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Abstract

Large Language Models (LLMs) have garnered
significant attention worldwide due to their in-
creasing size and improving capabilities. How-
ever, as LLMs continue to expand, traditional
benchmark datasets are becoming less effec-
tive in evaluating their reasoning skills. This is
primarily due to the difficulty of the tasks and
issues with data contamination. Meanwhile,
in the domain of logical reasoning, existing
benchmarks often lack the ability to isolate
specific reasoning abilities and fail to provide
sufficient evidence for answer derivation. To
address these issues, a novel dataset ILogicE-
val is proposed, which consists of sentences
composed of unrelated statements, challeng-
ing LLMs to answer questions that cannot be
solved based on their learned knowledge. ILog-
icEval is carefully designed to incorporate rich
language diversity and assess the logical rea-
soning ability of LLMs independently of other
reasoning skills, such as commonsense reason-
ing. To ensure a more reliable evaluation, we
also introduce a new evaluation metric that mit-
igates the influence of bias and randomness
inherent in LLMs. Through experiments, we
demonstrate the extent to which logical rea-
soning is required to answer the questions in
ILogicEval and compare the performance of
different popular LLMs in conducting logical
reasoning. This dataset and evaluation metric
address the limitations of existing benchmarks,
providing a comprehensive assessment of the
logical reasoning capabilities of LLMs.

1 Introduction

Large Language Models (LLM) have been evalu-
ated on various datasets to assess different abilities,
including mathematics reasoning, instruction fol-
lowing, and code generation (Cobbe et al., 2021;
Wang et al., 2023; Chen et al., 2021). Logic reason-
ing, has long been utilized as an important measure
for evaluating human intelligence level during on-
boarding, graduate admission, and civil servant

recruitment. Many globally recognized examina-
tions usually include a significant portion of logic
puzzles, such as the LSAT, GMAT, civil service
examinations, and aptitude tests.

Despite numerous datasets that exist for evaluat-
ing logical reasoning, they are no longer effective
for assessing the current LLMs due to their current
capabilities and data leakage during pretraining.
TS-Guessing (Deng et al., 2023) estimates data
leakage severity by predicting critical keywords
and incorrect option predictions on testing sets, re-
vealing probable data contamination in LLM eval-
uation benchmarks. Notably, the authors highlight
the dataset Truthful QA, which was released subse-
quent to GPT-3.5-turbo, yet still achieves an accu-
racy of over 50% in guessing incorrect options. Evi-
dence of data contamination across different bench-
marks has also been found and recorded in the LM
contamination index. Given the vast amount of
pretraining data, preventing data contamination is
unrealistic. Thus, we propose a novel dataset, ILog-
icEval, constructed using contaminated datasets in
a counterintuitive manner to address this issue. For
example, while GPT4 achieves over 80% accuracy
on the original datasets used to create ILogicEval
(SNLI, MNLI, and ReClor), its performance drops
to only 32.2% on ILogicEval.

Furthermore, as LLMs continue to be trained on
ever-expanding datasets, they may improve their
accuracy on established reasoning tests without
necessarily enhancing their reasoning skills (Tian
et al., 2023). This poses a challenge to the ongo-
ing evaluation of specific reasoning abilities over
time using conventional benchmark datasets. ILog-
icEval tackles this challenge in the logic reason-
ing domain by providing content that LLMs are
unlikely to encounter during pretraining. For exam-
ple, it includes statements connected in ways that
rarely occur in daily conversations. By relying on
unfamiliar concepts and relationships, ILogicEval
aims to minimize the potential influence of data



contamination when evaluating logical reasoning
over time.

Some studies (Yu et al., 2020; Liu et al., 2020)
focus on general evaluation in the domain of logi-
cal reasoning, where the chain for explaining the
answer correctness is more complex and challeng-
ing to retrieve. These evaluation benchmarks also
typically do not concentrate on a single domain
reasoning ability, various reasoning skills can con-
tribute to solving the task,making it challenging
to pinpoint the specific abilities of LLMs. On the
other hand, some works (Clark et al., 2020; Sanyal
et al., 2022; Han et al., 2022) primarily focus on as-
sessing a single reasoning ability while minimizing
the contribution of other abilities, such as common-
sense reasoning. However, these works have re-
ceived less attention from the research community,
possibly due to their limited language diversity,
which hinders the reflection of model performance
in more general scenarios. To address this lim-
itation, we propose a new evaluation benchmark
“Illogical” Logical Reasoning Evaluation (ILogicE-
val), a logical reasoning-focused synthetic dataset
with rich language diversity for evaluating LLMs.

In summary, this paper makes several key con-
tributions: (1) It reduces the possibility of data
contamination in assessing the logical reasoning
capabilities of LLMs over time by constructing
counterintuitive sentences that deviate from real-
life scenarios. (2) It minimizes the involvement of
other reasoning abilities by formulating the dataset
as symbolic logical propositions before translat-
ing them into counterintuitive sentences in natural
language. (3) It enhances language diversity by
sampling from corpora with extensive vocabularies,
enabling a more challenging and comprehensive
evaluation. (4) It proposes a new evaluation metric
that considers the confidence level of models, fa-
cilitating a more comprehensive assessment of the
logical reasoning ability of LLMs.

2 Related Work

2.1 Traditional Machine Reading
Comprehension Benchmarks

In the field of evaluating LL.Ms, numerous pop-
ular benchmarks have been constructed, each de-
signed to assess different reasoning capabilities.
For instance, TriviaQA (Joshi et al., 2017) exam-
ines the ability of models to reason across multiple
documents. HotpotQA (Yang et al., 2018) eval-
uates the multi-hop reasoning ability of models.

Drop (Dua et al., 2019) assesses their discrete nu-
merical reasoning ability and MuTual (Cui et al.,
2020) evaluates their ability to reason with dia-
logues. These datasets are commonly sourced from
online content and involve various question types
ranging from span retrieval tasks to more complex
reasoning tasks. However, LLMs may have been
exposed to similar content or question types during
pre-training, allowing them to achieve high accu-
racy without genuinely improving their underlying
reasoning abilities (Tian et al., 2023). To address
this issue, we propose ILogicEval which is coun-
terintuitive to everyday contexts. Similar content is
unlikely to exist online and to be learned by LLMs.
This allows ILogicEval to provide a more effective
evaluation on the logical reasoning capabilities of
LLMs.

2.2 Complex Logical Reasoning Datasets

Various datasets have been introduced to evaluate
the reasoning ability of LLMs at a more domain-
specific level. In the logic reasoning domain, there
are two notable multiple-choice question answering
(MCQA) datasets that are composed of inference
questions. ReClor (Yu et al., 2020) is derived from
GMAT and LSAT questions while LogiQA (Liu
et al., 2020) is sourced from the Chinese Civil Ser-
vants Examination. These datasets concern more
than just inference problems, the correct deriva-
tion of answers may involve commonsense rea-
soning, allowing LLMs to leverage their inherent
knowledge learned during pre-training to answer
the questions. It remains unclear whether a perfor-
mance increase can be attributed to the enhanced
ability in commonsense reasoning or logical rea-
soning. ILogicEval addresses this issue with its
counterintuitive content and content construction
grounded in propositional logic, making common-
sense knowledge likely to be inapplicable in answer
generation.

2.3 First-Order Logic Reasoning Datasets

There are numerous domain-specific benchmarks
that focus on inference problems. For instance,
Ruletaker (Clark et al., 2020), LogicNLI (Tian
et al., 2021) and RobustLR (Sanyal et al., 2022) are
synthetic datasets created to assess various aspects
of model performance, such as accuracy, robust-
ness, generalization, and traceability.On the other
hand, FOLIO (Han et al., 2022) is a dataset con-
structed under human supervision, which aims to
establish a dataset with complex logical reasoning



structure and a richer vocabulary compared to other
first-order logic reasoning datasets. However, its
distinct vocabulary size remains in the thousands,
which is incomparable to the complex logical rea-
soning datasets. To address this issue, ILogicEval
derived from NLI and SNLI data that presents more
complex language structures with a vocabulary size
in the tens of thousands level, provides a more chal-
lenging and comprehensive evaluation of a model’s
capabilities.

3 Dataset Construction and Overview

3.1 Dataset Construction

To construct a dataset with supportive explana-
tions, ILogicEval is constructed based on verifi-
able propositional logic. The dataset was initially
created using a set of randomly generated logi-
cal propositions, and subsequently converted into
natural language subsequently to form the MCQA
dataset. Previous studies have investigated the mod-
els’ ability to solve logical inference puzzles in a
symbolic form (Hahn et al., 2021; Pi et al., 2022)
and other works have converted symbolic proposi-
tions into natural language using a predefined set
of subjects and adjectives (Clark et al., 2020; Tian
et al., 2021; Sanyal et al., 2022). This approach en-
sures that the generated natural language datasets
adhere to the rules of logical inference.

In contrast to the previous approaches, our
method involves the random construction of ex-
pressions that incorporate noise information, which
does not contribute to the inference derivation. Ad-
ditionally, we sample sentences in high language
diversity and link generally unrelated sentences
despite their usual lack of co-occurrence. This ap-
proach ensures the effectiveness of evaluation over
time while introducing a certain level of difficulty
in logical reasoning.

To facilitate evaluation and enhance user experi-
ence, we propose a multiple-choice MRC dataset
consisting of three components: content, passage,
and four options, with one option being correct.
The four options are generated by an external val-
idator, which examines the entailment between the
content and each option. The multiple-choice ap-
proach ensures ease and effectiveness in evaluation.

3.1.1 Formation of Symbolic Logical
Propositions

The content part of the MRC dataset is composed
of multiple logical propositions. Each proposition

is derived from a random selection of three logical
variables from a set of eight possible variables (i.e.,
‘A’, ‘B’, ..., ‘H’). The probability of selection is
computed along the content formation process as
illustrated in Algorithm 1 in Appendix. The value
of n is set to 3. After variables selection, they are
incorporated into the premise of the following three
implication rules commonly used in previous re-
search to address (Wang et al., 2022; Li et al., 2022;
Zhao et al., 2022) or generate (Clark et al., 2020;
Sanyal et al., 2022) logical reasoning benchmarks.

((A— B) = (-B — —4)) (1a)
(H(AANB) = C)— (nA—= () (1b)
((AVB)—=C)—= (A= 0)) (1¢)

In case the third rule is chosen, only the first
two variables are utilized and the last variable is
discarded.

In order to avoid sentence repetition and prevent
the inference of answers from multiple constructed
propositions, a limitation is imposed on the maxi-
mum occurrence of a logic variable within a single
instance. With the maximum number of proposi-
tions of n, if a variable appears more than n — 1
times in the content, its probability of selection
is set to 0.1. If the variable is selected n times
or more, its probability is set to zero. Otherwise,
the probability of the i-th variable is calculated as
follows,

max(o) + 1 — o;

> ;(max(o) + 1 — o)
where o denotes an array that contains the occur-
rence of all eight variables in the constructed propo-
sitions used for constructing the content of a single
instance and ¢ € (0,8). To construct an instance,
two to n + 1 logical propositions are generated to
form the content part of the MCQA dataset.

After constructing the content for MCQA, the
generated propositions ¢ and the variable picking
counter information o are utilized to construct the
option sets of MCQA. The set of variables x’ is
retrieved at first, where 0 < o, < n for k € z'.
This retrieval ensures that the variables in 2’ have
been selected in lower occurrences, thus increasing
the difficulty of the questions. With the variables
in 2/, the options set is created, which includes
all four negation versions of all possible pairs of
variables (i.e., (A — B), (A — B), (A — —B),
and (—mA — —B)), as well as two negation ver-
sions of a single variable in 2’ (i.e., =A and A).
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The set is then divided into the entailment group
e and the non-entailment group n using an exter-
nal logic validator. The entailment group contains
the conclusions entailed by the content proposi-
tions ¢, while the non-entailment group contains
the conclusions that are not entailed. To ensure that
answers cannot be inferred from a single proposi-
tion, the answers of variable pairs in the entailment
group e that can be directly derived from a single
proposition g;, where g; € ¢ in the content part, are
filtered out. This filtering ensures that at least two
propositions in the content are necessary to derive
the correct answer.

3.1.2 Formation of Question Types

Critical thinking assessment is widely acknowl-
edged as a crucial skill for reasoning, and be uti-
lized as an indicator in prestigious examinations
for both career and academic progression. One of
the examination, the Graduate Management Admis-
sion Test (GMAT), includes a critical thinking sec-
tion that consists of five question types, which are
"Inference," "Finding the Assumption," "Strength-
ening an Argument," "Weakening an Argument
and Spotting the Flaws," as well as "Paradox or
Discrepancy."

These question types can be further grouped as
“Finding the Missing Assumption”, “Strengthing
an Argument / Finding a Valid Conclusion” and
“Weakening an Argument / Spotting an Invalid Con-
clusion”. Therefore, to synthesize a new dataset,
we have designed ILogicEval with three similar
question types. The three question types are de-
scribed below, including their name and explana-
tions.

In the question type of 3cle, the content part
serves as a premise. It either contradicts or does
not imply three of the options, while implying the
remaining option. Conversely, in the question type
of 3elc, with the content part also acting as the
premise, it implies three of the options, and either
contradicts or does not imply the remaining one. In
the question type of Missing Premise, the content
part is known as the premise. Subsequently, the
content part is modified to combine with a valid
conclusion from the entailment group. The neces-
sary proposition in the premise, which ensures the
premise implies the conclusion, is then removed.
The removed proposition then becomes the correct
option. The remaining three options are sampled
from the non-entailment group, with additional val-
idation carried out by an external validator. Alter-

natively, if there are sentences in the SNLI dataset
that display a contradiction during the subsequent
transformation into natural language, the three op-
tions can also be chosen from the entailment group.
Sample instances of the three question types are
presented in Table 1.

3.1.3 Transforming Into Natural Language

To ensure the richness of language diversity, each
logical variable is replaced by simple sentences
sourced from SNLI (Glockner et al., 2018) and
MNLI datasets (Williams et al., 2018). Inappropri-
ate sentences from these datasets are filtered by pre-
defined rules to ensure language quality and details
are provided in the subsequent paragraphs. For the
SNLI dataset, multiple instances can have the same
premise. They are grouped together, resulting in a
table containing the premise, entailing hypothesis,
contradicting hypothesis, and neutral hypothesis.
Most of the time, only the premise and entailing
hypothesis are sampled during the transformation
from propositions to natural language. The con-
tradicting hypothesis is employed when forming
the three contradicting options in ‘3cle’ question
type, the one contradicting option in ‘3elc’ and
also the three non-ground-truth options in ‘missing
premise’.

To generate natural language templates for the
three inference rules, ChatGPT is employed, and
several sample templates are provided as input. For
instance, one of the templates for expressing logi-
cal implication, "A implies B," can be used. How-
ever, when incorporating these templates into sen-
tences that consist of multiple parts, a potential
issue arises when one statement lacks a subject. In
such cases, it is assumed that the subject refers to
the subjects of the neighboring statements, which
may introduce inconsistencies in the synthetic texts.
To mitigate this issue, the Stanford POS tagger is
utilized to filter out sentences beginning with the
tags "VERB’ or AUX’. Additionally, sentences
lacking a *"VERB’ tag are also filtered to ensure
language quality.

When handling negated variables, it is nec-
essary to negate the corresponding sentences in
natural language. The same POS tagger is em-
ployed to identify the verb and add the words
"don’t/doesn’t/didn’t" or the token "n’t" in front
of it. If the token "not/n’t" is already present, the
relevant words are reverted back to their original
form.

While verbs can be identified in the remaining



instances, a notable portion of sentences in the
present continuous tense lack an auxiliary verb. To
address this, the nltk tagger, which offers a more
detailed classification of verb tense, is utilized to
reintroduce the appropriate auxiliary verb.

The finalized text is then subjected to a gram-
mar check by passing it through ChatGPT once
again. The difference in the text before and after
this process is recorded. In order to measure the
extent of the modifications made, we calculate the
ratio of the length of the longest common substring
between the original text and the modified text to
the maximum length between the two texts. To en-
sure that ChatGPT has not made excessive changes
to the content, we only keep the modifications if
the computed score is greater than 0.5. Multiple
trials are conducted, and the result with the small-
est amount of modification is retained. In order to
maintain the quality of the testing set, we manu-
ally review and approve the changes suggested by
ChatGPT.

It is important to note that each instance in SNLI
(after grouping the same premises) and MNLI only
appears in a single instance of ILogicEval. There
are no repeated uses across instances in the pro-
posed dataset.

3.2 Dataset Overview

ILogicEval is a multiple-choice dataset, compris-
ing four options, with one option being the correct
answer. The dataset comprises a total of 12,589 in-
stances, distributed as follows: 4196 instances cor-
responding to *3cle’, 4195 instances correspond-
ing to *3elc’, and 4198 instances corresponding to
’missing premise’.

The dataset is partitioned into training, valida-
tion and testing sets. Both the validation and test-
ing sets consist of 900 instances, with the class
balance being maintained within each set. The dis-
tinct vocabulary size of ILogicEval, determined
using the nltk tokenizer, is comparable to that of
complex datasets such as ReClor and LogiQA. Ad-
ditionally, it is significantly larger than that of first-
order logic reasoning datasets. For a comprehen-
sive overview of ILogicEval and its comparison
with other datasets in the logical reasoning domain,
refer to Table 5.

4 Effect in Other Logic Reasoning Task

Despite the counterintuitive nature of ILogicEval,
the question types in ILogicEval are similar to

Test Test-E Test-H
ILogicEval 73.2  83.6 65.0
MERIt 73.1  86.2 64.4
DeBERTa-v2-xlarge 71.0 83.8 60.9

Table 1: Results with different pretraining data on Re-
Clor with DeBERTa-v2-xlarge backbone

those in ReClor. Previous approaches to solving
the ReClor task have involved additional pretrain-
ing using extra data ((Jiao et al., 2022; Sanyal et al.,
2023)). Thus, experiments were conducted to inves-
tigate whether incorporating ILogicEval as extra
pretraining data for ReClor could improve task per-
formance. The training process involved initially
training LL.Ms using ILogicEval data, followed
by ReClor data. The results obtained using the
DeBERTa-v2-xlarge model as the backbone for Re-
Clor testing are presented in Table 1. In the table,
“Test” shows the overall accuracy while “Test-E”
and “Test-H” are the accuracy corresponding to the
EASY and HARD sets in ReClor.

In addition, for the purpose of comparison, we
include the results of MERIt (Yu et al., 2020), one
of the state-of-the-art models that also employed an
additional pretraining corpus from Wikipedia, us-
ing the DeBERTa-v2-xlarge backbone. Our results
successfully outperform MERIt, demonstrating the
extent to which ILogicEval can contribute to en-
hancing the logical reasoning capability of LLMs.

5 Performance of LLMs

When the scale of model size increases, there is an
inherent capability for LLMs to handle different
natural language tasks in a zero-shot setting (Wei
et al., 2022; Kojima et al., 2022). In addition to
studying their performance under a zero-shot set-
ting, we further investigate their performance in a
few-shot setting by providing examples for guid-
ance. Under the three-shot setting, the models were
provided with three specific examples to facilitate
their learning process prior to answering each ques-
tion. The inclusion of one example corresponding
to each question type is ensured and sampled from
the training set. The models under review include
ChatGPT, GPT4 (OpenAl, 2023), Gemini (Team,
2023), Llama2 (Touvron et al., 2023) and Mixtral
(Jiang et al., 2023). They are prompted with the
instruction “You need to answer in the form of
Answer: <A/B/C/D>".



A detailed comparison between different LLMs
under the zero-shot and 3-shot settings is illustrated
in Table 3. ‘Accuracy’ measures the accuracy of
the original instances. ‘Circular’ is the circular
evaluation proposed in a previous work (Liu et al.,
2023), it involves creating four versions of a sin-
gle instance by shifting the order of the options
in a circular way. Specifically, if the original op-
tions are labeled A, B, C, and D, the four mutants
created are (A,B,C,D), (B,C,D,A), (C,D,A,B), and
(D,A,B,C), where the first mutant corresponds to
the original instance. In this approach, an instance
is considered correct only if all of its mutants with
different options in different positions are answered
correctly. ‘PartialCircular’ is a modified circular
evaluation newly introduced in the following sec-
tion, measuring both the accuracy and the level of
confidence in answering.

Directly using the accuracy metric directly on
the instances can lead to inaccurate and inconsistent
evaluation. For instance, when comparing GPT4
and Gemini in a zero-shot setting, Gemini may out-
perform GPT4 in a single trial using the accuracy
metric. However, when we consider the circular
evaluation and the confidence level of the answers,
GPT4 significantly outperforms Gemini, as illus-
trated in Table 2. Meanwhile, in circular evaluation,
counting an instance as correct only when all four
mutants are correct can lead to inconsistent evalu-
ations. In case there is an incorrect answer in any
of the mutants, the entire instance is considered in-
correct. Additionally, LLMs may return answers in
only limited choices but not all four options among
several attempts, it demonstrates certain confidence
in the correct option instead of returning answers
in complete randomness. The confidence level also
provides insight into the quality of their reasoning
ability. Previous studies have also studied the oc-
currence of low confidence levels or inconsistent
outputs in relation to hallucination phenomena (Fu
et al., 2023; Manakul et al., 2023). Considering
these, partialCircular evaluation is proposed.

5.1 PartialCircular (PC)

Through experiments, we observe the number of
unique options returned by the LLMs and the fre-
quency of returning the correct answer can be in-
formative. Therefore, the computation of the cor-
rectness per instance is designed as,

g 1+ Zp(i) log(p(i)) ®)

where c is the number of mutants being answered
correctly, p(i) is the probability of option i for
p(i) # 0.

As there are four mutants (i.e. (A,B,C,D),
(B,C,D,A), (C,D,A,B), (D,A,C,B)) with each op-
tion appearing once in each position, we calculated
the correctness for each instance as the percent-
age of correct answers among the four mutants.
Furthermore, the fewer unique options returned
by the LLMs, the lower the level of randomness
likely there. Considering the randomness in the
answer selection of LLMs, an additional factor
(14 > p(o)log(p(o)) based on Shannon entropy
which measures the uncertainty level of a random
variable is introduced.

During the circular evaluation, we computed the
frequency of each option being selected by the
LLMs. This is subsequently used to calculate the
probability distribution among the four options for
the entropy calculation. Since there are four possi-
ble outcomes, a logarithm with base four is adopted
in the factor (1 + > p(0) log(p(0))). When each
option was selected once, the computation value
became zero. On the other hand, if only one option
was selected among the four cases, we retained the
original percentage correctness among the four mu-
tants. Meanwhile, in addition to the four options
provided in the dataset instances, an additional op-
tion o representing "none of the above" is included.
This accounts for cases in which LLMs respond
with "I do not know" or when all options are con-
sidered correct or incorrect by LLMs.

Under the variation of return from LLM, com-
paring the accuracy difference between different
models is not effective. In table 2, we ran Gem-
ini on ILogicEval five times, and we found diffi-
culty in distinguishing Gemini’s logical reasoning
ability from other LLMs. With circular and par-
tialcircular, the performance differences between
different LLMs are more significant and consis-
tent. To account for the variations caused by the
circular metrics’ hard cutoff, the coefficient of vari-
ance among the five runs was computed. If any of
the four option-circulating versions was incorrect,
the entire set of instances received a score of zero,
resulting in the highest variations for this metric.

5.2 Human

Eight university graduate students are invited to
complete 120 instances sampled from the testing
set of ILogicEval, the average accuracy achieved
is 40.0%. For a better understanding of the ability



Gemini-1 Gemini-2 Gemini-3 Gemini-4 Gemini-5 | CV
Accuracy 30.0 32.0 324 30.1 32.0 33
Circular 7.4 8.1 8.0 8.0 9.0 6.3
PC 17.6 18.8 18.1 18.5 19.1 3.1

Table 2: Coefficient of variance (CV) on five runs among difference evaluation metrics on Gemini Pro

Model Settings Metrics ‘ Test ‘ Test-3elc Test-3cle Test-missing
Accuracy | 32.2 37.2 33.0 26.6
0-shot Circular 12.3 11.3 13.3 12.3
GPT4 PC 22.1 22.3 21.1 23.0
(gpt-4-1106-preview) Accuracy | 272 | 29.7 273 247
3-shot Circular 7.2 4.0 7.7 10.0
PC 17.0 13.1 16.5 21.4
Accuracy | 29.6 29.7 28.0 30.9
0-shot Circular 3.7 0.7 53 5.0
ChatGPT PC 13.3 9.3 14.9 15.7
(gpt-3.5-turbo) Accuracy | 30.1 | 284 30.0 31.9
3-shot Circular 4.6 1.0 7.0 5.7
PC 16.0 12.0 17.9 18.1
Accuracy | 30.0 27.8 31.1 31.3
0-shot Circular 7.4 94 4.9 7.9
Gemini PC 17.6 19.1 15.7 17.9
(gemini-pro) Accuracy | 29.6 | 28.6 292 30.9
3-shot Circular 8.6 8.9 9.0 8.0
PC 17.9 17.8 18.3 17.6
Accuracy | 26.2 27.7 26.7 243
0-shot Circular 2.8 0.0 5.3 3.0
Llama2 PC 12.9 7.8 17.3 13.7
(llama-2-70b-chat-hf) Accuracy | 28.6 | 274 28.7 29.6
3-shot Circular 6.0 2.0 8.3 7.7
PC 15.9 10.7 18.1 18.8
Accuracy | 29.9 28.7 31.0 29.9
0-shot Circular 8.2 53 11.7 7.7
Mixtral PC 16.9 11.9 20.4 18.3
(mixtral-8x7B-instruct-v0.1) Accuracy | 309 | 34.1 30.7 28.0
3-shot Circular 12.2 7.7 14.0 15.0
PC 20.9 16.2 22.2 24.3
Human O-shot  Accuracy | 40.0 |  46.2 32.6 42.1

Table 3: Performance with respect to the three question types in ILogicEval under different settings.

of the interviewee to solve logic puzzles, we also
invited them to finish another 120 symbolic form
instances sampled from the training set of ILogicE-
val, they achieved an average accuracy of 46.7%.

Furthermore, it was observed that the readability of
the questions had a negative impact on the intervie-
wee’s motivation to complete the task during the
post-event interview.



5.3 Language Model Evaluation

Evaluation is performed across five LLMs, includ-
ing GPT4, ChatGPT, Gemini, Llama2 and Mixtral.
The corresponding model versions used for evalua-
tion are specified below the LLM model name in
Table 3.

GPT4 exhibits superior performance compared
to other LLMs in general. However, even when con-
sidering the most lenient measure, its accuracy of
32.2% indicates only some level of understanding
beyond random guessing, leaving significant room
for improvement. Its performance in the “3elc”
question type achieves the best performance. Mix-
tral under the few shot settings achieves compara-
ble performance with GPT4 and achieves the best
performance in another two question types “3cle”
and “missing premise”. Gemini achieves the aver-
age performance among the five LLMs. ChatGPT
is worse than the Gemini model and exhibits the
poorest performance in the “3cle” question type.
Llama2 performs the worst overall and also in the
‘3elc” question type. When it comes to “missing
premise” questions, Llama2 performs the worst un-
der the zero-shot setting while Gemini performs
the worst under the few-shot setting.

Besides the ranking, different models also bene-
fit to varying degrees when provided with few-shot
samples.

5.4 Analysis

Surprisingly, GPT4, which achieves the highest per-
formance, is the only model that does not benefit
from in-context samples across all metrics. To un-
derstand the factor causing this, we also experiment
with the symbolic version of ILogicEval, named as
“s-ILogicEval”. The result in table 4 shows GPT4
can indeed benefit from the in-context learning in
the symbolic logical expression format, indicating
the potentially severe negative effect posed by the
unintuitive connection of sentences on GPT4, but
not on other models. Notably, the performance
on s-ILogicEval is significantly better than that on
ILogicEval, as shown in the table.

6 Conclusion

In this paper, we introduce ILogicEval, a novel
dataset derived from ReClor, SNLI and MNLI,
specifically designed to evaluate current LLMs in
the domain of logical reasoning. The main objec-
tive of this dataset is to address various challenges
associated with isolating specific reasoning abilities

ILogicEval s-ILogicEval
Accuracy 322 39.1
0-shot | Circular 12.3 16.3
PC 22.1 27.0
Accuracy 27.2 38.1
3-shot | Circular 7.2 18.7
PC 17.0 28.1

Table 4: Performance of GPT-4-turbo on ILogicEval in
symbolic form and in natural language form

during evaluation, incorporating language diver-
sity, and preventing data contamination. Through
empirical experimentation conducted on the Re-
Clor dataset, our result demonstrates the efficacy
of ILogicEval in enhancing the model’s logical rea-
soning capabilities. Furthermore, the experiments
conducted on current LLMs reveal their limitations
in effectively solving complex logical reasoning
tasks, thereby highlighting the need for further im-
provements in this area.

To investigate the logical reasoning abilities of
different popular LLMs, a comparative analysis
is performed. The results indicate that GPT4 ex-
hibits the highest performance, but struggling to
learn from in-context examples. To eliminate the
inaccuracy in evaluation caused by the bias and
randomness of LLMs, this paper proposes a new
evaluation metric based on entropy for better as-
sessing their reasoning ability.
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A Overview of ILogicEval and other
logical reasoning datasets

Datasets overview is shown in Table 5.

B Algorithm of constructing symbolic
logical propositions

Algorithm 1 Pseudo code of formatting the content
of MCQA with symbolic logical propositions
Input: A candidate list = of 8 variables; a can-
didates picking counter o initialized as all 0; A
predefined value n decides the maximum number
of propositions being created for one instance.

1: Randomly pick a value [ between 2 and n+1.
2: fori =0do

3:  if i = [ then

4: Break.

5:  endif

6: ifo, = n — 1 then

7: Set p(0;) = 0.1

8: elseif o; > n then

9: Set p(0;) =0

10: else

11: Calculate p(o;) with Eq.(2)

12:  endif

13:  i=1+1

14:  Sample 3 variables from z according to o.

15:  Sample a rule from Eq.(1c) and fit the 3
variables inside.

16:  Add 1 to the o; if the variable j is fit into
the rule.

17: end for

Output: A set of propositions ¢

C Examples of different question type of
ILogicEval

Examples corresponding to each question type are
illustrated in Table 1.
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ILogicEval | ReClor LogiQA ‘ RuleTaker LogicNLI =~ FOLIO  RobustLR

Source synthetic, exam exam synthetic  synthetic synthetic, synthetic
human human

# of options 4 4 4 2 4 3 3
Size 12589 6138 8678 500k 20k 1435 360k
Training set size 10789 4638 6942 350k 16k 1004 200k
Validation set size 900 500 868 50k 2000 204 40k
Testing set size 900 1000 868 100k 2000 227 120k
Vocabulary size 27466 26576 56407 101 1077 4351 46

Table 5: Overview of [LogicEval and other logical reasoning datasets
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3elc

Content:

A woman outside covers her face with fabric. The woman is protecting her face, thus a woman in a

striped hoodie holds a camera on a beach. Once a cheerleader in a blue shirt performing, female

cheerleader is doing a handstand on a court. A woman outside covers her face with fabric as long

as a young person moves around or a boy is wearing a green power ranger costume is on a ride at

an arcade. Someone is not performing. H,(H — A),(C — B),((CV F) — H),—-B

Question: Which conclusion does not follow from the provided information?

Options:

A. In the presence that a cheerleader in a blue shirt don’t performing, a boy wearing a green power
ranger costume is not on a ride at an arcade. (—=C' — —F)

B. The woman is protecting her face, once someone is performing. (B — H)

C. A cheerleader in a blue shirt don’t performing.—~C

D. A young person moves around, hence a woman in a striped hoodie does not hold a camera on

abeach. (C' — —A)
Answer: A

3cle

Content:

As long as two young men are in a boat heading away from a larger boat with a single man on it,

two little boys are running from a lake with ducks. A team of dogs pulls a sled through the snow.

There are men in the water on boats. In the event that not both a team of fierce canines vigorously

haul a sled through snowy conditions and a team of dogs pulls a sled through the snow, humans

are running. (D — B),F,D,(-(C AN F) — B)

Question: Based on the information given, which is the most inaccurate conclusion?

Options:

A. A team of fierce canines vigorously doesn’t haul a sled through snowy conditions when humans
are running. (B — —C)

B. Only if a team of dogs doesn’t pull a sled through the snow, humans are running. (B — —F)

C. Only if there are men in the water on boats, a team of dogs doesn’t drag a sled through the
snow. (-C — D)

D. Some playful dogs don’t chase each other in the snow, only if there are men in the water on

boats. (contradict)
Answer: C

Missing Premise

Content:

A man in a green shirt is hailing a cab. If a man in a green shirt doesn’t hail a cab or kids don’t play

soccer outside, a group of guys is playing soccer in a park with onlookers in pavilions behind them.

If it is not the case that both a dog catches a disk in the air and a group of guys are playing soccer

in a park with onlookers in pavilions behind them, kids play soccer outside. Therefore, man is

getting a cab, hence an animal is jumping. E, (=(EA F) — C),(~(DAC) — F)| = (E — D)

Question: What is the absent assumption that links the premises to the conclusion?

Options:

A. Only if a group of guys don’t play soccer in a park with onlookers in pavilions behind them,
children are engaging in outdoor sports. (F' — —C')

B. A dog catches a disk in the air. D

C. Children are engaging in outdoor sports, if men are playing soccer in a park. (C' — F)

D. Children are engaging in outdoor sports. F’
Answer: B

Figure 1: Illustration with respect to the three question types of ILogicEval
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