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ABSTRACT

Adjuvants play a critical role in modulating immune responses and are central
to the development of vaccines and immunotherapies. Yet progress in this field
is constrained by data scarcity and incomplete understanding of mechanisms of
action, which limit the transition from experience-based design to AI-driven ap-
proaches. To address these challenges, we present the first benchmark dedicated to
adjuvants, constructed in an open-ended Q&A format and annotated by domain
experts. The benchmark comprises 1,294 Q&A pairs and 1,364 formal descriptions,
providing a resource for evaluating general-purpose multimodal large language
models (MLLMs) and for developing domain-specific systems. We systematically
assess 11 closed-source and 18 open-source MLLMs across dimensions including
domain-specific Q&A, hallucination rejection, data generation, and instruction
following. Results indicate that OpenAI-o1 (STS = 0.7495, LLM Score = 7.7)
and DeepSeek-R1 (STS = 0.7415, LLM Score = 7.7) achieved the strongest per-
formance among closed- and open-source models, respectively. In addition, we
introduce a formal description framework for representing adjuvant design prin-
ciples and immune mechanisms as structured abstractions, which can serve as
building blocks for future domain-specialized MLLMs. Overall, this work provides
a first step toward systematically integrating MLLMs into adjuvant research by
offering a dedicated benchmark, comparative evaluation of existing models, and
a formal foundation for future development. Data and code will be released at
Anonymous.

1 INTRODUCTION

Artificial intelligence (AI) has become an important driver of scientific discovery, offering new
perspectives and tools to address increasingly complex challenges Hessler & Baringhaus (2018);
Jumper et al. (2021); Xu et al. (2021); Esteva et al. (2019; 2021); Rajpurkar et al. (2022). Early
applications in science often relied on task-specific datasets and bespoke neural architectures Krenn
et al. (2020); Wu et al. (2018); Xie & Grossman (2018); de Teresa-Trueba et al. (2023), but recent
advances in multimodal large language models (MLLMs) have shifted attention toward more general
frameworks capable of integrating heterogeneous information sources Liu et al. (2023); Li et al.
(2024); OpenAI (2023); Team et al. (2023). These models demonstrate broad capabilities in domains
ranging from language and vision to biomedicine, enabling new paradigms for reasoning and analysis
He et al. (2024); Xie et al. (2023); Outeiral & Deane (2024). Representative work includes LLaVA-
Med, a vision-language assistant for biomedical images Li et al. (2023), and BiomedGPT, a generalist
biomedical foundation model Zhang et al. (2024b).

Table 1: Cross-domain availability of datasets, methods, and mechanistic principles.

Drug Discovery Protein Structure Genomics/Omics Catalyst Design Battery Materials Adjuvants
Datasets ✓ ✓ ✓ ✓ ✓ ✗
Methods ✓ ✓ ✓ ✓ ✓ ✗
Principles ✓ ✓ ✓ ✓ ✓ ✗

Adjuvants are indispensable components of modern vaccines, as they enhance immune responses,
prolong protection, and in some cases determine whether a vaccine is clinically viable Glenny et al.
(1926); Iwasaki & Omer (2020); Reed et al. (2013). They are particularly critical for emerging
infectious diseases and cancer immunotherapy, where rapid and robust immune activation is essential.
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Despite their importance, the field remains underserved by AI. As shown in Table 1, unlike drug
discovery or protein structure prediction—where large-scale datasets and standardized benchmarks
already exist—adjuvant research faces three persistent barriers: (i) limited systematically curated data,
(ii) a lack of AI methodologies tailored to adjuvant knowledge, and (iii) heterogeneous definitions
and mechanisms that complicate systematic modeling Guy (2007). As a result, existing biomedical
benchmarks cannot be directly applied, and building domain-specific infrastructure is necessary for
progress.

Figure 1: Three Types of Data Display in Adjuvant Benchmark
To address this gap, we present the first benchmark for adjuvants. We adopt an open-ended Q&A
format to capture mechanistic reasoning, design considerations, and safety issues that cannot be
represented through multiple-choice tasks. In parallel, we propose a formal description framework
that translates complex biological intuitions into structured abstractions to support reasoning beyond
retrieval. Concretely, we generated candidate data with four state-of-the-art MLLMs and conducted
rigorous expert annotation across vaccine subdomains. The resulting benchmark consists of three
components (Fig. 1): Open-ended Q&A Data, Hallucination Data, and Adjuvant Formal Data.
We then evaluated 11 closed-source and 18 open-source MLLMs on these tasks, assessing domain-
specific answering, hallucination rejection, and instruction following, and complemented these with
expert-based subjective assessments of generation quality.

Our main contributions are summarized as follows:

• We establish the first high-quality benchmark dedicated to adjuvants, explicitly designed
to fill a long-standing gap in biomedical AI benchmarks and to support subsequent MLLM
research.

• We perform the first systematic evaluation of mainstream general-purpose MLLMs (11
closed-source and 18 open-source) on adjuvant knowledge, assessing critical capabilities
including data generation, domain-specific QA, hallucination rejection, and prompt follow-
ing. This provides initial conclusions on the capabilities and limitations of current models,
and concrete guidance for selecting base models in this domain.

• We introduce formal descriptions of adjuvants, converting their complex biological mech-
anisms into simplified abstractions that can be directly used in training or reasoning. This
approach lays the groundwork for future domain-specific MLLMs that combine statistical
learning with symbolic reasoning.

2 RELATED WORK

2.1 ADJUVANTS

Adjuvants are crucial components that are used to improve the effectiveness of vaccines, primarily
by stimulating the immune system to improve recognition and response to antigens. By increasing
the potency of vaccines, they enable the immune system to respond more rapidly and effectively to
pathogens Zhao et al. (2023). Adjuvants can encompass a diverse range of substances, including
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synthetic small molecule compounds, complex natural extracts, and particulate materials, each
contributing uniquely to the modulation of immune responses McKee et al. (2007).

Despite the long-standing and increasing diversity of adjuvants used in vaccines, the mechanisms by
which they enhance immune responses are not yet fully understood. With the elucidation of how the
innate immune response regulates the adaptive immune response, researchers began to gain insight
into the operational mechanisms of adjuvants Coffman et al. (2010). Although this work has provided
a certain degree of elucidation regarding the modes of action of adjuvants, a systematic overview
and summary of their mechanisms remain scarce due to the broad definition and complex nature of
adjuvants.

Recent studies have begun to explore the integration of adjuvants with machine learning to optimize
adjuvant selection, such as Nagpal et al. (2018) used the support vector machine (SVM) to develop a
hybrid model for predicting A-cell epitopes, which enhances the identification of immune epitopes.
Ma et al. (2023) utilized machine learning to identify molecular properties that target Toll-like
receptors (TLRs) and designed two new adjuvants to enhance vaccine responses. These effectively
promote strong immune responses, significantly suppressing tumor growth and metastases. Chaudhury
et al. (2018). used random forest algorithms to develop a predictive model that achieves 92% accuracy
in predicting adjuvant conditions based on immune response data, facilitating the identification of
immune characteristics of different adjuvants and aiding in the rational pairing of vaccines and
adjuvants.

However, these methods often lack generalizability, limiting their effectiveness in complex scenarios.
In contrast, MLLMs can learn from vast and diverse modalities, identifying underlying patterns
that traditional methods may overlook. This capability enables them to generate more accurate
and efficient insights and predictions. By integrating MLLMs with adjuvant research, we aim to
accelerate adjuvant development, provide a more responsive approach to public health emergencies,
and shift the current paradigm from trial-and-error, experience-based methods to a more AI-driven
and efficient process.

2.2 SCIENCE BENCHMARK

Recently, there has been increasing attention on MLLMs in scientific research. To evaluate and
improve the performance of MLLMs in specific research domains, it is crucial to establish rigorous
benchmarks. These not only help in assessing the accuracy and efficiency of the models but also
ensure that the evaluation of different methodologies used is consistent and fair across the same
studies.

Zhang et al. (2024a) developed ChemBench, an innovative chemical benchmark consisting of 4,100
multiple-choice questions in nine tasks related to chemical molecules and reactions, aiming at ob-
jectively measuring the chemical proficiency of large language models (LLMs). Chen et al. (2023)
proposed an extensive benchmark study on biomedical text generation, which highlights the strengths
and weaknesses of ChatGPT in addressing biomedical tasks, potentially inspiring further advance-
ments in NLP models for biomedical data analysis. Zhang et al. (2025) introduced DataSciBench, a
novel and comprehensive benchmarking tool aimed at deeply evaluating the capabilities of LLMs
in data science through natural and challenging tasks. He et al. (2023) proposed a system called
SciGuard to control misuse risks associated with AI models in the field of science. They also intro-
duced a red-teaming benchmark, SciMT-Safety, to assess the safety of different systems. Gao et al.
(2025) proposed a model-level evaluation framework that emphasizes practical metrics aligned with
real-world applications to address the limitations in structure-based drug design (SBDD).

Summary. Despite the proliferation of benchmarks in domains like chemistry, biomedicine, and data
science, none of them address the unique characteristics of adjuvant research. Existing biomedical
benchmarks (e.g., PubMedQA Jin et al. (2019), ChemBench Walker et al. (2010)) mainly evaluate
molecular properties, literature summarization, or general biomedical knowledge. In contrast,
adjuvants involve heterogeneous substances, multi-scale immune mechanisms, and a lack of structured
training data. This makes it impossible to directly apply existing benchmarks to this domain. Our
work therefore, fills a critical gap by introducing the first dedicated benchmark for adjuvants, explicitly
designed to capture mechanistic reasoning, safety evaluation, and design-oriented knowledge that are
absent from prior benchmarks.

3
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3 ADJUVANT BENCHMARK

3.1 OVERVIEW

Although immunology and adjuvant research have seen significant progress, the systematic integration
of MLLMs into this field remains unexplored. To address this gap, we introduce the first benchmark
explicitly designed for evaluating MLLMs on adjuvant-related knowledge and reasoning. By curating
high-quality academic resources and leveraging multiple state-of-the-art MLLMs, we construct a
domain-specific evaluation suite that captures both mechanistic understanding and practical design
considerations. The following sections detail the benchmark construction pipeline, expert annotation
process, and subsequent analyses of the resulting data.

3.2 PIPELINE OF BENCHMARK CONSTRUCTION

The overall construction pipeline is illustrated in Fig. 2. We first collected 739 peer-reviewed papers
together with two classic textbooks, from which MLLMs automatically generated approximately 35k
open-ended Q&A pairs on adjuvants and immunology, each accompanied by an explicit reasoning
step (The generation prompts are described in Appendix G.1). To ensure quality and domain relevance,
1.5k samples were randomly selected for expert review. After cleaning and careful labeling, 1, 294
high-quality Q&A pairs were retained as the meta dataset.

Figure 2: The Benchmark Construction Pipeline.
The annotation team consisted of 13 experts spanning infectious disease, cancer, and bacterial
vaccines. All were trained under unified guidelines and evaluated each Q&A–reasoning triplet strictly
against the source material. Items were labeled as either valid or hallucinated, with justifications
provided for the latter. Detailed preprocessing and annotation workflows are described in Appendix B.

To reduce model-specific bias—particularly since the same system might otherwise generate and
answer its own questions—we employed several MLLMs with long-context and multimodal support,
including GPT-4o OpenAI, Claude3.5-Sonnet Claude, Ernie4.0-Turbo Baidu, and DeepSeek-R1 Guo
et al. (2025).

Following expert annotation, the meta dataset was organized into three complementary components:
Open-ended Q&A Data, Hallucination Data, and Adjuvant Formal Data. Each component is
described in detail in the subsequent sections.

3.3 STATISTICS OF BENCHMARK

3.3.1 OVERALL ANALYSIS

The overall distribution of the benchmark is shown in Fig. 3. Specifically, Fig. 3a illustrates the
proportions of different data types, while Fig. 3b summarizes the contributions of various models
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to Q&A generation. The benchmark is primarily composed of open-ended Q&A items and formal
adjuvant data, with GPT-4o and DeepSeek-R1 contributing the majority of the high-quality entries.
This reflects their comparatively stronger performance in preliminary generation and evaluation.
Further details and representative examples are provided in Appendix A and Appendix G.

(a) Distribution of the Data Types (b) Distribution of MLLMs for Generating Q&A Data

Figure 3: Distribution of the Adjuvant Benchmark

3.3.2 OPEN-ENDED Q&A DATA

The open-ended Q&A component is intended to evaluate the extent to which MLLMs capture
adjuvant-related knowledge. It draws on both basic and advanced material curated from textbooks
and peer-reviewed publications. The advanced category covers two major themes: biological
principles (e.g., immunological mechanisms of adjuvant action) and design & safety (e.g., strategies
for developing or modifying adjuvants and approaches for evaluating safety). Table 2 summarizes the
distribution of these data, with the advanced subtypes highlighted.

Table 2: Distribution of Open-ended Q&A

Data Basic Advanced Biology Design
Type Knowledge Knowledge Principles & Safety

Count 221 1073 846 227

Table 3: Hallucination Data

Data Type Question Answer Overlap Total
Hallucination 27 54 12 69

In addition, the benchmark includes multimodal content: 1,135 entries are text-only (87.7%), while
159 involve image-associated inputs (12.3%). This enables evaluation of both purely textual reasoning
and multimodal understanding. Illustrative examples are provided in Appendix C.

3.3.3 HALLUCINATION DATA

In this study, the hallucination data follow the same structural format as the open-ended Q&A but
differ in that the questions or answers have been reviewed by domain experts and explicitly judged
to be incorrect. Rather than discarding these items, we retain them as a dedicated resource for
evaluating the ability of MLLMs to recognize and reject hallucinations in the context of adjuvant and
immunology tasks. For clarity, we distinguish two categories: question hallucinations and answer
hallucinations. This dataset provides a controlled setting for analyzing the sources of hallucination
errors and offers a reference point for the development of more reliable model evaluation and training
strategies.

3.3.4 ADJUVANT FORMAL DATA

Formal descriptions are introduced to translate complex biological processes related to adjuvants into
structured variables and functional transformations, with the aim of improving both the reasoning
capacity and interpretability of MLLMs in this domain. Such formalized pathways also provide a
systematic means of representing mechanisms that may otherwise remain implicit or fragmented in
the literature.

To construct these descriptions, we worked with the same team of adjuvant experts described in
Section 3.2 to design a set of formal variables and functions, thereby establishing expert-defined
standards. These standards were organized into templates and incorporated into prompts for GPT-4o,
which subsequently generated a total of 1,364 formal entries (Fig. 1c). The data are divided into two
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balanced categories: adjuvant design and adjuvant activation & immune processes, each comprising
682 items. Detailed definitions of the variables and functions are provided in Appendix D.

Although this framework has not yet been applied to downstream model training, the released vari-
ables and relationships—such as Form(Struc, Ag) and Load(A, B, Surface)—serve as
structured building blocks for future adjuvant-specialized MLLMs. By providing a computable ab-
straction of design principles and immune response processes, the framework establishes a foundation
that can be extended in subsequent research.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

MLLMs: The set of evaluated models is listed in Table 4. Models highlighted in blue were also used
in the data generation stage and were subsequently reviewed by adjuvant experts.

Table 4: Models evaluated on the adjuvant benchmark. Blue rows indicate models additionally used
during data generation.

Model #Size Form Ver. Model #Size Form Ver.
GPT-4o N/A api latest LLaVA1.5-13B 13B open v1.5
GPT-4.1 N/A api latest Qwen2.5-VL-7B 7B open instruct
OpenAI-o1 N/A api latest Qwen2.5-VL-72B 72B open instruct
Claude3.5 N/A api sonnet Qwen3-8B 8B open/api think
Claude3.7 N/A api sonnet Qwen3-32B 32B open/api think
Gemini1.5-Pro N/A api latest Qwen3-30B-A3B 30B open/api think
Gemini2.0-Pro N/A api flash Qwen3-235B-A22B 235B open/api think
Gemini2.5-Pro N/A api flash Internvl2.5-8B 8B open v2.5
Ernie3.5 N/A api latest Internvl2.5-78B 78B open v2.5
Ernie4.0 N/A api turbo Internvl3.0-8B 8B open v3.0
Doubao1.5-Pro N/A api 250115 Internvl3.0-72B 72B open v3.0
DeepSeek-R1 671B open/api reasoner InstructBlip-13B 13B open vicuna
DeepSeek-V3 671B open/api chat Idefics-9B 9B open instruct
LLaVA1.5-7B 7B open v1.5 Darwin 7B open v1.5

Inference: Closed-source models were accessed through their official APIs. For open-source models,
inference was performed with the official implementations on 8 × NVIDIA A800 GPUs, following
recommended hyperparameter settings. To ensure comparability across models, all were evaluated
under identical prompts in a zero-shot setting (see Appendix G.2 for prompt details). To ensure
fairness, regardless of whether the model supports multimodal input, we utilized a unified OCR engine
to process the images and concatenated the OCR output with the original input text. Furthermore, we
assessed the performance of the top 5 multimodal models on the image-related subset, with detailed
experimental results provided in Appendix F.

Evaluation metrics: To assess knowledge comprehension in the adjuvant domain, we employed a
combination of automatic metrics and model-based scoring. Standard measures included Seman-
tic Textual Similarity (STS) and BERTScore. In addition, we introduced an LLM-based rubric,
implemented with GPT-4o and DeepSeek-R1, which scored answers along three axes: Similarity
Score (SS), Scientific Rationality Score (RS), and Inclusiveness Score (IS), each on a 0–10 scale.
This approach provides a scalable and reproducible way to evaluate factual accuracy and conceptual
soundness, while reducing dependence on manual annotation. To further probe robustness, we report
a Hallucination Rejection Ratio (HRR), which quantifies the ability of models to detect and avoid
incorrect content. Detailed metric formulations are given in Appendix E.

4.2 EVALUATION OF GENERATION

During the annotation process, experts assigned subjective scores (0–10) to six dimensions: Ques-
tioning Ability, Answering Ability, Reasoning Ability, Knowledge Reserve, Chart Analysis, Context
Utilization, and Instruction Following. These scores reflect the overall quality and reliability of the
generated content.

The results are summarized in Fig. 4a. DeepSeek-R1 obtained comparatively higher scores in both
questioning and answering ability, indicating that it can produce relevant prompts and generate
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responses with coherent reasoning in the adjuvant domain. GPT-4o achieved the highest score in
questioning ability and also performed well in instruction following, suggesting that it is effective at
generating focused inquiries and adhering to task specifications. In addition, GPT-4o showed broad
coverage of domain knowledge, contributing to more comprehensive responses.

(a) Subjective Evaluation in Generation (b) LLM Scores

Figure 4: Comprehensive Evaluation of MLLMs on the Adjuvant Benchmark

By contrast, Ernie4.0 and Claude3.5 received consistently lower scores across several categories,
suggesting limitations in handling complex material from adjuvant-related literature.

Overall, the expert assessments highlight GPT-4o and DeepSeek-R1 as the strongest performers
within this evaluation setting, particularly in tasks requiring both domain-specific questioning and
reasoned answering. These findings provide a basis for selecting suitable base models for future work
in adjuvant-focused applications.

4.3 EVALUATION OF ADJUVANT OPEN-ENDED Q&A

We evaluated 11 closed-source and 18 open-source MLLMs on the adjuvant open-ended Q&A task.
Results are reported in Table 5, with blue highlighting used to indicate models achieving state-of-the-
art performance under the given metrics. A comparison between closed- and open-source models is
summarized below.

Closed-source vs. Open-source: On average, closed-source models achieved higher overall perfor-
mance, with a mean LLM Score of 7.3 and an STS score of 0.7263, compared to 6.2 and 0.6846 for
open-source models. Nevertheless, several open-source models exceeded the closed-source averages.
DeepSeek-R1 (LLM Score= 7.7, STS = 0.7415), DeepSeek-V3 (LLM Score = 7.8, STS = 0.7289),
Qwen3-235B (LLM Score = 7.6, STS = 0.7331), and Qwen3-32B (LLM Score = 7.6, STS = 0.7259)
performed comparably to the strongest closed-source models, particularly in scientific rationality
and inclusiveness. However, in terminology consistency, reflected by BERTScore, open-source
models averaged 0.550, which remains below the closed-source average of 0.566. This suggests that
while optimization strategies enable some open-source models to close the gap, challenges remain
in aligning with domain-specific vocabulary. Overall, the observed performance differences appear
to relate more to the extent of domain knowledge integration than to the proprietary or open-source
nature of the models.

Inference Models vs. Think Models: Think-oriented models obtained higher scores in Rationality
Score (RS), Inclusiveness Score (IS), and STS compared to inference-style models. This pattern
suggests that their explicit reasoning mechanisms—such as multi-step causal decomposition and
logical verification—contribute to producing more logically consistent and comprehensive answers.
At the same time, the reliance on explicit reasoning chains increases decoding complexity, which may
constrain efficiency in resource-limited settings. These observations indicate that combining explicit
reasoning strategies with domain knowledge and structured representations could be a promising
direction for future model development.

Closed-source Models: OpenAI-o1 (LLM Score = 7.7, STS = 0.7495) was the best-performing
closed-source model in our setting. By contrast, Ernie4.0 (LLM Score = 6.9) and Doubao1.5-Pro
(LLM Score = 7.1) obtained lower scores within this cohort. While performance differences may
correlate with factors such as data coverage, training procedures, and model scale, the proprietary
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nature of these systems prevents attributing causality from our evaluation alone. Closed-source
models also pose practical constraints for scientific use, including limited transparency and higher
inference costs, which may hinder broad adoption in open research workflows. Future work could
explore more transparent and collaborative evaluation practices to facilitate integration into scientific
pipelines.

Table 5: Evaluation Result of Adjuvants Open-ended Q&A

LLM Score (GPT-4o) LLM Score (DeepSeek-R1)
Model Category STS Score BertScore SS RS IS SS RS IS LLM Score Avg

Closed-source MLLMs
Inference Models

GPT-4o OpenAI 0.7261 0.5732 6.4 8.3 6.8 6.9 8.6 6.8 7.3
GPT-4.1 OpenAI 0.7178 0.5420 7.0 8.5 7.2 7.6 9.0 7.6 7.8
Cladue3.5 Claude 0.7256 0.5750 6.2 8.2 6.7 6.8 8.7 6.9 7.3
Cladue3.7 Claude 0.7396 0.5650 6.5 8.2 6.8 7.0 8.7 7.1 7.4
Gemini1.5-Pro Team et al. (2024) 0.7235 0.5644 6.3 8.2 6.7 6.9 8.8 7.1 7.3
Gemini2.0-Pro Google 0.7118 0.5486 6.3 8.2 6.7 6.9 8.7 7.1 7.3
Gemini2.5-Pro Google 0.7316 0.5664 6.6 8.4 7.0 7.2 8.9 7.1 7.5
Ernie3.5 Baidu 0.7199 0.5554 6.1 8.0 6.5 6.4 8.2 6.2 6.9
Ernie4.0 Baidu 0.7238 0.5587 6.0 8.0 6.4 6.4 8.2 6.2 6.9
Doubao1.5-Pro Volcengine 0.7201 0.5532 6.1 8.0 6.4 6.8 8.5 6.7 7.1

Think Models
OpenAI-o1 OpenAI 0.7495 0.6195 6.9 8.5 7.1 7.3 8.9 7.2 7.7

Average 0.7263 0.5656 6.4 8.2 6.8 6.9 8.7 6.9 7.3
Open-source MLLMs

Inference Models
DeepSeek-V3 Liu et al. (2024a) 0.7289 0.5276 6.8 8.4 7.0 7.6 9.0 7.7 7.8
LLaVA1.5-7B Liu et al. (2024b) 0.7134 0.5823 5.2 7.0 5.2 5.3 6.7 4.6 5.7
LLaVA1.5-13B Liu et al. (2024b) 0.7116 0.5838 5.4 7.1 5.4 5.4 6.9 4.8 5.8
Qwen2.5-VL-7B Bai et al. (2025) 0.7151 0.5602 5.8 7.8 6.1 5.9 7.7 5.7 6.5
Qwen2.5-VL-72B Bai et al. (2025) 0.7217 0.5649 6.2 8.2 6.7 6.6 8.4 6.5 7.1
Internvl2.5-8B Chen et al. (2024) 0.7217 0.5649 5.2 7.0 5.5 5.4 6.8 5.0 5.8
Internvl2.5-78B Chen et al. (2024) 0.6966 0.5606 6.0 7.8 6.3 6.2 7.9 6.0 6.7
Internvl3.0-8B Zhu et al. (2025) 0.6987 0.5526 5.6 7.6 6.0 6.0 7.6 5.9 6.5
Internvl3.0-78B Zhu et al. (2025) 0.7173 0.5608 6.2 8.1 6.6 6.6 8.3 6.5 7.1
InstructBlip-13B Dai et al. (2023) 0.5960 0.5551 4.9 6.2 4.5 5.0 6.3 4.3 5.2
Idefics-9B Laurençon et al. (2023) 0.5662 0.4718 4.5 6.2 4.3 4.8 6.1 4.2 5.0

Think Models
DeepSeek-R1 Guo et al. (2025) 0.7415 0.5485 6.6 8.4 7.1 7.5 9.0 7.7 7.7
Qwen3-8B Bai et al. (2025) 0.7275 0.5387 6.5 8.1 6.7 7.1 8.6 7.2 7.4
Qwen3-32B Bai et al. (2025) 0.7259 0.5371 6.6 8.1 6.9 7.3 8.8 7.6 7.6
Qwen3-30B-A3B Bai et al. (2025) 0.7262 0.5411 6.5 8.3 6.9 7.2 8.8 7.3 7.5
Qwen3-235B-A22B Bai et al. (2025) 0.7331 0.5497 6.5 8.4 7.0 7.3 8.9 7.6 7.6

Domain-Specific Models
Darwin Xie et al. (2025b) 0.6376 0.6245 4.4 5.5 3.8 4.1 5.4 3.1 4.4
BioGPT-Large-PubMedQA Luo et al. (2022) 0.5468 0.4906 1.7 2.3 1.3 1.9 2.5 1.7 1.9

Average 0.6904 0.5509 5.6 7.3 5.7 5.9 7.4 5.7 6.3

Open-source Models: Among the open-source systems, DeepSeek-V3 achieved the highest overall
performance. DeepSeek-R1 (LLM Score = 7.7), Qwen3-32B (LLM Score = 7.6), and Qwen3-235B
(LLM Score = 7.6) all surpassed the closed-source average (7.3). These models employed explicit
reasoning strategies, such as causal decomposition and multi-step verification, which contributed to
higher scientific rationality scores and in some cases exceeded those of closed-source models (e.g.,
Claude3.5). This suggests that open-source models can exhibit strong logical reasoning capabilities,
although they often rely on decomposition and iterative reasoning to mitigate limitations in domain-
specific knowledge.

DeepSeek-R1 and Qwen3-235B also incorporate Mixture of Experts (MoE) architectures, where
dynamic expert routing enables finer-grained knowledge integration. While MoE contributes to
improvements in reasoning and task decomposition, terminology consistency remains a challenge:
BERTScore for these models is still lower than that of closed-source models such as GPT-4o. This
indicates that MoE and reinforcement learning approaches alone are insufficient, and domain-adaptive
pretraining remains necessary for accurate use of specialized terminology.

An additional observation is the non-linear relationship between parameter scale and performance:
Qwen3-235B and Qwen3-32B achieved similar LLM Score despite their large difference in size. This
pattern highlights diminishing returns from scaling alone and underscores the importance of targeted
knowledge injection for domain adaptation. By contrast, models such as InstructBlip-13B and
Idefics-9B underperformed across most metrics, reflecting architectural and training-data limitations
in earlier generations of multimodal LLMs.

Domain-Specific Models: The comparatively lower performance of domain-specific biomedical
and materials models indicates limitations in directly transferring such architectures to adjuvant
tasks. Their training objectives, often centered on literature summarization or general biomedical
QA, are not well aligned with the requirements of adjuvant-focused Q&A, leading to weaker answer
quality (see Appendix F.4 for detailed examples). These results reinforce the view that progress
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in adjuvant research requires purpose-built datasets rather than relying solely on fine-tuning with
broader biomedical or materials corpora. Notably, the Darwin model obtained the highest BERTScore
among all models, which may be linked to its use of open-ended Q&A data during initial training,
partially aligning it with the evaluation setting.

Overall, models from the GPT, DeepSeek, and Qwen3.0 families demonstrated relatively strong
performance across multiple metrics, suggesting that these families already possess the capacity
to contribute as auxiliary tools for basic research and as potential foundations for future adjuvant-
specialized systems.

4.4 EVALUATION OF HALLUCINATION REJECTION

We evaluated the top five models (both closed-source and open-source) based on their LLM Scores
for their ability to reject hallucinations. Results are reported in Table 6.

Table 6: Evaluation of Hallucination Rejection Capabilities (Mean ± SD over 10 shuffled evaluation)

Model Category Question HRR (%) Answer HRR (%) Overall HRR (%)
GPT-4o 30.74% (± 4.95%) 23.33% (± 2.92%) 26.23% (± 2.85%)
GPT-4.1 22.22% (± 2.47%) 14.26% (± 1.25%) 17.10% (± 1.14%)
OpenAI-o1 24.07% (± 4.70%) 18.15% (± 2.10%) 20.58% (± 2.72%)
Gemini 2.5 Pro 18.15% (± 3.68%) 9.07% (± 1.84%) 12.32% (± 1.41%)
Claude3.7 13.33% (± 2.59%) 22.96% (± 1.79%) 21.59% (± 1.59%)

DeepSeek-V3 0.00% (± 0.00%) 2.69% (± 0.92%) 2.10% (± 0.72%)
DeepSeek-R1 22.59% (± 4.08%) 12.04% (± 3.18%) 16.23% (± 3.19%)
Qwen3-8B 12.96% (± 4.70%) 10.37% (± 1.79%) 11.74% (± 1.74%)
Qwen3-32B 14.81% (± 3.49%) 8.52% (± 3.17%) 8.52% (± 3.17%)
Qwen3-30B-A3B 21.11% (± 5.25%) 17.22% (± 1.96%) 18.99% (± 2.41%)
Qwen3-235B-A22B 23.33% (± 6.06%) 16.15% (± 3.53%) 18.73% (± 3.13%)

Both closed- and open-source models exhibited limited capability in hallucination rejection. The
median HRR for closed-source models was 20.58%, compared to 13.99% for open-source models,
which falls below the level generally required for reliable application in practice. For example,
DeepSeek-V3 performed strongly on the adjuvant Q&A task (LLM Score = 7.8) but obtained the
lowest HRR (2.10%), highlighting the inconsistency between knowledge answering and hallucination
rejection.

These findings suggest that current models often rely on surface-level language correlations rather
than deeper domain reasoning, which constrains their ability to identify and reject incorrect content.
Improving hallucination control in this setting will likely require domain-adaptive fine-tuning com-
bined with structured knowledge representations, in order to enhance logical coherence and scientific
reliability. Additional analyses are provided in Appendix F.

5 CONCLUSIONS AND LIMITATIONS

This work presents the first benchmark dedicated to adjuvants, combining 1,294 expert-annotated
Q&A pairs and 1,364 formal descriptions. Using this resource, we systematically evaluated 11 closed-
source and 18 open-source MLLMs across open-ended Q&A, hallucination rejection, and instruction
following. Our results highlight comparatively strong performance from the GPT, DeepSeek-R1, and
Qwen3.0 families, and we propose a formal framework that abstracts adjuvant design principles and
immune mechanisms into structured representations to support future domain-specific models.

While our study provides an initial foundation, further progress will require stratified benchmarks
to capture varying task difficulty, domain-adaptive training for expert knowledge integration, and
hybrid neuro-symbolic architectures that leverage the proposed formal framework. Beyond technical
evaluation, the benchmark and formal abstractions may lower the entry barrier for applying MLLMs
in immunology and help systematize reasoning in vaccine adjuvant research. These resources are
intended solely for research purposes and should not be used directly in clinical contexts without
expert validation.
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REPRODUCIBILITY STATEMENT

We ensure that our work is reproducible by providing all necessary resources for others to replicate
our experiments. Specifically:

• Benchmark Data and Experimental Setup: All datasets used in the experiments, along
with detailed data processing steps, are publicly available. The experimental setup is also
provided, including hyperparameters, evaluation metrics, and the benchmarking environ-
ment.

• Source Code: The code used to process the data and conduct the benchmarking experiments
is available in an anonymous repository. This includes all scripts necessary for replicating
the experiments as described in the paper.

By providing these resources, we aim to make our results fully reproducible and facilitate further
research based on our work. The details required for reproduction can be found in the anonymous
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APPENDIX OVERVIEW

This appendix provides supplementary material to support reproducibility and clarity. It is organized
as follows:

• Appendix A: Dataset Construction
– Additional statistics, distributions, and category breakdown.

• Appendix B: Data Preprocessing and Expert Annotation
– B.1 Details of the preprocessing pipeline.
– B.2 Details of expert annotation workflow, quality control procedures, and inter-

annotator agreement notes.
• Appendix C: Representative Q&A Examples

– Selected samples from the benchmark illustrating different knowledge categories.
• Appendix D: Formal Framework

– D1. Definitions of formal variables.
– D2. Definitions of formal functions.
– D3. Definitions of functional transfer relationship.

• Appendix E: Evaluation Metrics
– E.1 Mathematical formulations of Semantic Textual Similarity (STS).
– E.2 Mathematical formulations of BERTScore.
– E.3 Definition of LLM Score and consistency verification between the human expert

score.
– E.4 Mathematical formulations of Hallucination Rejection Ratio (HRR).

• Appendix F: Experimental Analyses
– F.1 Extended results on prompt-following.
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A DETAILED DATA FOR CHART

A.1 DISTRIBUTION OF THE ADJUVANT BENCHMARK

Table 7: Distribution of the Data Types

Category Open-ended Q&A Hallucination Adjuvants Formal
Count 1294 69 1364

A.2 DISTRIBUTION OF MLLMS FOR GENERATING Q&A DATA

A.3 SUBJECTIVE EVALUATION OF MLLMS IN GENERATION
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Table 8: Distribution of MLLMs for Generating Q&A Data

Model DeepSeek-R1 GPT-4o Claude3.5-Sonnet Ernie4.0-Turbo
Count 559 471 143 121

Table 9: Subjective Evaluation of MLLMs in Generation

Ability GPT-4o Cladue3.5 Erine4.0 DeepSeek-R1
Questioning 8.0 6.4 6.9 7.9
Answering 7.0 6.5 7.4 8.1
Reasoning 7.7 7.1 7.7 8.0

Knowledge Reserve 7.0 6.9 7.1 7.5
Chart Analysis 6.2 5.3 5.0 7.7

Context Utilization 7.2 7.1 6.1 7.8
Instruction Following 8.0 6.5 6.0 7.5

Figure 5: Visualization of Subjective Evaluation in MLLMs Generation
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B DATA PREPROCESSING AND EXPERT ANNOTATION DETAILS

B.1 DATA PREPROCESSING

The raw corpus consisted of 739 peer-reviewed research articles and two classic textbooks in im-
munology and vaccine adjuvants. We employed a document parsing pipeline based on PyMuPDF
+ pytesseract to extract structured text while preserving paragraph hierarchy and separating
embedded figures. Both extracted text and figures were then provided as context to multimodal
models (e.g., GPT-4o). For unimodal models such as DeepSeek-R1, figures were processed with
an OCR engine to obtain textual content, ensuring consistency across evaluations (Fig. 6). All
outputs were subsequently reviewed, and only accurate and relevant Q&A pairs were retained in the
benchmark.

Figure 6: Data preprocessing pipeline.

From the processed corpus, 1,500 candidate Q&A items were randomly sampled for expert review.

B.2 EXPERT ANNOTATION

B.2.1 EXPERT TEAM

Annotation was carried out by 13 specialists spanning complementary areas of vaccine research:

• Infectious disease vaccines: 1 senior researcher, 2 PhD students, 3 MSc students.
• Cancer vaccines: 1 researcher, 2 PhD students, 2 MSc students.
• Bacterial vaccines: 2 MSc students.

All annotators had domain training in immunology or vaccine-related research.

B.2.2 EXPERT ANNOTATION WORKFLOW

Annotation followed standardized guidelines co-developed by AI and immunology experts. The
workflow was:

1. Define goals: establish the first domain-specific benchmark for adjuvant research.
2. Curate source material: collect high-quality PDFs of papers and textbooks.
3. Determine data requirements: textbooks for foundational knowledge; research articles for

advanced content (mechanisms, design principles, safety).
4. Pilot phase: generate trial items with MLLMs; refine through expert feedback.
5. Batch generation: perform large-scale API-based generation once validated.
6. Annotation protocol: assess each item for (i) correctness of the question, (ii) correctness

of the answer, (iii) validity of reasoning, (iv) overall quality. → Incorrect questions ⇒
question hallucinations; incorrect answers ⇒ answer hallucinations.

7. Standardization: annotators trained to rely exclusively on the source text, avoiding subjective
inference.

8. Validation: first-round expert review followed by quality control from AI researchers before
later batches.
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B.2.3 CONSISTENCY ASSURANCE

To guarantee reliability and minimize subjectivity, we adopted the following measures:

• Reference standard: The original source text was defined as the sole criterion for correct-
ness, preventing reliance on prior knowledge or subjective inference.

• Unified training: All annotators underwent standardized training and participated in a trial
phase before formal labeling.

• Joint calibration: Approximately 30% of the samples were jointly annotated to align
interpretations across experts.

• Independent labeling with discussion: The remaining 70% of samples were labeled
independently, with ongoing discussions to resolve uncertainties.

This multi-step protocol ensured consistent, transparent, and reproducible labeling across the bench-
mark.
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C CASES FROM ADJUVANT BENCHMARK

Figure 7: A Case from Basic Knowledge Open-ended Q&A

Figure 8: A Case from Advanced Knowledge (Biological Principles) Open-ended Q&A

Figure 9: A Case from Advanced Knowledge Vision-related Open-ended Q&A
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Figure 10: A Case from Advanced Knowledge Vision-related Open-ended Q&A

Figure 11: A Case from Advanced Knowledge (Adjuvant Design) Open-ended Q&A

Figure 12: A Case from Advanced Knowledge (Adjuvant Safety) Open-ended Q&A

Figure 13: A Case from Question Hallucination Generation by GPT-4o
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Figure 14: A Case from Answer Hallucination Generation by GPT-4o

Figure 15: A Case from Q&A Hallucination Generation by GPT-4o

Figure 16: A Case from the Invalid Data Generation by Claude3.5: Incomplete Answer
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D ADJUVANT FORMAL DATA

D.1 DEFINITION OF ADJUVANT FORMAL VARIABLES AND FUNCTIONS

D.1.1 FORMAL VARIABLES

Vaccines (V ): The vaccine, if there are multiple new vaccines, they can be defined as V =
{V ac1, V ac2, . . . , V acn}.

Experimental Group (EG): Defined as V ace = EG.

Control Group (CG): Defined as V ace = CG.

Original Viral Surface Antigen (Ag): The original viral surface antigen defined as Ag. If there are
multiple antigens, they can be enumerated as Ag1, Ag2, . . ..

Structural Configurations (Struc): If antigens possess specific structural configurations, such as
particles or dimers, these structures are described and defined as Struc. Multiple structures may be
defined as Struc1, Struc2, . . ..

Antigens in New Vaccines (Ag): In new vaccines, the antigens employed are similarly defined as
Ag.

Adjuvant Forms (Struc): The forms of adjuvants include small molecules, particles, gels, inorganic
salts, vesicles, and others. If the literature explicitly specifies the structural forms of adjuvants (e.g.,
nanoparticles, microparticles, etc.), these adjuvants should be formally incorporated and defined as
Adj1, Adj2, and so forth.

Movement Variables Related to Vaccine Delivery: Examples include residence (Stay at), drainage
(Drain to), and targeting (Target to), as illustrated below:

Stay at the injection site / lung / gut / . . . :

Stay at Injectionsite/Lung/Gut/ . . .

Drain to lymph nodes / spleen / bone marrow / . . . :

Drain to Lymphnode/Spleen/Bonemarrow/ . . .

Targeted delivery to lymph nodes / spleen / bone marrow / dendritic cells / T cells :

Target to Lymphnode/Spleen/Bonemarrow/DCs/Tcells/ . . .

Definitions of Innate Immune Cells:

Conventional Dendritic Cells 1 (cDC1): Cell1 = cDC1 in injection site

Monocyte-derived Macrophages (MoM): Cell2 = MoM in peripheral blood

Tissue-resident Macrophages (TRM): Cell3 = TRM in spleen

Neutrophils: Cell4 = Neutrophils in lymph nodes

Plasmacytoid Dendritic Cells (pDC): Cell5 = pDC in peripheral blood

Maturation-induced Macrophages: Cell6 = Mature Macrophages in tissues

Actions of Innate Immune Cells:

Recruitment and Activation of DC: Recruit / Activate of DC

Uptake of Antigen / Adjuvant / Other by DC: Antigen / Adjuvant / ... Uptake of DC

Secretion of Cytokine / Chemokine / Other by DC: Cytokine / Chemokine / ... Secret of DC

Antigen Presentation by DC: Antigen presentation of DC

Migration of DC: Migrate of DC

Phagocytosis by DC: Phagocytosis of DC
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Costimulation of T cells by DC: Costimulation of T cells by DC

Cytotoxic activity of DC: Cytotoxic activity of DC

Definitions of Various T Cells:

Follicular Helper T Cells (Tfh): Cell1 = Tfh in lymph node

CD4+ T Cells: Cell2 = CD4 T cell in peripheral blood

CD8+ T Cells: Cell3 = CD8 T cell in spleen

Th1 Cells: Cell4 = Th1 in lymph node

Th2 Cells: Cell5 = Th2 in spleen

Memory T Cells: Cell6 = Memory T cell in peripheral blood

Actions of T Cells:

Proliferate: Movement = Proliferate of Cell

Activate: Movement = Activate of Cell

Differentiate: Movement = Differentiate of Cell

Secret: Movement = Secrete of Cell

Migrate: Movement = Migrate of Cell

Mutate: Movement = Mutate of Cell

Definitions of B Cells:

Germinal Center B Cells (GCB): Cell1 = GCB in lymph node and spleen

Plasma Blasts: Cell2 = Plasma Blast in peripheral blood and lymph node

Plasma Cells: Cell3 = Plasma Cell in bone marrow

Memory B Cells: Cell4 = Memory B cell in bone marrow and lymph node

Long-Lived Plasma Cells: Cell5 = Long-Lived Plasma Cell in bone marrow

Actions of B Cells:

Proliferate: Movement = Proliferate of Cell

Activate: Movement = Activate of Cell

Differentiate: Movement = Differentiate of Cell

Migrate: Movement = Migrate of Cell

Mutate: Movement = Mutate of Cell

Definition of Antibodies:

Antibodies have three defining criteria: the source of the body fluid (such as serum or bronchoalveolar
lavage fluid), the target antigen (defined according to the structure of the antigen established in the
first step), and the type (such as IgG, IgA, or simply Antibody, which must refer to the terminology
used in the literature).

Each type of antibody must be defined structurally, following the format:

Ab = “Type” to “Antigen” in “Body Fluid Type”

Example: The antibody IgG to antigen Ag in serum:

Ab = IgG to Ag in Serum

Actions of Antibodies:
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Secrete: - Movement refers to the increase in antibody titers, which can be interpreted as an increase
in antibody secretion.

Movement = Secrete of Ab

Affinity: - Movement refers to the enhanced binding of antibodies to viruses, interpreted as an increase
in affinity.

Movement = Affinity of Ab

Cross-reactivity: - Movement refers to the enhanced binding of antibodies to antigens from other
variants, interpreted as an increase in cross-reactivity.

Movement = Cross-reactivity of Ab

Neutralization: - Movement refers to the ability of antibodies to block pathogenic activity through
target engagement.

Movement = Neutralization by Ab

Definitions of Other Immune Reactions:

In the text, there may be some summary-type descriptions of immune responses, such as GC responses
and T cell responses. Sometimes, it is not appropriate to define them as the above movement variable,
instead, these immune responses can be directly defined as movement variables.

Example: The GC response in the lymph node:

Movement = GC responses in lymph node

D.1.2 FORMAL FUNCTION

Representation of Composition (Form): If an antigen Ag1 forms a structure Struc1, it can be
expressed as:

Form(Struc1, Ag1)

The function Form(A,B/C/D/ . . .) represents the composition and refers to the assembly of
substances or antigens B/C/D/ . . . into A (adjuvants, structures, etc.).

Loading: The function Load(A,B, Inside/Surface/. . . ) refers to loading A into the inside or on the
surface of B.

Load(A,B, Inside) or Load(A,B, Surface)

Mixing: The function Mix(A,B) refers to simply blending A and B together.

Mix(A,B)

Chemical Coupling: The function Link(A,B) refers to chemically connecting A to B via chemical
bonds, protein linkage systems, or linkers.

Link(A,B)

Custom Combination Method: If new combination methods are specified in the literature, they
should be defined appropriately, for example, a function Combine(A,B) may represent a new
method of combination.

Combine(A,B)

D.1.3 FUNCTIONAL TRANSFER RELATIONSHIP

Comparative Relationships Between Experimental Group and Control Group:

Example 1: Experimental group EG enhances the action (Movement variable) compared to the
control group CG.

EG Enhance to CG at . . . /. . .

Example 2: Experimental group EG reduces the action (Movement variable) compared to the control
group CG.

EG Reduce to CG at . . . /. . .
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Persistent Comparison: For continuous comparative relationships, only when the original text
explicitly contains words such as prolong, extend, persistent, sustained, or durable, can the persistent
comparative relationship be established.

Example 3: Experimental group EG prolongs the action (Movement variable) compared to the
control group CG.

EG Prolong to CG at . . . /. . .

Transfer Relationships:

Causal relationship: For causal relationships that are explicitly stated or indicated in the article, use
the symbol >> to represent them.

Comparative relationships and the conjunction: Use the symbol & to represent comparative relation-
ships and the conjunction of immune pathways.

Further extend causal relationships: After establishing a clear causal inference, it is possible to
further extend this causal chain based on existing background knowledge. However, only the actions
and indicators explicitly stated in the article may be used, and no new actions can be introduced. Only
the existing causal relationships between actions may be supplemented, represented by the symbol
-->.

D.2 THE CASES OF ADJUVANT FORMAL DATA

Figure 17: A Case from Adjuvant Formal about Adjuvant Design
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Figure 18: A Case from Adjuvant Formal about Adjuvant Activation and Immune Process
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E EVALUATION METRICS

Traditional n-gram–based metrics, which rely on character or token overlap, are not well suited to
open-ended question answering. They emphasize surface similarity and often miss deeper semantic
alignment. We therefore adopt Semantic Textual Similarity (STS) and BERTScore, which operate
at the semantic level rather than raw overlap. In addition, we report an LLM-based score that
complements embedding metrics by explicitly rating answers along predefined rubrics (similarity,
rationality, inclusiveness). Together, these metrics provide complementary perspectives and allow for
more reproducible and transparent evaluation.

To assess hallucination rejection, we leverage hallucination data from the adjuvant benchmark.
Models are prompted with expert-annotated incorrect Q&A and asked to judge whether a sample
is invalid; the resulting hallucination rejection ratio (HRR) measures the proportion of correctly
rejected items.

E.1 SEMANTIC TEXTUAL SIMILARITY (STS)

STS evaluates the semantic proximity between two texts via cosine similarity of sentence embed-
dings. We compute embeddings with the SentenceTransformer Python module (model:
all-mpnet-base-v2) Reimers & Gurevych (2019).

Given texts T1 and T2 with embeddings E(T1) and E(T2), the score is

STS(T1, T2) =
E(T1) ·E(T2)

∥E(T1)∥ ∥E(T2)∥
. (1)

The value ranges from −1 to 1, with larger values indicating stronger semantic alignment.

E.2 BERTSCORE

BERTScore computes token-level semantic similarity using contextual embeddings. For a generated
text G and a reference C, we form a similarity matrix

Si,j =
E(Gi) ·E(Cj)

∥E(Gi)∥ ∥E(Cj)∥
, (2)

take P (i) = maxj Si,j as the best match for token Gi, and average:

BERTScore =
1

|G|

|G|∑
i=1

P (i). (3)

Scores are normalized to [0, 1] (higher is better). Compared with STS (sentence-level semantics),
BERTScore emphasizes token-level precision. For our BERTScore calculations, we use the
scibert scivocab uncased model Beltagy et al. (2019) with its corresponding tokenizer.

E.3 LLM SCORE

To complement embedding-based metrics, we employ an LLM-based evaluation with GPT-4o and
DeepSeek-R1. Each candidate answer is assessed along three dimensions:

• Similarity Score (SS): factual alignment with the expert reference answer.
• Rationality Score (RS): scientific soundness and logical coherence of the reasoning process.
• Inclusiveness Score (IS): coverage of essential points and completeness in addressing the

question.

Each dimension is scored on a [0, 10] scale, with the following interpretation in the context of adjuvant
knowledge:

• 0–3 (poor): major factual errors or incoherent reasoning, reflecting a lack of basic under-
standing of adjuvant concepts.
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• 4–6 (adequate): partially correct and logically consistent answers, but with noticeable gaps
or oversimplifications in immunological mechanisms or design principles.

• 7–10 (strong): scientifically consistent, well-reasoned, and comprehensive answers that
demonstrate a solid grasp of adjuvant biology and related immunological processes.

These three dimensions are deliberately chosen for the adjuvant domain: factual alignment (SS)
captures accuracy of immunological details, rationality (RS) reflects whether the explanation is
mechanistically plausible, and inclusiveness (IS) ensures that answers go beyond isolated facts to
integrate the multifaceted nature of adjuvant design and immune modulation.

Why LLM Score is valid: Using large language models as evaluators (“LLM-as-a-judge”) has become
a widely adopted practice in open-ended evaluation. Prior studies in general NLP benchmarks
demonstrate that LLM-based judgements correlate strongly with human preferences when prompts
and rubrics are standardized, and also analyze typical biases such as verbosity or self-preference
Zheng et al. (2023); Dubois et al. (2024); Kim et al. (2024); Panickssery et al. (2024); Xie et al.
(2025a).

Beyond general-purpose tasks, recent work shows that LLM-based evaluation is also effective in
scientific and biomedical domains. For instance, scientific question answering and biomedical
information extraction have employed rubric-guided LLM judges to approximate expert assessment
D’Souza et al. (2025); Laskar et al. (2025). In the medical domain, Wang et al. (2025) integrated
LLM evaluators into a formal framework for clinical ambient scribing, published in a Nature journal.
Similarly, mathematical reasoning tasks have used LLM judges to assess solution validity under
verifiable criteria Stephan et al. (2024). These precedents confirm that LLM-as-a-judge is not only
scalable but also increasingly recognized across scientific subfields.

In our setup, we (i) fix prompts and decoding parameters to minimize variance, (ii) average scores
from two high-performing evaluators (GPT-4o and DeepSeek-R1) to reduce single-model bias, and
(iii) complement LLM-based scores with embedding metrics (STS/BERTScore) for transparency and
reproducibility. This multi-perspective design yields a reliable proxy for expert assessment while
keeping annotation costs tractable, aligning with best practices reported across both general and
scientific domains.

E.3.1 EXPERIMENT OF CONSISTENCY VERIFICATION BETWEEN LLM SCORE AND HUMAN
EXPERT SCORE

To verify the effectiveness of using LLMs as judges in the field of adjuvants, we conducted a
consistency test between LLM scores and human expert scores. Specifically, we randomly selected
100 responses from all models, with 50 evaluated by GPT-4o and the other 50 evaluated by DeepSeek-
R1. These 100 samples were then submitted to human experts for evaluation, using criteria that were
completely consistent with those used for the LLM scores. The results are presented in Table 10.

Table 10: Consistency Verification Between LLM Scores and Human Expert Scores

Scoring Model Rating Dimension Pearson Correlation Spearman Correlation Kendall Correlation

GPT-4o

Similarity 0.8412 0.8469 0.7752
Rationality 0.8006 0.6342 0.5793
Inclusiveness 0.8135 0.7487 0.6749
Avg 0.8407 0.8044 0.7084

DeepSeek-R1

Similarity 0.9145 0.9236 0.8185
Rationality 0.8767 0.8456 0.7732
Inclusiveness 0.8636 0.8749 0.7613
Avg 0.9125 0.9247 0.8019

All

Similarity 0.8854 0.8920 0.8019
Rationality 0.8443 0.7986 0.7239
Inclusiveness 0.8461 0.8416 0.7413
Avg 0.8803 0.8871 0.7739

The experiment and visualization (as shown in Fig 19) demonstrate high reliability in using these
models as scorers. Both GPT-4o and DeepSeek show strong linear correlations with expert scores,
particularly in the Similarity dimension, where GPT-4o achieves a Pearson correlation of 0.8412 and

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) Similarity: GPT-4o (b) Rationality: GPT-4o (c) Inclusiveness: GPT-4o

(d) Similarity: DeepSeek-R1 (e) Rationality: DeepSeek-R1 (f) Inclusiveness: DeepSeek-R1

Figure 19: LLM Score vs. Expert Score

DeepSeek reaches 0.9145. Although GPT-4o’s correlations are slightly lower, it remains consistently
strong across all dimensions, indicating that both models align well with expert evaluations and are
effective scoring agents.

Figure 20: Comparison of LLM and Expert Average Scores

Further analysis using Spearman correlation reveals that DeepSeek outperforms GPT-4o, especially
in the Similarity (0.9236) and Rationality (0.8456) dimensions. Despite GPT-4o’s lower performance
in Rationality (0.6342), it still maintains a reasonable level of ranking consistency, reinforcing its
validity as a scorer. The Kendall correlation results mirror these findings, with DeepSeek consistently
showing higher scores across all dimensions, particularly in Similarity (0.8185) and Rationality
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(0.7732). Although GPT-4o’s performance is lower in comparison, it remains within an acceptable
range, particularly in Similarity (0.7752), which indicates a strong consistency in ranking with expert
scores.

Overall, both GPT-4o and DeepSeek show strong alignment with expert scores, as demonstrated in
Fig 20. The average scores across the three dimensions for both the LLM and expert evaluations
largely overlap, confirming their reliability as scorers for this task. While DeepSeek slightly outper-
forms GPT-4o, particularly in Pearson and Spearman correlations, both models exhibit substantial
effectiveness and are well-suited for scoring tasks in this domain.

E.3.2 THE PROMPT OF LLM SCORE

The Prompt of LLM Score Evaluation

You are an expert in immunology and adjuvant design, with great achievements in immunol-
ogy and adjuvant design. With the aim of simplifying the thinking process, please score the
model’s answers and labels (out of 10 points) based on the similarity between the answers and
labels, the reasonableness of the answers, and whether the answers incorporate the meaning
of the labels. Finally, please provide the results in the following format:
Similarity Score: x
Rationality Score: x
Inclusiveness Score: x

E.4 HALLUCINATION REJECTION RATIO (HRR)

The hallucination rejection ratio (HRR) quantifies a model’s ability to detect and resist hallucinated
content:

HRR =
Number of correctly rejected hallucinated samples

Total hallucinated samples
× 100%.

Here, the numerator counts expert-labeled hallucinated Q&A pairs that the model successfully
flags as invalid. A higher HRR indicates stronger robustness, which is particularly important in
safety-sensitive biomedical applications.

Prompt design. The evaluation prompt explicitly defines the label mapping: “Yes” means the Q&A
is scientifically valid, while “No” means it contains hallucination (i.e., invalid claims). Additional
criteria are listed (factual errors, logical inconsistencies, causal reversal, pseudo-scientific claims,
domain irrelevance, or incomplete answers). In practice, the model is instructed to return “No”
whenever any of these problems occur, and “Yes” only when the Q&A is entirely correct and domain-
relevant. The requirement to “strictly return Yes or No” ensures output consistency and facilitates
automatic scoring; it does not prevent verification, since the ground truth hallucination labels were
already provided by domain experts during dataset construction.

Sample size. The current hallucination dataset consists of 69 high-quality, expert-annotated examples.
While relatively small, it represents the first curated hallucination resource in the adjuvant domain. To
mitigate sample-size concerns, we report mean HRR with standard deviations over ten repeated trials.
This provides an uncertainty estimate and ensures that performance differences reflect systematic
model behavior rather than random variation.

Together, this setup ensures that HRR measures what it is intended to capture: whether models can
resist generating or endorsing scientifically invalid claims in immunology and adjuvant science.
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E.4.1 THE PROMPT OF HALLUCINATION EVALUATION

The Prompt of Hallucination Evaluation

You are an expert in immunology and adjuvant design, with great achievements in the
immunology and adjuvant fields. Determine if the provided Question or its corresponding
Answer contains scientifically invalid claims in the fields of Biology, Immunology, or
Adjuvant Science. Return only ”Yes” (valid) or ”No” (invalid) without explanations.

Input Format:
- Question: [Insert question text]
- Answer: [Insert answer text]

Evaluation Criteria
Return ”No” if ANY of the following apply (including but not limited to):
1.Factual Errors
- Contradicts established scientific consensus.
2.Logical Inconsistencies
- Self-contradictory statements.
3.Causal Reversal
- Inverts cause-effect relationships.
4.Pseudo-Scientific Claims
- Unproven theories.
5.Domain Irrelevance
- Topics outside biology/immunology/adjuvant science.
6.Incomplete Answers - Missing critical steps/mechanisms.

Return ”Yes” ONLY if the Q&A pair is scientifically accurate, logically consistent, and
domain-relevant.

Response Requirement:
- Strictly return ”Yes” or ”No” in a single line.
- No markdown, formatting, or additional text.
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F EXPERIMENT ANALYSIS

F.1 EVALUATION OF PROMPT-FOLLOWING

We assessed the prompt-following ability of 11 closed-source and 18 open-source MLLMs under
identical hyperparameter settings. Results are summarized in Table 11.

Closed-source vs. open-source. Closed-source models consistently outperform open-source counter-
parts, showing higher average STS and BERTScore when prompts are introduced. This indicates
stronger instruction parsing and more reliable adherence to task requirements.

Performance shifts in open-source models. Interestingly, while prompts generally improved
semantic alignment (higher STS/BERTScore), several open-source models exhibited a drop in overall
LLM Score. Manual inspection suggests that prompts sometimes pushed these models toward verbose
or rigidly formatted answers, inflating token-level similarity but reducing factual soundness and
completeness. This mismatch highlights a trade-off between surface-level semantic alignment and
deeper reasoning accuracy in open-source systems.

Model-specific variability. Domain-specific systems such as BioGPT-Large perform particularly
poorly without explicit guiding phrases, in some cases even degrading compared to their no-prompt
baseline. For example, BioGPT-Large often required a deterministic prefix (e.g., "The answer
is:") to produce stable and interpretable outputs. Without such hints, its responses tended to diverge
from the expected format, which explains its negative improvement in Table 11 and 5.

inference Model vs. Think Model. “Think” models with explicit reasoning mechanisms show
relatively stable performance when prompts are added, compared to inference-only models. This
stability likely stems from their multi-step reasoning pathways, which already encourage adherence
to task constraints. By contrast, inference models exhibit more variability, suggesting that they are
more sensitive to prompt phrasing. Notably, gains in STS and BERTScore for both families are partly
explained by prompts eliciting more domain-specific terminology, which boosts surface alignment
metrics.

Summary. These findings highlight prompt-following as a key dimension of model robustness.
However, improvements in surface-level metrics do not always translate to better overall judgment
(LLM Score), particularly for open-source systems. This underscores the need for evaluation
frameworks that disentangle genuine reasoning gains from superficial prompt-induced artifacts.
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Table 11: Evaluation of Adjuvants in Open-ended Q&A (Without prompt)

LLM Score (GPT-4o) LLM Score (DeepSeek-R1)
Model Category STS Score BertScore SS RS IS SS RS IS LLM Score Avg

Closed-source MLLMs
Inference Models

GPT-4o 0.7190 0.5693 6.3 8.2 6.6 6.7 8.5 6.5 7.1
GPT-4.1 0.7150 0.5219 6.6 8.1 6.9 7.4 8.9 7.4 7.7
Cladue3.5 0.7153 0.5598 5.8 7.8 6.2 6.4 8.6 6.6 6.9
Cladue3.7 0.7323 0.5596 6.3 8.0 6.5 6.8 8.6 6.8 7.2
Gemini1.5-Pro 0.7123 0.5596 6.2 8.1 6.4 6.7 8.6 6.7 7.1
Gemini2.0-Pro 0.6927 0.5362 6.0 7.9 6.3 6.6 8.5 6.8 7.0
Gemini2.5-Pro 0.6927 0.5362 6.5 8.2 6.8 7.1 8.7 7.0 7.4
Ernie3.5 0.7121 0.5502 5.8 7.8 6.2 6.2 8.0 6.0 6.7
Ernie4.0 0.7337 0.6027 6.1 7.7 6.1 6.1 7.9 5.6 6.6
Doubao1.5-Pro 0.7093 0.5490 6.0 7.8 6.2 6.6 8.3 6.6 6.9

Think Models
OpenAI-o1 0.7310 0.5818 6.9 8.5 7.1 7.3 8.9 7.3 7.7

Average 0.7150 0.5569 6.2 8.0 6.5 6.7 8.5 6.7 7.1
Open-source MLLMs

Inference Models
DeepSeek-V3 0.7255 0.5254 6.5 8.2 6.8 7.4 8.8 7.5 7.5
LLaVA1.5-7B 0.7115 0.5763 5.1 6.5 4.8 5.0 6.2 4.3 5.3
LLaVA1.5-13B 0.7140 0.5888 5.3 7.0 5.2 5.4 6.8 4.7 5.7
Qwen2.5-VL-7B 0.7008 0.5513 5.5 7.6 5.8 5.7 7.5 5.4 6.3
Qwen2.5-VL-72B 0.7054 0.5723 5.7 7.5 5.9 5.9 7.8 5.7 6.4
Internvl2.5-8B 0.6824 0.5606 5.0 6.7 5.0 5.1 6.4 4.6 5.5
Internvl2.5-78B 0.7156 0.5675 5.8 7.6 5.9 6.0 7.6 5.7 6.4
Internvl3.0-8B 0.7111 0.5657 5.4 7.3 5.5 5.5 7.1 5.2 6.0
Internvl3.0-78B 0.7198 0.5679 6.0 7.8 6.2 6.2 8.0 6.0 6.7
InstructBlip-13B 0.6017 0.5711 4.8 6.1 4.4 4.9 6.1 4.1 5.1
Idefics-9B 0.6632 0.5002 4.9 6.3 4.6 4.9 5.8 4.2 5.1

Think Models
DeepSeek-R1 0.7360 0.5485 6.6 8.4 7.0 7.3 8.8 7.5 7.6
Qwen3-8B 0.7186 0.5297 6.1 8.1 6.5 6.9 8.6 7.0 7.2
Qwen3-32B 0.7193 0.5316 6.6 8.1 6.8 7.3 8.8 7.5 7.5
Qwen3-30B-A3B 0.7174 0.5302 6.3 8.2 6.7 7.1 8.7 7.2 7.4
Qwen3-235B-A22B 0.7262 0.5443 6.5 8.4 6.9 7.2 8.8 7.4 7.5

Domain-Specific Models
Darwin 0.6265 0.6253 4.3 5.4 3.7 3.9 5.2 3.0 4.3
BioGPT-Large-PubMedQA 0.5995 0.4665 3.1 4.0 2.8 3.2 4.4 2.7 3.4

Average 0.6942 0.5514 5.5 7.2 5.6 5.8 7.3 5.5 6.2

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

F.2 THE STATE-OF-THE-ART MODELS VISUALIZATION ANALYSIS

We randomly selected two Q&A pairs for visualization of GPT-o1 and DeepSeek-R1. The results are
shown in Fig. 21 and Fig. 22.

Fig. 21 illustrates that DeepSeek-R1 tends to emphasize specific molecular-level mechanisms, whereas
GPT-o1 provides higher-level framework descriptions. DeepSeek-R1’s responses align more closely
with the style of professional scientific literature, highlighting systematic mechanisms and technical
details, making it suitable for readers seeking in-depth understanding. In contrast, GPT-o1 produces
more concise and accessible answers, which better serve audiences with less biological background
by facilitating a quick grasp of core logic. These differences likely reflect variations in training data
and design objectives.

By contrast, Fig. 22 demonstrates a case where both models perform poorly. The example concerns
the comparison of polyclonal antibody responses elicited by RBD-NP and HexaPro S vaccines in non-
human primates against SARS-CoV-2 RBD mutations, particularly at site 484. Both models attempt
to analyze differences in antibody responses across vaccine platforms, but their reasoning and depth
vary significantly. GPT-o1’s response remains general and framework-driven, while DeepSeek-R1
integrates more domain-specific knowledge but at the cost of over-speculation.

Both models, however, exhibit a similar misconception: they assume that nanoparticles can evade
the E484K mutation. In reality, relevant studies indicate that both RBD-NP and HexaPro S remain
vulnerable to E484K (as shown in the ground truth answer), underscoring the importance of the
antibody binding site at position 484. Neither model captures this crucial detail, instead incorrectly
assuming that nanoparticle polyvalence confers resistance, while full-length proteins are more affected.
This reflects a naive generalization from antigenic polyvalence to mutation resilience.

This case highlights the limitations of current general-purpose models in handling fine-grained
immunological knowledge. It underscores the need for specialized models fine-tuned with domain-
specific data to achieve reliable reasoning in highly specialized biomedical contexts.

F.3 EVALUATION OF TOP 5 MLLMS IN VISUAL-RELATED SUBSETS

We selected the Top5 MLLMs that performed the best across the entire Open-ended Q&A when using
the same OCR engine (as shown in Fig 5). These models were then evaluated on a visually-related
subset, utilizing their native multimodal capabilities.

Table 12: Evaluation of Adjuvants in Open-ended Q&A Visual-related Subsets (With prompt)

LLM Score (GPT-4o) LLM Score (DeepSeek-R1)
Model Category STS Score BertScore SS RS IS SS RS IS LLM Score Avg

OCR Engine
GPT-4o 0.7015 0.5729 6.3 7.9 6.7 5.6 9.1 5.9 7.0
GPT-4.1 0.7053 0.5442 7.2 8.5 7.6 6.9 9.3 7.0 7.8
Cladue3.7 0.7205 0.5720 6.6 8.0 6.9 6.3 9.2 6.7 7.3
Gemini2.5-Pro 0.7111 0.5787 6.5 8.0 6.8 6.5 9.5 6.4 7.3
OpenAI-o1 0.7436 0.6222 7.0 8.3 7.1 6.9 9.5 6.8 7.6

Average 0.7164 0.5780 6.7 8.1 7.0 6.4 9.3 6.6 7.4
Multimodal Capability

GPT-4o 0.7083 0.5889 6.5 7.9 6.6 6.0 9.0 6.1 7.0
GPT-4.1 0.7019 0.5255 7.0 8.3 7.3 6.9 9.4 7.0 7.7
Cladue3.7 0.6936 0.5675 5.8 7.5 6.3 6.0 9.3 6.3 6.9
Gemini2.5-Pro 0.6913 0.5628 6.0 7.7 6.4 6.1 9.2 6.3 7.0
OpenAI-o1 0.7390 0.6217 7.3 8.5 7.4 7.2 9.4 6.9 7.8

Average 0.7068 0.5733 6.5 8.0 6.8 6.4 9.3 6.5 7.3

The result is shown in Table 12, When comparing the two settings (OCR-based input vs. native
multimodal capability), an intriguing trend emerges: some models actually perform worse when
relying on their native multimodal abilities. Overall, OCR-engine preprocessing provides more stable
results across semantic similarity metrics (STS/BertScore) and LLM-based evaluations (SS, RS, IS).
Although certain models, such as OpenAI-o1, maintain strong performance under the multimodal
setting, several general-purpose MLLMs demonstrate noticeable degradation when tasked with
interpreting biological and adjuvant-related visualizations.
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We hypothesize two main reasons for this discrepancy:

1. Lack of domain-specific expertise: General-purpose multimodal models excel in everyday
visual-language tasks but lack optimization for specialized biomedical charts and adjuvant-
related diagrams, leading to misinterpretations.

2. Task representation gap: OCR-based pipelines provide structured textual input, reducing
ambiguity. In contrast, multimodal settings require models to jointly handle visual parsing
and domain reasoning, which increases task complexity and may reduce overall performance.

In summary, this experiment indicates that relying solely on the native multimodal capabilities of
current MLLMs may not be the most effective approach for domain-specific research tasks. While
multimodal models show promise, traditional OCR-based preprocessing provides a more consistent
and reliable input format, particularly when dealing with complex and specialized biomedical content.
Future research should focus on improving multimodal reasoning by incorporating specialized visual
inputs related to biomedical and adjuvant-specific domains.

Furthermore, in this study, all models were evaluated using a unified OCR engine. This approach was
chosen to ensure consistency across evaluations by standardizing the input format, thus minimizing
potential biases caused by variations in how models handle visual data. Given the specialized nature
of the adjuvant-related visualizations, OCR preprocessing offers a structured and reliable form of
textual input, which reduces the risk of misinterpretation by models that may not be fully optimized
for this domain.
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Figure 21: The Cases of GPT-4o and DeepSeek-R1
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Figure 22: The Cases of GPT-4o and DeepSeek-R1
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F.4 ERROR VISUALIZATION ANALYSIS

F.4.1 BIOGPT-LARGE-PUBMEDQA

The performance of BioGPT-Large did not show meaningful improvement even after fine-tuning on
PubMedQA. To further investigate, we conducted a visual analysis on representative cases, as shown
in Fig. 23, Fig. 24, and Fig. 25.

Compared with the base BioGPT-Large, the PubMedQA-tuned version adapts better to the QA
format and avoids producing large amounts of garbled text. Nonetheless, its responses still exhibit
fundamental errors. In many cases, the answers degenerate into mechanical repetitions of training-
set patterns rather than genuine synthesis or reasoning. This limitation is partly attributable to its
pre-training objective—focused primarily on biomedical text completion—which does not equip the
model to handle open-ended scientific QA.

Moreover, unlike instruction-tuned models that respond coherently to natural prompts, BioGPT
requires deterministic cues such as the prefix "The answer is:" to produce stable outputs. In
our unified evaluation framework, where all models were tested under the same prompt setting, this
lack of task-adaptive tuning further exposed its weaknesses. Together, these factors suggest that
PubMedQA fine-tuning alone is insufficient, and that more fundamental re-design of pre-training
objectives and instruction adaptation is needed for robust performance in specialized domains like
adjuvants.

Figure 23: The Error Cases of BioGPT-Large-PubMedQA
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Figure 24: The Error Cases of BioGPT-Large-PubMedQA

Figure 25: The Error Cases of BioGPT-Large-PubMedQA
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F.4.2 DARWIN

We also conducted a visual analysis of Darwin on the same three examples (Fig. 26, Fig. 27, and
Fig. 28). Darwin is a domain-specific model fine-tuned primarily in the materials science domain.
Since adjuvants can be regarded as a subclass of biomaterials, there is partial overlap between
Darwin’s training distribution and adjuvant-related knowledge.

This overlap helps explain certain strengths: because Darwin’s first-stage training involved open-
ended Q&A data, its outputs follow the structure of adjuvant Q&A tasks more naturally, and its
specialized fine-tuning improves lexical precision in technical terminology. However, the overlap is
limited, as the core challenges of adjuvant research lie in immunological mechanisms and vaccine-
specific contexts—areas that fall outside Darwin’s primary training focus. Consequently, Darwin
often produces superficially well-formed answers that nevertheless fail to capture domain-specific
reasoning.

This case underscores a broader point: while adjuvants share material properties with general
biomaterials, the immunological dimension creates a significant domain gap. Bridging this gap
requires resources and models purpose-built for immunology, rather than indirect transfer from
adjacent scientific fields.

Figure 26: The Error Cases of Darwin

Figure 27: The Error Cases of Darwin

Figure 28: The Error Cases of Darwin
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G THE PROMPT OF GENERATION AND INFERENCE

G.1 THE PROMPT OF GENERATION

The Prompt of Generation Basic Knowledge Open-ended Q&A

You are an expert in immunology and adjuvant design, with great achievements in immunol-
ogy and adjuvant design. Next, I will provide you with the partial chapter context, including
the text and images of an adjuvant design or immunology book. Please ask at least 20
questions from the perspective of an expert and provide answers about these chapters, These
questions cannot be the same as the exercises in the provided text and must be in the form of
questions and answers. If specific questions and answers cannot be generated based on the
provided content, insights or questions related to specific chapters or topics in immunology
and adjuvant design can be provided. The first 10 questions you raised should be aimed at
gaining a more systematic understanding of the relevant knowledge of adjuvant design, in
order to provide better and more comprehensive answers to the questions. The remaining
questions should have sufficient depth and difficulty. Please attach the reasoning process
and answer for each question. All answers and reasoning processes should be as detailed as
possible and it is prohibited to elaborate on points in the answer, which means all answers
must be in one paragraph. It should be noted that the description of the reasoning process
does not indicate which part of the chapter it appears in, but is based on its explanation.
For the images provided to you in the context, you also need to ask at least 2 ∼ 5 relevant
professional questions. For images in PDF files, relevant professional questions need to be
raised. Please follow the question format:
Question: xxxxx
Reasoning Process: xxxxxx
Answer: xxxxxx
If the problem is based on an image, please provide the image number and the path in the
Question/Answer/Reasoning Process. Please follow the question format:
Question: xxxxx, Fig.x (xxxx/xxxx/xxxx)
Reasoning Process: xxxxxx
Answer: xxxxxx
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The Prompt of Generation Biology Principles Open-ended Q&A

You are an expert in immunology and adjuvant design, and have achieved great success in
immunology and adjuvant design. Next, I will provide you with PDF files of the relevant
papers. Please provide at least 15 ∼ 20 questions from an expert’s perspective and provide
answers. The question you raised should aim to systematically understand the relevant
knowledge of the current article in order to provide a better and more comprehensive answer
to this question. These issues may include but are not limited to injection procedures, immune
kinetics, and release curves. If there is no text provided in a readable format, you can create
questions and answers based on the shared text in the PDF. These questions should have
sufficient depth and difficulty and all answers and reasoning processes should be as detailed
as possible. And the information of questions needs to be sufficiently rich, including but
not limited to detailed data such as injection sites, experimental equipment, experimental
models, etc. And the corresponding reasoning needs to be provided. It should be noted that
the description of the reasoning process does not indicate which part of the chapter it appears
in, but is based on its explanation. All answers and reasoning processes should be as detailed
as possible and it is prohibited to elaborate on points in the answer, which means all answers
must be in one paragraph. For the images provided to you in the context, you also need to ask
at least 2 ∼ 5 relevant professional questions. Please follow the format:
Question: xxxxx
Reasoning Process: xxxxxx
Answer: xxxxxx
If the problem is based on an image, please provide the image number and the path in the
Question/Answer/Reasoning Process. Please follow the question format:
Question: xxxxx, Fig.x (xxxx/xxxx/xxxx)
Reasoning Process: xxxxxx
Answer: xxxxxx

The Prompt of Generation Adjuvant Design&Safety Open-ended Q&A

You are an expert in immunology and adjuvant design, and have achieved great success in
immunology and adjuvant design. Next, I will provide you with files of the relevant papers.
Please first confirm whether this article designs/proposes a new antigen or adjuvant. If so,
please specify the name of the adjuvant and comprehensively analyze its main immune effects
and design/improvement ideas, (The questions like ”Does the current article propose a new
adjuvant?” or ”What new adjuvant is designed or proposed in this article?” are prohibited.
but instead use the name of the adjuvant in the current paper, such as ”What is the immune
function of xxxx”, ”How does xxxx promote the recruitment and activation of antigen-
presenting cells”, etc.), including promoting the recruitment, activation of antigen-presenting
cells, enhancing T cell responses and persistent antibodies, etc Then please identify the key
factors that affect these effects and provide a detailed explanation of the reasons, which
should include design/improvement ideas, small molecule drugs, antigen release behavior,
etc. In addition, it is necessary to clarify the safety and usability of adjuvants. Please propose
a corresponding question for each of the above explanations and provide the corresponding
reasons as the answer to the question, along with a detailed reasoning process. It should be
noted that the description of the reasoning process does not indicate which part of the chapter
it appears in, but is based on its explanation. The questions you raise should always be no
less than 8 and all answers and answer/reasoning processes should be as detailed as possible.
Please follow the format: Question: xxxxx
Reasoning Process: xxxxxx
Answer: xxxxxx
If the problem is based on an image, please provide the image number and the path in the
Question/Answer/Reasoning Process. Please follow the question format:
Question: xxxxx, Fig.x (xxxx/xxxx/xxxx)
Reasoning Process: xxxxxx
Answer: xxxxxx
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G.2 THE PROMPT OF INFERENCE

The Prompt of Inference

You are an expert in immunology and adjuvants, with a strong background in vaccine develop-
ment. Your research and practice in this field have equipped you with a deep understanding of
the mechanisms of immune response and how to optimize vaccine efficacy through adjuvants.
You excel in providing concise, precise, and professional responses to questions related to
adjuvants and immunology. Please answer the following questions.

H THE WORLD CLOUD OF THE ADJUVANT BENCHMARK

Figure 29: The World Cloud of the Adjuvant Benchmark
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I USAGE OF LARGE LANGUAGE MODELS

I.1 WRITING

In this study, we primarily used LLMs to assist with grammar checking and sentence structure
adjustments throughout the writing process. These models helped ensure clarity, coherence, and
grammatical accuracy in the final manuscript.

I.2 EXPERIMENT

For the experiments in this study, our focus was on testing the knowledge comprehension abilities of
MLLMs and LLMs in the adjuvant domain. Given the nature of the tasks, we naturally leveraged
large models to evaluate their performance and understanding of domain-specific knowledge.
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