al”) = fala, h(eiy)),

where e;; € E and m;(-) is a two-layer MLP model, [, -] denotes the concatenation operator, h(egl)) is the
embedding of the first selected edge at step t, and f;(-) is a pointer network.

5 Experiments

In this section, we demonstrate the advantages of ResiNet over existing non-learning-based and learning-
based methods in achieving superior network resilience, inductively generalizing to unseen graphs, and ac-
commodating multiple resilience and utility metrics. Moreover, we show that FireGNN can learn meaningful
representations from graph data without rich features, while current GNNs fail. Our implementation is
available at|https: // github. com/yangysc/ResilNet|

5.1 Experimental Settings

Datasets. Synthetic and real datasets including EU power network (Zhou & Bialek, 2005) and Internet
peer-to-peer networks (Leskovec et al., |2007; [Ripeanu et al. |2002) are used to demonstrate the performance
of ResiNet in transductive and inductive settings. The details of data generation and statistics of the datasets
are presented in Appendix Following the conventional experimental settings, the maximal node size is
set to be around 1000 (Schneider et al., 2011)), taking into account: 1) the high complexity of selecting two
edges at each step is O(E?); 2) evaluating the resilience metric is time-consuming for large graphs.

https://github.com/yangysc/ResiNet

Published in Transactions on Machine Learning Research (08/2023)

Table 1: Resilience optimization algorithm under the fixed maximal rewiring number budget of 20. Entries are in
the format of X (Y'), where 1) X: weighted sum of the graph connectivity-based resilience and the network efficiency
improvement (in percentage); 2) Y: required rewiring number. X means that the algorithm cannot find a solution in
a reasonable time.

Method « ‘ BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09

HO 0 |268(10) 30.0(20) 24.1(20) 6.4(20) 66.6(20) 19.8(20) 6.2 (20) 8.4 (20)
0.5 | 18.6 (11.3) 22.1(20) 149 (20) 5.9 (20) 16.4(20) 16.3 (20) 5.2 (20) 7.0 (20)

sA 0 |21.6(17.3) 11.9(20) 125 (20) 3.8 (20) 42.9(20) 14.9 (20) 3.9 (20) 3.7 (20)
05 | 16.8 (19.0) 114 (20) 13.4(20) 4.0 (20) 154 (20) 14.0 (20) 6.3 (20) 4.8 (20)

Groed 0 |235(6) 486 (13) 64.3(20) X X 05(3) X X

Y 05 | 5.3 (15) 347 (13) 427 (20) X X 03(3) X X

EA 0 |85(20) 64(20) 4.0(20) 85(20) 174.1(20) 8.2(20) 2.7 (20) 0 (20)
05|64 (20) 47(20) 28(20) 56(20) 187(20) 9.3 (20) 3.7 (20) 0.1 (20)

DE 0 | 1372 0Q) 0 (1) 1.6 (20) 41.7(20) 9.0 (20) 2.2 (20) 0 (1)

GNN-RL 05| 109 (2) 0(1) 0 (1) 27(20) 201 (14) 21(20) 0(1) 1.0 (20)

EGNN- 0 |13.7(2) 0(1) 0 (1) 0 (1) 8.8 (20) 45(20) -0.2 (20) 0 (1)

RL 05 | 6.3 (2) 0 (1) 0 (1) 0 (20) 249 (20) 4.8 (20) -0.1 (20) 0 (1)

DIGL- 0 |98(2) 0 (1) 0 (1) X X 59(20) X X

RL 05 | 6.3 (2) 0 (1) 0 (1) X X 7.2(20) X X

SDRF- 0 |9.8(2) 0 (1) 0 (1) X X 47 (20) X X

RL 05 | 8.0 (2) 0 (1) A7 (20) X X 53(20) X 55

ResiNet 0 | 35.3 (6) 61.5 (20) 70.0 (20) 10.2 (20) 172.8 (20) 54.2 (20) 14.0 (20) 18.6 (20)

(ours) 05 | 26.9 (20) 53.9 (20) 53.1 (20) 15.7 (20) 43.7 (20) 51.8 (20) 12.4 (20) 15.1 (20)

Baselines. We compare ResiNet with existing edge rewiring-based graph resilience optimization algorithms
, including learning-free and learning-based algorithms. Learning-free methods (upper half of Table[l)) include
the hill climbing (HC) (Schneider et al., 2011), the greedy algorithm (Chan & Akoglu, |2016), the simulated
annealing (SA) (Buesser et all 2011)), and the evolutionary algorithm (EA) (Zhou & Liu, [2014). Since to
our knowledge there is no previous learning-based baseline, we specifically devise five counterparts based on
our method by replacing FireGNN with existing well-known powerful GNNs (DE-GNN (Li et al.l 2020Db)),
k-GNN (Morris et al., [2019), DIGL (Klicpera et al., [2019) and SDRF (Topping et all 2022))) (lower half of
Table . The classical GIN model is used as the backbone (Xu et al.l |2019). All baselines are trained using
the same reward as ResiNet.

The ResiNet’s training setup is detailed as follows. Our proposed FireGNN is used as the graph encoder
in ResiNet, including a 5-layer defined GIN (Xu et al., 2019)) as the backbone. The hidden dimensions for
node embedding and graph embedding in each hidden layer are set to 64 and the SeLLU activation function
is used after each message passing propagate. Graph normalization strategy is adopted to stabilize the
training of GNN (Cai et al., [2021). The jumping knowledge network (Xu et al.; 2018)) is used to aggregate
node features from different layers of the GNN. The overall policy is trained by using the highly tuned
implementation of proximal policy optimization (PPO) algorithm (Schulman et all) 2017). Several critical
strategies for stabilizing and accelerating the training of ResiNet are used, including advantage normalization
(Andrychowicz et al., [2021)), the dual-clip PPO (the dual clip parameter is set to 10) (Ye et al.,2020)), and the
usage of different optimizers for policy network and value network. Additionally, since the step-wise reward
range is small (around 0.01), we scale the reward by a factor of 10 to facilitate the training of ResiNet. The
policy head model and value function model use two separated FireGNN encoder networks with the same
architecture. We run all experiments for ResiNet on the platform with two GEFORCE RTX 3090 GPU and
one AMD 3990X CPU.

5.2 Comparisons to the Baselines

In this section, we compare ResiNet to baselines in optimizing the combination of resilience and utility with
weight coefficient « € {0,0.5}. Following conventional setting, the graph connectivity-based metric is used
as resilience metric (Schneider et al. 2011) and the global efficiency is used as utility metric (Latora &
Marchiori, 2003]).

Table [1| records the metric gain and the required number of rewiring operations of different methods under
the same rewiring budget. ResiNet outperforms all baselines consistently on all datasets. Note that this

10

Published in Transactions on Machine Learning Research (08/2023)

performance may be achieved by ResiNet under a much fewer number of rewiring operations, such as on
BA-15 with a = 0. In contrast, despite approximately searching for all possible new edges, the greedy
algorithm is trapped in a local optimum (as it maximizes the one-step resilience gain) and is too expensive
to optimize the resilience of a network with more than 300 nodes. For SA, the initial temperature and
the temperature decay rate need to be carefully tuned for each network. EA performs suboptimally with a
limited rewiring budget due to the numerous rewiring operations required in the internal process (e.g., the
crossover operator). Learning-based methods using existing GNNs coupled with distance encoding cannot
learn effectively compared to our proposed ResiNet, supporting our claim about the effectiveness of FireGNN
on graphs without rich features.

5.3 Ablation Study of ResiNet

In this section, we investigate the impact of coefficient a of the objective on ResiNet and the effect of the
filtration order K on FireGNN.

To investigate the impact of the « in the reward function on ResiNet, we run a grid search by varying o
from 0 to 1 and summarize the resilience gain, utility gain, and the sum of them in Table 2] Table [2| shows
that when we only optimize the resilience with a = 0, the utility will degrade. Similarly, the resilience would
also decrease if we only optimize the utility with o = 1. This suggests a general tradeoff between resilience
and utility and is consistent with their definitions. However, despite this tradeoff, we can achieve resilience
gain and utility gain simultaneously on BA-15 and BA-50 since the original graph usually does not have the
maximum resilience or utility. This incentivizes almost every network conducts such optimization to some
extent when feasible.

In FireGNN, the filtration order K of FireGNN determines the total number of subgraphs involved in
calculating the final node embedding, edge embedding, and graph embedding. FireGNN degenerates to
existing GNNs when the filtration order K is 0. Table[I] validates the effectiveness and necessity of FireGNN.
Without FireGNN (other GNNs as the backbone), it is generally challenging for ResiNet to find a positive
gain on graphs without rich features since ResiNet cannot learn to select the correct edges with the incorrect
edge embeddings. The maximum K of each dataset is recorded in Appendix Table [6] which shows that
the maximum K equals the around half size of the graph since we gradually remove the node with the
largest degree, leading to a fast graph filtration process. For our experiments, we use the maximum of K
for graphs of sizes less than 50 and set K = 3 (1) for graphs of sizes larger than 50 (200). To validate
that ResiNet is not sensitive to K, we run a grid search on several datasets to optimize the resilience by
setting K = 0,1,2,3. As shown in Appendix Table[d] the resilience is improved significantly with K > 0 and
ResiNet performs well with K =1 or K = 2. In practice, the choice of the filtration order, denoted as K,
depends on the size of the graph. For small and moderate graphs, it is reasonable to set K to the maximum
size of the nodes. This allows for a more comprehensive exploration of the graph’s substructures during the
filtration process. However, when dealing with larger graphs, computational limitations may arise. In such
cases, it is advisable to set K to a smaller value, such as 1 or 2, to mitigate the computational burden while
still capturing important subgraph information. This approach strikes a balance between computational
efficiency and retaining key insights from the filtration process.

5.4 Stability and Generalization

ResiNet leverages our proposed FireGNN to acquire meaningful representations that enhance the resilience
of graphs with purely topological structures. By design, ResiNet inherits the stability properties of the
backbone GNN employed in FireGNN. As GNNs have been demonstrated to possess permutation equivalence
and stability against relative perturbations in the underlying graph structure (Gama et al.l [2019), it follows
that ResiNet exhibits stability in the face of such perturbations.

To demonstrate the induction of ResiNet, we first train ResiNet on two different datasets (BA-10-30 and BA-
20-200), and then evaluate its performance on an individual test dataset. We report the averaged resilience
gain for the graphs of the same size for each dataset.

11

Published in Transactions on Machine Learning Research (08/2023)

0.040

&

0035

0.030

8

0025

03
0020
e 0015
0010
01
0.005
0.000

00

&

Resilience gain
Utility gain

Weighted sum of resilience and utilty gain
2 S

]

1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Graph size N Graph size N Graph size N

(a) Induction on resilience (b) Induction on utility (¢) Induction on both metrics

Figure 5: The inductive ability of ResiNet on the test dataset (BA-10-30) when optimizing (a) network resilience,
(b) network utility, and (c) their combination.

Table 2: The effect of the coefficient o on ResiNet. The result is shown as percentages.

Dataset Gain 0 0.1 02 03 04 05 06 07 08 09 1
Resilience 35.3 35.3 353 333 176 176 275 176 176 17.6 -2.0
BA-15 Utility -5.9 -39 -38 -27 11 1.1 0 1.1 1.1 1.1 54

Reward 353 342 329 29.7 152 142 19.7 114 92 6.0 54
Resilience 56.7 51.1 423 48.6 539 59.2 514 50.6 481 39.3 -19.1
BA-50 Utility 36 34 21 40 42 42 -26 -22 -21 05 55
Reward 56.7 49.5 39.9 431 449 456 35.7 30.1 220 11.8 5.5
Resilience 754 74.6 748 76.1 728 728 751 754 749 716 -11.8
BA-100 Utility 40 -46 -39 -51 42 -42 -38 -37 -35 -25 438
Reward 75.4 719 69.0 66.4 594 543 49.7 41.8 31.1 16.7 4.8

The performance of ResiNet on BA-10-30 is shown in Figure [§] and the results of other datasets are deferred
to Figure [§ in Appendix [C] Figure [f§] shows a nearly linear improvement of resilience with the increase of
graph size, which is consistent with the results in the transductive setting that larger graphs usually have a
larger room to improve their resilience. Moreover, we conduct experiments to demonstrate the generalization
capabilities of ResiNet in optimizing different utility and resilience metrics, and the details are deferred to

Appendix [C]

We also use BA-15 as an example to visualize how the
values of resilience and utility change as « increases 028
from 0 to 1, as shown in Figure [§] The Pareto fron-
tier line in Figure [reveals that our algorithm results in
two tradeoff-friendly regions. Specifically, when « falls

—— Pareto frontier

@
o
. . . c
within the range of 0.6 to 1.0, enhancing network re- 2 s
K . . . R Q7
silience has minimal impact on network utility. « -04
0.24
5.5 Limitations and Future Work 023 -02
. . . 0.22
Inspired by persistent homology, our proposed FireGNN 0.0
utilizes a filtration process to generate a sequence of sub- O8O0 Oy (ot ofeneyy 62

graphs to improve the representative power of GNNs.

Firstly, FireGNN employs a backbone GNN to obtain Figure 6: The value changes of graph connectivity-
the embeddings of each subgraph. Subsequently, it based resilience and global efficiency-based utility as
learns to aggregate these embeddings from various sub- the o increases from 0 to 1 on the dataset BA-15.
graphs to derive the final node and graph embeddings.

This approach demonstrates excellent performance on

graphs of moderate sizes. However, for larger graphs, the computational cost may become prohibitive due
to the requirement of calculating and storing all intermediate subgraph embeddings. To address this lim-

12

Published in Transactions on Machine Learning Research (08/2023)

itation, it would be valuable to develop an efficient version of the filtration process that avoids redundant
GNN computations on subgraphs. A promising avenue is to investigate techniques such as precomputing
embeddings (Yan et al.l |2023)), which can enhance the scalability of FireGNN.

6 Conclusion

We have proposed ResiNet, a learning-based inductive method for the discovery of resilient network topologies
via edge rewiring with minimal changes to the graph structure. ResiNet is the first inductive edge rewiring-
based method that formulates the task of boosting network resilience as an MDP of successive rewiring
operations. Our technical innovation, FireGNN, is motivated by persistent homology as the graph feature
extractor for handling graphs with only topologies available. FireGNN alleviates the insufficiency of current
GNNs (including GNNs more powerful than 1-WL test) on modeling graphs lacking rich features. By
decomposing graphs into a sequence of subgraphs and learning to combine the individual representations
from each subgraph, FireGNN can learn meaningful representations on the resilience task to provide sufficient
gradients for training an RL agent to select correct edges while current GNNs fail due to the infinite action
backtracking. Our method is practical as it effectively balances network utility when boosting resilience.
FireGNN is potentially general enough to be applied to solve various graph problems without rich features.

Acknowledgements

We want to thank the reviewers and the editors for their constructive comments during the re-
view process. Baoxiang Wang is partially supported by National Natural Science Foundation of
China (62106213, 72150002) and Shenzhen Science and Technology Program (RCBS20210609104356063,
JCYJ20210324120011032). Hongyuan Zha is partially supported by Shenzhen Science and Technology Pro-
gram (JCYJ20210324120011032, ZDSYS20220606100601002) and a grant from Shenzhen Institute of Artifi-
cial Intelligence and Robotics for Society.

References

Mehmet E Aktas, Esra Akbas, and Ahmed El Fatmaoui. Persistence homology of networks: methods and
applications. Applied Network Science, 4(1):1-28, 2019.

Réka Albert and Albert-Laszlé Barabdsi. Statistical mechanics of complex networks. Reviews of Modern
Physics, 74(1):47, 2002.

Réka Albert, Istvan Albert, and Gary L Nakarado. Structural vulnerability of the north american power
grid. Physical Review E, 69(2):025103, 2004.

Marcin Andrychowicz, Anton Raichuk, Piotr Stariczyk, Manu Orsini, Sertan Girgin, Raphaél Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier Bachem.
What matters for on-policy deep actor-critic methods? A large-scale study. In ICLR, 2021.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial opti-
mization with reinforcement learning. In ICLR, 2016.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow network based
generative models for non-iterative diverse candidate generation. In NeurIPS, 2021.

Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker, and Irina Rish. Improving network robustness by
edge modification. Physica A: Statistical Mechanics and its Applications, 357(3-4):593-612, 2005.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and Michael
Bronstein. Weisfeiler and Lehman go cellular: CW networks. In NeurIPS, 2021.

Matteo Boffa, Zied Ben-Houidi, Jonatan Krolikowski, and Dario Rossi. Neural combinatorial optimization
beyond the TSP: existing architectures under-represent graph structure. In AAAI 2022.

13

Published in Transactions on Machine Learning Research (08/2023)

Béla Bollobds and Oliver Riordan. Robustness and vulnerability of scale-free random graphs. Internet
Mathematics, 1(1):1-35, 2004.

Maximilian Béther, Otto Kiflig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich. What’s
wrong with deep learning in tree search for combinatorial optimization. In ICLR, 2022.

Pierre Buesser, Fabio Daolio, and Marco Tomassini. Optimizing the robustness of scale-free networks with
simulated annealing. In ICANNGA, pp. 167-176. Springer, 2011.

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, and Liwei Wang. GraphNorm: A principled
approach to accelerating graph neural network training. In ICML, 2021.

Vincenza Carchiolo, Marco Grassia, Alessandro Longheu, Michele Malgeri, and Giuseppe Mangioni. Network
robustness improvement via long-range links. Computational Social Networks, 6(1):1-16, 2019.

Hau Chan and Leman Akoglu. Optimizing network robustness by edge rewiring: a general framework. Data
Mining and Knowledge Discovery, 30(5):1395-1425, 2016.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph
structured data. In ICML, 2018.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Goal-directed graph construction using
reinforcement learning. Proceedings of the Royal Society A, 477(2254):20210168, 2021.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Planning spatial networks with monte
carlo tree search. Proceedings of the Royal Society A, 479(2269):20220383, 2023.

Herbert Edelsbrunner and John Harer. Persistent homology-A survey. Contemporary Mathematics, 453:
257-282, 2008.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD, volume 96, pp. 226-231, 1996.

Changjun Fan, Li Zeng, Yizhou Sun, and Yang-Yu Liu. Finding key players in complex networks through
deep reinforcement learning. Nature Machine Intelligence, pp. 1-8, 2020.

Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and Duen Horng Chau. Graph vulnerability and
robustness: A survey. IEEE Transactions on Knowledge and Data Engineering, 35(6):5915-5934, 2022.

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability of graph neural networks to relative pertur-
bations. In The International Conference on Acoustics, Speech, & Signal Processing (ICASSP), 2019.

Marco Grassia, Manlio De Domenico, and Giuseppe Mangioni. Machine learning dismantling and early-
warning signals of disintegration in complex systems. Nature Communications, 12(1):1-10, 2021.

Xiaojie Guo, Lingfei Wu, and Liang Zhao. Deep graph translation. IEEE Transactions on Neural Networks
and Learning Systems, pp. 1-10, 2022.

Andrew G Haldane and Robert M May. Systemic risk in banking ecosystems. Nature, 469(7330):351-355,
2011.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NeurIPS, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on graphs. In
ICML, 2020.

Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In ICML, 2020.

Danijela Horak, Slobodan Maleti¢, and Milan Rajkovi¢. Persistent homology of complex networks. Journal
of Statistical Mechanics: Theory and Ezperiment, 2009(03):P03034, 2009.

14

Published in Transactions on Machine Learning Research (08/2023)

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borgwardt.
Topological graph neural networks. In ICLR, 2022.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In ICLR, 2020.

Shengyi Huang and Santiago Ontanén. A closer look at invalid action masking in policy gradient algorithms.
CoRR, abs/2006.14171, 2020.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network guided
local search for the traveling salesperson problem. In ICLR, 2022.

Swami Iyer, Timothy Killingback, Bala Sundaram, and Zhen Wang. Attack robustness and centrality of
complex networks. PloS One, 8(4):59613, 2013.

Daniel A Jaume, Adridn Pastine, and Victor Nicolas Schvollner. 2-switch: transition and stability on graphs
and forests. arXiv preprint arXiv:2004.11164, 2020.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning
for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network tech-
nique for the travelling salesman problem. CoRR, abs/1906.01227, 2019.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the travelling
salesperson problem requires rethinking generalization. Constraints, pp. 1-29, 2022.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. In NeurIPS, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
ICLR, 2017.

Johannes Klicpera, Stefan Weiflenberger, and Stephan Giinnemann. Diffusion improves graph learning. In
NeurIPS, 2019.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In ICLR,
2018.

Vito Latora and Massimo Marchiori. Efficient behavior of small-world networks. Physical Review Letters,
87(19):198701, 2001.

Vito Latora and Massimo Marchiori. Economic small-world behavior in weighted networks. The European
Physical Journal B-Condensed Matter and Complex Systems, 32(2):249-263, 2003.

Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM SIGKDD
International conference on Knowledge Discovery and Data Mining, 2006.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking diam-
eters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2—es, 2007.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. DeeperGCN: All you need to train deeper
GCNs. arXiv preprint arXiv:2006.07739, 2020a.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably more
powerful neural networks for graph representation learning. In NeurIPS, 2020b.

Wenguo Li, Yong Li, Yi Tan, Yijia Cao, Chun Chen, Ye Cai, Kwang Y Lee, and Michael Pecht. Maximizing
network resilience against malicious attacks. Scientific Reports, 9(1):1-9, 2019.

15

Published in Transactions on Machine Learning Research (08/2023)

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional networks
and guided tree search. In NeurIPS, 2018.

Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Graph adversarial attack via rewiring.
In KDD, pp. 1161-1169. ACM, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks. In AAAI 2019.

Damon Mosk-Aoyama. Maximum algebraic connectivity augmentation is NP-hard. Operations Research
Letters, 36(6):677-679, 2008.

Adilson E Motter, Natali Gulbahce, Eivind Almaas, and Albert-Laszl6 Barabasi. Predicting synthetic rescues
in metabolic networks. Molecular Systems Biology, 4(1):168, 2008.

MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takac. Reinforcement learning
for solving the vehicle routing problem. In NeurIPS, 2018.

Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning algorithm using dynamic attention
model for vehicle routing problems. CoRR, abs/2002.03282, 2020.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and Jie
Tang. GCC: graph contrastive coding for graph neural network pre-training. In KDD ’20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2020.

Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the gnutella network: Properties of large-scale
peer-to-peer systems and implications for system design. arXiv preprint cs/0209028, 2002.

Lei Rong and Jing Liu. A heuristic algorithm for enhancing the robustness of scale-free networks based on
edge classification. Physica A: Statistical Mechanics and its Applications, 503:503-515, 2018.

Christian M Schneider, André A Moreira, José S Andrade, Shlomo Havlin, and Hans J Herrmann. Mitigation
of malicious attacks on networks. PNAS, 108(10):3838-3841, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017.

Ricard V Sole and Ma Montoya. Complexity and fragility in ecological networks. Proceedings of the Royal
Society of London. Series B: Biological Sciences, 268(1480):2039-2045, 2001.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M Bron-
stein. Understanding over-squashing and bottlenecks on graphs via curvature. In ICLR, 2022.

Rakshit Trivedi, Jiachen Yang, and Hongyuan Zha. GraphOpt: Learning optimization models of graph
formation. In ICML, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, f.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NeurIPS, 2015.

Kazuyoshi Wakuta. Vector-valued markov decision processes and the systems of linear inequalities. Stochastic
Processes and Their Applications, 56(1):159-169, 1995.

Xiangrong Wang, Evangelos Pournaras, Robert E Kooij, and Piet Van Mieghem. Improving robustness of
complex networks via the effective graph resistance. The European Physical Journal B, 87(9):1-12, 2014.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In ICML, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
ICLR, 2019.

16

Published in Transactions on Machine Learning Research (08/2023)

Zuoyu Yan, Junru Zhou, Liangcai Gao, Zhi Tang, and Muhan Zhang. Efficiently counting substructures by
subgraph gnns without running gnn on subgraphs. arXiv preprint arXiv:2303.10576, 2023.

A Yasin Yazicioglu, Magnus Egerstedt, and Jeff S Shamma. Formation of robust multi-agent networks
through self-organizing random regular graphs. IEEE Transactions on Network Science and Engineering,
2(4):139-151, 2015.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang, Xipeng
Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforcement learning. In
AAAI 2020.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. In NeurIPS, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In NeurIPS, 2020.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Deep latent graph matching. In ICML, 2021.

Mingxing Zhou and Jing Liu. A memetic algorithm for enhancing the robustness of scale-free networks
against malicious attacks. Physica A: Statistical Mechanics and its Applications, 410:131-143, 2014.

Qiong Zhou and Janusz W Bialek. Approximate model of european interconnected system as a benchmark
system to study effects of cross-border trades. IEEFE Transactions on Power Systems, 20(2):782-788, 2005.

Yangiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl Yang, and Shu Wu. A
survey on graph structure learning: Progress and opportunities. In IJCAI 2021.

17

Published in Transactions on Machine Learning Research (08/2023)

Appendix
A Extended Related Work

Network utility. Network utility refers to the system’s quality to provide a specific service, for example,
transmitting electricity in power networks and transmitting packages in routing networks. A popular metric
for network utility is the network efficiency [Latora & Marchiori (2003). In many previous work, despite
that network resilience could be improved, the utility may dramatically drop at the same time [Carchiolo
et al.| (2019); |Schneider et al.| (2011); Chan & Akoglul (2016); Buesser et al.| (2011). This contradicts the idea
behind improving network resilience and will be infeasible in real-world applications. Our goal is to enhance
network resilience with moderate loss of network utility via edge rewiring.

Graph structure learning. Unlike the graph generation task which focuses on the quality of the generated
graph, graph structure learning (GSL) aims to jointly learn an optimized graph structure and corresponding
graph representations only for better performance on downstream tasks. Although conceptually related,
GSL differs from graph generation since GSL mostly cares for the downstream task while graph generation
focuses on the generated graphs|Jin et al.| (2020)); |Zhu et al.| (2021)). Currently, GSL relies on the existence of
rich features to construct a graph, while there are generally no rich features in graph generation. Moreover,
GSL cannot control the graph’s node degree during graph optimization. We refer the interested readers to
a survey of GSL [Zhu et al.| (2021]) since our work is a constrained graph generation task unrelated to GSL.

Graph rewiring Graph rewiring is typically used in the GNN community to build novel classes of GNNs
by preprocessing a given graph to overcome the problems of the over-squashing issue of training GNNs. For
example, Klicpera et al.|(2019)) developed graph diffusion convolution (GDC) to improve GNN’s performance
on downstream tasks by replacing message passing with graph diffusion convolution (Topping et al., [2022)
proposed an edge-based combinatorial curvature to help alleviate the over-squashing phenomenon in GNNs.
To our knowledge, there is currently no inductive learning-based graph rewiring method, and graph rewiring
methods rely on rich features to train GNNs better on downstream tasks. The edge rewiring operation used
in our paper is a special graph rewiring operator that preserves node degree.

Multi-views graph augmentation for GNNs. Multi-views graph augmentation is one efficient way to
improve the expressive power of GNNs or combine domain knowledge, which is adapted based on the task’s
prior [Hu et al|(2020). For example, GCC generates multiple subgraphs from the same ego network Qiu et al.
(2020). GCA adaptively incorporates various priors for topological and semantic aspects of the graph [You
et al| (2020)). Hassani & Khasahmadi| (2020) contrasts representations from first-order neighbors and a
graph diffusion. DeGNN |Jin et al.| (2020) was proposed as an automatic graph decomposition algorithm to
improve the performance of deeper GNNs. These techniques rely on the existence of rich graph feature and
the resultant GNNs cannot work well on graphs without rich features. In the resilience task, only the graph
topological structure is available. Motivated by the calculation process of persistent homology |[Edelsbrunner
& Harer| (2008), we apply the filtration process to enhance the expressive power of GNNs for handling graphs
without rich features.

Deep graph generation. Deep graph generation models learn the distribution of given graphs and gen-
erate more novel graphs. Some work use the encoder-decoder framework by learning latent representation of
the input graph through the encoder and then generating the target graph through the decoder. For example,
GCPN [You et al.| (2018)) incorporates chemistry domain rules on molecular graph generation. GT-GAN |Guo
et al.| (2022) proposes a GAN-based model on malware cyber-network synthesis. GraphOpt Trivedi et al.
(2020) learns an implicit model to discover an underlying optimization mechanism of the graph generation
using inverse reinforcement learning. GFlowNet learns a stochastic policy for generating molecules with the
probability proportional to a given reward based on flow networks and local flow-matching conditions [Bengio
et al.[(2021). Boosting network resilience in a degree-preserving way can be viewed as a constrained graph
generation task. However, none of existing graph generation methods can generate desired graphs with the
exact node degree preserving constraint, which is required by the resilience task.

18

Published in Transactions on Machine Learning Research (08/2023)

Table 3: Statistics of graphs used for resilience maximization. Both transductive and inductive settings (x) are
included. Consistent with our implementation, we report the number of edges by transforming undirected graphs to
directed graphs. The edge rewiring has a fixed execution order. For the inductive setting, we report the maximum
number of edges. The action space size of the edge rewiring is measured by 2|E|>.

Dataset Node Edge Action Space Size Train/Test Setting
BA-15 15 54 5832 X Transductive
BA-50 50 192 73728 X Transductive
BA-100 100 392 307328 X Transductive
BA-500 500 996 1984032 X Transductive
BA-1000 1000 999 1996002 X Transductive
EU 217 640 819200 X Transductive
p2p-Gnutella05 400 814 1325192 X Transductive
p2p-Gnutella09 300 740 1095200 X Transductive
BA-10-30 (%) 10-30 112 25088 1000/500 Inductive
BA-20-200 () 20-200 792 1254528 4500/360 Inductive

B Implementation Details
This section provides the implementation details, including dataset and baseline setup.

B.1 Dataset

We first present the data generation strategies. Table [3] summarizes the statistics of each dataset. Syn-
thetic datasets are generated using the Barabasi-Albert (BA) model (known as scale-free graphs) (Albert &
Barabdsi, 2002), with the graph size varying from |N|=10 to |[N|=1000. During the data generation process,
each node is connected to two existing nodes for graphs with no more than 500 nodes, and each node is con-
nected to one existing node for graphs with near 1000 nodes. BA graphs are chosen since they are vulnerable
to malicious attacks and are commonly used to test network resilience optimization algorithms (Bollobas &
Riordan) 2004]). We test the performance of ResiNet on both transductive and inductive settings.

e Transductive setting. The algorithm is trained and tested on the same network.

— Randomly generated synthetic BA networks, denoted by BA-m, are adopted to test the perfor-
mance of ResiNet on networks of various sizes, where m € {15,50, 100, 500, 1000} is the graph
size.

— The Gnutella peer-to-peer network file sharing network from August 2002 (Leskovec et al., 2007}
Ripeanu et al.; 2002)) and the real EU power network (Zhou & Bialekl [2005) are used to validate
the performance of ResiNet on real networks. The random walk sampling strategy is used to
derive a representative sample subgraph with hundreds of nodes from the Gnutella peer-to-peer
network (Leskovec & Faloutsos) 2006)).

e Inductive setting. Two groups of synthetic BA networks denoted by BA-m-n are randomly
generated to test ResiNet’s inductivity, where m is the minimal graph size, and n indicates the
maximal graph size. We first randomly generate the fixed number of BA networks as the training
data to train ResiNet and then evaluate ResiNet’s performance directly on the test dataset without
any additional optimization.

B.2 Baseline Setup

All baselines share the same action space with ResiNet and use the same action masking strategy to block
invalid actions as ResiNet does. The maximal objective evaluation is consistent for all algorithms. Other
settings of baselines are consistent with the default values in their paper. The early-stopping strategy is used
for baselines, which means that the search process terminates if no improvement is obtained in successive

19

Published in Transactions on Machine Learning Research (08/2023)

Table 4: The effect of the filtration order K on ResiNet in improving network resilience (percentage).

K ‘ BA-15 BA-50 BA-100 EU

0 | 11827 0=£0 0+0 6.1 £4.2
1 | 176 +£0 496 £23 749 +08 545+04
2 | 176 £0 51.0 0.1 763 +£12 5H74+1.6
3 | 1760 55.7£2.3 73.1£09 549+£09

1000 objective function calling trials. All algorithms are repeated for 3 random seeds using default hyper-
parameters.

C Extended Experimental Results

In this section, we present additional experimental results to show that ResiNet generalizes to unseen graphs,
different utility and resilience metrics.

C.1 The Effect of Filtration Order K on FireGNN

In this section, we report the ratio of the remaining edges

in subgraphs versus different filtration order K in Table Jé
and visualize it in Figure[7] The maximum filtration order _’g» " T :2';(5)
K of FireGNN of each dataset is summarized in Table [6l B, 1T Jom
Table [f] demonstrates that the maximum filtration order = —— BA-500
K is nearly around the half size of the graph since we _“g’,o_s - 23'1000
gradually remove the node with the largest degree in the o BoPs
filtration process. £ o4 —— P2P09
@®
E 02
C.2 Inductivity on Larger Datasets G
g 0.0
To demonstrate that ResiNet can learn from networks to i: 0 50 100 150 200 250 300 350 400

. s o . Number of removed nodes
accommodate different utility and resilience metrics, we

conduct experiments based on BA-15 using multiple re- Figure 7: Ratio of the remaining edges in subgraphs
silience and utility metrics. The Pareto points shown in versus different filtration order K.

Figure [6] denote the optimum under different objectives

on BA-15, implying that ResiNet can obtain the approx-

imate Pareto frontier. Surprisingly, the initial gain of

resilience (from around 0.21 to around 0.24) is obtained without loss of the utility, which incentivizes almost
every network to conduct such optimization to some extent when feasible. More results are included in
Appendix [C-3 and the optimized network structures are visualized in Figure [0 and Figure [I0]

Even with limited computational resources, armed with the autoregressive action space and the power
of FireGNN, ResiNet can be trained fully end-to-end on graphs with thousands of nodes using RL. We
demonstrate the inductivity of ResiNet on graphs of different sizes by training ResiNet on the BA-20-200
dataset, which consists of graphs with the size ranging from 20 to 200, and then report its performance
on directly guiding the edges selections on unseen test graphs. The filtration order K is set to 1 for the
computational limitation. As shown in Figure [§] we can see that ResiNet has the best performance for
N € [70,100]. The degrading performance with the graph size may be explained by the fact that larger
graphs require a larger filtration order for ResiNet to work well. A more stable performance improvement of
ResiNet is observed with the increment of graph size when trained to optimize network resilience and utility
simultaneously, and ResiNet possibly finds a strategy to balance these two metrics.

20

Published in Transactions on Machine Learning Research (08/2023)

. . g; 056 5 . -0.15
© . 3 . = 0.00
o M 3 O W U . e 015
05 o5 B c 05 .
N L o. b s . . e 030
° e a . e 05 =} . ° 0. O o
. > e e 045
oo, o £ 04 O . © % °
. . ol o Cae . g oo % .
0.4 e o.'o 9. g ° OO ¢ . o e e ® o .
0 o ® o © c e ot A J° o we ®
5 . o Se o c 03 5 LS ". '...'(3 oo . ®
o Ll L] 0 L] * % 9 L) ., *
3 O e o a0 o o . ..:.‘:’ L, é . ° % . L o o * % (.‘ t.:'. e & "u..
g 4 . KA 2 02 o s R L)
203 o O <% 5 . 2 * . . e o»° . [
z .o o . . £ e ., om o
> . [} ° . L] . . .
@ 2 oi
5
3
02 3 o0
g o
[}
3
= -o01
0.1
-0.2
2 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Graph size N Graph size N
(a) Inductivity on resilience (b) Inductivity on resilience and utility

Figure 8: The inductive ability of ResiNet on the test dataset (BA-20-200) when optimizing (a) network resilience
and (b) the combination of resilience and utility.

Table 5: The ratio of remaining edges in subgraphs versus the filtration order K.

K ‘ BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09

1 | 0.6667 0.7708 0.8571 0.9538 0.9479 0.9625 0.9779 0.9608

2 0.4815 0.6667 0.7602 0.9096 0.9139 0.9313 0.957 0.927

3 0.3333 0.5938 0.6837 0.8665 0.8809 0.9031 0.9361 0.8973

4]0.2222 0.5208 0.6224 0.8313 0.8559 0.8781 0.9152 0.8703

5 0.1481 0.4583 0.5663 0.8002 0.8348 0.8562 0.8956 0.8446

6 0.0370 0.4062 0.5255 0.7741 0.8158 0.8344 0.8771 0.8189

710 0.3646 0.4847 0.754 0.7998 0.8125 0.8587 0.7959

8 0 0.3229 0.4439 0.7359 0.7848 0.7906 0.8403 0.773

9 0 0.2917 0.4031 0.7199 0.7698 0.7719 0.8231 0.75

Table 6: Maximum filtration order K of each dataset.

Dataset ‘ BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09
Size (node) 15 50 100 500 1000 217 400 300
Maximum of K | 7 23 42 226 306 103 216 160

C.3 Learning to Balance Different Utility and Resilience Metrics

As shown in Figure[J] we conduct extensive experiments on the BA-15 network to demonstrate that ResiNet
can learn to optimize graphs with different resilience and utility metrics and to defend against other types
of attacks besides the node degree-based attack, such as the node betweenness-based attack.

Table [7] records the improvements in percentage of ResiNet for varying objectives on the BA-15 dataset. As
visualized in Figure |§|, ResiNet is not limited to defend against the node degree-based attack (Figure |§| (b)-
(j)) and also learns to defend against the betweenness-based attack (Figure[d] (k)-(s)). Total three resilience
metrics are used, with R denoting the graph connectivity-based resilience metric, SR being the spectral
radius and SR representing the algebraic connectivity. Total two utility metrics are adopted, including the
global efficiency Egiopar and the local efficiency FEjgeqi. Not surprisingly, the optimized network with an
improvement of about 3.6% for defending the betweenness-based attack also has a higher resilience (around
7.8%) against the node-degree attack. This may be explained as the similarity between node degree and
betweenness for a small network.

21

Published in Transactions on Machine Learning Research (08/2023)

o)
o ?) ° O o o 1 o o * . ®) o
© 9] o ¢ .
< o @) R T e i @) o © ° o © o o © ©
: L, e ° ° e @ ° QO ° ° o« O ° . © o o
o o
© - ° o, ° 5 ° ° o © ® o °
(a) Original (b) Rp (c) ACp (d) Rp + Egiobal (e) ACp + Egiobal
5 o ° o o ° o ® o o o
o
° © o @) ° @) o © a ° o °
O o © o - o O O o
© . e o O o o 0. o ° o O o o
¢) o O O . @) o O @)
o o © ©] o < © o
O o o o (@] o o © o
(f) RD + Elocal (g) ACD + Elocal (h) RB (1) -ACB (J) RB + Eglobal
o O o ° (@)
o ° © * o
O Q o o o O o o O
o o @) . o o O ? o O : o
@) o 5) ¥ @)
o O o
o ° o ° Y
(k) ACB + Eglobal (1) R + Elocal (m) -ACB + Elocal

Figure 9: The resilience maximization on the BA-15 dataset with 15 nodes and 27 edges with (a) original network,
(b)-(j) results of defending the node degree-based attack with different combinations of resilience and utility, and
(k)-(s) results of defending against the node betweenness-based attack with varying combinations of resilience and
utility. For two resilience metrics, R denotes the graph connectivity-based resilience metric and AC represents the
algebraic connectivity. For two utility metrics, Fgiopa: denotes the global efficiency and Ejocq; is the local efficiency.

oooo s % e 0 o o”uooo
Oo" 00 6¢g © oé o 2 ° o e g%,
° o o o ©
o O °OOO 5 o OOO O o © 0oo \ 3 o Booo ooo L e o
o o ¢

o0 9,00 %0 e @0 000 2l "o gk oOooooooo"

oo p” s Qo ° < Q. o o ° o © o "Oo QO , o ©
OOoooo 0% 000 - 00 . (OFF] s P o OOOOO 50 o
° e 0 o Qo0 00 °0 00 ° 00.9°.0 R SR 0209 .,

o
Ooco o) 05 s oaoOOOOO o o) ooooo v, 0o O
s 0°000%0 000 00 o o °OO°OO Nl e 96 0 %0 . OOOOO°
o0 % 0° Oooooooooo % oooooo i, AV °) °0°O°Oowooao

[ORN o - Qo0 s ° 000 09450 %6 Y, ° o 0 000 y ° . e
o © o o 0% o ° i ° © o~ O 6
°OOO Oo 0 g ° c0° OOOOOO o %o o O°°°°OOO 059

OOOOoooooo oOOO Oooo OOooOooo°°0° Oo OOooooooOO .
NI g 00 ,.,°0 . OOOOO o L% 6% OOOOOOO o° ° e

d o ° 0 ° o0 o 5 ° o . ° e 0] ©) ° o

o OO O o = o ° o °© o 9 % 0 o o ° o

o OOOOOO o o oooo . © v o FANBS AN g J)

o o o OO ° ° 0 o0 o © ° ° 0 6 oo o~
O o0%.e ° o o o ° ° >
° s O 0o, o °©0 05 0
(a) Original EU network (b)) R (c) Egioba

Figure 10: Visualizations of the original EU network and optimized networks using ResiNet with different objectives:
‘R means the connectivity-based resilience measurement and Eg;opq; is the global efficiency.

Table 7: Performance gain (in percentage) of ResiNet in optimizing varying objectives on the BA-15 network. All
objectives are optimized with the same hyper-parameters, which means that we did not tune hyper-parameters for

objectives except for Rp.

Objective Gain (%) | Objective Gain(%)

Rp 35.3 RB 14.6
ACp 48.2 ACp 43.2

22

Published in Transactions on Machine Learning Research (08/2023)

Table 8: Resilience optimization algorithm under the fixed maximal rewiring number budget of 200. Entries are in
the format of X (Y'), where 1) X: weighted sum of the graph connectivity-based resilience and the network efficiency
improvement (in percentage); 2) Y: required rewiring number. Results are averaged over 3 runs and best performance
is in bold.

Method « BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09
HC 0 26.8 (10.0) 52.1 (47.0) 76.9 (97.3) 45.8 (200) 302.5 (200) 71.9 (152.7) 37.5 (193.3) 40.2 (137.7)

0.5 18.6 (11.3) 43.1 (62.7) 56.9 (121) 30.0 (200) 66.3 (200) 63.2 (200) 27.7 (200) 34.7 (196.3)
SA 0 26.8 (20) 49.7 (59.0) 84.5 (119.7) 43.2 (200) 271.8 (200) 73.5(160.3) 37.1 (200) 37.2 (134)

0.5 17.8 (21) 41.1 (79.7) 57.7 (127.7) 31.4 (200) 64.9 (200) 62.8 (200) 37.1 (200) 35.2 (200)
Greedy 0 23.5 (6) 48.6 (13) 64.3 (20) X X 0.5 (3) X X

0.5 5.3 (15) 34.7 (13) 42.7 (20) X X 0.3 (3) X X
EA 0 35.3 (X) 50.2 (X) 61.9 (X) 9.9 (200) 174.1 (200) 66.2 (X) 2.3 (200) 0 (200)

0.5 27.1 (X) 38.3 (X) 46.6 (X) 6.8 (200) 18.7 (200) 58.4 (X) 3.2 (200) 0 (200)
DE- 0 13.7 (2) 0 (1) 0 (1) 1.6 (20) 41.7 (20) 9.0 (20) 2.2 (20) 0 (1)
GNN-RL 0.5 109 (2) 0 (1) 0 (1) 2.7 (20) 20.1 (14) 2.1 (20) 0 (1) 1.0 (20)
k-GNN- 0 13.7 (2) 0 (1) 0 (1) 0 (1) 8.8 (20) 4.5 (20) -0.2 (20) 0 (1)
RL 0.5 6.3(2) 0 (1) 0 (1) 0 (20) -24.9 (20) 4.8 (20) -0.1 (20) 0 (1)
ResiNet 0 35.3 (6) 61.5 (20) 70.0 (20) 10.2 (20) 172.8 (20) 54.2 (20) 14.0 (20) 18.6 (20)

’ 0.5 26.9 (20) 53.9 (20) 53.1 (20) 15.7 (20) 43.7 (20) 51.8 (20) 12.4 (20) 15.1 (20)

C.4 Performance Comparisons Under a Large Rewiring Budget

In this section, we present the resilience improvement and the required number of edge rewiring of each
algorithm under a large rewiring budget of 200. The running speed is presented to compare the running
time efficiency of each algorithm.

As shown in Table [§] traditional methods improve the network resilience significantly compared to ResiNet
under a large rewiring budget of 200. However, traditional methods are still undesired in such a case since a
solution with a large rewiring budget is not applicable in practice due to the vast cost of adding many new
edges into a real system. For example, the actual number of rewiring budget for EA is hard to calculate
since it is a population-based algorithm, so it is omitted in Table All baselines adopt the early-stopping
strategy that they will terminate if there is no positive resilience gain in a successive 1000 steps.

Table [indicates that the time it takes for the benchmark algorithm to solve the problem usually increases
as the test data set size increases. In contrast, our proposed ResiNet is suitable for testing on a large dataset
once trained.

Table 9: Running speed (in second) of the resilience optimization algorithm under the fixed maximal rewiring number
budget. Entries are in the format of X (Y'), where 1) X: speed under the budget of 20; 2) Y: speed under the budget
of 200 . X means that the result is not available at a reasonable time. Results are averaged over 3 runs and best
performance is in bold.

Method «a BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09
HO 0 1.0 (L0) 1(6.4) 3(22.2) 219 (354.1) 80.3 (1288.3) 1(94.2) 15.3 (358.1) 4 5 (89.1)
05 1.5(115) 1.1 (12.8) 2.0 (49.0) 40.9 (589.5) 148.7 (2603.7) 5.3 (193.7) 24.7 (462.8) 0 (190.6)
SA 0 0505 03(66) 6 (22.6) 122 (313.0) 457 (1051.8) 2.4 (91.2) 10.8 (286.4) 6 (89.4)
0.5 o 7 (1 7) 7 (13.2) 7 (47.5) 33.9 (568.9) 99.8 (2166.3) 5.0 (193.5) 23.9 (454.5) 3 (188. 5)
Grood 0 6.0) 34 1 (345) 766 3K X X 3061.7 (X) X x
ey 05 o 7 (0 7)) 64.1 (65.4) 1478.9 (X) X X 6192.6 (X) X X
EA 0 00l(X) 01X 1 6 (X) 25 (X) 103 (X) 0.2 (X) 1.6 (X) 04 (X)
05 0.01(X) 0.1(X 8 (X) 47 (X 15.0 (X) 0.4 (X) 3.0 (X) 0.8 (X)
DE- 0 01(X) 01X 1 (X 149 (X) 70.3 (X) 3.6 (X) 87 (X 05 (X)
GNN-RL 05 01(X) 01 (X 2 (X) 13.7 (X) 60.9 (X) 45 (X) 1.0 (X) 6.7 (X)
E-GNN- 0 002 (X) 003(X) 007 (X) 13X 56.5 (X) 2.6 (X) 82 (X) 0.5 (X)
RL 05 0.02(X) 0.04(X) o 08 (X) 183 (X) 76.1 (X) 3.6 (X) 115 (X) 0.6 (X)
Remet 0 0500 18 (X) 2 (X) 175 (X) 66.8 (X) 15 (X) 147 (X) 9.3 (X)
05 05(X) 19 (X) 4(X) 18.0 (X) 67.5 (X) 5.2 (X) 15.0 (X) 10.3 (X)

23

Published in Transactions on Machine Learning Research (08/2023)

C.5 Inspection of Optimized Networks

Moreover, to provide a deeper inspection into the optimized network structure, we take the EU power
network as an example to visualize its network structure and the optimized networks given by ResiNet with
different objectives. Compared to the original EU network, Figure [10] (b) is the network structure obtained
by only optimizing the graph connectivity-based resilience. We can observe a more crowded region on the
left, consistent with the “onion-like” structure concluded in previous studies. If we consider the combination
gain of both resilience and utility, we observe a more compact clustering “crescent moon”-like structure as
shown in Figure [10| (c).

D Deep analysis of why regular GNNs fail in the resilience task

It is well-known that GNNs generally work well for graphs with rich features. Unluckily, the graph network
in the resilience task has no node/edge/graph feature, with only the topological structure available. No rich
feature means that the output of the GNNs is not distinguishable, and then it is difficult for the RL agent
to distinguish different vertices/edges, causing large randomness in the output of the policy. This may cause
the rewiring process to alternate between two graphs, forming an infinite loop. And we suspect that this
infinite loop failure may explain the poor empirical performance of optimizing network resilience by selecting
edges using existing GNNs and reinforcement learning (RL). The infinite loop failure is presented as follows.

Consider the graph G; with N nodes and containing two edges AB and C'D. The agent selects AB and CD
for rewiring, leading to G¢41 with news edges AC and BD. A frequent empirical failure of regular GNNs
for the robustness task is the infinite action backtracking phenomenon. The agent would select AC and BD
at step t + 1, returning back to G; and forming a cycled loop between G; and G441. Formally, the infinite
loop is formulated as

((4,B),(C, D)) = argmax_SIM (i, 1), (h",), her,

i,j,m,nel:N

((A7 C)’ (B’ D)) = fargInEalXN SIM (((i—&-la hg-&-l)a (h;j—la h?+1))7 th+1> ’
i,j,m,nel:
where SIM is a similarity metric, h¢ and hg, are embeddings of node i and graph Gy at step t, and (A,B) is
one edge.

Table [I0] compares and summarizes different graph related tasks’ characteristics. We can see that the
resilience task is more challenging from many aspects. No prior rule like action masking or negative penalty
can be used to avoid selecting visited nodes as in TSP. For the resilience task, all previously visited edges
are also possibly valid to be selected again, resulting in insufficient training signals.

The desired GNN model should not depend on rules like action masking to distinguish edge and graph
representations for graphs with little node features. Our proposed FireGNN fulfills these requirements to
obtain proper training signals. FireGNN has a distinct expressive power and learns to create more meaningful
and distinguishable features for each edge. FireGNN is not a simple aggregation of higher-order information
of a static graph. It was inspired by homology filtration and the multi-view graph augmentation. Persistence
homology motivates us to aggregate more distinct node features by observing how the graph evolves towards
being empty, leading to more distinct and meaningful features for each node/edge, thus avoiding the infinite
loop. Extensive experimental results in Table [I] validate the necessity and effectiveness of FireGNN. Existing
GNNs perform worse while FireGNN performs well.

24

Published in Transactions on Machine Learning Research (08/2023)

0001 X NN D21 » o) AN pue 9oULI[ISAT UT OSURYD buguamau 26pa (2a2] ydoib QOUBI[ISOY JoNISOY
0ST » NND 2 7)o (dposido opy Jo puo oy ye A[uo) Lousmdye/oudIsal ur dfuerd uoryIppe a8pa 1902) ydvub KouerdIe /00ULI[ISOY £202)| Te 30 nurearec] 10N-DS
0z » NN W Q (apostdo o7y Jo puo o[y e ATUO) SOUDI[ISHT T dFURYD uonIppe 23pa 1902) ydib 0uaIISAY (1Z0g)| ' 30 nireared| NOT-1ONY
008 ’ NND » 0 o718 G Wl 08URYD Josqns 0} opou ppe [0A0] opou SIN_ l2z0a)] T8 1o 1oypog|yoiess [eooT |
C TonuR1Iy X 9S00 N0} Ul a8ueyd Inoj 0} 9pou ppe [9A9] opou JYA T . R
mﬂm “ :c::miM X / Mw 1500 N0} Ul oSurRYd Inoj 0} opou ppe [9A9] Dpou dSL [8T02)|'T# 32 10031] TH-TOWI3Y
09 VA NND A o) 4800 IN0} Ul oSurYD 1Mo} 03 Opou ppe [oAd] Opou JSL [2202)| 1% 10 wsof] TH-NND
00T » NNY X Q 1500 IM0) Ul o3URYD anoj 0} opou ppe [0A9] DpoT dSL 19103)| e 30 orPd| TH-NNY
00T W NND Vi o) 101801 [RQO[S INO} UL OPOU 9)RIO[O1 [0a0] 08pa dSI (2gzog)| e 1o uospny|yoress [edo]
00¢ v ATS X o 1500 Inoj ur aSueyd Inoj 0} apou ppe [9A9] opou dSL
00& » ATS X Q YStom Jnd ur oSuerd JOSqUS 0) DPOU ppe [9A9] Dpou mO-Xe (2102)! 1% 99 ey NOA-ACS
00< A ATS X 0 1- 19s(Ns 0} 9pou ppe [9A9] dpou OAIN
Aiiqe[eog Sunysejy uoIPy aepoouy ojejodeayxy azig Ayxoidwo) premoy uorPy ojers —_— qovorddy

aouaaayuy 2y Sururedy,

we[qoIJ

jueuodurod Ty

“s3[sey pojeral ydelS JueIsyIp Jo soIIsLIvoRIRY)) 0T 9[qEL

25

	Introduction
	Related Work
	Problem Definition
	Proposed Approach: ResiNet
	Boosting Network Resilience via Edge Rewiring as Markov Decision Process
	FireGNN
	Edge Rewiring Policy Network

	Experiments
	Experimental Settings
	Comparisons to the Baselines
	Ablation Study of ResiNet
	Stability and Generalization
	Limitations and Future Work

	Conclusion
	Extended Related Work
	Implementation Details
	Dataset
	Baseline Setup

	Extended Experimental Results
	The Effect of Filtration Order K on FireGNN
	Inductivity on Larger Datasets
	Learning to Balance Different Utility and Resilience Metrics
	Performance Comparisons Under a Large Rewiring Budget
	Inspection of Optimized Networks

	Deep analysis of why regular GNNs fail in the resilience task

