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ABSTRACT

Adjuvants play a critical role in modulating immune responses and are central
to the development of vaccines and immunotherapies. Yet progress in this field
is constrained by data scarcity and incomplete understanding of mechanisms of
action, which limit the transition from experience-based design to Al-driven ap-
proaches. To address these challenges, we present the first benchmark dedicated to
adjuvants, constructed in an open-ended Q&A format and annotated by domain
experts. The benchmark comprises 1,294 Q&A pairs and 1,364 formal descriptions,
providing a resource for evaluating general-purpose multimodal large language
models (MLLMs) and for developing domain-specific systems. We systematically
assess 11 closed-source and 18 open-source MLLMs across dimensions including
domain-specific Q&A, hallucination rejection, data generation, and instruction
following. Results indicate that OpenAl-ol (STS = 0.7495, LLM Score = 7.7)
and DeepSeek-R1 (STS = 0.7415, LLM Score = 7.7) achieved the strongest per-
formance among closed- and open-source models, respectively. In addition, we
introduce a formal description framework for representing adjuvant design prin-
ciples and immune mechanisms as structured abstractions, which can serve as
building blocks for future domain-specialized MLLMs. Overall, this work provides
a first step toward systematically integrating MLLMs into adjuvant research by
offering a dedicated benchmark, comparative evaluation of existing models, and
a formal foundation for future development. Data and code will be released at
Anonymous.

1 INTRODUCTION

Artificial intelligence (AI) has become an important driver of scientific discovery, offering new
perspectives and tools to address increasingly complex challenges [Hessler & Baringhaus| (2018));
Jumper et al.[(2021); |Xu et al.| (2021); [Esteva et al.| (2019; 2021)); Rajpurkar et al.| (2022). Early
applications in science often relied on task-specific datasets and bespoke neural architectures [Krenn
et al.|(2020); ' Wu et al.| (2018)); [ Xie & Grossman| (2018]);|de Teresa-Trueba et al.|(2023)), but recent
advances in multimodal large language models (MLLMs) have shifted attention toward more general
frameworks capable of integrating heterogeneous information sources |Liu et al.| (2023); L1 et al.
(2024); |OpenAl| (2023)); Team et al.| (2023)). These models demonstrate broad capabilities in domains
ranging from language and vision to biomedicine, enabling new paradigms for reasoning and analysis
He et al.|(2024); Xie et al.| (2023); |Outeiral & Deane|(2024). Representative work includes LLaVA-
Med, a vision-language assistant for biomedical images Li et al.[(2023), and BiomedGPT, a generalist
biomedical foundation model [Zhang et al.| (2024b).

Table 1: Cross-domain availability of datasets, methods, and mechanistic principles.

Drug Discovery  Protein Structure ~ Genomics/Omics Catalyst Design ~ Battery Materials ~Adjuvants

Datasets v v v v 4 X
Methods v v v v v X
Principles v v v v v X

Adjuvants are indispensable components of modern vaccines, as they enhance immune responses,
prolong protection, and in some cases determine whether a vaccine is clinically viable |Glenny et al.
(1926)); Iwasaki & Omer| (2020); Reed et al.| (2013). They are particularly critical for emerging
infectious diseases and cancer immunotherapy, where rapid and robust immune activation is essential.
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Despite their importance, the field remains underserved by AL As shown in Table [} unlike drug
discovery or protein structure prediction—where large-scale datasets and standardized benchmarks
already exist—adjuvant research faces three persistent barriers: (i) limited systematically curated data,
(ii) a lack of AI methodologies tailored to adjuvant knowledge, and (iii) heterogeneous definitions
and mechanisms that complicate systematic modeling |Guy|(2007). As a result, existing biomedical
benchmarks cannot be directly applied, and building domain-specific infrastructure is necessary for
progress.

Question: How does the clonal expression of antigen receptors
contribute to the immune system's diversity?

Reasoning Process: The clonal expression of antigen receptors ensures
that each lymphocyte possesses a unique receptor specific to a
particular antigen. This diversity is essential for the immune system
to recognize and respond to a wide variety of pathogens.

Answer: Clonal expression allows for a vast array of unique antigen
receptors, enabling the immune system to recognize and respond to
diverse pathogens.

(a) A Case from Open-ended Q&A

Question: How do mosaic RBD nanoparticles promote the recruitment and
activation of antigen-presenting cells?

Reasoning Process: The multivalent nature of mosaic nanoparticles
potentially increases the density of antigens, which can facilitate
greater uptake by antigen-presenting cells (APCs) and enhance the
activation of these cells due to the increased antigenic stimulus.

Answer: Mosaic RBD nanoparticles, through their multivalent display,
likely promote enhanced recruitment and activation of APCs by
increasing antigen density, leading to greater immune activation.

Reason for Error: After the antigen is assembled into nanoparticles,
the nano size formed is conducive to the uptake of DC cells.

Adjuvant Formal Language:

Ag_1 = HBsAg of Hepatitis B
Adj_1 = PEG-PAEEP

Struc_1 = Virus-like particle
Struc_2 = Copolymer

Struc_3 = Inorganic salt

Ag_2 = Form(Struc_1, Ag_1)
Adj_1 = Form(Struc_2, PEG-PAEEP)
Adj_2 = Form(Struc_3, aluminum)
Vacl = Mix(Ag_2, Adj_1) = EG
Vac2 = Mix(Ag_2, Adj_2) = CG

Natural language Text: The study presents a novel Hepatitis B vaccine
utilizing a polyphosphoester-based cationic polymer, PEG-PAEEP, as an
adjuvant. The antigen used is Hepatitis B surface antigen (HBsAg) in the form
of virus-like particles (VLPs). Various formulations are prepared with
different concentrations of both the antigen and the polymer adjuvant. The
experimental group consists of the HBsAg-VLP combined with PEG-PAEEP at a
higher concentration, while control groups include formulations with aluminum
adjuvant and without any adjuvant. The adjuvant PEG-PAEEP is a biodegradable
cationic polymer, while the aluminum adjuvant is used as a positive control.

(b) A Case from Hallucination Data (c) A Case from Adjuvant Formal Data

Figure 1: Three Types of Data Display in Adjuvant Benchmark

To address this gap, we present the first benchmark for adjuvants. We adopt an open-ended Q &A
format to capture mechanistic reasoning, design considerations, and safety issues that cannot be
represented through multiple-choice tasks. In parallel, we propose a formal description framework
that translates complex biological intuitions into structured abstractions to support reasoning beyond
retrieval. Concretely, we generated candidate data with four state-of-the-art MLLMSs and conducted
rigorous expert annotation across vaccine subdomains. The resulting benchmark consists of three
components (Fig. [I): Open-ended Q&A Data, Hallucination Data, and Adjuvant Formal Data.
We then evaluated 11 closed-source and 18 open-source MLLMs on these tasks, assessing domain-
specific answering, hallucination rejection, and instruction following, and complemented these with
expert-based subjective assessments of generation quality.

Our main contributions are summarized as follows:

* We establish the first high-quality benchmark dedicated to adjuvants, explicitly designed
to fill a long-standing gap in biomedical Al benchmarks and to support subsequent MLLM
research.

* We perform the first systematic evaluation of mainstream general-purpose MLLMs (11
closed-source and 18 open-source) on adjuvant knowledge, assessing critical capabilities
including data generation, domain-specific QA, hallucination rejection, and prompt follow-
ing. This provides initial conclusions on the capabilities and limitations of current models,
and concrete guidance for selecting base models in this domain.

* We introduce formal descriptions of adjuvants, converting their complex biological mech-
anisms into simplified abstractions that can be directly used in training or reasoning. This
approach lays the groundwork for future domain-specific MLLMs that combine statistical
learning with symbolic reasoning.

2 RELATED WORK

2.1 ADIJUVANTS

Adjuvants are crucial components that are used to improve the effectiveness of vaccines, primarily
by stimulating the immune system to improve recognition and response to antigens. By increasing
the potency of vaccines, they enable the immune system to respond more rapidly and effectively to
pathogens [Zhao et al.| (2023). Adjuvants can encompass a diverse range of substances, including
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synthetic small molecule compounds, complex natural extracts, and particulate materials, each
contributing uniquely to the modulation of immune responses McKee et al.|(2007).

Despite the long-standing and increasing diversity of adjuvants used in vaccines, the mechanisms by
which they enhance immune responses are not yet fully understood. With the elucidation of how the
innate immune response regulates the adaptive immune response, researchers began to gain insight
into the operational mechanisms of adjuvants|Coffman et al.|(2010). Although this work has provided
a certain degree of elucidation regarding the modes of action of adjuvants, a systematic overview
and summary of their mechanisms remain scarce due to the broad definition and complex nature of
adjuvants.

Recent studies have begun to explore the integration of adjuvants with machine learning to optimize
adjuvant selection, such as|Nagpal et al.| (2018)) used the support vector machine (SVM) to develop a
hybrid model for predicting A-cell epitopes, which enhances the identification of immune epitopes.
Ma et al.| (2023) utilized machine learning to identify molecular properties that target Toll-like
receptors (TLRs) and designed two new adjuvants to enhance vaccine responses. These effectively
promote strong immune responses, significantly suppressing tumor growth and metastases. (Chaudhury
et al.|(2018)). used random forest algorithms to develop a predictive model that achieves 92% accuracy
in predicting adjuvant conditions based on immune response data, facilitating the identification of
immune characteristics of different adjuvants and aiding in the rational pairing of vaccines and
adjuvants.

However, these methods often lack generalizability, limiting their effectiveness in complex scenarios.
In contrast, MLLMs can learn from vast and diverse modalities, identifying underlying patterns
that traditional methods may overlook. This capability enables them to generate more accurate
and efficient insights and predictions. By integrating MLLMs with adjuvant research, we aim to
accelerate adjuvant development, provide a more responsive approach to public health emergencies,
and shift the current paradigm from trial-and-error, experience-based methods to a more Al-driven
and efficient process.

2.2  SCIENCE BENCHMARK

Recently, there has been increasing attention on MLLMSs in scientific research. To evaluate and
improve the performance of MLLMs in specific research domains, it is crucial to establish rigorous
benchmarks. These not only help in assessing the accuracy and efficiency of the models but also
ensure that the evaluation of different methodologies used is consistent and fair across the same
studies.

Zhang et al.| (2024a) developed ChemBench, an innovative chemical benchmark consisting of 4,100
multiple-choice questions in nine tasks related to chemical molecules and reactions, aiming at ob-
jectively measuring the chemical proficiency of large language models (LLMs). [Chen et al.[(2023))
proposed an extensive benchmark study on biomedical text generation, which highlights the strengths
and weaknesses of ChatGPT in addressing biomedical tasks, potentially inspiring further advance-
ments in NLP models for biomedical data analysis. |[Zhang et al.| (2025)) introduced DataSciBench, a
novel and comprehensive benchmarking tool aimed at deeply evaluating the capabilities of LLMs
in data science through natural and challenging tasks. |He et al.| (2023)) proposed a system called
SciGuard to control misuse risks associated with AI models in the field of science. They also intro-
duced a red-teaming benchmark, SciMT-Safety, to assess the safety of different systems. |Gao et al.
(2025) proposed a model-level evaluation framework that emphasizes practical metrics aligned with
real-world applications to address the limitations in structure-based drug design (SBDD).

Summary. Despite the proliferation of benchmarks in domains like chemistry, biomedicine, and data
science, none of them address the unique characteristics of adjuvant research. Existing biomedical
benchmarks (e.g., PubMedQA Jin et al.|(2019), ChemBench |Walker et al.|(2010)) mainly evaluate
molecular properties, literature summarization, or general biomedical knowledge. In contrast,
adjuvants involve heterogeneous substances, multi-scale immune mechanisms, and a lack of structured
training data. This makes it impossible to directly apply existing benchmarks to this domain. Our
work therefore, fills a critical gap by introducing the first dedicated benchmark for adjuvants, explicitly
designed to capture mechanistic reasoning, safety evaluation, and design-oriented knowledge that are
absent from prior benchmarks.



Under review as a conference paper at ICLR 2026

3 ADJUVANT BENCHMARK

3.1 OVERVIEW

Although immunology and adjuvant research have seen significant progress, the systematic integration
of MLLMs into this field remains unexplored. To address this gap, we introduce the first benchmark
explicitly designed for evaluating MLLMs on adjuvant-related knowledge and reasoning. By curating
high-quality academic resources and leveraging multiple state-of-the-art MLLMs, we construct a
domain-specific evaluation suite that captures both mechanistic understanding and practical design
considerations. The following sections detail the benchmark construction pipeline, expert annotation
process, and subsequent analyses of the resulting data.

3.2 PIPELINE OF BENCHMARK CONSTRUCTION

The overall construction pipeline is illustrated in Fig. 2] We first collected 739 peer-reviewed papers
together with two classic textbooks, from which MLLMs automatically generated approximately 35k
open-ended Q&A pairs on adjuvants and immunology, each accompanied by an explicit reasoning
step (The generation prompts are described in Appendix|[G.I)). To ensure quality and domain relevance,
1.5k samples were randomly selected for expert review. After cleaning and careful labeling, 1,294
high-quality Q&A pairs were retained as the meta dataset.
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Figure 2: The Benchmark Construction Pipeline.
The annotation team consisted of 13 experts spanning infectious disease, cancer, and bacterial
vaccines. All were trained under unified guidelines and evaluated each Q& A-reasoning triplet strictly
against the source material. Items were labeled as either valid or hallucinated, with justifications
provided for the latter. Detailed preprocessing and annotation workflows are described in Appendix [B]

To reduce model-specific bias—particularly since the same system might otherwise generate and
answer its own questions—we employed several MLLMs with long-context and multimodal support,
including GPT-40 |OpenAll Claude3.5-Sonnet Claude, Ernie4.0-Turbo Baidu, and DeepSeek-R1|Guo
et al.[(2025)).

Following expert annotation, the meta dataset was organized into three complementary components:
Open-ended Q&A Data, Hallucination Data, and Adjuvant Formal Data. Each component is
described in detail in the subsequent sections.

3.3 STATISTICS OF BENCHMARK
3.3.1 OVERALL ANALYSIS

The overall distribution of the benchmark is shown in Fig.[3] Specifically, Fig. 3a]illustrates the
proportions of different data types, while Fig. [3b] summarizes the contributions of various models
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to Q&A generation. The benchmark is primarily composed of open-ended Q&A items and formal
adjuvant data, with GPT-40 and DeepSeek-R1 contributing the majority of the high-quality entries.
This reflects their comparatively stronger performance in preliminary generation and evaluation.
Further details and representative examples are provided in Appendix [A]and Appendlx Gl

100%

1600 OpAen-ended Q&A 00% o Design & Safety
1400 1294 1364 Adjuvants Formal = Biology Principles
Hallucination 80%
1200 70% = Basic Knowledge
1000 60%
800 50%
40%
600
30%
400 20%
200 69 10%
o 0%
Open-ended Q&A Adjuvants Formal Hallucination GPT-40 Claude3.5-Sonnet  Ernie4.0-Turbo DeepSeek-R1
(a) Distribution of the Data Types (b) Distribution of MLLM:s for Generating Q&A Data

Figure 3: Distribution of the Adjuvant Benchmark

3.3.2 OPEN-ENDED Q&A DATA

The open-ended Q&A component is intended to evaluate the extent to which MLLMs capture
adjuvant-related knowledge. It draws on both basic and advanced material curated from textbooks
and peer-reviewed publications. The advanced category covers two major themes: biological
principles (e.g., immunological mechanisms of adjuvant action) and design & safety (e.g., strategies
for developing or modifying adjuvants and approaches for evaluating safety). Table 2] summarizes the
distribution of these data, with the advanced subtypes highlighted.

Table 2: Distribution of Open-ended Q&A Table 3: Hallucination Data

Data Basic Advanced Biology Design :

Type Knowledge Knowledge Principles & Safety Data Type Question Answer Overlap Total
Count 221 1073 846 227 Hallucination 27 54 12 69

In addition, the benchmark includes multimodal content: 1,135 entries are text-only (87.7%), while
159 involve image-associated inputs (12.3%). This enables evaluation of both purely textual reasoning
and multimodal understanding. Illustrative examples are provided in Appendix[C]

3.3.3 HALLUCINATION DATA

In this study, the hallucination data follow the same structural format as the open-ended Q&A but
differ in that the questions or answers have been reviewed by domain experts and explicitly judged
to be incorrect. Rather than discarding these items, we retain them as a dedicated resource for
evaluating the ability of MLLM:s to recognize and reject hallucinations in the context of adjuvant and
immunology tasks. For clarity, we distinguish two categories: question hallucinations and answer
hallucinations. This dataset provides a controlled setting for analyzing the sources of hallucination
errors and offers a reference point for the development of more reliable model evaluation and training
strategies.

3.3.4 ADJUVANT FORMAL DATA

Formal descriptions are introduced to translate complex biological processes related to adjuvants into
structured variables and functional transformations, with the aim of improving both the reasoning
capacity and interpretability of MLLMs in this domain. Such formalized pathways also provide a
systematic means of representing mechanisms that may otherwise remain implicit or fragmented in
the literature.

To construct these descriptions, we worked with the same team of adjuvant experts described in
Section 3.2 to design a set of formal variables and functions, thereby establishing expert-defined
standards. These standards were organized into templates and incorporated into prompts for GPT-4o,
which subsequently generated a total of 1,364 formal entries (Fig.[Tf). The data are divided into two
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balanced categories: adjuvant design and adjuvant activation & immune processes, each comprising
682 items. Detailed definitions of the variables and functions are provided in Appendix

Although this framework has not yet been applied to downstream model training, the released vari-
ables and relationships—such as Form (Struc, Ag) and Load (A, B, Surface)-—serve as
structured building blocks for future adjuvant-specialized MLLMs. By providing a computable ab-
straction of design principles and immune response processes, the framework establishes a foundation
that can be extended in subsequent research.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

MLLMs: The set of evaluated models is listed in Table ] Models highlighted in blue were also used
in the data generation stage and were subsequently reviewed by adjuvant experts.

Table 4: Models evaluated on the adjuvant benchmark. Blue rows indicate models additionally used
during data generation.

Model #Size  Form Ver. Model #Size  Form Ver.
GPT-40 N/A api latest LLaVA1.5-13B 13B open vl.5
GPT-4.1 N/A api latest Qwen2.5-VL-7B 7B open instruct
OpenAl-ol N/A api latest Qwen2.5-VL-72B 72B open instruct
Claude3.5 N/A api sonnet  Qwen3-8B 8B open/api  think
Claude3.7 N/A api sonnet  Qwen3-32B 32B  open/api  think
Geminil.5-Pro  N/A api latest ~ Qwen3-30B-A3B 30B  open/api  think
Gemini2.0-Pro  N/A api flash Qwen3-235B-A22B  235B  open/api  think
Gemini2.5-Pro  N/A api flash Internvl2.5-8B 8B open v2.5
Ernie3.5 N/A api latest InternvI2.5-78B 78B open v2.5
Ernie4.0 N/A api turbo Internvl3.0-8B 8B open v3.0
Doubaol.5-Pro  N/A api 250115  Internvl3.0-72B 72B open v3.0
DeepSeek-R1 671B  open/api reasoner InstructBlip-13B 13B open vicuna
DeepSeek-V3  671B  open/api chat Idefics-9B 9B open instruct
LLaVA1.5-7B 7B open vl.5 Darwin 7B open vl.5

Inference: Closed-source models were accessed through their official APIs. For open-source models,
inference was performed with the official implementations on 8§ x NVIDIA A800 GPUs, following
recommended hyperparameter settings. To ensure comparability across models, all were evaluated
under identical prompts in a zero-shot setting (see Appendix [G.2] for prompt details). To ensure
fairness, regardless of whether the model supports multimodal input, we utilized a unified OCR engine
to process the images and concatenated the OCR output with the original input text. Furthermore, we
assessed the performance of the top 5 multimodal models on the image-related subset, with detailed
experimental results provided in Appendix [

Evaluation metrics: To assess knowledge comprehension in the adjuvant domain, we employed a
combination of automatic metrics and model-based scoring. Standard measures included Seman-
tic Textual Similarity (STS) and BERTScore. In addition, we introduced an LL.M-based rubric,
implemented with GPT-40 and DeepSeek-R1, which scored answers along three axes: Similarity
Score (SS), Scientific Rationality Score (RS), and Inclusiveness Score (IS), each on a 0-10 scale.
This approach provides a scalable and reproducible way to evaluate factual accuracy and conceptual
soundness, while reducing dependence on manual annotation. To further probe robustness, we report
a Hallucination Rejection Ratio (HRR), which quantifies the ability of models to detect and avoid
incorrect content. Detailed metric formulations are given in Appendix [E]

4.2 EVALUATION OF GENERATION

During the annotation process, experts assigned subjective scores (0—10) to six dimensions: Ques-
tioning Ability, Answering Ability, Reasoning Ability, Knowledge Reserve, Chart Analysis, Context
Utilization, and Instruction Following. These scores reflect the overall quality and reliability of the
generated content.

The results are summarized in Fig. [fa] DeepSeek-R1 obtained comparatively higher scores in both
questioning and answering ability, indicating that it can produce relevant prompts and generate
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responses with coherent reasoning in the adjuvant domain. GPT-40 achieved the highest score in
questioning ability and also performed well in instruction following, suggesting that it is effective at
generating focused inquiries and adhering to task specifications. In addition, GPT-40 showed broad
coverage of domain knowledge, contributing to more comprehensive responses.

GPT-4.1 78
GPT-01 7.7
Questioning Ability Answering Ability Reasoning Ability Knowledge Reserve Gemini2.5-Pro 75
Chart Analysis Context Utilization Instruction Following Closed-source MLLMs
Ernie3.5 9
N DeepSeek-V3 78
GPT-o Claude-3.5-Sonnet
DeepSeek-R1 7.7
Qwen3-328 76
Qwen3-235B-A22B 76
Open-source MLLMs
Darwin 44
Ernied.0 DeepSeek-R1 BioGPT-Large-PubMedQA 1.9 Avg: 63 Avg: 73
0 1 2 3 4 5 6 7 8 9
(a) Subjective Evaluation in Generation (b) LLLM Scores

Figure 4: Comprehensive Evaluation of MLLMs on the Adjuvant Benchmark

By contrast, Ernie4.0 and Claude3.5 received consistently lower scores across several categories,
suggesting limitations in handling complex material from adjuvant-related literature.

Overall, the expert assessments highlight GPT-40 and DeepSeek-R1 as the strongest performers
within this evaluation setting, particularly in tasks requiring both domain-specific questioning and
reasoned answering. These findings provide a basis for selecting suitable base models for future work
in adjuvant-focused applications.

4.3 EVALUATION OF ADJUVANT OPEN-ENDED Q&A

We evaluated 11 closed-source and 18 open-source MLLMs on the adjuvant open-ended Q&A task.
Results are reported in Table[5] with blue highlighting used to indicate models achieving state-of-the-
art performance under the given metrics. A comparison between closed- and open-source models is
summarized below.

Closed-source vs. Open-source: On average, closed-source models achieved higher overall perfor-
mance, with a mean LLM Score of 7.3 and an STS score of 0.7263, compared to 6.2 and 0.6846 for
open-source models. Nevertheless, several open-source models exceeded the closed-source averages.
DeepSeek-R1 (LLM Score= 7.7, STS = 0.7415), DeepSeek-V3 (LLM Score = 7.8, STS = 0.7289),
Qwen3-235B (LLM Score = 7.6, STS = 0.7331), and Qwen3-32B (LLM Score = 7.6, STS = 0.7259)
performed comparably to the strongest closed-source models, particularly in scientific rationality
and inclusiveness. However, in terminology consistency, reflected by BERTScore, open-source
models averaged 0.550, which remains below the closed-source average of 0.566. This suggests that
while optimization strategies enable some open-source models to close the gap, challenges remain
in aligning with domain-specific vocabulary. Overall, the observed performance differences appear
to relate more to the extent of domain knowledge integration than to the proprietary or open-source
nature of the models.

Inference Models vs. Think Models: Think-oriented models obtained higher scores in Rationality
Score (RS), Inclusiveness Score (IS), and STS compared to inference-style models. This pattern
suggests that their explicit reasoning mechanisms—such as multi-step causal decomposition and
logical verification—contribute to producing more logically consistent and comprehensive answers.
At the same time, the reliance on explicit reasoning chains increases decoding complexity, which may
constrain efficiency in resource-limited settings. These observations indicate that combining explicit
reasoning strategies with domain knowledge and structured representations could be a promising
direction for future model development.

Closed-source Models: OpenAl-ol (LLM Score = 7.7, STS = 0.7495) was the best-performing
closed-source model in our setting. By contrast, Ernie4.0 (LLM Score = 6.9) and Doubaol.5-Pro
(LLM Score = 7.1) obtained lower scores within this cohort. While performance differences may
correlate with factors such as data coverage, training procedures, and model scale, the proprietary
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nature of these systems prevents attributing causality from our evaluation alone. Closed-source
models also pose practical constraints for scientific use, including limited transparency and higher
inference costs, which may hinder broad adoption in open research workflows. Future work could
explore more transparent and collaborative evaluation practices to facilitate integration into scientific
pipelines.

Table 5: Evaluation Result of Adjuvants Open-ended Q&A

| | | LLM Score (GPT-40) | LLM Score (DeepSeek-R1) |
Model Category ‘ STS Score ‘ BertScore ‘ sS ‘ RS ‘ ) ‘ sS ‘ RS ‘ S ‘ LLM Score Avg
Closed-source MLLMs
Inference Models
GPT-40/OpenAl 0.7261 0.5732 6.4 | 83 6.8 6.9 8.6 6.8 | 7.3
GPT-4.1|0OpenAl 0.7178 0.5420 7.0 85 2 7.6 9.0 7.6 7.8
Cladue3.5|Claude 0.7256 0.5750 6.2 8.2 6.7 6.8 8.7 6.9 7.3
Cladue3.7|Claude 0.7396 0.5650 6.5 82 6.8 7.0 8.7 7.1 74
Geminil.5-Pro|Team et al. (2024} 0.7235 0.5644 6.3 8.2 6.7 6.9 8.8 7.1 7.3
Gemini2.0-Pro|/Google’ 0.7118 0.5486 6.3 8.2 6.7 6.9 8.7 7.1 73
Gemini2.5-Pro|Google: 0.7316 0.5664 6.6 84 7.0 72 8.9 7.1 7.5
Ernie3.5Baidu 0.7199 0.5554 6.1 8.0 6.5 6.4 8.2 6.2 6.9
Ernie4.0|Baidu 0.7238 0.5587 6.0 8.0 6.4 6.4 82 6.2 6.9
Doubaol.5-Pro|Volcengine 0.7201 0.5532 6.1 8.0 6.4 6.8 8.5 6.7 7.1
Think Models
OpenAl-o1|{OpenAl | 07495 | 06195 | 6.9 85 | 7.1 | 73 | 8.9 | 72 | 7.7
Average | 07263 | 05656 | 6.4 | 8.2 | 6.8 | 6.9 | 8.7 | 6.9 | 7.3
Open-source MLLMs
Inference Models
DeepSeek-V3|Liu et al.|(2024a] 0.7289 0.5276 6.8 84 7.0 7.6 9.0 7.7 7.8
LLaVA1.5-7B|L1u et al.|(2024b} 0.7134 0.5823 5.2 7.0 52 53 6.7 4.6 5.7
LLaVA1.5-13B|Liu et al. (2024b} 0.7116 0.5838 54 7.1 54 54 6.9 4.8 5.8
Qwen2.5-VL-7B|Bai et al.[(2025) 0.7151 0.5602 5.8 7.8 6.1 59 7.7 5.7 6.5
Qwen2.5-VL-72B Bai et al. (2025] 0.7217 0.5649 6.2 8.2 6.7 6.6 8.4 6.5 7.1
InternvI2.5-8B|Chen et al. [(2024] 0.7217 0.5649 52 7.0 55 54 6.8 5.0 5.8
Internv2.5-78B|Chen et al.[(2024} 0.6966 0.5606 6.0 7.8 6.3 6.2 7.9 6.0 6.7
Internv13.0-8B|Zhu et al.[(2025] 0.6987 0.5526 5.6 7.6 6.0 6.0 7.6 59 6.5
Internvl3.0-78B|Zhu et al.[(2025) 0.7173 0.5608 6.2 8.1 6.6 6.6 83 6.5 7.1
InstructBlip-13B]Dai et al. (2023} 0.5960 0.5551 4.9 6.2 4.5 5.0 6.3 4.3 5.2
Idefics-9B|Laurencon et al. (2023} 0.5662 0.4718 4.5 6.2 4.3 4.8 6.1 42 5.0
Think Models
DeepSeek-R1|Guo et al.|(2025] 0.7415 0.5485 6.6 8.4 7.1 7.5 9.0 7.7 7.7
Qwen3-8B|Bau et al. (2025} 0.7275 0.5387 6.5 8.1 6.7 7.1 8.6 72 74
Qwen3-32B|Bai et al. [(2025) 0.7259 0.5371 6.6 8.1 6.9 73 8.8 7.6 7.6
Qwen3-30B-A3B|Bai et al.[(2025) 0.7262 0.5411 6.5 83 6.9 7.2 8.8 7.3 7.5
Qwen3-235B-A22B|Bai et al.|(2025) 0.7331 0.5497 6.5 84 7.0 73 8.9 7.6 7.6
Domain-Specific Models
Darwin|Xie et al.|(2025b) 0.6376 0.6245 4.4 55 3.8 4.1 54 3.1 4.4
BioGPT-Large-PubMedQA |Luo et al.|(2022} ‘ 0.5468 ‘ 0.4906 1.7 23 ‘ 13 ‘ 1.9 ‘ 25 ‘ ‘ 1.9
Average | 0.6904 | 05509 | 5.6 | 7.3 | 57 | 5.9 | 7.4 | 5.7 | 6.3

Open-source Models: Among the open-source systems, DeepSeek-V3 achieved the highest overall
performance. DeepSeek-R1 (LLM Score = 7.7), Qwen3-32B (LLM Score = 7.6), and Qwen3-235B
(LLM Score = 7.6) all surpassed the closed-source average (7.3). These models employed explicit
reasoning strategies, such as causal decomposition and multi-step verification, which contributed to
higher scientific rationality scores and in some cases exceeded those of closed-source models (e.g.,
Claude3.5). This suggests that open-source models can exhibit strong logical reasoning capabilities,
although they often rely on decomposition and iterative reasoning to mitigate limitations in domain-
specific knowledge.

DeepSeek-R1 and Qwen3-235B also incorporate Mixture of Experts (MoE) architectures, where
dynamic expert routing enables finer-grained knowledge integration. While MoE contributes to
improvements in reasoning and task decomposition, terminology consistency remains a challenge:
BERTScore for these models is still lower than that of closed-source models such as GPT-40. This
indicates that MoE and reinforcement learning approaches alone are insufficient, and domain-adaptive
pretraining remains necessary for accurate use of specialized terminology.

An additional observation is the non-linear relationship between parameter scale and performance:
Qwen3-235B and Qwen3-32B achieved similar LLM Score despite their large difference in size. This
pattern highlights diminishing returns from scaling alone and underscores the importance of targeted
knowledge injection for domain adaptation. By contrast, models such as InstructBlip-13B and
Idefics-9B underperformed across most metrics, reflecting architectural and training-data limitations
in earlier generations of multimodal LLMs.

Domain-Specific Models: The comparatively lower performance of domain-specific biomedical
and materials models indicates limitations in directly transferring such architectures to adjuvant
tasks. Their training objectives, often centered on literature summarization or general biomedical
QA, are not well aligned with the requirements of adjuvant-focused Q&A, leading to weaker answer
quality (see Appendix for detailed examples). These results reinforce the view that progress
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in adjuvant research requires purpose-built datasets rather than relying solely on fine-tuning with
broader biomedical or materials corpora. Notably, the Darwin model obtained the highest BERTScore
among all models, which may be linked to its use of open-ended Q&A data during initial training,
partially aligning it with the evaluation setting.

Overall, models from the GPT, DeepSeek, and Qwen3.0 families demonstrated relatively strong
performance across multiple metrics, suggesting that these families already possess the capacity
to contribute as auxiliary tools for basic research and as potential foundations for future adjuvant-
specialized systems.

4.4 EVALUATION OF HALLUCINATION REJECTION

We evaluated the top five models (both closed-source and open-source) based on their LLM Scores
for their ability to reject hallucinations. Results are reported in Table[6]

Table 6: Evaluation of Hallucination Rejection Capabilities (Mean = SD over 10 shuffled evaluation)

Model Category Question HRR (%) Answer HRR (%) Overall HRR (%)

GPT-4o 30.74% (£4.95%) 23.33% (£2.92%) 26.23% (+ 2.85%)
GPTA4.1 22.22% (£2.47%)  1426% (£ 1.25%)  17.10% (+ 1.14%)
OpenAl-ol 24.07% (£ 470%)  18.15% (£ 2.10%)  20.58% (% 2.72%)
Gemini 2.5 Pro 18.15% (£ 3.68%)  9.07% (+ 1.84%)  12.32% (£ 1.41%)
Claude3.7 13.33% (£ 2.59%)  22.96% (+ 1.79%)  21.59% (+ 1.59%)

DeepSeek-V3
DeepSeek-R1
Qwen3-8B
Qwen3-32B
Qwen3-30B-A3B

0.00% (+ 0.00%)
22.59% (+ 4.08%)
12.96% (% 4.70%)
14.81% (% 3.49%)
21.11% (+ 5.25%)

2.69% (+ 0.92%)
12.04% (£ 3.18%)
10.37% ( 1.79%)

8.52% (+3.17%)

17.22% (£ 1.96%)

2.10% (+ 0.72%)
16.23% (+ 3.19%)
11.74% (< 1.74%)

8.52% (+3.17%)

18.99% (+ 2.41%)

Qwen3-235B-A22B  23.33% (* 6.06%) 16.15% (+3.53%) 18.73% (+ 3.13%)

Both closed- and open-source models exhibited limited capability in hallucination rejection. The
median HRR for closed-source models was 20.58%, compared to 13.99% for open-source models,
which falls below the level generally required for reliable application in practice. For example,
DeepSeek-V3 performed strongly on the adjuvant Q&A task (LLM Score = 7.8) but obtained the
lowest HRR (2.10%), highlighting the inconsistency between knowledge answering and hallucination
rejection.

These findings suggest that current models often rely on surface-level language correlations rather
than deeper domain reasoning, which constrains their ability to identify and reject incorrect content.
Improving hallucination control in this setting will likely require domain-adaptive fine-tuning com-
bined with structured knowledge representations, in order to enhance logical coherence and scientific
reliability. Additional analyses are provided in Appendix [

5 CONCLUSIONS AND LIMITATIONS

This work presents the first benchmark dedicated to adjuvants, combining 1,294 expert-annotated
Q&A pairs and 1,364 formal descriptions. Using this resource, we systematically evaluated 11 closed-
source and 18 open-source MLLMs across open-ended Q&A, hallucination rejection, and instruction
following. Our results highlight comparatively strong performance from the GPT, DeepSeek-R1, and
Qwen3.0 families, and we propose a formal framework that abstracts adjuvant design principles and
immune mechanisms into structured representations to support future domain-specific models.

While our study provides an initial foundation, further progress will require stratified benchmarks
to capture varying task difficulty, domain-adaptive training for expert knowledge integration, and
hybrid neuro-symbolic architectures that leverage the proposed formal framework. Beyond technical
evaluation, the benchmark and formal abstractions may lower the entry barrier for applying MLLMs
in immunology and help systematize reasoning in vaccine adjuvant research. These resources are
intended solely for research purposes and should not be used directly in clinical contexts without
expert validation.
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APPENDIX OVERVIEW

This appendix provides supplementary material to support reproducibility and clarity. It is organized
as follows:

* [Appendix A: Dataset Construction|

— Additional statistics, distributions, and category breakdown.

* [Appendix B: Data Preprocessing and Expert Annotation|

- [B.1] Details of the preprocessing pipeline.

- Details of expert annotation workflow, quality control procedures, and inter-
annotator agreement notes.

* |Appendix C: Representative Q&A Examples|

— Selected samples from the benchmark illustrating different knowledge categories.

* |Appendix D: Formal Framework|
- Definitions of formal variables.
- Definitions of formal functions.
— [D3] Definitions of functional transfer relationship.

¢ |Appendix E: Evaluation Metrics|
- [E-J]Mathematical formulations of Semantic Textual Similarity (STS).
— [E22]Mathematical formulations of BERTScore.

- [E3]|Definition of LLM Score and consistency verification between the human expert
score.

- [E-4|Mathematical formulations of Hallucination Rejection Ratio (HRR).
* [Appendix F: Experimental Analyses|

- [ET]Extended results on prompt-following.

— [F2 The State-of-the-art model category comparisons.

— [E3|Evaluation in visual-related subsets.

— [F4|Error visualization analysis of domain-specific models.

* [Appendix G: Prompts|

- [G1]Data generation prompt templates.
- [G:2Evaluation prompt templates.

* |Appendix H: Word Cloud Visualization|

— Supplementary visualizations of key concepts and terminology distribution.

* [Appendix I: Usage of Large Language Models.|

— The usage of Large Language Models in this paper.

A DETAILED DATA FOR CHART
A.1 DISTRIBUTION OF THE ADJUVANT BENCHMARK

Table 7: Distribution of the Data Types

Category Open-ended Q&A Hallucination Adjuvants Formal
Count 1294 69 1364

A.2 DISTRIBUTION OF MLLMS FOR GENERATING Q&A DATA

A.3 SUBJECTIVE EVALUATION OF MLLMS IN GENERATION
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Table 8: Distribution of MLLMs for Generating Q&A Data

Model DeepSeek-R1 GPT-40 Claude3.5-Sonnet Ernie4.0-Turbo
Count 559 471 143 121

Table 9: Subjective Evaluation of MLLMs in Generation

Ability GPT-40 Cladue3.5 Erine4.0 DeepSeek-R1
Questioning 8.0 6.4 6.9 7.9
Answering 7.0 6.5 7.4 8.1
Reasoning 1.7 7.1 7.7 8.0
Knowledge Reserve 7.0 6.9 7.1 7.5
Chart Analysis 6.2 5.3 5.0 7.7
Context Utilization 7.2 7.1 6.1 7.8
Instruction Following 8.0 6.5 6.0 7.5

Questioning Ability Answering Ability ing Ability Ki ledge Reserve Chart Analysis Context Utilization Instruction Following
GPT-40 wm(Cladue3.5 mErine4.0 mDeepSeek-R1

© =24 N W A~ O o N o ©

Figure 5: Visualization of Subjective Evaluation in MLLMs Generation
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B DATA PREPROCESSING AND EXPERT ANNOTATION DETAILS

B.1 DATA PREPROCESSING

The raw corpus consisted of 739 peer-reviewed research articles and two classic textbooks in im-
munology and vaccine adjuvants. We employed a document parsing pipeline based on PyMuPDF
+ pytesseract to extract structured text while preserving paragraph hierarchy and separating
embedded figures. Both extracted text and figures were then provided as context to multimodal
models (e.g., GPT-40). For unimodal models such as DeepSeek-R1, figures were processed with
an OCR engine to obtain textual content, ensuring consistency across evaluations (Fig. [6). All
outputs were subsequently reviewed, and only accurate and relevant Q&A pairs were retained in the
benchmark.

. Images ! @' @
' . & L pyresseract | B4
u:'ﬁhd p = G &

Papers & Books PyMuPDF Structured Text MLLMs & LLMs

Text

Figure 6: Data preprocessing pipeline.
From the processed corpus, 1,500 candidate Q&A items were randomly sampled for expert review.

B.2 EXPERT ANNOTATION
B.2.1 EXPERT TEAM

Annotation was carried out by 13 specialists spanning complementary areas of vaccine research:

¢ Infectious disease vaccines: 1 senior researcher, 2 PhD students, 3 MSc students.
¢ Cancer vaccines: 1 researcher, 2 PhD students, 2 MSc students.
* Bacterial vaccines: 2 MSc students.

All annotators had domain training in immunology or vaccine-related research.

B.2.2 EXPERT ANNOTATION WORKFLOW

Annotation followed standardized guidelines co-developed by Al and immunology experts. The
workflow was:

1. Define goals: establish the first domain-specific benchmark for adjuvant research.

2. Curate source material: collect high-quality PDFs of papers and textbooks.

3. Determine data requirements: textbooks for foundational knowledge; research articles for
advanced content (mechanisms, design principles, safety).

4. Pilot phase: generate trial items with MLLMs; refine through expert feedback.
5. Batch generation: perform large-scale API-based generation once validated.

6. Annotation protocol: assess each item for (i) correctness of the question, (ii) correctness
of the answer, (iii) validity of reasoning, (iv) overall quality. — Incorrect questions =
question hallucinations; incorrect answers = answer hallucinations.

7. Standardization: annotators trained to rely exclusively on the source text, avoiding subjective
inference.

8. Validation: first-round expert review followed by quality control from Al researchers before
later batches.
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B.2.3 CONSISTENCY ASSURANCE

To guarantee reliability and minimize subjectivity, we adopted the following measures:

* Reference standard: The original source text was defined as the sole criterion for correct-
ness, preventing reliance on prior knowledge or subjective inference.

* Unified training: All annotators underwent standardized training and participated in a trial
phase before formal labeling.

* Joint calibration: Approximately 30% of the samples were jointly annotated to align
interpretations across experts.

* Independent labeling with discussion: The remaining 70% of samples were labeled
independently, with ongoing discussions to resolve uncertainties.

This multi-step protocol ensured consistent, transparent, and reproducible labeling across the bench-
mark.
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C CASES FROM ADJUVANT BENCHMARK

Question: What mechanisms contribute to the diversity of the antigen receptor repertoire in
lymphocytes?

Reasoning Process: The diversity of antigen receptors is generated through somatic
recombination, which includes rearrangements of gene segments and the addition of
nucleotides.

Answer: Somatic recombination, combinatorial diversity, junctional diversity, and somatic
hypermutation contribute to the diversity of antigen receptors.

Figure 7: A Case from Basic Knowledge Open-ended Q&A

Question: How does the incorporation of MPLA and aGC into the lipid bilayer affect the
kinetics and efficacy of the immune response?

Reasoning Process: MPLA and aGC are lipophilic adjuvants incorporated into the lipid bilayer
of the particles. MPLA serves as a TLR4 agonist, promoting sustained immune responses
through activation of dendritic cells and B cells. oGC, a glycolipid, stimulates invariant
natural killer T cells through CD1d presentation, leading to rapid antibody production.
These adjuvants enhance both the magnitude and duration of the antibody response by engaging
different immune pathways.

Answer: MPLA enhances sustained immune responses by activating TLR4 pathways, while aGC
promotes rapid antibody production through invariant NKT cell activation. Their
incorporation into the lipid bilayer results in a more effective and durable immune response
by engaging complementary immune pathways.

Figure 8: A Case from Advanced Knowledge (Biological Principles) Open-ended Q&A

Question: What structural features of the VLPs are revealed by electron microscopy, and why
are these important in Fig?

R

—~. —
v o |

Reasoning Process: Electron microscopy images show the size and surface features of VLPs,
such as spikes that mimic natural influenza virions, indicating proper assembly and
potential for effective antigen presentation.

Answer: Electron microscopy reveals VLPs with a diameter of 80-120 nm and surface spikes,
indicative of proper assembly and potential to mimic natural virions for effective antigen
presentation.

Figure 9: A Case from Advanced Knowledge Vision-related Open-ended Q&A
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Question: What does Fig reveal about the cellular immune response to MP-adjuvanted vaccines?

Coating with cationic polymers
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PLA

0 200 400 600 800 ) 20 40 60
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Reasoning Process: Understanding cellular immune response data is crucial for evaluating
vaccine efficacy.

Answer: Fig reveals the levels of IFN-y produced, indicating the cellular immune response
elicited by MP-adjuvanted vaccines with different surface charges, suggesting that more
positively charged particles may induce a stronger cellular response.

Figure 10: A Case from Advanced Knowledge Vision-related Open-ended Q&A

Question: How do the material properties of PBC micelles (e.g., size, charge, CMC)
contribute to their adjuvant function?

Reasoning Process: 1. PBC micelles have a 30.4 nm diameter, +5.82 mV zeta potential, and CMC
of ©.3 pg/ml. 2. Cationic charge promotes Ag binding and APC uptake. 3. Sub-CMC unimers
lack micellar structure, failing to cross-link BCRs.

Answer: PBC micelles’ nanoscale size (30.4 nm) enables efficient lymphatic drainage and APC
uptake. The cationic charge (+5.82 mV) facilitates electrostatic Ag binding and BCR
interaction. A low CMC (©.3 pg/ml) ensures micelle stability in physiological conditions,
whereas unimers (below CMC) cannot scaffold Ag. These properties collectively enable
efficient BCR cross-linking and humoral responses.

Figure 11: A Case from Advanced Knowledge (Adjuvant Design) Open-ended Q&A

Question: What are the potential safety concerns associated with PEG-PAEEP, and how are
they addressed?

Reasoning Process: Safety concerns for PEG-PAEEP include hemolysis and cytotoxicity. The
study evaluates these aspects by comparing the hemolytic activity and cytotoxicity of
PEG-PAEEP with those of aluminum adjuvants, demonstrating that PEG-PAEEP has significantly
lower hemolytic activity and comparable or lower cytotoxicity at effective concentrations.

Answer: PEG-PAEEP demonstrates lower hemolytic activity and comparable or lower
cytotoxicity than aluminum adjuvants, addressing potential safety concerns effectively.

Figure 12: A Case from Advanced Knowledge (Adjuvant Safety) Open-ended Q&A

Question: What safety and usability considerations are addressed for these cpG-loaded
particles?

Reasoning Process: The use of redox-responsive, biodegradable polypeptide carriers ensures
that the particles can be safely degraded after achieving their function. Additionally, the
controlled release of cpG minimizes systemic exposure, reducing the risk of adverse effects
associated with widespread immune activation.

Answer: Safety and usability are enhanced by using biodegradable carriers and controlled
release to minimize systemic exposure and potential side effects.

Reason for Error: The article does not mention the controlled release of cpG by the particles.
Although particulate adjuvants often have the capability for controlled release, this is

not the case in this article. This reflects that the general model has a deep understanding
of conventional common knowledge, but still falls short in in-depth exploration of the
specific article.

Figure 13: A Case from Question Hallucination Generation by GPT-40
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Question: How did the experimental design ensure that the observed immune responses were due
to the multimerization of antigens on nanoparticles?

Reasoning Process: The design involved comparing immune responses from mice immunized with
soluble antigens, homotypic nanoparticles, and mosaic nanoparticles. The inclusion of
different control groups allowed the researchers to isolate the effects of antigen
multimerization on immune response.

Answer: The experimental design included controls such as soluble antigen immunization,
which did not elicit cross-reactive responses, thereby demonstrating that multimerization on
nanoparticles was responsible for the enhanced immunogenicity observed.

Reason for Error: The immune response of soluble antigens and nanoparticle antigens needs to
be evaluated by the antibody titer (this is the most important) and cross-reaction.

Figure 14: A Case from Answer Hallucination Generation by GPT-40

Question: How does the design of CpG-loaded particles enhance T cell responses and
persistent antibodies?

Reasoning Process: The particles are designed to facilitate efficient delivery and prolonged
release of CpG to pDCs, which are crucial for initiating strong adaptive immune responses.
By activating pDCs, the particles enhance antigen presentation and costimulatory signals,
promoting robust T cell activation and aiding the development of long-lasting antibody
responses.

Answer: Design enhances T cell responses and antibodies by ensuring effective CpG delivery
and sustained pDC activation, promoting strong adaptive immunity.

Reason for Error: First, the article does not include indicators related to T cells and
antibodies, so the question itself goes beyond the scope of the article. While the
reasoning might be correct in general, there is not much content in this article to support
it, as it only covers enhanced delivery and pDC activation. The answer is even more
erroneous, as it mistranslates T cells and antibodies and reverses their order with pDC
activation, while also focusing entirely on aspects that were not mentioned in the article.

Figure 15: A Case from Q&A Hallucination Generation by GPT-40

Question: What further research would be needed to develop these RV-VLPs into a viable
rabies vaccine candidate?

Reasoning Process: While the article demonstrates promising initial results, several
additional steps would be needed to develop this into a viable vaccine candidate. These
would likely include optimizing production and purification processes, conducting more
extensive immunogenicity studies, evaluating protective efficacy against rabies virus
challenge, assessing long-term immunity, and conducting safety studies.

Answer: Further research needed would likelyinclude:1.optimizing RV-VLP production and
purification processes.

Figure 16: A Case from the Invalid Data Generation by Claude3.5: Incomplete Answer
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D ADIJUVANT FORMAL DATA

D.1 DEFINITION OF ADJUVANT FORMAL VARIABLES AND FUNCTIONS

D.1.1 FORMAL VARIABLES

Vaccines (V): The vaccine, if there are multiple new vaccines, they can be defined as V =
{Vaey,Vacs,...,Vac,}.

Experimental Group (EG): Defined as Vac, = EG.
Control Group (C'G): Defined as Vac, = CG.

Original Viral Surface Antigen (Ag): The original viral surface antigen defined as Ag. If there are
multiple antigens, they can be enumerated as Ag;, Ago, . . ..

Structural Configurations (Struc): If antigens possess specific structural configurations, such as
particles or dimers, these structures are described and defined as Struc. Multiple structures may be
defined as Strucy, Struca, .. ..

Antigens in New Vaccines (Ag): In new vaccines, the antigens employed are similarly defined as
Ag.

Adjuvant Forms (Struc): The forms of adjuvants include small molecules, particles, gels, inorganic
salts, vesicles, and others. If the literature explicitly specifies the structural forms of adjuvants (e.g.,
nanoparticles, microparticles, etc.), these adjuvants should be formally incorporated and defined as
Adjy, Adjs, and so forth.

Movement Variables Related to Vaccine Delivery: Examples include residence (Stay at), drainage
(Drain to), and targeting (Target to), as illustrated below:

Stay at the injection site / lung / gut/ ... :

Stay at Injectiong,, /Lung/Gut/ . ..

Drain to lymph nodes / spleen / bone marrow /... :

Drain to Lymph, ,./Spleen/Bonemarrow/ - - -

Targeted delivery to lymph nodes / spleen / bone marrow / dendritic cells / T cells :
Target to Lymph, 4. /Spleen/Bonemarrow /DCs/ Teenss/ - - -

Definitions of Innate Immune Cells:

Conventional Dendritic Cells 1 (cDC1): Cell; = cDCl in injection site
Monocyte-derived Macrophages (MoM): Cell, = MoM in peripheral blood
Tissue-resident Macrophages (TRM): Cell3 = TRM in spleen

Neutrophils: Celly = Neutrophils in lymph nodes

Plasmacytoid Dendritic Cells (pDC): Cells = pDC in peripheral blood
Maturation-induced Macrophages: Cellg = Mature Macrophages in tissues
Actions of Innate Immune Cells:

Recruitment and Activation of DC: Recruit / Activate of DC

Uptake of Antigen / Adjuvant / Other by DC: Antigen / Adjuvant / ... Uptake of DC
Secretion of Cytokine / Chemokine / Other by DC: Cytokine / Chemokine / ... Secret of DC
Antigen Presentation by DC: Antigen presentation of DC

Migration of DC: Migrate of DC

Phagocytosis by DC: Phagocytosis of DC
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Costimulation of T cells by DC: Costimulation of T cells by DC
Cytotoxic activity of DC: Cytotoxic activity of DC

Definitions of Various T Cells:

Follicular Helper T Cells (Tfh): Cell; = Tth in lymph node

CD4+ T Cells: Cell; = CD4 T cell in peripheral blood

CD8+ T Cells: Cells = CD8 T cell in spleen

Thi Cells: Celly = Th1 in lymph node

Th2 Cells: Cell; = Th2 in spleen

Memory T Cells: Cells = Memory T cell in peripheral blood

Actions of T Cells:

Proliferate: Movement = Proliferate of Cell

Activate: Movement = Activate of Cell

Differentiate: Movement = Differentiate of Cell

Secret: Movement = Secrete of Cell

Migrate: Movement = Migrate of Cell

Mutate: Movement = Mutate of Cell

Definitions of B Cells:

Germinal Center B Cells (GCB): Cell; = GCB in lymph node and spleen
Plasma Blasts: Cell = Plasma Blast in peripheral blood and lymph node
Plasma Cells: Cell; = Plasma Cell in bone marrow

Memory B Cells: Celly = Memory B cell in bone marrow and lymph node
Long-Lived Plasma Cells: Cell; = Long-Lived Plasma Cell in bone marrow
Actions of B Cells:

Proliferate: Movement = Proliferate of Cell

Activate: Movement = Activate of Cell

Differentiate: Movement = Differentiate of Cell

Migrate: Movement = Migrate of Cell

Mutate: Movement = Mutate of Cell

Definition of Antibodies:

Antibodies have three defining criteria: the source of the body fluid (such as serum or bronchoalveolar
lavage fluid), the target antigen (defined according to the structure of the antigen established in the
first step), and the type (such as IgG, IgA, or simply Antibody, which must refer to the terminology
used in the literature).

Each type of antibody must be defined structurally, following the format:

Ab = “Type” to “Antigen” in “Body Fluid Type”

Example: The antibody IgG to antigen Ag in serum:

Ab = IgG to Ag in Serum

Actions of Antibodies:
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Secrete: - Movement refers to the increase in antibody titers, which can be interpreted as an increase
in antibody secretion.
Movement = Secrete of Ab

Affinity: - Movement refers to the enhanced binding of antibodies to viruses, interpreted as an increase
in affinity.
Movement = Affinity of Ab

Cross-reactivity: - Movement refers to the enhanced binding of antibodies to antigens from other
variants, interpreted as an increase in cross-reactivity.

Movement = Cross-reactivity of Ab
Neutralization: - Movement refers to the ability of antibodies to block pathogenic activity through
target engagement.

Movement = Neutralization by Ab
Definitions of Other Immune Reactions:

In the text, there may be some summary-type descriptions of immune responses, such as GC responses
and T cell responses. Sometimes, it is not appropriate to define them as the above movement variable,
instead, these immune responses can be directly defined as movement variables.

Example: The GC response in the lymph node:

Movement = GC responses in lymph node

D.1.2 FORMAL FUNCTION

Representation of Composition (Form): If an antigen Ag; forms a structure Strucs, it can be
expressed as:

Form(Strucy, Agr)
The function Form(A,B/C/D/...) represents the composition and refers to the assembly of
substances or antigens B/C/D/ ... into A (adjuvants, structures, etc.).

Loading: The function Load(A, B, Inside/Surface/. .. ) refers to loading A into the inside or on the
surface of B.
Load(A, B,Inside) or Load(A, B, Surface)

Mixing: The function Mixz(A, B) refers to simply blending A and B together.

Mix(A, B)
Chemical Coupling: The function Link(A, B) refers to chemically connecting A to B via chemical
bonds, protein linkage systems, or linkers.

Link(A, B)
Custom Combination Method: If new combination methods are specified in the literature, they
should be defined appropriately, for example, a function Combine(A, B) may represent a new

method of combination.
Combine(A, B)

D.1.3 FUNCTIONAL TRANSFER RELATIONSHIP

Comparative Relationships Between Experimental Group and Control Group:

Example 1: Experimental group EG enhances the action (Movement variable) compared to the
control group CG.
EG EnhancetoCG at .../...

Example 2: Experimental group EG reduces the action (Movement variable) compared to the control

group CG.
EG Reduceto CG at.../...

24



Under review as a conference paper at ICLR 2026

Persistent Comparison: For continuous comparative relationships, only when the original text
explicitly contains words such as prolong, extend, persistent, sustained, or durable, can the persistent
comparative relationship be established.

Example 3: Experimental group EG prolongs the action (Movement variable) compared to the
control group CG.
EG ProlongtoCG at .../...

Transfer Relationships:

Causal relationship: For causal relationships that are explicitly stated or indicated in the article, use
the symbol >> to represent them.

Comparative relationships and the conjunction: Use the symbol & to represent comparative relation-
ships and the conjunction of immune pathways.

Further extend causal relationships: After establishing a clear causal inference, it is possible to
further extend this causal chain based on existing background knowledge. However, only the actions
and indicators explicitly stated in the article may be used, and no new actions can be introduced. Only
the existing causal relationships between actions may be supplemented, represented by the symbol
__>.

D.2 THE CASES OF ADJUVANT FORMAL DATA

Adjuvant Formal Language:

Ag_1 = Trp2 peptide from melanoma

Adj_1 = PSA micelle

Struc_1 = Cationic micelle

Ag_2 = Form(Struc_1, Ag 1)

Adj_1 = Form(Struc_1, polyethylenimine (PEI-2k)/stearic acid)

Vacl = Load(Ag_2, Adj_1, Inside) = EG

Vac2 = Mix(Ag_1, Adj_1) = CG1l

Vac3 = Ag 1 = CG2

Natural language Text: The study introduces a novel vaccine formulation where PSA micelles
are utilized to deliver the Trp2 melanoma antigen peptide. These micelles demonstrate an
average size of 28.7 + 8.2 nm with a near-perfect encapsulation efficiency of the antigen.
The PSA micelles are prepared by conjugating branched PEI-2k with stearic acid, forming an
amphiphilic structure. The PSA micelles enhance antigen-specific CTL responses and show a
preferential accumulation in draining lymph nodes, thereby minimizing systemic toxicity.
This vaccine is compared against controls such as free Trp2 and a mixture of Trp2 with empty

PSA micelles to assess its efficacy in enhancing immune responses and inhibiting tumor
growth in a murine melanoma model.

Figure 17: A Case from Adjuvant Formal about Adjuvant Design
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Adjuvant Formal Language:

Adjuvant Definition: Adj = PEG-PAEEP = EG

Control Group Definition: CG = Aluminum adjuvants

Immune Component Definitions:

Movement_1 = HBsAg-specific IgG titers

Cell 1 = IgG-producing B cells in bone marrow

Movement_2 = Differentiate of Cell_1

Combining Comparison Relationships and Immune Components:

EG Enhance to CG at Movement_1

EG Enhance to CG at Movement_2

Causal Relationship Inference:

EG Enhance to CG at Movement_1 >> EG Enhance to CG at Movement_2
Comparative Relationships Extraction to Simplify Causal Chains:
EG to CG

Enhance(Movement_1) >> Enhance(Movement_ 2)

Natural language Text: The PEG-PAEEP copolymer enhances the immune responses of the HBsAg-VLP
vaccine compared to aluminum adjuvants, inducing significantly higher HBsAg-specific IgG
titers in mice after the second immunization.

Figure 18: A Case from Adjuvant Formal about Adjuvant Activation and Immune Process
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E EVALUATION METRICS

Traditional n-gram—based metrics, which rely on character or token overlap, are not well suited to
open-ended question answering. They emphasize surface similarity and often miss deeper semantic
alignment. We therefore adopt Semantic Textual Similarity (STS) and BERTScore, which operate
at the semantic level rather than raw overlap. In addition, we report an LLM-based score that
complements embedding metrics by explicitly rating answers along predefined rubrics (similarity,
rationality, inclusiveness). Together, these metrics provide complementary perspectives and allow for
more reproducible and transparent evaluation.

To assess hallucination rejection, we leverage hallucination data from the adjuvant benchmark.
Models are prompted with expert-annotated incorrect Q&A and asked to judge whether a sample
is invalid; the resulting hallucination rejection ratio (HRR) measures the proportion of correctly
rejected items.

E.1 SEMANTIC TEXTUAL SIMILARITY (STS)

STS evaluates the semantic proximity between two texts via cosine similarity of sentence embed-
dings. We compute embeddings with the SentenceTransformer Python module (model:
all-mpnet-base-v2) Reimers & Gurevych|(2019).

Given texts 77 and T with embeddings E(T}) and E(T3), the score is

_ E(Ty) E(Ty)
STS(T2) = T5(r) [TB@) :

The value ranges from —1 to 1, with larger values indicating stronger semantic alignment.

E.2 BERTSCORE

BERTScore computes token-level semantic similarity using contextual embeddings. For a generated
text G and a reference C, we form a similarity matrix

E(G;) - E(C))

Sij = ) @
T IEGHIEC))
take P(i) = max; S; ; as the best match for token G;, and average:
1 G|
BERTScore = Il Z P(3). 3)
i=1

Scores are normalized to [0, 1] (higher is better). Compared with STS (sentence-level semantics),
BERTScore emphasizes token-level precision. For our BERTScore calculations, we use the
scibert_scivocab_uncased model Beltagy et al. (2019) with its corresponding tokenizer.

E.3 LLM SCORE
To complement embedding-based metrics, we employ an LLM-based evaluation with GPT-40 and
DeepSeek-R1. Each candidate answer is assessed along three dimensions:

 Similarity Score (SS): factual alignment with the expert reference answer.

+ Rationality Score (RS): scientific soundness and logical coherence of the reasoning process.

* Inclusiveness Score (IS): coverage of essential points and completeness in addressing the
question.

Each dimension is scored on a [0, 10] scale, with the following interpretation in the context of adjuvant
knowledge:

* 0-3 (poor): major factual errors or incoherent reasoning, reflecting a lack of basic under-
standing of adjuvant concepts.
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* 4-6 (adequate): partially correct and logically consistent answers, but with noticeable gaps
or oversimplifications in immunological mechanisms or design principles.

» 7-10 (strong): scientifically consistent, well-reasoned, and comprehensive answers that
demonstrate a solid grasp of adjuvant biology and related immunological processes.

These three dimensions are deliberately chosen for the adjuvant domain: factual alignment (SS)
captures accuracy of immunological details, rationality (RS) reflects whether the explanation is
mechanistically plausible, and inclusiveness (IS) ensures that answers go beyond isolated facts to
integrate the multifaceted nature of adjuvant design and immune modulation.

Why LLM Score is valid: Using large language models as evaluators (“LLM-as-a-judge”) has become
a widely adopted practice in open-ended evaluation. Prior studies in general NLP benchmarks
demonstrate that LLM-based judgements correlate strongly with human preferences when prompts
and rubrics are standardized, and also analyze typical biases such as verbosity or self-preference
Zheng et al.[(2023); [Dubois et al. (2024); [Kim et al.| (2024); |Panickssery et al.| (2024); |Xie et al.
(2025a).

Beyond general-purpose tasks, recent work shows that LLM-based evaluation is also effective in
scientific and biomedical domains. For instance, scientific question answering and biomedical
information extraction have employed rubric-guided LLM judges to approximate expert assessment
D’Souza et al.| (2025); [Laskar et al.| (2025)). In the medical domain, Wang et al.| (2025)) integrated
LLM evaluators into a formal framework for clinical ambient scribing, published in a Nature journal.
Similarly, mathematical reasoning tasks have used LLM judges to assess solution validity under
verifiable criteria|Stephan et al.[(2024). These precedents confirm that LLM-as-a-judge is not only
scalable but also increasingly recognized across scientific subfields.

In our setup, we (i) fix prompts and decoding parameters to minimize variance, (ii) average scores
from two high-performing evaluators (GPT-40 and DeepSeek-R1) to reduce single-model bias, and
(iii) complement LL.M-based scores with embedding metrics (STS/BERTScore) for transparency and
reproducibility. This multi-perspective design yields a reliable proxy for expert assessment while
keeping annotation costs tractable, aligning with best practices reported across both general and
scientific domains.

E.3.1 EXPERIMENT OF CONSISTENCY VERIFICATION BETWEEN LLM SCORE AND HUMAN
EXPERT SCORE

To verify the effectiveness of using LLMs as judges in the field of adjuvants, we conducted a
consistency test between LLM scores and human expert scores. Specifically, we randomly selected
100 responses from all models, with 50 evaluated by GPT-40 and the other 50 evaluated by DeepSeek-
R1. These 100 samples were then submitted to human experts for evaluation, using criteria that were
completely consistent with those used for the LLM scores. The results are presented in Table[I0]

Table 10: Consistency Verification Between LLM Scores and Human Expert Scores

Scoring Model Rating Dimension Pearson Correlation Spearman Correlation Kendall Correlation

Similarity 0.8412 0.8469 0.7752

Rationality 0.8006 0.6342 0.5793

GPT-4o Inclusiveness 0.8135 0.7487 0.6749
Avg 0.8407 0.8044 0.7084

Similarity 0.9145 0.9236 0.8185

Rationality 0.8767 0.8456 0.7732

DeepSeek-R1 1 iveness 0.8636 0.8749 0.7613
Avg 0.9125 0.9247 0.8019

Similarity 0.8854 0.8920 0.8019

All Rationality 0.8443 0.7986 0.7239
Inclusiveness 0.8461 0.8416 0.7413

Avg 0.8803 0.8871 0.7739

The experiment and visualization (as shown in Fig[I9) demonstrate high reliability in using these
models as scorers. Both GPT-40 and DeepSeek show strong linear correlations with expert scores,
particularly in the Similarity dimension, where GPT-40 achieves a Pearson correlation of 0.8412 and
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Similarity GPT40: LM Score vs Expert Score.
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Figure 19: LLM Score vs. Expert Score

DeepSeek reaches 0.9145. Although GPT-40’s correlations are slightly lower, it remains consistently
strong across all dimensions, indicating that both models align well with expert evaluations and are

effective scoring agents.
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Figure 20: Comparison of LLM and Expert Average Scores

Further analysis using Spearman correlation reveals that DeepSeek outperforms GPT-4o, especially
in the Similarity (0.9236) and Rationality (0.8456) dimensions. Despite GPT-40’s lower performance
in Rationality (0.6342), it still maintains a reasonable level of ranking consistency, reinforcing its
validity as a scorer. The Kendall correlation results mirror these findings, with DeepSeek consistently
showing higher scores across all dimensions, particularly in Similarity (0.8185) and Rationality
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(0.7732). Although GPT-40’s performance is lower in comparison, it remains within an acceptable
range, particularly in Similarity (0.7752), which indicates a strong consistency in ranking with expert
scores.

Overall, both GPT-40 and DeepSeek show strong alignment with expert scores, as demonstrated in
Fig The average scores across the three dimensions for both the LLM and expert evaluations
largely overlap, confirming their reliability as scorers for this task. While DeepSeek slightly outper-
forms GPT-4o0, particularly in Pearson and Spearman correlations, both models exhibit substantial
effectiveness and are well-suited for scoring tasks in this domain.

E.3.2 THE PROMPT OF LLM SCORE

You are an expert in immunology and adjuvant design, with great achievements in immunol-
ogy and adjuvant design. With the aim of simplifying the thinking process, please score the
model’s answers and labels (out of 10 points) based on the similarity between the answers and
labels, the reasonableness of the answers, and whether the answers incorporate the meaning
of the labels. Finally, please provide the results in the following format:

Similarity Score: x

Rationality Score: x

Inclusiveness Score: x

E.4 HALLUCINATION REJECTION RATIO (HRR)

The hallucination rejection ratio (HRR) quantifies a model’s ability to detect and resist hallucinated
content:

Number of correctly rejected hallucinated samples

HRR = x 100%.

Total hallucinated samples

Here, the numerator counts expert-labeled hallucinated Q&A pairs that the model successfully
flags as invalid. A higher HRR indicates stronger robustness, which is particularly important in
safety-sensitive biomedical applications.

Prompt design. The evaluation prompt explicitly defines the label mapping: “Yes” means the Q&A
is scientifically valid, while “No” means it contains hallucination (i.e., invalid claims). Additional
criteria are listed (factual errors, logical inconsistencies, causal reversal, pseudo-scientific claims,
domain irrelevance, or incomplete answers). In practice, the model is instructed to return “No”
whenever any of these problems occur, and “Yes” only when the Q&A is entirely correct and domain-
relevant. The requirement to “strictly return Yes or No” ensures output consistency and facilitates
automatic scoring; it does not prevent verification, since the ground truth hallucination labels were
already provided by domain experts during dataset construction.

Sample size. The current hallucination dataset consists of 69 high-quality, expert-annotated examples.
While relatively small, it represents the first curated hallucination resource in the adjuvant domain. To
mitigate sample-size concerns, we report mean HRR with standard deviations over ten repeated trials.
This provides an uncertainty estimate and ensures that performance differences reflect systematic
model behavior rather than random variation.

Together, this setup ensures that HRR measures what it is intended to capture: whether models can
resist generating or endorsing scientifically invalid claims in immunology and adjuvant science.
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E.4.1 THE PROMPT OF HALLUCINATION EVALUATION

The Prompt of Hallucination Evaluation

You are an expert in immunology and adjuvant design, with great achievements in the
immunology and adjuvant fields. Determine if the provided Question or its corresponding
Answer contains scientifically invalid claims in the fields of Biology, Immunology, or
Adjuvant Science. Return only ’Yes” (valid) or ”No”’ (invalid) without explanations.

Input Format:
- Question: [Insert question text]
- Answer: [Insert answer text]

Evaluation Criteria

Return ”No” if ANY of the following apply (including but not limited to):
1.Factual Errors

- Contradicts established scientific consensus.

2.Logical Inconsistencies

- Self-contradictory statements.

3.Causal Reversal

- Inverts cause-effect relationships.

4.Pseudo-Scientific Claims

- Unproven theories.

5.Domain Irrelevance

- Topics outside biology/immunology/adjuvant science.
6.Incomplete Answers - Missing critical steps/mechanisms.

Return ’Yes” ONLY if the Q&A pair is scientifically accurate, logically consistent, and
domain-relevant.

Response Requirement:
- Strictly return ”’Yes’ or ”’No” in a single line.
- No markdown, formatting, or additional text.
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F EXPERIMENT ANALYSIS

F.1 EVALUATION OF PROMPT-FOLLOWING

We assessed the prompt-following ability of 11 closed-source and 18 open-source MLLMs under
identical hyperparameter settings. Results are summarized in Table[T1]

Closed-source vs. open-source. Closed-source models consistently outperform open-source counter-
parts, showing higher average STS and BERTScore when prompts are introduced. This indicates
stronger instruction parsing and more reliable adherence to task requirements.

Performance shifts in open-source models. Interestingly, while prompts generally improved
semantic alignment (higher STS/BERTScore), several open-source models exhibited a drop in overall
LLM Score. Manual inspection suggests that prompts sometimes pushed these models toward verbose
or rigidly formatted answers, inflating token-level similarity but reducing factual soundness and
completeness. This mismatch highlights a trade-off between surface-level semantic alignment and
deeper reasoning accuracy in open-source systems.

Model-specific variability. Domain-specific systems such as BioGPT-Large perform particularly
poorly without explicit guiding phrases, in some cases even degrading compared to their no-prompt
baseline. For example, BioGPT-Large often required a deterministic prefix (e.g., "The answer
is:")to produce stable and interpretable outputs. Without such hints, its responses tended to diverge
from the expected format, which explains its negative improvement in Table[IT]and [3]

inference Model vs. Think Model. “Think” models with explicit reasoning mechanisms show
relatively stable performance when prompts are added, compared to inference-only models. This
stability likely stems from their multi-step reasoning pathways, which already encourage adherence
to task constraints. By contrast, inference models exhibit more variability, suggesting that they are
more sensitive to prompt phrasing. Notably, gains in STS and BERTScore for both families are partly
explained by prompts eliciting more domain-specific terminology, which boosts surface alignment
metrics.

Summary. These findings highlight prompt-following as a key dimension of model robustness.
However, improvements in surface-level metrics do not always translate to better overall judgment
(LLM Score), particularly for open-source systems. This underscores the need for evaluation
frameworks that disentangle genuine reasoning gains from superficial prompt-induced artifacts.
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Table 11: Evaluation of Adjuvants in Open-ended Q&A (Without prompt)

} STS Score ‘ BertScore ‘

LLM Score (GPT-40)

LLM Score (DeepSeek-R1)

Model Category sS ‘ RS ‘ IS ‘ sS ‘ RS ‘ IS ‘ LLM Score Avg
Closed-source MLLMs
Inference Models
GPT-40 0.7190 0.5693 6.3 8.2 6.6 | 6.7 8.5 | 6.5 7.1
GPT-4.1 0.7150 0.5219 6.6 8.1 6.9 7.4 8.9 7.4 7.7
Cladue3.5 0.7153 0.5598 5.8 7.8 6.2 6.4 8.6 6.6 6.9
Cladue3.7 0.7323 0.5596 6.3 8.0 6.5 6.8 8.6 6.8 72
Geminil.5-Pro 0.7123 0.5596 6.2 8.1 6.4 6.7 8.6 6.7 7.1
Gemini2.0-Pro 0.6927 0.5362 6.0 79 6.3 6.6 8.5 6.8 7.0
Gemini2.5-Pro 0.6927 0.5362 6.5 8.2 6.8 7.1 8.7 7.0 7.4
Ernie3.5 0.7121 0.5502 5.8 7.8 6.2 6.2 8.0 6.0 6.7
Ernie4.0 0.7337 0.6027 6.1 7.7 6.1 6.1 7.9 5.6 6.6
Doubaol.5-Pro 0.7093 0.5490 6.0 7.8 6.2 6.6 83 6.6 6.9
Think Models
OpenAl-ol | 07310 | 05818 | 6.9 7.1 | 73 | 8.9 | 73 | 7.7
Average | 07150 | 0.5569 | 6.2 | 8.0 | 6.5 | 6.7 | 8.5 | 6.7 | 7.1
Open-source MLLMs
Inference Models
DeepSeek-V3 0.7255 0.5254 6.5 7.4 8.8 15 7.5
LLaVA1.5-7B 0.7115 0.5763 5.1 6.5 4.8 5.0 6.2 43 53
LLaVA1.5-13B 0.7140 0.5888 53 7.0 52 5.4 6.8 4.7 5.7
Qwen2.5-VL-7B 0.7008 0.5513 5.5 7.6 5.8 5.7 75 5.4 6.3
Qwen2.5-VL-72B 0.7054 0.5723 5.7 75 59 59 7.8 5.7 6.4
Internvl2.5-8B 0.6824 0.5606 5.0 6.7 5.0 5.1 6.4 4.6 5.5
InternvI2.5-78B 0.7156 0.5675 58 7.6 59 6.0 7.6 5.7 6.4
Internvl3.0-8B 0.7111 0.5657 5.4 73 5.5 55 7.1 52 6.0
Internvl3.0-78B 0.7198 0.5679 6.0 7.8 6.2 6.2 8.0 6.0 6.7
InstructBlip-13B 0.6017 0.5711 4.8 6.1 44 4.9 6.1 4.1 5.1
Idefics-9B 0.6632 0.5002 49 6.3 4.6 49 5.8 42 5.1
Think Models
DeepSeek-R1 0.7360 0.5485 6.6 8.4 7.0 73 8.8 75 7.6
Qwen3-8B 0.7186 0.5297 6.1 8.1 6.5 6.9 8.6 | 7.0 72
Qwen3-32B 0.7193 0.5316 6.6 8.1 6.8 73 8.8 75 7.5
Qwen3-30B-A3B 0.7174 0.5302 6.3 8.2 6.7 7.1 8.7 72 7.4
Qwen3-235B-A22B 0.7262 0.5443 6.5 8.4 6.9 72 8.8 ‘ 7.4 7.5
Domain-Specific Models
Darwin 0.6265 0.6253 43 5.4 3.7 3.9 52 3.0 43
BioGPT-Large-PubMedQA ‘ 0.5995 ‘ 0.4665 ‘ 3.1 4.0 ‘ 2.8 ‘ 32 ‘ 44 ‘ 2.7 ‘ 34
Average | 0.6942 | 05514 | 55 | 7.2 | 5.6 | 5.8 | 73 | 5.5 | 6.2
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F.2 THE STATE-OF-THE-ART MODELS VISUALIZATION ANALYSIS

We randomly selected two Q&A pairs for visualization of GPT-o1 and DeepSeek-R1. The results are
shown in Fig. 21]and Fig.

Fig.2T]illustrates that DeepSeek-R1 tends to emphasize specific molecular-level mechanisms, whereas
GPT-o1 provides higher-level framework descriptions. DeepSeek-R1’s responses align more closely
with the style of professional scientific literature, highlighting systematic mechanisms and technical
details, making it suitable for readers seeking in-depth understanding. In contrast, GPT-ol produces
more concise and accessible answers, which better serve audiences with less biological background
by facilitating a quick grasp of core logic. These differences likely reflect variations in training data
and design objectives.

By contrast, Fig. [22]demonstrates a case where both models perform poorly. The example concerns
the comparison of polyclonal antibody responses elicited by RBD-NP and HexaPro S vaccines in non-
human primates against SARS-CoV-2 RBD mutations, particularly at site 484. Both models attempt
to analyze differences in antibody responses across vaccine platforms, but their reasoning and depth
vary significantly. GPT-o1’s response remains general and framework-driven, while DeepSeek-R 1
integrates more domain-specific knowledge but at the cost of over-speculation.

Both models, however, exhibit a similar misconception: they assume that nanoparticles can evade
the E484K mutation. In reality, relevant studies indicate that both RBD-NP and HexaPro S remain
vulnerable to E484K (as shown in the ground truth answer), underscoring the importance of the
antibody binding site at position 484. Neither model captures this crucial detail, instead incorrectly
assuming that nanoparticle polyvalence confers resistance, while full-length proteins are more affected.
This reflects a naive generalization from antigenic polyvalence to mutation resilience.

This case highlights the limitations of current general-purpose models in handling fine-grained
immunological knowledge. It underscores the need for specialized models fine-tuned with domain-
specific data to achieve reliable reasoning in highly specialized biomedical contexts.

F.3 EVALUATION OF TOP 5 MLLMS IN VISUAL-RELATED SUBSETS
We selected the T'op5 MLLMs that performed the best across the entire Open-ended Q&A when using

the same OCR engine (as shown in Fig[5). These models were then evaluated on a visually-related
subset, utilizing their native multimodal capabilities.

Table 12: Evaluation of Adjuvants in Open-ended Q&A Visual-related Subsets (With prompt)

‘ ‘ ‘ LLM Score (GPT-40) ‘ LLM Score (DeepSeek-R1) ‘
Model Category ‘ STS Score ‘ BertScore ‘ sS ‘ RS ‘ IS ‘ SS ‘ RS ‘ IS ‘ LLM Score Avg
OCR Engine
GPT-40 0.7015 0.5729 6.3 79 6.7 | 5.6 9.1 59 | 7.0
GPT-4.1 0.7053 0.5442 72 85 7.6 6.9 9.3 7.0 7.8
Cladue3.7 0.7205 0.5720 6.6 8.0 6.9 6.3 9.2 6.7 7.3
Gemini2.5-Pro 0.7111 0.5787 6.5 8.0 6.8 6.5 9.5 6.4 7.3
OpenAl-ol 0.7436 0.6222 7.0 83 7.1 6.9 9.5 6.8 7.6
Average | 07164 | 05780 | 6.7 \ 8.1 \ 7.0 \ 6.4 \ 9.3 \ 6.6 \ 74
Multimodal Capability
GPT-40 0.7083 0.5889 6.5 79 6.6 6.0 9.0 6.1 7.0
GPT-4.1 0.7019 0.5255 7.0 8.3 7.3 6.9 9.4 7.0 7.7
Cladue3.7 0.6936 0.5675 5.8 7.5 6.3 6.0 9.3 6.3 6.9
Gemini2.5-Pro 0.6913 0.5628 6.0 7.7 6.4 6.1 9.2 6.3 7.0
OpenAl-ol 0.7390 0.6217 7.3 85 7.4 7.2 9.4 6.9 7.8
Average | 07068 | 05733 | 6.5 | 8.0 | 6.8 | 6.4 | 9.3 | 6.5 | 73

The result is shown in Table When comparing the two settings (OCR-based input vs. native
multimodal capability), an intriguing trend emerges: some models actually perform worse when
relying on their native multimodal abilities. Overall, OCR-engine preprocessing provides more stable
results across semantic similarity metrics (STS/BertScore) and LLM-based evaluations (SS, RS, IS).
Although certain models, such as OpenAl-ol, maintain strong performance under the multimodal
setting, several general-purpose MLLMs demonstrate noticeable degradation when tasked with
interpreting biological and adjuvant-related visualizations.
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We hypothesize two main reasons for this discrepancy:

1. Lack of domain-specific expertise: General-purpose multimodal models excel in everyday
visual-language tasks but lack optimization for specialized biomedical charts and adjuvant-
related diagrams, leading to misinterpretations.

2. Task representation gap: OCR-based pipelines provide structured textual input, reducing
ambiguity. In contrast, multimodal settings require models to jointly handle visual parsing
and domain reasoning, which increases task complexity and may reduce overall performance.

In summary, this experiment indicates that relying solely on the native multimodal capabilities of
current MLLMs may not be the most effective approach for domain-specific research tasks. While
multimodal models show promise, traditional OCR-based preprocessing provides a more consistent
and reliable input format, particularly when dealing with complex and specialized biomedical content.
Future research should focus on improving multimodal reasoning by incorporating specialized visual
inputs related to biomedical and adjuvant-specific domains.

Furthermore, in this study, all models were evaluated using a unified OCR engine. This approach was
chosen to ensure consistency across evaluations by standardizing the input format, thus minimizing
potential biases caused by variations in how models handle visual data. Given the specialized nature
of the adjuvant-related visualizations, OCR preprocessing offers a structured and reliable form of
textual input, which reduces the risk of misinterpretation by models that may not be fully optimized
for this domain.
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Question: How do sonicated reduced cancer cells (sRCCs) promote the recruitment and
activation of antigen-presenting cells (APCs)?

Ground Truth Answer: sRCCs loaded with adjuvants like CpG promote the recruitment and
activation of APCs by enhancing the uptake kinetics and magnitude of adjuvant uptake,
leading to increased DC activation and cytokine production.

OpenAl-o1 Answer: Sonicated reduced cancer cells (SRCCs) promote the recruitment and
activation of antigen-presenting cells (APCs) by exposing tumor-associated antigens and
releasing immunostimulatory signals\u20l4often referred to as damage-associated molecular
patterns (DAMPs). When cancer cells undergo mechanical disruption via sonication, they break
apart and release intracellular contents, including proteins, DNA, and other molecules
capable of activating pattern recognition receptors on APCs.\n\nKey points of this process
include: \n\u2022 Exposure of tumor antigens: Sonication reveals previously hidden or
intracellular tumor antigens. These antigens, now accessible in the extracellular
environment, can be taken up by nearby dendritic cells and macrophages. \n\u2022 Liberation
of DAMPs: Molecules such as HMGB1, ATP, and heat shock proteins are released upon cell
membrane disruption. These DAMPs serve as potent \u2@lcdanger signals\u201ld that bind to
pattern recognition receptors (e.g., Toll-like receptors) on APCs, triggering their
maturation and promoting proinflammatory cytokine production. \n\u2022 Enhanced antigen
presentation: Once dendritic cells internalize these tumor-associated antigens, they process
them and present antigenic peptides on MHC class I and II molecules, effectively priming T
cells against tumor cells. \n\u2022 Local inflammatory milieu: The release of DAMPs and
proinflammatory cytokines from activated APCs also helps recruit additional immune cells,
amplifying the local inflammatory response. This heightened environment fosters an improved
recruitment of other effector cells, including T cells and natural killer cells,
facilitating a broader antitumor response.\n\nOverall, the combination of tumor-specific
signals (antigens) and danger signals (DAMPs) from sRCCs acts as an immunologic
\u2@lcalarm,\u201ld mobilizing and activating professional APCs in the tumor microenvironment,
thereby contributing to a more robust and targeted antitumor immune response.

LLM Scores:
- GPT-4o0: Similarity score: 5 Rationality score: 8 Inclusiveness score: 6
- DeepSeek-R1: Similarity score: 7  Rationality score: 9 Inclusiveness score: 7

DeepSeek-R1 Answer: Sonicated reduced cancer cells (sRCCs) enhance the recruitment and
activation of antigen-presenting cells (APCs) through several interconnected
mechanisms:\n\nl. **Release of Damage-Associated Molecular Patterns (DAMPs):** \n
Sonication disrupts cancer cells, releasing intracellular DAMPs such as ATP, HMGB1, heat
shock proteins, and nucleic acids. These molecules bind to pattern recognition receptors
(PRRs; e.g., TLRs, RAGE, NLRP3) on APCs, triggering their activation. For example: \n -
**ATP** activates the P2X7 receptor, promoting NLRP3 inflammasome formation and IL-1PB
secretion. \n - **HMGB1** interacts with TLR4 or RAGE, inducing pro-inflammatory cytokine
production. \n - **Nucleic acids** engage endosomal TLRs (e.g., TLR3, TLR7/9) or
cytosolic sensors (cGAS-STING), driving type I interferon responses.\n\n2. **Enhanced
Antigen Availability and Uptake:** \n Sonic fragmentation increases the surface area and
accessibility of tumor antigens. Smaller cellular debris facilitates efficient phagocytosis
by APCs, enabling robust antigen processing and presentation via MHC I/II. This promotes
cross-presentation to CD8* T cells, critical for antitumor immunity.\n\n3. **Chemokine-
Mediated Recruitment:** \n DAMP signaling induces stromal or immune cells to secrete
chemokines (e.g., CCL2, CCL5, CXCL1®), recruiting monocytes, dendritic cells, and
macrophages to the tumor site. HMGB1 and ATP also directly chemoattract APCs.\n\n4.
**Exposure of \"Eat-Me\" Signals:** \n Sonicated cells may expose phosphatidylserine on
their surface, a marker recognized by phagocytic receptors (e.g., Tim-4, TAM receptors) on
APCs, enhancing engulfment of apoptotic bodies.\n\n5. **Reduction of Immunosuppressive
Factors:** \n Sonication inactivates live cancer cells, potentially diminishing secretion
of immunosuppressive cytokines (e.g., IL-10, TGF-B), thereby relieving APC inhibition and
fostering a pro-inflammatory milieu.\n\n6. **Microparticle/Exosome Formation:** \n
Ultrasonication may generate microvesicles or exosomes carrying tumor antigens and DAMPs,
which efficiently deliver activation signals to APCs via membrane fusion or
endocytosis.\n\n**Summary:** sRCCs act as an endogenous adjuvant by releasing DAMPs and
tumor antigens, recruiting APCs via chemokines, and activating them through PRR engagement.
This primes APCs for antigen presentation and co-stimulatory molecule upregulation (e.g.,
CD80/86), bridging innate and adaptive antitumor immunity.

LLM Scores:
- GPT-4o0: Similarity score: 6 Rationality score: 8 Inclusiveness score: 7
- DeepSeek-R1: Similarity score: 9  Rationality score: 9 Inclusiveness score: 9

Figure 21: The Cases of GPT-40 and DeepSeek-R1
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Question: How do the polyclonal antibody responses elicited by RBD-NP in non-human primates
(NHPs) compare to those from HexaPro S vaccination in terms of resilience to SARS-CoV-2 RBD
mutations, particularly at position 484°?

Ground Truth Answer: Both RBD-NP and HexaPro S elicited polyclonal antibodies with similar
resilience to most RBD mutations, but mutations at position 484 (e.g., E484K) reduced
neutralization significantly (9-12-fold). This indicates a shared reliance on antibodies
targeting the RBM around residue 484, a key epitope for both vaccines.

OpenAl-o1 Answer: Studies comparing these two immunogen formats in NHPs generally find that
RBD-NP immunization drives a focused yet diversified anti-RBD response that is relatively less
affected by single RBD mutations (including at E484) compared to antibodies elicited by the
full\u201@length HexaPro S. Because the RBD is presented at high density on nanoparticles, the
immune system is tuned toward multiple overlapping neutralizing epitopes on the RBD.
Consequently, even though E484 is an important escape site, RBD-NP-polyclonal sera tend to
retain better neutralization of E484-mutant viruses than sera raised against the entire spike
(HexaPro S), whose overall response can be more impacted by point mutations in critical RBD
sites.

LLM Scores:
- GPT-4o0: Similarity score: 5 Rationality score: 7 Inclusiveness score: 6

- DeepSeek-R1: Similarity score: 6 Rationality score: 7 Inclusiveness score: 5

DeepSeek-R1 Answer: The comparison of polyclonal antibody responses elicited by RBD-NP
(Receptor Binding Domain nanoparticle) and HexaPro S (stabilized full-length spike protein)
vaccines in non-human primates (NHPs) regarding resilience to SARS-CoV-2 RBD mutations at
position 484 (e.g., E484K) involves several key considerations:\n\n### **1. Antigen
Presentation and Epitope Diversity:**\n- **RBD-NP**: \n - Presents the RBD in a repetitive,
multivalent nanoparticle format, which enhances B cell receptor cross-linking and germinal
center responses. This promotes a **broad, polyclonal antibody repertoire** targeting multiple
epitopes across the RBD, including regions distant from position 484.\n - Focuses immune
responses **exclusively on the RBD**, potentially reducing immunodominance of non-neutralizing
epitopes (e.g., N-terminal domain) and favoring antibodies against conserved or structurally
critical RBD regions.\n\n- **HexaPro S**: \n - Utilizes a full-length spike protein stabilized
in a prefusion conformation (via six proline mutations), preserving conformational epitopes
critical for ACE2 binding and neutralization.\n - May induce antibodies against **both RBD and
non-RBD regions** (e.g., S2 subunit, NTD), but neutralizing antibodies are predominantly RBD-
directed. The stabilization could emphasize epitopes near the receptor-binding motif (RBM),
including residue 484, which is a hotspot for immune evasion.\n\n### **2. Impact of Position
484 Mutations:**\n- **E484K Mutation**: Reduces binding of antibodies targeting the RBM,
particularly those with heavy-chain interactions at this site. Vaccines eliciting antibodies
with overrepresentation of 484-centric epitopes are more vulnerable.\n- **RBD-NP**: Likely
induces a **more diverse RBD-specific response**, including antibodies targeting epitopes
outside the 484 region (e.g., residues 417, 453, or conserved cryptic sites). This diversity
may buffer against 484-driven immune escape.\n- **HexaPro S**: Antibody responses may cluster
around prefusion-stabilized RBD conformations, potentially increasing reliance on 484-adjacent
epitopes. However, structural stabilization might also preserve critical neutralizing epitopes,
offsetting some mutational effects.\n\n### **3. Experimental Evidence:**\n- **RBD-NP Studies**:
Nanoparticle RBD vaccines (e.g., ferritin-RBD) in preclinical models show **broader variant
cross-reactivity**, including resilience to E484K, due to epitope diversity and high-avidity
antibody maturation.\n- **HexaPro S Studies**: HexaPro-stabilized spike vaccines (e.g., mRNA-
1273, NVX-CoV2373) demonstrate strong neutralization of ancestral strains but **reduced titers
against E484K variants** (e.g., Beta, Gamma). However, adjuvants (e.g., Matrix-M) in protein
subunit platforms may enhance cross-reactive responses.\n\n### **4. Adjuvant Influence:**\n-
Adjuvants in RBD-NP (e.g., TLR agonists) or HexaPro S (e.g., saponin-based) can skew Th1/Th2
responses and alter antibody affinity/epitope breadth. Nanoparticle delivery often enhances
Thl and germinal center activity, favoring high-quality, durable antibodies.\n\n###
**Conclusion:**\nRBD-NP likely elicits **more resilient antibody responses to position 484
mutations** compared to HexaPro S, due to its focused yet diverse targeting of RBD epitopes
and reduced dependency on 484-centric neutralizing antibodies. HexaPro S, while potent against
ancestral strains, may exhibit greater vulnerability to E484K due to immunodominance of RBM
epitopes. However, adjuvant choice and stabilization strategies in HexaPro S could mitigate
this effect. Direct comparative studies in NHPs measuring neutralization against E484K
variants (e.g., pseudovirus assays) are needed to validate these hypotheses.

LLM Scores:
- GPT-4o0: Similarity score: 6 Rationality score: 7 Inclusiveness score: 5

- DeepSeek-R1: Similarity score: 6 Rationality score: 8 Inclusiveness score: 7

Figure 22: The Cases of GPT-40 and DeepSeek-R1
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F.4 ERROR VISUALIZATION ANALYSIS

F.4.1 BI1OGPT-LARGE-PUBMEDQA

The performance of BioGPT-Large did not show meaningful improvement even after fine-tuning on
PubMedQA. To further investigate, we conducted a visual analysis on representative cases, as shown
in Fig.[23] Fig.[24] and Fig.[23]

Compared with the base BioGPT-Large, the PubMedQA-tuned version adapts better to the QA
format and avoids producing large amounts of garbled text. Nonetheless, its responses still exhibit
fundamental errors. In many cases, the answers degenerate into mechanical repetitions of training-
set patterns rather than genuine synthesis or reasoning. This limitation is partly attributable to its
pre-training objective—focused primarily on biomedical text completion—which does not equip the
model to handle open-ended scientific QA.

Moreover, unlike instruction-tuned models that respond coherently to natural prompts, BioGPT
requires deterministic cues such as the prefix "The answer is:" to produce stable outputs. In
our unified evaluation framework, where all models were tested under the same prompt setting, this
lack of task-adaptive tuning further exposed its weaknesses. Together, these factors suggest that
PubMedQA fine-tuning alone is insufficient, and that more fundamental re-design of pre-training
objectives and instruction adaptation is needed for robust performance in specialized domains like
adjuvants.

Question:

Ground Truth Answer:

BioGPT-Large-PubMedQA Answer: </s>How do sonicated reduced cancer cells (sRCCs) promote
the recruitment and activation of antigen-presenting cells (APCs)? To address this question,
we investigated the effects of sRCCs on the maturation and function of bone marrow-derived
dendritic cells (BMDCs) in vitro. We found that sRCCs promoted the maturation of BMDCs, as
indicated by the increased expression of CD8 ©, CD8 6, and major histocompatibility complex
(MHC) class II molecules, and the production of interleukin-1 2 (IL-1 2) and tumor necrosis
factor-\ue3bl (TNF-\u@3bl). sRCCs also enhanced the ability of BMDCs to stimulate T-cell
proliferation and interferon-\u@3b3 (IFN-\u@3b3) production. sRCC-conditioned medium (sRCC-
CM) promoted the maturation and function of BMDCs in a contact-independent manner.
Furthermore, sRCC-CM activated the nuclear factor-\u@3baB (NF-\u@3baB) signaling pathway in
BMDCs. Blockage of the NF-\u@3baB pathway significantly reduced the expression of CD8 @, CD8
6, and MHC class II molecules and the production of IL-1 2 and TNF-\u@3bl by sRCC-stimulated
BMDCs. Taken together, these results suggest that sRCCs promote the maturation and function
of BMDCs through the activation of the NF-\u@3baB signaling pathway. < / FREETEXT > < /
ABSTRACT > \u2583
</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>

Figure 23: The Error Cases of BioGPT-Large-PubMedQA

38



Under review as a conference paper at ICLR 2026

Question: What are the key factors affecting the immune response enhancement by fullerenol?

Ground Truth Answer: The self-assembly of fullerenol into virus-like particles, its
activation of TLR pathways, and its ability to enhance antigen uptake and protection are key
factors in enhancing immune responses.

BioGPT-Large-PubMedQA Answer: </s>What are the key factors affecting the immune response
enhancement by fullerenol? What is the relationship between the immune response enhancement
and the physicochemical properties of fullerenol? To answer these questions, three types of
C6 @ (OH) n (n = 2, 4, 6) were synthesized and their physicochemical properties were
characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS),
zeta potential measurement, and Fourier transform infrared (FT-IR) spectroscopy. The effects
of three types of C6 @ (OH) n (n = 2, 4, 6) on the immune responses in mice were
investigated. The results showed that all three types of C6 @ (OH) n (n = 2, 4, 6) could
significantly enhance the cellular and humoral immune responses against ovalbumin (OVA) in
mice. Compared with pristine C6 @, C6 @ (OH) 4 and C6 © (OH) 6 exhibited higher immune-
enhancing activity, and C6 © (OH) 4 showed the highest activity among the three types of C6
@ (OH) n. Moreover, the immune-enhancing activity of C6 @ (OH) n (n = 4, 6) increased with
the increase of the number of hydroxyl groups on the surface of C6 © (OH) n. These results
suggested that the number of hydroxyl groups on the surface of C6 © (OH) n was one of the
key factors affecting the immune-enhancing activity of C6 © (OH) n, and C6 © (OH) 4 with
four hydroxyl groups on the surface was the most effective adjuvant among the three types of
C6 @ (OH) n. < / FREETEXT > < / ABSTRACT > \u2583 </s>

Figure 24: The Error Cases of BioGPT-Large-PubMedQA

Question: How does the freeze-thaw cycle affect the tertiary structure of the recombinant
hepatitis B surface antigen (rHBsAg) when adsorbed to Alhydrogel®?

Ground Truth Answer: The freeze-thaw cycle induces a blue shift in the rHBsAg tertiary
structure when adsorbed to Alhydrogel®, suggesting structural perturbation which may affect
antigen recognition by the immune system.

BioGPT-Large-PubMedQA : </s>How does the freeze-thaw cycle affect the tertiary structure
of the recombinant hepatitis B surface antigen (rHBsAg) when adsorbed to Alhydrogel \u@®@ae?
The aim of this study was to evaluate the effect of the freeze-thaw cycle on the tertiary
structure of the rHBsAg adsorbed to Alhydrogel \u@@ae using circular dichroism (CD) and
Fourier transform infrared (FTIR) spectroscopies. The secondary and tertiary structures of
the rHBsAg adsorbed to Alhydrogel \u@@ae were not affected by the freeze-thaw cycle. However,
the thermal stability of the adsorbed rHBsAg was reduced after the freeze-thaw cycle. The
adsorption of the rHBsAg to Alhydrogel \u@@ae increased the stability of the secondary and
tertiary structures of the rHBsAg during the freeze-thaw cycle. The adsorbed rHBsAg was more
stable than the non-adsorbed rHBsAg during the freeze-thaw cycle. These results suggest that
the adsorption of the rHBsAg to Alhydrogel \u@@ae increases the stability of the rHBsAg
during the freeze-thaw cycle. < / FREETEXT > < / ABSTRACT > \u2583 </s><pad>

Figure 25: The Error Cases of BioGPT-Large-PubMedQA
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F.4.2 DARWIN

We also conducted a visual analysis of Darwin on the same three examples (Fig. [26] Fig.[27] and
Fig.[28). Darwin is a domain-specific model fine-tuned primarily in the materials science domain.
Since adjuvants can be regarded as a subclass of biomaterials, there is partial overlap between
Darwin’s training distribution and adjuvant-related knowledge.

This overlap helps explain certain strengths: because Darwin’s first-stage training involved open-
ended Q&A data, its outputs follow the structure of adjuvant Q&A tasks more naturally, and its
specialized fine-tuning improves lexical precision in technical terminology. However, the overlap is
limited, as the core challenges of adjuvant research lie in immunological mechanisms and vaccine-
specific contexts—areas that fall outside Darwin’s primary training focus. Consequently, Darwin
often produces superficially well-formed answers that nevertheless fail to capture domain-specific
reasoning.

This case underscores a broader point: while adjuvants share material properties with general
biomaterials, the immunological dimension creates a significant domain gap. Bridging this gap
requires resources and models purpose-built for immunology, rather than indirect transfer from
adjacent scientific fields.

Question:

Ground Truth Answer:

Darwin Answer: sRCCs promote the recruitment and activation of APCs by providing a platform
for the presentation of antigens and the activation of immune cells.\n</s>

Figure 26: The Error Cases of Darwin

Question:

Ground Truth Answer:

Darwin Answer: The key factors affecting the immune response enhancement by fullerenol
include its ability to act as an antioxidant, its ability to enhance the activity of immune
cells, and its ability to improve the immune response to pathogens.\n</s>

Figure 27: The Error Cases of Darwin

Question:

Ground Truth Answer:

Darwin Answer: The freeze-thaw cycle has no effect on the tertiary structure of the rHBsAg
when adsorbed to Alhydrogel®.\n ### Instruction:\n Answer the question based on your
knowledge.\n ### Input:\n Can the tertiary structure of the rHBsAg be affected by the
freeze-thaw cycle when adsorbed to Alhydrogel®?\n ### Instruction:\n No, the tertiary
structure of the rHBsAg cannot be affected by the freeze-thaw cycle when adsorbed to
Alhydrogel®.\n</s>

Figure 28: The Error Cases of Darwin
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G THE PROMPT OF GENERATION AND INFERENCE

G.1 THE PROMPT OF GENERATION

The Prompt of Generation Basic Knowledge Open-ended Q&A

You are an expert in immunology and adjuvant design, with great achievements in immunol-
ogy and adjuvant design. Next, I will provide you with the partial chapter context, including
the text and images of an adjuvant design or immunology book. Please ask at least 20
questions from the perspective of an expert and provide answers about these chapters, These
questions cannot be the same as the exercises in the provided text and must be in the form of
questions and answers. If specific questions and answers cannot be generated based on the
provided content, insights or questions related to specific chapters or topics in immunology
and adjuvant design can be provided. The first 10 questions you raised should be aimed at
gaining a more systematic understanding of the relevant knowledge of adjuvant design, in
order to provide better and more comprehensive answers to the questions. The remaining
questions should have sufficient depth and difficulty. Please attach the reasoning process
and answer for each question. All answers and reasoning processes should be as detailed as
possible and it is prohibited to elaborate on points in the answer, which means all answers
must be in one paragraph. It should be noted that the description of the reasoning process
does not indicate which part of the chapter it appears in, but is based on its explanation.
For the images provided to you in the context, you also need to ask at least 2 ~ 5 relevant
professional questions. For images in PDF files, relevant professional questions need to be
raised. Please follow the question format:

Question: xxxxx

Reasoning Process: xxxxxx

Answer: XXXXXx

If the problem is based on an image, please provide the image number and the path in the
Question/Answer/Reasoning Process. Please follow the question format:

Question: xxxxx, Fig.x (XXXX/XXXX/XXXX)

Reasoning Process: xxxxxx

Answer: XXXXXx
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The Prompt of Generation Biology Principles Open-ended Q&A

You are an expert in immunology and adjuvant design, and have achieved great success in
immunology and adjuvant design. Next, I will provide you with PDF files of the relevant
papers. Please provide at least 15 ~ 20 questions from an expert’s perspective and provide
answers. The question you raised should aim to systematically understand the relevant
knowledge of the current article in order to provide a better and more comprehensive answer
to this question. These issues may include but are not limited to injection procedures, immune
kinetics, and release curves. If there is no text provided in a readable format, you can create
questions and answers based on the shared text in the PDF. These questions should have
sufficient depth and difficulty and all answers and reasoning processes should be as detailed
as possible. And the information of questions needs to be sufficiently rich, including but
not limited to detailed data such as injection sites, experimental equipment, experimental
models, etc. And the corresponding reasoning needs to be provided. It should be noted that
the description of the reasoning process does not indicate which part of the chapter it appears
in, but is based on its explanation. All answers and reasoning processes should be as detailed
as possible and it is prohibited to elaborate on points in the answer, which means all answers
must be in one paragraph. For the images provided to you in the context, you also need to ask
at least 2 ~ 5 relevant professional questions. Please follow the format:

Question: xxxxx

Reasoning Process: xxxxxx

Answer: XXXXXx

If the problem is based on an image, please provide the image number and the path in the
Question/Answer/Reasoning Process. Please follow the question format:

Question: xxxxx, Fig.x (XXXX/XXXX/XXXX)

Reasoning Process: Xxxxxxx

Answer: XXXXXx

The Prompt of Generation Adjuvant Design&Safety Open-ended Q&A

You are an expert in immunology and adjuvant design, and have achieved great success in
immunology and adjuvant design. Next, [ will provide you with files of the relevant papers.
Please first confirm whether this article designs/proposes a new antigen or adjuvant. If so,
please specify the name of the adjuvant and comprehensively analyze its main immune effects
and design/improvement ideas, (The questions like Does the current article propose a new
adjuvant?” or "What new adjuvant is designed or proposed in this article?” are prohibited.
but instead use the name of the adjuvant in the current paper, such as "What is the immune
function of xxxx”, "How does xxxx promote the recruitment and activation of antigen-
presenting cells”, etc.), including promoting the recruitment, activation of antigen-presenting
cells, enhancing T cell responses and persistent antibodies, etc Then please identify the key
factors that affect these effects and provide a detailed explanation of the reasons, which
should include design/improvement ideas, small molecule drugs, antigen release behavior,
etc. In addition, it is necessary to clarify the safety and usability of adjuvants. Please propose
a corresponding question for each of the above explanations and provide the corresponding
reasons as the answer to the question, along with a detailed reasoning process. It should be
noted that the description of the reasoning process does not indicate which part of the chapter
it appears in, but is based on its explanation. The questions you raise should always be no
less than 8 and all answers and answer/reasoning processes should be as detailed as possible.
Please follow the format: Question: xxxxx

Reasoning Process: Xxxxxx

Answer: XXXXxXx

If the problem is based on an image, please provide the image number and the path in the
Question/Answer/Reasoning Process. Please follow the question format:

Question: xxxxx, Fig.x (XXXX/XXXX/XXXX)

Reasoning Process: xxxxxx

Answer: XXXXXx
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G.2 THE PROMPT OF INFERENCE

The Prompt of Inference

You are an expert in immunology and adjuvants, with a strong background in vaccine develop-
ment. Your research and practice in this field have equipped you with a deep understanding of
the mechanisms of immune response and how to optimize vaccine efficacy through adjuvants.
You excel in providing concise, precise, and professional responses to questions related to

adjuvants and immunology. Please answer the following questions.
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Figure 29: The World Cloud of the Adjuvant Benchmark
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I USAGE OF LARGE LANGUAGE MODELS

1.1  WRITING

In this study, we primarily used LLMs to assist with grammar checking and sentence structure
adjustments throughout the writing process. These models helped ensure clarity, coherence, and
grammatical accuracy in the final manuscript.

1.2 EXPERIMENT

For the experiments in this study, our focus was on testing the knowledge comprehension abilities of
MLLMs and LLMs in the adjuvant domain. Given the nature of the tasks, we naturally leveraged
large models to evaluate their performance and understanding of domain-specific knowledge.
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