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ABSTRACT

Recent works have shown remarkable progress in training artificial agents to
understand natural language but are focused on using large amounts of raw data
involving huge compute requirements. An interesting hypothesis follows the
idea of training artificial agents via multi-agent communication while using small
amounts of task-specific human data to ground the emergent language into natural
language. This allows agents to communicate with humans without needing
enormous expensive human demonstrations. Evolutionary studies have showed
that simpler and easily adaptable languages arise as a result of communicating
with a diverse group of large population. We propose to model this supposition
with artificial agents and propose an adaptive population-based meta-reinforcement
learning approach that builds such a population in an iterative manner. We show
empirical results on referential games involving natural language where our agents
outperform all baselines on both the task performance and language score including
human evaluation. We demonstrate that our method induces constructive diversity
into a growing population of agents that is beneficial in training the meta-agent.

1 INTRODUCTION

Language is arguably the quintessential property of human intelligence. It allows us to communicate
with others in order to coordinate tasks. Recent advances in deep learning has seen tremendous
progress in training artificial learning agents that can perform tasks while coordinating with humans
(Carroll et al., 2019; Hu et al., 2020). Multi-agent learning models this setup by incorporating
other agents’ behavior into an agent’s own decision making. We are specifically interested in these
systems with an added verbal communication channel that gives the agents a means to circumvent
partial observability. Many recent works (Sukhbaatar et al., 2016; Lazaridou et al., 2017; Foerster
et al., 2016; Kottur et al., 2017; Lazaridou & Baroni, 2020) have focused on different tasks and
the languages that get evolved as a result (commonly referred to as ‘emergent languages’) studying
its properties including compositionality Choi et al. (2018); Resnick et al. (2020); Chaabouni et al.
(2020); Slowik et al. (2020) and correlation with a real human language (Lowe et al., 2020; Lazaridou
et al., 2020; Lu et al., 2020). All these methods devise algorithms that use a single set of agents that
jointly perform a task at any given instant. Therefore, these methods aren’t able to take advantage
of possibly beneficial diversity that might be present when interacting with a population of agents.
Another axis that has recently been getting some interest is based on such a ‘community’ of agents
where different agents in a group speak different languages while communicating with agents from
another group (Tieleman et al., 2019; Lowe et al., 2019; Cogswell et al., 2019).

In this work, we propose to dynamically build this population based on agent’s past behaviors. We
consider fully cooperative games where multiple agents interact within the environment in an iterative
manner trying to achieve high task reward while also keeping their language of communication
closer to natural language. First, we pretrain the agents with a fixed dataset comprised of human
demonstrations and put each of them in separate buffers. Now for each agent, a corresponding
meta-agent is trained by interacting it with a population of past copies of other agents present in their
respective buffers. Next, each agent interacts with the newly trained meta-agents corresponding to
all other agents which is then fine-tuned with the human samples present in the pretraining dataset.
Finally, these newly trained agents are added to their respective buffers of old agents which are then

1



Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

used to train other meta-agents in the subsequent iteration. The process is repeated till adding more
agents to the buffer does not change the meta-agents’ performance

2 SETUP

Referential games are a type of Lewis Signaling games (Lewis, 1969) that have been used in
human as well as artificial language experiments (Havrylov & Titov, 2017; Lee et al., 2018; Gupta
et al., 2019). They consist of two players, a speaker S and a listener L who interact with each
other to solve a common downstream task. Both the agents are parameterized using deep neural
networks where the speaker’s parameters are denoted by θ and the listener’s parameters are denoted
by φ. The speaker gets as input a target object t, encodes it using its own embedding and finally
sends a discrete message m = S(t) which is obtained through a suitable decoding mechanism
to convert the speaker’s predictions (logits) to discrete tokens. We use greedy decoding in all
our methods and the baselines to extract the discrete message unless explicitly specified. The
message m is given as an input to the listener along with the set of distractor objects D and
the target object t, shuffled uniformly at random, as a separate input. The listener embeds both
of these into a shared vector representation to compute a similarity score between the message
and the objects. Finally, it makes a prediction t′ about the target object. The reward function r
for both agents is the same and is given by r = 1 if (t = t′) or − 0.1 otherwise We denote the
number of distractor objects |D| by K, the maximum length of the message m with l and the
vocabulary set with V . We optimize the parameters of the two agents on the task performance using
reinforcement learning similar to (Evtimova et al., 2018; Lazaridou et al., 2020). The listener is
additionally optimized using a supervised learning loss since we know the ground truth label (the target
object). Thus, the speaker can be trained using any policy gradient methods (we use REINFORCE
(Williams, 1992)) while the listener is trained via policy gradients and a cross-entropy loss. Then the
corresponding interactive loss functions for the speaker (J int

S ) and the listener (J int
L ) are given by:

J int
S (t; θ) = −r

l

l∑
j=1

log p(mj |m<j , t; θ) + λhsHS(θ)

(1)

J int
L (m, t,D;φ) = −r log p(t′|m, t,D;φ)+

λs log p(t
′ = t|m, t,D;φ) + λhlHL(φ) (2)

where HS and HL denotes entropy
regularization for the speaker and lis-
tener policies respectively. λhs and
λhl are non-negative regularization
coefficients and λs ≥ 0 is a scalar
quantity. On the other hand, we can
also train these agents on their spe-
cific roles in the task independent of
the other agent. The speaker’s role is
to describe the target object accurately
and efficiently while the listener’s role

is to understand a message from a given language along with learning a feature rich representa-
tions of the objects and output predictions accordingly. We can collect a set of (object, descrip-
tion) pairs and form a training dataset for the speaker and the listener to separately train both
agents via supervised learning without any interactive learning. Now, if we want these descrip-
tions to be interpretable to humans or to allow agents to play with humans, it would be helpful
if the agents could speak and understand natural language. So we let humans provide descrip-
tions of the objects and collect such pairs to train our agents. Let us denote this dataset by D.
Then the corresponding cross-entropy losses for the speaker (J sup

S ) and the listener (J sup
L ) are:

3 META-LEARNING AND EMERGENT COMMUNICATION

J sup
S (t; θ) = −1

l

l∑
j=1

|V |∑
c=1

m∗j,c log p(mj,c|m<j , t; θ) (3)

J sup
L (m∗, t,D;φ) = −

K+1∑
j=1

1(tj=t)p(tj |m∗, t,D;φ) (4)

where m∗ denotes the description for the target object t
present in the dataset.

Let us assume we have a population
of agents playing referential game and
acting either as a speaker or as a lis-
tener. Then we can train a meta-
speaker (meta-agent) by playing with
a set of listeners (tasks). Similarly,
we can obtain a meta-listener by play-
ing with a group of speakers. The
hypothesis is that by playing with a di-
verse group of agents, the meta-agent
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should be able to learn new protocols
faster. In other words, meta-training

should help the meta-agent to generalize faster to a different set of agents (say humans) as compared
to single and static pair of speaker and listener.
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Figure 1: Algorithm outline. We show
the different steps involved in training
a meta-listener ϕ. The meta-speaker
learning algorithm can be found in the
Appendix. A buffer BS contains a list
of speakers θj where j ∈ {1, 2, . . . , i}.
Purple arrows represent interaction be-
tween speaker and a listener. Red arrows
denote update rule for the corresponding
agent. Green arrow represent learning
using samples present in the fine-tuning
dataset Dt. Hollow arrows are meant
for copying the parameters of the spe-
cific agent. Black square boxes denote
parameter freezing during backpropaga-
tion. For more details, refer to Sec 3 and
Algorithm 1.

In this work, we use techniques that use gradient descent
for optimizing the meta-agent. In particular, we use the
popular MAML (Finn et al., 2017) algorithm to train our
meta-agent. We also show some results using other al-
gorithms that are derived from MAML in the Appendix.
Similar to the individual agents, both the meta-agents are
also parametrized using deep neural networks. We denote
the parameters of meta-speaker Sm by ϑ and meta-listener
Lm by ϕ. We assume a buffer of speakers denoted by BS
and listeners BL. We split the datasetD into a task-specific
datasetDt consisting of (object, description) pairs used for
fine-tuning and a meta-datasetDm containing only a set of
objects used for computing the meta-objective. We further
split Dm into two disjoint sets1, D0

m and D1
m to compute

the inner and outer loop losses in MAML respectively.
Now, we can define the update rules of the meta-speaker
and the meta-listener as follows:

ϑ← ϑ− β∇ϑ

∑
L∈BL

J int
Sm

(
t1;ϑ− α∇ϑJ int

Sm

(
t0;ϑ

) )
(5)

ϕ← ϕ− β∇ϕ

∑
S∈BS

J int
Lm

(
m1, t1, D1;

ϕ− α∇ϕJ int
Lm

(
m0, t0, D0;ϕ

) )
(6)

where t0 ∈ D0
m, t1 ∈ D1

m, m0 = S(t0), m1 = S(t1), and
D0 andD1 are sets of distractor objects sampled uniformly
from D0

m and D1
m respectively. The fine-tuning losses are

the same as the supervised losses Eq equation 3 equa-
tion 4 described in the previous section. Initially, both the
speaker and the listener are pretrained on the dataset D.
Since the number of training iterations is unknown and
could be potentially much larger than the size of the buffer
the memory can hold, we use reservoir sampling to keep a
uniform sample of past agents in the buffer. The detailed
algorithm can be found in Algorithm 1.

4 EXPERIMENTS

We use the image-based2 referential game (Lee et al., 2018; Lowe et al., 2020; Lazaridou et al., 2020)
which is a common environment used to analyze emergent protocols involving multimodal inputs.
A set of images are uniformly sampled from a dataset consisting of diverse images. A target image
is chosen uniformly from this set and the rest are set aside as distractors. The task for the listener
is to correctly identify the target image among the set of distractors while the sender needs to give
a suitable description containing discrete elements present in the target image so as to enable the
listener to perform its task. Since we want these agents to understand and talk to humans, the sender
is additionally tasked with uttering messages that are closer to natural language.

We use MSCOCO dataset (Lin et al., 2014) to obtain real world images and the corresponding ground
truth English captions. Since MSCOCO has multiple gold captions for each image, we randomly

1Since we train the agents using minibatch gradient descent, a new split is done at each training iteration to
allow more diversity in distractor objects.

2We also perform experiments on a novel text-based version of the game and show results in the Appendix.
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Figure 2: (a) Final performance of the agents on the validation set as a function of number of samples
in the datasetD. (b) Final BLEU score of the (meta-)speaker agent on the validation set using English
sentences. All runs are averaged over 3 random seeds and standard deviations shown. (c) Average
referential accuracy on the validation set when a trained meta-listener plays with each speaker present
in the buffer separately at the corresponding training iteration. The blue bars show the standard
deviation across all agents present in the buffer. The gray bars show the variance between the
minimum and maximum performing speaker in the buffer. All agents were trained in the image-game
with |D| = 5000 samples.

select one from the available set. Following Lee et al. (2019); Lowe et al. (2020), both speaker
and listener are parameterized with recurrent neural networks (GRU (Cho et al., 2014)) of size 512
with an embedding layer of size 256. We use 9 distractors and a pretrained Resnet-50 model (He
et al., 2016) (on ImageNet (Deng et al., 2009)) to extract the visual features from images. We set the
vocabulary size to 100 and the maximum length of the sentences at 15. We use equal buffer sizes of
200 for reservoir sampling. Other implementation details are given in the Appendix.

5 RESULTS AND ANALYSIS

We compute the task performance as well as the language score to evaluate the joint performance of
both agents on the validation set. The task performance is measured by the referential accuracy i.e.
how accurately the listener is able to predict the target. The language score is computed using BLEU
score (Papineni et al., 2002) which is a common metric used in machine translation to compare a
candidate translation with reference translations. We compute the BLEU score between the message
generated by the speaker and the ground truth caption/sentence to determine the extent to which the
speaker can understand and speak natural language. We show the final results for the meta-speaker
and the meta-listener on both of these metrics. In Fig 2a we plot the referential accuracy on the
validation set of 1000 images for the image game as a function of number of training samples. As
we increase the number of samples from 2000 to 5000, the accuracy increases unsurprisingly. In
both cases, our method outperforms all previous baselines along with the random chance of selecting
the correct target at 10% (9 distractors) by a wide margin. The Pretrained baseline is computed
by pretraining the agents using only the task-specific training dataset i.e. without any interactive
learning. The emergent communication (emecom) baseline (i.e. agents trained via interaction and
without any supervision) in this image game is 62.1%. A similar trend is observed in the game with
textual inputs. In both cases, Gen.Trans. and our method outperform both single-agent methods,
S2P and SIL, suggesting the role of using multiple diverse agents in a population. Moreover, our
method surpassing Gen.Trans. and L2C indicates the importance of using the proposed meta-learning
approach in conjunction with an adaptive population instead of using a static set of agents. In Fig 2b,
we plot the BLEU score using English messages for the image game as a function of number of
samples in the dataset. We show that our method again beats all baselines and is even able to perform
better than the Pretrained agent improving by almost 6% in |D| = 2000 and 5% in |D| = 5000
game setting. The emecom baseline gave a BLEU score of 10.3. As expected, the score is higher
when using more human samples in the dataset helping the agent to ground its language into natural
language. In Fig 2c, we show the average performance of a trained meta-listener playing with multiple
speakers at different stages of training. We show that as the training progresses, the standard deviation
across all the speakers present in the buffer at that instant increases indicating that as the population
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grows the diversity among the agents also improves. The large difference between the best and worst
performing agents (denoted by gray bars) promotes this diversity helping in performing well on both
RL and language tasks. We also show a similar plot for the language task (average BLEU score) in
the Appendix along with further ablation studies and human evaluation results.
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A RELATED WORK

Recent work has tackled similar questions of combining two objective functions of self-play and
imitation learning with the goal of training agents that use natural language and perform well on a
given emergent communication task. This transforms the problem into training a task conditional
language model in a multi-agent setup. S2P (Lowe et al., 2020) investigates and proposes methods
that devise a curriculum between the two training phases updating the speaker and the listener in
an iterative manner. They use Gumbel-Softmax (GS) techniques to convert the logits to a discrete
message allowing end-to-end backpropagation (Mordatch & Abbeel, 2018). Similarly, SIL (Lu
et al., 2020) also uses GS to train the two agents in an iterated manner. They use a student-teacher
paradigm that is trained sequentially, where the teacher agents, that are initially copies of student
agents, are trained using interactive learning and then the student agents are trained to imitate the
teacher agents. We note, this method is computationally expensive since it requires sampling data at
every training iteration for distillation. Moreover, they use the human (pretraining) dataset to only
initialize the student agents and is not used thereafter. Another recent work by (Lazaridou et al., 2020)
also explores a similar research question by investigating different types of language (semantic and
structural) and pragmatic drift. They propose a reranking module that first samples multiple messages
from the speaker and then ranks them according to the task performance3. Crucially, this reranking
module can be added on top of our method described here and thus is orthogonal to other approaches.

In all these works, the interaction between agents only happens with the current state of the agent and
does not involve interaction with their old copies. (Tieleman et al., 2019) propose learning methods
using a community of fixed number of agents where the diversity is obtained only via different seeds
used for random initialization of parameters. L2C (Lowe et al., 2019) proposes a meta-training
method on such a fixed population of agents. This method is closer to our setting but uses a static
population of previously stored trained agents to train the meta-agent. Moreover, they only proposed
a method for training the meta-listener and used GS to allow gradient flow to speakers. We adapt
their method to use a REINFORCE loss to enable learning a meta-speaker as well.4 Another similar
method by (Cogswell et al., 2019) aims to learn a community of agents where groups of speakers and
listeners are used to sample a pair uniformly at random who then play the game and jointly optimize
for better task performance. During learning, few agents are reinitialized periodically/at random
from a group of agents. The idea is to promote cultural transmission to induce compositionality
over multiple generations of language transfer. For our experiments, we reinitialize agents to the
pretrained agents using the human dataset. We denote this method as Gen.Trans. in the following
sections.

The diversity of agents obtained in such methods at a given iteration is limited and each agent is
basically learning a remapping of the same solution resulting in agents achieving a similar perfor-
mance on both objectives. In our method, we tackle this problem by building a dynamic population
where each agent differs from the other agents on both metrics. Specifically, we add agents at various
stages of training into a buffer that is then used to train a meta-agent. We hypothesize that using
our proposed population training method, we can train agents that are able to perform better than
single agent methods by countering the various drifts efficiently and utilizing the population diversity
effectively while being faster to train and robust to environmental design.

B EXPERIMENTS ON TEXT GAME

We propose to use text as an alternative input modality used in referential games (Lee et al., 2019).
This allows us to use a different set of input representations that could be very different from the
visual features that also encodes some form of spatial structures present in the images (Slowik et al.,
2020). So we replace images in the aforementioned referential game with variable length sentences
consisting of discrete words. Now, the task of the speaker is to translate a sentence from an input
language to an intermediate language such that the listener is able to pick the correct sentence given
other sentences in the input language.

3Their approach involves giving speaker access to the distractor objects which is not the case in our setup.
4Training via REINFORCE performed better than GS where we had to backpropagate gradients by freezing

all listener’s parameters.
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Figure 3: (a) Final validation accuracy as a function of number of distractor sentences. (b) Final
BLEU score of the (meta-)speaker agent on the validation set using German sentences. All runs are
averaged over 3 random seeds and standard deviations shown.

We use the publicly available IWSLT’14 English-German dataset for this purpose. We choose
English as the input language and German as the intermediate language. Instead of randomly
selecting the distractors from the set of English sentences, we use a pretrained Sentence-BERT model
(Reimers & Gurevych, 2019) (on SNLI (Bowman et al., 2015) and MultiNLI (Williams et al., 2018))
to systematically choose them. Sentence-BERT outputs a dense vector representation (sentence
embedding) given an input sentence. We use cosine similarity to compare these embeddings of two
sentences and build a cluster consisting of sentences with minimum threshold similarity. The set of
distractors are then chosen from this cluster. The higher the cosine similarity, the harder it is for the
listener to identify the correct sentence. For our experiments, we keep the cosine similarity to 0.85
and the number of distractors to 14. The agents’ architectures and other preprocessing details are the
same as the game with images. We use the pretrained Sentence-BERT embeddings to get the textual
features from the raw English sentences.

B.1 RESULTS ON TEXT GAME

In Fig 3a, we show results for two sets of distractors, 9 (random choice 10%, emecom 72.6%) and 14
(random choice 6.7%, emecom 64.4%) for a fixed dataset size of 5000. As expected, the referential
accuracy drops as we increase the number of distractors, making the game harder.

We also perform some ablation studies in Sec D.1. An interesting point to note is that given the
same number of distractors (9), agents trained on the game with text perform better than the game
with images. We think that this could be attributed to the pretrained textual features which are more
aligned with the features suited for the task objective than the visual representations where the task
objective is to learn maximally distinct features for all sentences in the dataset.

In Fig 3b, we show the BLEU score between the generated German sentences and the ground truth
German translation in the text game by varying the number of distractor sentences from 9 (emecom
10.8) to 14 (emecom 9.9). We observe that the average score across all methods decreases as the
game complexity (K) increases. We think that this is due to the potential misalignment of the task
performance, that gets more challenging as K grows, with the linguistic loss of the speaker.

C IMPROVED CAPTIONING AND TRANSLATION MODEL

We take the analysis of the meta-speaker in the game with images a step further and aim to evaluate
the alignment of the generated captions with human judgement. We use the metric proposed by
(Yin Cui & Belongie, 2018) to perform automatic evaluation of captions using a pretrained model on
the MSCOCO dataset. Their method computes a similarity score between the candidate (generated)
caption and the context (image and ground-truth caption). We evaluate 1000 generated captions from
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Algorithm 1: Algorithm
Input :Datasets Dt and Dm, pretrained speaker parameters θ and listener parameters φ,

randomly initialized meta-speaker parameters ϑ and meta-listener parameters ϕ, empty
buffers B0S and B0L

i← 1
θi ← θ
φi ← φ
repeat

/* Add current agents to buffer */

BiS ← B
i−1
S
⋃
θi

BiL ← B
i−1
L
⋃
φi

/* Meta-training loop */
for j ∈ {1, 2, . . . , nmeta} do

Train ϑi by playing with each φ ∈ BiL using Eq equation 5
Train ϕi by playing with each θ ∈ BiS using Eq equation 6

end
/* Initialize i+1 parameters */
θi+1 ← θi
φi+1 ← φi
/* Interactive learning loop */
for j ∈ {1, 2, . . . , nint} do

Train θi+1 by playing with ϕi using Eq equation 1
Train φi+1 by playing with ϑi using Eq equation 2

end
/* Supervised learning loop */
for j ∈ {1, 2, . . . , nsup} do

Train θi+1 with samples present in Dt using Eq equation 3
Train φi+1 with samples present in Dt using Eq equation 4

end
i← i+ 1

until performance of ϑ and ϕ converge

|D| = 2000 |D| = 5000

S2P 5.5 6.7
SIL 5.5 6.6
L2C 5.4 6.4

Gen.Trans. 6.1 7.2
Ours 6.6 8.0

Oracle 12 .1

Table 1: Evaluating the (meta-)speaker on the captioning task using the metric proposed in (Yin Cui
& Belongie, 2018). The Oracle in the table refers to the best score obtained by a trained captioning
model using more than 100k samples as found in (Yin Cui & Belongie, 2018).

BLEU
Pretrained + Greedy Decoding 20.8

Pretrained + Beam Search (n = 2) 21.1
Pretrained + Beam Search (n = 4) 22.4

Pretrained + Top-k Sampling (k = 40) 24.6
Ours (using greedy decoding) 25.7

Table 2: Comparative analysis of decoding strategies. We show the BLEU score on German sentences
for (meta-)speaker in the text game trained with 9 distractor sentences and |D| = 5000 human
samples. Here n denotes number of beams in beam-search.
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the validation set for each method and average the scores across all captions. The results are showed
in Table 1. Our method beats all other baselines5 using just a few human samples.

In Table 2, we perform comparative analysis using various decoding strategies with the Pretrained
model in the text game and show the BLEU scores for English-German translation task. We show that
our method that uses the simple greedy decoding is able to outperform all the variants of Pretrained
model using sophisticated decoding strategies.

This implies that even though the task objective was not to train a better captioning or a translation
model, we were able to obtain improved performances on both tasks given the limited set of examples.
We note that we do not claim to propose the state-of-the-art captioning or translation model but
instead show this analysis to reckon that our method can be combined with specialized models built
for captioning or translation tasks. Furthermore, we show some qualitative samples by comparing the
speaker generated messages across all baselines along with the ground truth captions.
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Figure 4: Human evaluation on the text game (a),(b) and the image game (c), (d). Here, (a),(c) refer
to the referential accuracy of (Meta-speaker, Human-listener) pair and (b),(d) refer to the referential
accuracy of (Human-speaker, Meta-listener) pair. The black bar in all plots represent the performance
of the (Human-speaker, Human-listener) pair.

C.1 HUMAN EVALUATION

   1     2  ...    i

i

i+1 i

i+1

   1     2  ...    i    i+1

i+1

i’

Meta-training

Interactive learning

Supervised learning

Adding to buffer

Figure 5: Algorithm outline for train-
ing a meta-speaker ϑ. A buffer BL con-
tains a list of listeners φj where j ∈
{1, 2, . . . , i}. See Sec 3 and Algorithm 1
for more details.

Although BLEU score is able to capture some form of
syntactical and semantic drifts, it still fails to counter the
phenomenon of pragmatic drift as introduced in (Lazari-
dou et al., 2020). For this reason, we evaluate the perfor-
mances of our agents and the baselines by playing them
with humans. We play both the (meta-)speaker with a hu-
man listener and the (meta-)listener with a human speaker
separately. The (meta-)speaker is evaluated using 1000
human samples while the (meta-)listener is played 400
times. The final performance is computed using the ref-
erential accuracy. We also let humans play the game with
other humans with similar game restrictions which defines
our oracle. The participants weren’t given the identity of
the other agent they are playing with to make a fair com-
parison. In Fig 4c, we show the results for meta-speaker
for the image game where our method outperforms other
baselines by a significant margin. In Fig 4d we compare
the performance of the meta-listener for the image game
with other baselines and even here our method outclass
them. This denotes that our method is able to understand
human descriptions more accurately by learning diverse
caption representations. The results for the game with text

5The Pretrained performance is the same as the Oracle as it always outputs a description from the training set
making it closer to a human-defined caption but suffers from the task accuracy.
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Figure 7: (a) Average referential accuracy on the validation set when a trained meta-listener plays
with each speaker present in the buffer separately at the corresponding training iteration. The blue
bars show the standard deviation across all agents present in the buffer. The gray bars show the
variance between the minimum and maximum performing speaker in the buffer. All agents were
trained in the image-game with |D| = 5000. (b) Ablation study in the image game with |D| = 5000.

follow similar pattern and can be found in Fig 4a 4b. We used 9 distractor objects and |D| = 5000
for both games. The (meta-)speaker experiments were conducted with 1000 times (image game) and
350 times (text game) while the (meta-)listener was played 400 times (image game) and 100 times
(text game) for each baseline. We present the results of the human evaluation experiment on the text
game here. Similar to the image game, we show that agents trained using our method beat all prior
baselines when paired both with both human listeners and human speakers. Furthermore, we observe
that although the overall performance of the agents in the text game is lower (including the human
pair), the gap between our agent and the human pair is smaller than the image game. We think that
this could be attributed to the text game being harder (even for humans) than the image game due to
systematically choosing the set of distractor objects and image game possibly having an easier way
of discovering the ‘differentiators’ that help the agents to uniquely identify the target object. The
experiment setup is the same as the image game. Overall we infer that our method suffers from the
least amount of pragmatic drift as compared to other baselines measured by the performance gap
with human-human gameplay.

D FURTHER RESULTS
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Figure 6: Average BLEU score on the validation
set when a trained meta-listener plays with each
speaker present in the buffer individually at the
corresponding training iteration. All agents were
trained in the image-game with |D| = 5000.

We plot the average BLEU score of multiple
speakers playing with a trained meta-listener in
Fig 6 at different stages of training. Similar to
Fig 2c, we show that the speakers learnt to speak
wide variety of languages that are different from
English as measured by the BLEU score.

D.1 ABLATION STUDY

We further analyze the importance of each com-
ponent of our proposed algorithm. Specifically,
we compare three major baselines (a) Offline-
meta: in the interaction phase, instead of playing
with the other meta-agents, the agent plays with
the current other agent itself (e.g., the speaker
playing against the current listener instead of
the meta-listener), in turn making the training
of meta-agents interdependent of each other (b)
No-meta: instead of learning a meta-agent, the
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Figure 8: Qualitative samples generated by the (meta-)speaker in the game with images.

agent plays with past copies of other agents stored in a buffer demonstrating a knowledge gap similar
to (Cogswell et al., 2019) but without resetting. (c) KL-reg: instead of having separate phases of
interactive learning and supervised learning to avoid catastrophic forgetting, the agent is trained by
minimizing a linear combination of (i) KL divergence of its distribution with the Pretrained model
and (ii) interaction loss with the meta-agent, similar to (Lazaridou et al., 2020; Lu et al., 2020) In
Fig 7b, we compare the (meta-)listener performance across all these baselines by measuring the
referential accuracy on the validation set in the image game. We observe that both No-meta and
Offline-meta achieve lower accuracy as compared to our method. This suggests that our meta-agent
captures useful information from the past iterations of other agents while also helps in learning of
the current other agent. KL-reg performance was close to our method indicating that one can use
alternate ways to integrate the two loss functions in combination with our meta-learning approach.

We also performed an ablation study using different meta-learning algorithms (Finn et al., 2017;
Nichol et al., 2018). FOMAML is the first-order approximation of MAML and Reptile is another
first-order meta-learning algorithm that performs stochastic gradient descent for a few steps across all
tasks and then updates the parameter towards the average of updated task-specific weights. We show
the results (task performance) on the image game with |D| = 5000 in Fig 7a. The performances of
the all algorithms are competitive with each other indicating robustness across the three methods.
Furthemore, we think that recent advancements in meta-learning algorithms (Rothfuss et al., 2019;
Metz et al., 2019) could be combined with our algorithm to further analyze this effect and investigate
biases resulting from a given meta-algorithm.

E HYPERPARAMETERS

We show here the range of parameter configurations we tried during training (bold indicates the ones
used in the experiments):

• Batch Size: 512, 1024
• Buffer Size: 50, 100, 200
• Learning rate (outer loop): 1e-4, 1e-5, 6e-5, 6e-4

• Learning rate (inner loop α): 1e-4, 3e-4

• nmeta: 20, 40, 60, 65, 70

• nsup: 10, 20, 25, 30

• nint: 40, 60, 70, 80, 100

• λhs: 0.1, 0.01, 0.001

• λhl: 0.1, 0.03, 0.007, 0.001
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• λs: 0.1, 0.5, 0.8, 1
• Dt: 500, 1000, 1500, 2500, 3500, 4000
• D0,1

m : (1200,300), (700,300), (400,100), (1700, 800), (1000,500), (1200,300)

We use the Adam optimizer (Kingma & Ba, 2015) in PyTorch (Paszke et al., 2019) for training the
agents. For the baselines (S2P, SIL, L2C, Gen.Trans.), we used the publicly available repositories
attached with the respective publications. We adapt their codebase to train agents on the two referential
games used in this work while tuning some hyperparameters to adapt to the task.
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