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Abstract

Offline multi-objective optimization aims to identify Pareto-optimal solutions
given a dataset of designs and their objective values. In this work, we propose
a preference-guided diffusion model that generates Pareto-optimal designs by
leveraging a classifier-based guidance mechanism. Our guidance classifier is a
preference model trained to predict the probability that one design dominates
another, directing the diffusion model toward optimal regions of the design space.
Crucially, this preference model generalizes beyond the training distribution,
enabling the discovery of Pareto-optimal solutions outside the observed dataset.
We introduce a novel diversity-aware preference guidance, augmenting Pareto
dominance preference with diversity criteria. This ensures that generated solutions
are optimal and well-distributed across the objective space, a capability absent in
prior generative methods for offline multi-objective optimization. We evaluate our
approach on various continuous offline multi-objective optimization tasks and find
that it consistently outperforms other inverse/generative approaches while remain-
ing competitive with forward/ surrogate-based optimization methods. Our results
highlight the effectiveness of classifier-guided diffusion models in generating
diverse and high-quality solutions that approximate the Pareto front well.

1 Introduction

Several design problems in science and engineering require optimizing a black-box, expensive-to-
evaluate function. For example, in antibiotic drug discovery, the goal is to identify novel molecules
with high antibacterial activity [39]. This can be formulated as a single-objective optimization
problem. However, in practice, most real-world design challenges involve balancing multiple
conflicting objectives. For example, in drug discovery, in addition to maximizing antibacterial
activity, we also want to minimize toxicity and production costs [38]. This constitutes a multi-
objective experimental design problem.

Prior work in both single and multi-objective optimization (MOO) has largely focused on adaptive
experimental design using online methods such as Bayesian optimization [33]. These approaches
rely on training surrogate models for each objective function and designing acquisition functions that
are typically optimized via gradient-based techniques [3] or evolutionary algorithms to determine the
next candidate for evaluation. This process is iteratively repeated to optimize the objectives. However,
in many real-world applications, sequential evaluations—where inputs are tested one at a time or in
small batches—are impractical. In some cases, we have only a single opportunity to evaluate the
function, and we must allocate the entire evaluation budget efficiently.
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For example, in drug design, scientists cannot test molecules one by one in wet lab experiments
due to the high cost, slow turnaround, and the inherently parallelizable nature of the process [38].
Instead, it is common to evaluate all candidate molecules in a single batch. This setting is referred
to as offline black-box optimization [41]. While recent work has explored offline optimization in
the single-objective setting [23, 46], where extensive prior data is leveraged to model the objective
function and identify potential optima, the MO case remains relatively underexplored.

Offline black-box optimization presents distinct challenges compared to traditional online optimiza-
tion. Since the algorithm cannot iteratively refine the learned model using newly acquired data, it must
effectively leverage the available dataset to generalize beyond observed data points. This is particularly
challenging because the true optima are often expected to lie outside the existing dataset, requiring
robust extrapolation. Additionally, the goal is not merely to identify data points with high function val-
ues but to find solutions that satisfy a well-defined notion of optimality, such as the Pareto optimality.

Prior work in single-objective offline optimization can generally be categorized into two main
approaches: forward and inverse methods. Forward approaches attempt to mimic strategies used
in online optimization while leveraging offline data [41]. These methods train a surrogate model of
the objective function and optimize it using gradient-based techniques to propose a set of promising
inputs for evaluation. They are effective when the search space is well-defined. In contrast, inverse
approaches use generative models to learn an inverse mapping from function values to inputs,
enabling the generation of new candidates with potentially high objective values [6, 16, 24, 25]. This
distinction is critical when optimal inputs are not known in advance. For example, in chemistry,
if the goal is to evaluate a known molecule, surrogate models are effective in predicting its properties.
However, if the goal is to discover entirely new molecules with desired properties, inverse methods
are essential, as they directly generate novel candidates rather than selecting from a predefined space.
Some generative modeling approaches also draw inspiration from online methods by constructing
synthetic optimization trajectories from offline data, aiming to generate new optimal points by
extrapolating from the learned trajectories [23].

Multi-objective offline optimization introduces additional challenges beyond those encountered in
the single-objective setting. In single-objective optimization, the goal is simply to maximize (or
minimize) a function value. However, in the multi-objective case, we seek to achieve best trade-
offs among competing objectives, which is formalized by Pareto optimality. Beyond identifying
Pareto-optimal solutions, another critical challenge is ensuring diversity on the Pareto front. A
well-structured Pareto front should provide solutions spread across different regions of the objective
space, representing a broad range of Pareto-optimal designs. Although the problem of ensuring
diversity of solutions is addressed in online MOO [1], ensuring both optimality and diversity is
challenging in the offline setting as the algorithm must infer these solutions solely from existing data.

Xue et al. [45] has recently explored benchmarking offline multi-objective optimization (MOO) by
building offline datasets for a variety of MOO benchmarks and proposing several potential algorithms.
Their work extends some offline single-objective optimization (SOO) approaches to the MOO
setting, such as fitting surrogate models to the offline data and optimizing over the surrogates using
evolutionary algorithms. However, this work has not explored the possibility of using generative
models for offline MOO.

Our contributions are:

• We formulate offline MOO as an inverse problem, and propose a novel algorithm based
on diffusion models with preference-based classifier guidance. This classifier is trained
to compare two candidate designs and determine which is more likely to dominate the other
in the objective space.

• We address the diversity challenge in the offline MOO setting. Rather than just identifying
high-value designs, we train the preference model to favor solutions that are not only
optimal but also well-distributed across the objective space.

• We demonstrate through extensive experiments on both synthetic and real-world settings
that our approach performs better than other inverse methods in terms of convergence to
the Pareto front and the diversity of obtained solutions.

• Among inverse techniques, our approach consistently achieves the strongest results; making
it a competitive choice in cases where forward methods are not feasible. Even when forward
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Figure 1: A schematic representation of the proposed preference guided diffusion approach for offline multi-
objective optimization.

methods are applicable, our algorithm remains competitive while maintaining the benefits
of generative exploration.

2 Background

2.1 Offline Multi-Objective Optimization

Multi-objective optimization (MOO) seeks to find the design x ∈ X d that minimizes (or maximizes)
a set of m different objectives:

min
x∈Xd

f(x) := {f1(x), . . . , fm(x)}, (1)

where fi : X d 7→ R is an unknown and expensive-to-evaluate objective. For most practical problems,
the objectives are not simultaneously optimizable by a single design. Hence, the goal instead is to
find the set of designs that are Pareto optimal.
Definition 2.1 (Pareto Dominance). A design x Pareto dominates another design z ∈ X d (denoted
by x ≺ z) if fi(x) ≤ fi(z) ∀i and ∃j : fj(x) < fj(z).

Definition 2.2 (Pareto Optimality and Pareto Front). A design x∗ is Pareto optimal if ∄x ∈ X d

such that x ≺ x∗. The set of all Pareto optimal designs is called a Pareto set. Correspondingly, the
objective values of the Pareto set {f(x∗) | x∗} is called the Pareto front (PF).

The Pareto front provides an optimal set of trade-offs that can be achieved from the objectives when
they are not simultaneously optimizable.

Sequential methods that collect data by selecting designs and evaluating their function values are the
most common approach for MOO, making use of surrogate models with uncertainty quantification to
learn the unknown objectives. However, for many practical problems, these sequential methods are
not feasible due to prohibitive cost or time constraints (or both). Instead of iteratively allocating an
evaluation budget to refine the design choices, offline optimization uses the entire budget in a single
round of function evaluations. In offline optimization, we have access to a dataset of N non-optimal
design-objective values pairs D := {(x(i),f(x(i))}Ni=1. The goal of offline MOO is to find the
Pareto-optimal set by relying only on the existing dataset D.

2.2 Diffusion Models

Diffusion models [17, 34, 35] are a class of generative models defined by a Markov chain that
sequentially adds noise to data samples and then learns to denoise from white noise (i.e., generate a
sample) by reversing the Markov chain. In this work, we follow the Denoising Diffusion Probabilistic
Models (DDPM) [17] approach, which we summarize here. Given a sample x0 ∼ q(x), a time-
dependent forward noising process is defined as:

q(xt | xt−1) := N (xt;
√

1− βtxt−1, βtId), (2)

where βt is the variance of the noising schedule at timestep t such that β1 < β2 < · · · < βT , and T
is the total number of timesteps. Let αt = 1− βt and α̃t =

∏t
i=1 αt; then the noised sample xt can
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be obtained in closed form:
xt =

√
α̃tx0 +

√
1− α̃tϵt, ϵt ∼ N (0, Id). (3)

The reverse process conditional q(xt−1 | xt) is not tractable. Therefore, a denoising model defined
as pθ(xt−1 | xt) := N (xt−1;µθ(xt),Σθ(xt)) is learned by optimizing parameters θ. Instead of
parameterizing the reverse process to estimate µθ(xt), it is common to reparameterize this reverse
process to predict the noise that was added to produce xt (equation 3). If ϵθ(xt, t) is the denoising
model to predict the added noise, reparameterization yields the mean µθ(xt) as:

µθ(xt) =
1
√
αt

(
xt −

1− αt√
1− α̃t

ϵθ(xt, t)

)
. (4)

The reverse process variance is set to be the same as the forward process variance at time t, i.e.,
Σθ(xt) := βtId. The denoising model can be trained with mean squared error (MSE) loss:

ℓ(θ) = E
t,ϵt,x0

[
∥ϵt − ϵθ(xt, t)∥22

]
. (5)

A new sample can be generated by first sampling x̃T ∼ N (0, Id) and then autoregressively sampling
from N (xt−1;µθ(x̃t), βtId) to get x̃0.

2.3 Classifier Guidance

If label o corresponding to each sample x0 is available, then classifier guidance allows one to
generate new samples from a trained diffusion model specific to a desired label. To do this, classifier
guidance [13] trains an additional time-dependent classifier of the input pϕ(o | xt, t). Along with
the trained denoising model ϵθ(xt, t), a new conditional sample can be generated by first sampling
x̃T ∼ N (0, Id) and then, from t = T to t = 1, autoregressively sampling:

x̃t−1 | o, x̃t ∼ N (xt−1;µθ(x̃t) + wβt∇x̃t log pϕ(o | x̃t, t), βtId), (6)
where w is the guidance strength. In this work, we use classifier guidance to generate samples
that approximate the optimal Pareto sets where the classifier is a preference model that predicts the
dominance of one input over the other.

3 Related Work

Online Multi-Objective Black-Box Optimization: Adaptive experimental design has primarily
explored multi-objective optimization (MOO) in an online or sequential fashion, where solutions are
iteratively refined as new data arrives [1, 4]. Although less studied than single-objective optimization,
several sequential approaches have proven effective. The most established is Bayesian optimization
(BO) [18, 33], which typically uses Gaussian processes [44] to model objectives, especially in data-
scarce regimes. Multi-objective extensions of BO often reduce the problem via scalarization [21]
or employ acquisition functions such as expected hypervolume improvement (EHVI) [15] and
information gain [4] to balance trade-offs across objectives. Recent work also introduced batch
selection strategies [11], though most methods emphasize Pareto dominance over diversity. A
few exceptions, such as Konakovic Lukovic et al. [22] and Ahmadianshalchi et al. [1], explicitly
promote Pareto front diversity. Beyond traditional BO, neural approaches extend online MOO using
generative models like variational autoencoders (VAEs) combined with Gaussian processes over
the latent space [36]. However, these methods inherit VAE limitations—posterior collapse and
non-identifiability—that restrict their robustness in practical optimization tasks.

Offline Single-Objective Black-Box Optimization: Offline single-objective optimization focuses
on leveraging existing datasets without additional data collection. Forward methods [41, 46] train
surrogate models to approximate the objective function and then optimize these surrogates for
high-performing inputs. Inverse methods instead employ conditional GANs [6, 16, 25] to learn
mappings from function outputs back to inputs. To bridge forward and inverse strategies, Chemingui
et al. [7], Krishnamoorthy et al. [23] proposed hybrid methods that synthesize pseudo-optimization
trajectories from offline data, mimicking online behavior. Diffusion-based frameworks [24] adjust
diffusion losses with weighted importance terms, while classifier-guided models [8] bias generation
toward globally optimal designs. Kim et al. [19] provides a comprehensive review of model-based
offline optimization methods, summarizing progress across forward, inverse, and hybrid approaches.
Additionally, Trabucco et al. [42] established a standardized benchmarking suite for consistent
evaluation of offline optimization algorithms.
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Figure 2: Generalization of the preference model on regions unseen in the training data on the ZDT2 task [53].
The preference model gives good prediction of Pareto dominance between the reference design (in black) with
other designs (in pink and green). Pink indicates that the preference model predicts these designs to be dominated
by the reference design and green indicates that these designs are predicted as dominating the reference design.
The figure on the right is a zoomed-in version of the left, excluding the training data (in blue).

Offline Multi-Objective Black-Box Optimization: Research on offline multi-objective optimiza-
tion (MOO) remains limited. Xue et al. [45] recently proposed a benchmarking framework with
offline datasets and baseline algorithms across MOO benchmarks. Their work mainly extends
forward-style single-objective methods by fitting surrogate models to offline data and optimizing
them via evolutionary algorithms but does not explore generative or inverse techniques. Concurrently,
Yuan et al. [48] introduced ParetoFlow, a flow-based generative model for offline MOO that embeds
objective weighting directly into the loss function, effectively scalarizing multiple objectives. While
this inverse approach is promising, it does not explicitly address Pareto front diversity—an essential
factor for capturing representative trade-offs in MOO.

4 Preference-Guided Diffusion for Offline Multi-Objective Optimization

We present a new effective approach for offline MOO by using classifier guidance to generate samples
from Pareto optimal sets with a diffusion model trained on offline data. Our approach does not
require training individual surrogate models for each objective. It relies on an inverse strategy while
ensuring the ability to generate diverse samples from the Pareto optimal set. We refer to our method
as preference-guided diffusion for multi-objective offline optimization (PGD-MOO).

Let x ∈ X d ⊆ Rd be any d-dimensional design with corresponding objective values yi = fi(x)
defined by unknown and expensive-to-evaluate functions fi : X d 7→ R. Let y = [y1, . . . , ym]T be
the vector of objective values for an m-objective problem. In offline MOO, we have access to a
dataset D := {x(i),y(i)}Ni=1 of N previously evaluated design-objective pairs. Given D, the goal is
to generate designs x∗ from the unknown optimal Pareto set.

While diffusion models capture the distribution over data p(x), in offline MOO, we are often interested
in samples that lie outside the training data, closer to the Pareto front. This motivates the use of
classifier guidance. Directly using classifier guidance in diffusion models involves training surrogate
models for each objective, which often requires scalarization and hence can be suboptimal. We
propose to use preference-based guidance to capture Pareto dominance relations between data points.

4.1 Preference Guided Diffusion

In this work, we explore an alternate guidance strategy that does not involve training surrogate models
for every objective. Instead, we model the space of multiple-objectives through preference pairs, as
defined by a Bradley-Terry model [5] of designs.

In this regard, we train a preference model that predicts the (log)- probability of whether a design
Pareto dominates (Definition 2.1) another design. During sampling of the designs, Given two designs
x and x̂, we train a (time-conditioned) binary classifier that predicts log pϕ(x ≺ x̂ | x, x̂, t). We
parameterize this distribution with a multi-layer perceptron (MLP) that takes in two inputs (designs)
of size 2 × d and outputs the logit of the Bernoulli distribution predicting whether the first input
Pareto dominates the second input.
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Algorithm 1 Sampling from Preference Guided Diffusion

Require: Trained ϵθ(xt, t), preference model pϕ(x ≺ x̂ | x, x̂, t), guidance weight w and the most
dominant design in the dataset xD(best)

1: r ← xD(best)

2: x̃T ∼ N (0, Id)
3: for t = T to 1 do
4: µθ(x̃t) =

1√
αt

(
x̃t − 1−αt√

1−α̃t
ϵθ(x̃t, t)

)
5: Compute preference score sp = ∇x̃t

pϕ(x̃t ≺ r | x̃t, r, t)
6: Sample x̃t−1 ∼ N (xt−1;µθ(x̃t) + wβtsp, βtId)
7: r ← x̃t

8: end for
9: return x̃0

Training the Preference Classifier. To train the preference classifier, we first sort the points in the
training data by their Pareto dominance. This divides the data into multiple fronts in increasing order
of dominance, with points in the same front considered equally dominant. Next, we select (x, x̂)
pairs randomly from the dataset. If one design strictly dominates the other, it is labeled as preferred.
If both x and x̂ are equally dominant, we assign the label x ≺ x̂ if x has more diversity contribution
than x̂ wrt other points that belong to the front. The diversity contribution of each point is calculated
using the crowding distance [12] of a selected design w.r.t all other points that belong to the same
front in the dataset. Crowding distance for any point x is computed as follows:

dCD(x) =

m∑
i=1

y+i − y−i
ymax
i − ymin

i

, (7)

where y+i and y−i are the ith objective values of neighboring designs of x in the corresponding front
sorted according to ith objective value. ymax

i and ymin
i are the maximum and minimum values of the

objective i in the current front. Crowding distance has been used as a secondary selection criterion in
evolutionary algorithms such as NSGA-2 [12] to maintain the diversity of solutions. Using crowding
distance to create a binary label encourages the preference model to not only guide the diffusion
model towards more Pareto-dominant regions, but also ensure that the designs that make up the Pareto
front are diverse. For the denoising model, we train an unconditional diffusion model ϵθ(xt, t) (§2.2)
on the designs x in the dataset, similar to DDPM [17].

Sampling Designs. With a trained denoising model ϵθ(xt, t) and preference model pϕ(x ≺ x̂ |
x, x̂, t), we sample a new design by using classifier guidance (§2.3). We input both the denoised
variable at the current timestep x̃t as well as from the previous realization of denoising, i.e., x̃t+1 for
the preference model to estimate∇x̃tpϕ(x̃t ≺ x̃t+1 | x̃t, x̃t+1, t). At the beginning of the denoising
procedure when xt+1 is not defined, we input the most dominant design in the dataset for preference
comparison. The most dominant design in the dataset is chosen based on non-dominated sorting. The
sampling procedure is summarized in Algorithm 1. Intuitively, a preference model that generalizes
well beyond its training data should guide the denoising process such that, at each step of denoising,
the resulting sample x̃t is in a more Pareto-dominant region.

With enough timesteps, the resulting denoised sample x̃0 will be close to the Pareto front. Moreover,
the connection to Bradley-Terry model of preference is apparent: the gradient of the logit which
indicates the probability of the first input dominating the second, carries information about the reward
[32]. Here, we use this to guide the diffusion model such that it can sample from regions closer to the
Pareto front through the denoising process.

This approach does not require training surrogate models, thus providing a simple alternative approach
to offline MOO. We find that the preference model generalizes well outside of the training data (see
Fig. 2), therefore providing guidance to the diffusion model to generate designs outside of the training
data close to the Pareto front, while maintaining diversity in the samples.
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5 Experiments

We perform several experiments on standard benchmarks for offline MOO. Through these experiments,
we would like to understand how close the generated samples are to the Pareto front, as well as the
diversity of the solutions.

Benchmark Tasks: Our evaluation closely follows the benchmarking effort provided in prior
work [45]. We evaluate our approach on two sets of tasks: synthetic and real-world applications-
based RE engineering suite [40]. Each task consists of a dataset of 60k offline datapoints. As in [45],
we use 54k randomly chosen data points for training and the remaining for validation.

1. Synthetic set of tasks consist of 12 distinct tasks each with their own dataset. The objectives
are analytic functions with tractable Pareto-fronts. This set of tasks has been widely used in MOO
problems. Every task consists of 2-3 objectives with d ranging from 10 to 30.

2. RE engineering suite of problems are set of 12 distinct tasks, each with their own dataset. These
tasks are based on real-world applications in engineering, for instance, rocket injector design and
disc brake design. d ranges from 3-7 variables and the number of objectives m varies from 2 to 6.

3. MO-NAS are set of tasks are based on neural architecture search benchmarks from [14, 27, 30]
which consists of multiple objectives like prediction error and hardware constraints like GPU latency.
In particular, we use the datasets corresponding to C10/MOP(1-9) and IN1K/MOP(1-9) tasks provided
by Lu et al. [30]. As the design space is discrete, we operate on the continuous space of corresponding
logits, as in prior work [45, 48].

Details of individual tasks and their corresponding datasets are given in Appendix B.

Table 1: Average ranking of hypervolume obtained by differ-
ent methods across synthetic, RE and MO-NAS tasks.

Method Synthetic RE MO-NAS
MultiHead 7.5 5.73 10.11
MultiHead - PcGrad 6.08 6.06 8.00
MultiHead - GradNorm 9.75 11.4 8.50
MultipleModels 6.5 3.67 9.39
MultipleModels - COM 7.83 7.27 2.72
MultipleModels - IOM 5.58 4.6 5.44
MultipleModels - ICT 6.67 4.67 6.61
MultipleModels - RoMA 6.58 7.67 7.44
MultipleModels - TriMentoring 8.33 4.3 8.11
ParetoFlow 7.58 6.17 4.67
PGD-MOO + Data Pruning (Ours) 5.08 9.06 2.14
PGD-MOO (Ours) 4.42 7.67 1.86

Baselines: We compare our ap-
proach with two categories of base-
lines:

1. We compare with ParetoFlow [48],
a classifier guided generative model
based on flow-matching [28]. Classi-
fiers for guidance are trained surrogate
models for each objective, followed
by scalarization. ParetoFlow is our
primary baseline since our work is
mainly concerned with studying in-
verse approaches for offline MOO.

2. Forward approaches using evolu-
tionary algorithms: As suggested in
prior work [45], a standard approach
to offline MOO is to train a surrogate
model for each objective and then use evolutionary algorithms such as NSGA-2 [12] to search
over the design space. Although there are various ways to learn surrogate models, we compare
with deep neural network (DNN)-based approaches, which are shown to perform best according
to benchmarks [45]. The DNN approaches we compare with are: i) A Multi-Head Model: Uses
multi-task learning [50] to train a joint surrogate for all objectives. Training techniques for this
approach such as GradNorm [10] and PcGrad [47] are also compared. ii) Multiple Models: Maintain
m independent surrogate models, each making use of a single optimization technique, including
COMs [41], ROMA [46], IOM [31], ICT [49], and Tri-mentoring [9].

Other forward approaches like multi-objective Bayesian optimization algorithms are shown to perform
worse than evolutionary algorithms on both synthetic and RE set of tasks [45], hence we exclude
them from comparisons in this work.

Evaluation Metrics: For each algorithm, we evaluate the convergence of solutions using the
hypervolume metric [52], a standard metric in MOO for measuring the closeness of the proposed
designs to the Pareto front. Hypervolume measures the volume of the objective space between a
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Figure 3: Plot of the samples from our preference-guided diffusion model (in green) on the ZDT2 task [53] at
different timesteps of denoising. Convergence of samples close to the Pareto front (in red) outside of the training
data (blue) highlights the importance of preference guidance.

Table 2: Hypervolume results of DTLZ subtasks (part of the synthetic task). Each method is run for
five random seeds and evaluated on 256 designs.

Method DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
D (best) 10.60 9.91 10.00 10.76 9.35 8.88 8.56
MultiHead 10.51 ± 0.23 9.03 ± 0.56 10.48 ± 0.23 6.73 ± 1.4 8.41 ± 0.15 8.72 ± 1.07 10.66 ± 0.09
MultiHead - PcGrad 10.64 ± 0.01 9.64 ± 0.33 10.55 ± 0.12 9.95 ± 1.93 9.02 ± 0.24 9.90 ± 0.25 10.61 ± 0.03
MultiHead - GradNorm 10.64 ± .01 8.86 ± 1.27 10.26 ± 0.28 7.45 ± 0.75 7.87 ± 1.06 8.16 ± 2.21 10.31 ± 0.22
MultipleModels 10.64 ± 0.01 9.03 ± 0.80 10.58 ± 0.03 7.66 ± 1.3 7.65 ± 1.39 9.58 ± 0.31 10.61 ± 0.16
MultipleModels - COM 10.64 ± 0.01 8.99 ± 0.97 10.27 ± 0.37 9.72 ± 0.39 9.44 ± 0.41 9.37 ± 0.35 10.09 ± 0.36
MultipleModels - IOM 10.64 ± 0.01 10.10 ± 0.27 10.24 ± 0.13 10.03 ± 0.53 9.77 ± 0.18 9.30 ± 0.31 10.60 ± 0.05
MultipleModels - ICT 10.64 ± 0.01 8.68 ± 0.88 10.25 ± 0.42 10.33 ± 0.24 9.25 ± 0.28 9.10 ± 1.16 10.29 ± 0.05
MultipleModels - RoMA 10.64 ± 0.01 10.04 ± 0.05 10.61 ± 0.03 9.25 ± 0.11 8.71 ± 0.47 9.84 ± 0.25 10.53 ± 0.04
MultipleModels - TriMentoring 10.64 ± 0.01 9.39 ± 0.35 10.48 ± 0.12 10.21 ± 0.06 7.69 ± 1.03 9.00 ± 0.48 10.12 ± 0.09
ParetoFlow 10.60 ± 0.02 10.13 ± 0.16 10.41 ± 0.09 10.29 ± 0.17 9.65 ± 0.23 9.25 ± 0.43 8.94 ± 0.18
PGD-MOO + Data Pruning (Ours) 10.64 ± 0.01 10.55 ± 0.01 10.63 ± 0.01 10.63 ± 0.01 10.07 ± 0.02 10.15 ± 0.03 9.57 ± 0.07
PGD-MOO (Ours) 10.65 ± 0.01 10.55 ± 0.01 10.63 ± 0.01 10.64 ± 0.01 10.06 ± 0.02 10.14 ± 0.01 9.70 ± 0.18

reference point and the objective vectors of the solution set, and does not require access to the true
Pareto front. The reference point used for evaluation of hypervolume is taken from [45](Appendix B).

In addition to the hypervolume, we also measure the diversity of the obtained solutions using the
∆-spread metric [12, 51]. The ∆-spread measures the extent of the spread achieved in a computed
Pareto front approximation [2]. It is important to consider the diversity of the obtained solutions,
especially in the case of MOO wherein there is no single “best” design, but rather an entire set of
solutions based on the Pareto front. In addition, in the case of offline optimization, the acquisition is
single-shot. Therefore, solutions that are diverse and hence provide more coverage over the objective
space are preferable. In this work, we provide the first effort to evaluate and benchmark the diversity
of solutions obtained by different approaches in offline MOO. Further details of the evaluation metrics
and their computation is provided in Appendix A.1.

We evaluate all methods on 5 random seeds, and compute the metrics using a budget of 256 designs.

5.1 Training Details

We parameterize the unconditional denoising model to be a multi-layer perceptron (MLP) with two
512-dimensional hidden layers, followed by a ReLU nonlinearity and layer normalization [26]. We
also incorporate sinusoidal time embedding [43] for conditioning. We parameterize the preference
model to be an MLP with three hidden layers, with first two hidden layers having the same number
of units as the input, while the last hidden layer is having 512 units. Similar to denoising model, we
also use ReLU nonlinearity followed by layer normalization and sinusoidal time embedding.

The denoising model is trained with AdamW optimizer [29] with learning rate of 5e− 4 for up to
200 epochs. Following Ho et al. [17], we employ a linear noise schedule such that the noise βt grows
linearly from 1e− 4 to 0.02. The preference model is trained with Adam optimizer [20] with learning
rate of 1e− 5 for up to 500 epochs. During sampling, we set the guidance weight w to 10. For the
preference model, we also experiment with pruning the training data to only contain the top 30% of
points, sorted according to their dominance. We refer to this method as PGD-MOO + Data Pruning
in the results.
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Table 3: Hypervolume results of ZDT subtasks (part of the synthetic task). Each method is run for
five random seeds and evaluated on 256 designs.

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
D (best) 4.17 4.67 5.15 5.45 4.61
MultiHead 4.8 ± 0.03 5.57 ± 0.07 5.58 ± 0.2 4.59 ± 0.26 4.78 ± 0.01
MultiHead - PcGrad 4.84 ± 0.01 5.55 ± 0.11 5.51 ± 0.03 3.68 ± 0.70 4.67 ± 0.1
MultiHead - GradNorm 4.63 ± 0.15 5.37 ± 0.17 5.54 ± 0.2 3.28 ± 0.9 3.81 ± 1.2
MultipleModels 4.81 ± 0.02 5.57 ± 0.07 5.48 ± 0.21 5.03 ± 0.19 4.78 ± 0.01
MultipleModels - COM 4.52 ± 0.02 4.99 ± 0.12 5.49 ± 0.07 5.10 ± 0.08 4.41 ± 0.21
MultipleModels - IOM 4.68 ± 0.12 5.45 ± 0.11 5.61 ± 0.06 4.99 ± 0.21 4.75 ± 0.01
MultipleModels - ICT 4.82 ± 0.01 5.58 ± 0.01 5.59 ± 0.06 4.63 ± 0.43 4.75 ± 0.01
MultipleModels - RoMA 4.84 ± 0.01 5.43 ± 0.35 5.89 ± 0.04 4.13 ± 0.11 1.71 ± 0.10
MultipleModels - TriMentoring 4.64 ± 0.10 5.22 ± 0.11 5.16 ± 0.04 5.12 ± 0.12 2.61 ± 0.01
ParetoFlow 4.23 ± 0.04 5.65 ± 0.11 5.29 ± 0.14 5.00 ± 0.22 4.48 ± 0.11
PGD-MOO + Data Pruning (Ours) 4.54 ± 0.08 5.21 ± 0.06 5.61 ± 0.06 5.06 ± 0.07 4.56 ± 0.14
PGD-MOO (Ours) 4.41 ± 0.08 5.33 ± 0.05 5.54 ± 0.10 5.02 ± 0.03 4.82 ± 0.01

Table 4: Selected results of hypervolume on RE task. Results are evaluated on 256 designs with five
different random seeds.

Method RE21 RE22 RE25 RE32 RE35 RE37 RE41 RE61
D(best) 4.1 4.78 4.79 10.56 10.08 5.57 18.27 97.49
MultiHead-GradNorm 4.28 ± 0.39 4.7 ± 0.44 4.52 ± 0.5 10.54 ± 0.15 9.76 ± 1.3 5.67 ± 1.41 17.06 ± 3.82 108.01 ± 1.0
MultiHead-PcGrad 4.59 ± 0.01 4.73 ± 0.36 4.78 ± 0.14 10.63 ± 0.01 10.51 ± 0.05 6.68 ± 0.06 20.66 ± 0.1 108.54 ± 0.23
MultiHead 4.6 ± 0.0 4.84 ± 0.0 4.74 ± 0.2 10.6 ± 0.05 10.49 ± 0.07 6.67 ± 0.05 20.62 ± 0.11 108.92 ± 0.22
MultipleModels-COM 4.38 ± 0.09 4.84 ± 0.0 4.83 ± 0.01 10.64 ± 0.01 10.55 ± 0.02 6.35 ± 0.1 20.37 ± 0.06 107.99 ± 0.48
MultipleModels-ICT 4.6 ± 0.0 4.84 ± 0.0 4.84 ± 0.0 10.64 ± 0.0 10.5 ± 0.01 6.73 ± 0.0 20.58 ± 0.04 108.68 ± 0.27
MultipleModels-IOM 4.58 ± 0.02 4.84 ± 0.0 4.83 ± 0.01 10.65 ± 0.0 10.57 ± 0.01 6.71 ± 0.02 20.66 ± 0.05 107.71 ± 0.5
MultipleModels-RoMA 4.57 ± 0.0 4.61 ± 0.51 4.83 ± 0.01 10.64 ± 0.0 10.53 ± 0.03 6.67 ± 0.02 20.39 ± 0.09 108.47 ± 0.28
MultipleModels-TriMentoring 4.6 ± 0.0 4.84 ± 0.0 4.84 ± 0.0 10.62 ± 0.01 10.59 ± 0.0 6.73 ± 0.01 20.68 ± 0.04 108.61 ± 0.29
MultipleModels 4.6 ± 0.0 4.84 ± 0.0 4.63 ± 0.25 10.62 ± 0.02 10.55 ± 0.01 6.73 ± 0.03 20.77 ± 0.08 108.96 ± 0.06
ParetoFlow 4.2 ± 0.17 4.86 ± 0.01 - 10.61 ± 0.0 11.12 ± 0.02 6.55 ± 0.59 19.41 ± 0.92 107.1 ± 6.96
PGD-MOO + Data Pruning (Ours) 4.42 ± 0.04 4.83 ± 0.01 4.84 ± 0.0 10.64 ± 0.0 10.43 ± 0.04 5.99 ± 0.18 19.37 ± 0.15 103.04 ± 1.71
PGD-MOO (Ours) 4.46 ± 0.03 4.84 ± 0.0 4.84 ± 0.0 10.65 ± 0.0 10.32 ± 0.1 6.13 ± 0.12 19.31 ± 0.46 105.02 ± 1.14

5.2 Results

Evaluation of Convergence. We provide detailed results of hypervolume for various baselines and
our approach on the synthetic task (Tables 2 and 3). We find that our approach performs competitively
with respect to baselines. Preference-guided diffusion performs on average better than ParetoFlow,
another generative model-based approach using guidance. This shows the benefits of having a
preference model as a classifier for guidance. Vizualization of the final sampled designs from our
approach is provided in Appendix E.2. Overall, our method performs better than other baselines,
which learn surrogate models and use evolutionary algorithms in the synthetic task setting (Fig. 3). In
addition, we also find that our method performs competitively in the RE engineering suite (Tables 4
and 22) and the MO-NAS tasks (Table 1). In problems with higher number of objectives, we find that
our approach is slightly worse compared to the baselines in terms of hypervolume. However, we note
that our approach is much simpler to train in these settings, while still achieving diverse solutions
(discussed further below).

Evaluation of Diversity. Average ranking in terms of performance of the ∆-spread metric for all
algorithms (Table 5) shows that our approach gives more diverse solutions than all the other baselines
including in the RE setting. These results highlight the importance of having a diversity constraint in
the training procedure for the classifier through the data selection procedure (Appendix E.3).

Across experiments, we find that our approach has competitive performance in terms of hypervolume
(convergence) while being better in terms of the ∆-spread metric (diversity) than the baselines.

5.3 Ablation Studies

We also study the impact of choice of two important aspects: the guidance-weight hyperaprameter w,
and the role of diversity criteria in training the preference classifier.

Results for various choices of w for ZDT subtask are provided in Fig. 4a. With w = 0 (no preference
guidance), the results are lower, as expected. Increasing the guidance weight generally results in
better hypervolume at the slight cost of diversity. This indicates that if diversity is more important in
the resulting designs, extreme values of w are less preferable.
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Figure 4: Ablation study of (a) different guidance weights w on both hypervolume and ∆-spread metrics (b)
various diversity criteria (Crowding, SubCrowding, No Diversity and Hypervolume) on the ∆-spread metric. All
evaluation done with ZDT subtask on 256 sampled designs across 5 random seeds.

Table 5: Average ranking of the ∆-spread metric ob-
tained by different algorithms on both synthetic and RE
tasks. Detailed results are provided in Appendix E.

Method Synthetic RE
MultiHead-GradNorm 7.12 8.27
MultiHead-PcGrad 5.92 7.0
MultiHead 8.83 7.2
MultipleModels-COM 6.5 5.47
MultipleModels-ICT 6.5 5.87
MultipleModels-IOM 6.42 6.8
MultipleModels-RoMA 5.92 6.4
MultipleModels-TriMentoring 6.0 4.6
MultipleModels 9.25 7.53
ParetoFlow 10.0 9.0
PGD-MOO + Pruning (Ours) 2.67 4.0
PGD-MOO (Ours) 2.83 4.28

We also perform ablation studies on the
role of diversity criteria that is used to pick
preference pairs for training the preference
classifier. For an effective comparison, we
also compare with hypervolume improve-
ment, in addition to Crowding, SubCrowd-
ing and having no diversity criteria. In the
hypervolume improvement diversity met-
ric (indicated as just Hypervolume), we
measure diversity of a point based on the
change in hypervolume it brings when it is
added to the sampled set of designs. Re-
sults for ∆-spread metric for the ZDT sub-
task is given in Fig. 4b. We find that in-
corporating diversity criteria for preference
generally results in better diversity of the
resulting solutions. In addition, Crowd-
ing and SubCrowding gives better diversity
than using hypervolume improvement.
Detailed results for all tasks are provided in Appendix E.1.

6 Conclusion

In this work, we presented a novel classifier-guided diffusion approach for offline multi-objective
optimization (MOO). Our method leverages a preference model that predicts Pareto dominance
between pairs of inputs, incorporating diversity considerations to ensure that designs on the same
Pareto front are well-distributed. Empirical results show that our technique performs competitively in
terms of convergence to the true Pareto front, while also generating a diverse set of solutions.

Limitations. A key limitation of our current approach is that it relies solely on dominance information
rather than the individual function values of the objectives. Consequently, it does not allow fine-
grained control over trade-offs among different objectives, which can be important if a practitioner
needs to emphasize or de-emphasize specific objective values.

Future Directions. One promising extension would be to integrate additional guidance signals, such
as the actual function values, enabling a more preference-based form of MOO. This would allow users
to explicitly prioritize certain objectives over others or specify desired performance ranges. Another
avenue for future work is combining forward (surrogate-based) and inverse (generative) approaches,
where candidates proposed by the generative model are iteratively refined using surrogate models.
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Justification: The paper’s contributions are using a preference based guidance for diffusion
models in an offline MOO setting. This is laid out in the abstract.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: Limitations are laid out in §6.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
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Answer: [Yes]

Justification: The required details for reproducibility is provided in §5.

5. Open access to data and code
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Appendix: Preference-Guided Diffusion for Multi-Objective Offline
Optimization

A Experimental Setting

A.1 Metrics

We provide computational details regarding the metrics used in the work - hypervolume and ∆-spread.

• Hypervolume: Hypervolume is a common metric which is used in Multi-Objective Optimiza-
tion to measure the quality of the solutions. It does not require access to the Pareto-Front.
It instead relies on a reference point, which is any point in the input space that is worse
than all points in the solution set across every objective. Given this reference point xref,
hypervolume is computed as the area enclosed by hyperrectangle from every point in the
solution set S to xref:

HV(S) :=

∫ ⋃
x∈S

[x1,xref1 ]× [x2,xref2 ]× · · · × [xm,xrefm ] dλ (8)

where λ is the Lebesgue measure and [·, ·] corresponds to a hyperrectangle between the two
points. While relatively easier for 2 or 3 objective problems, computing hypervolume is
more involved for solutions with higher number of objectives.

• ∆-Spread: ∆-Spread [12, 51] measures the uniformity of solutions which belong to the
same front. In this work, we take into account the extreme points of the predicted front to
calculate the ∆-spread of a solution set S as follows:

∆(S) :=

∑m
i=1 miny ||yi,∗ − y||+

∑|S|−1
k=1

[
dc(yk, S/{yk})− d̂c

]
∑m

i=1 miny ||yi,∗ − y||+ (|S| − 1)d̂c
(9)

where miny ||yi,∗ − y|| is the distance between the extreme points of the set S and the
corresponding extreme points in the Pareto front. If the Pareto front is not known, this
quantity is evaluated to be zero. dc(yk, S/{yk}) corresponds to the distance between
consecutive points of set S, sorted according to objective values of one of the objectives,
and d̂c is the mean of dc across all elements of set S.

B Dataset Details

We provide further details of the datasets used in our experiments for both Synthetic and RE set of
tasks in Tables 6 and 7. All the datasets are directly taken from [45] as well as the evaluation of
hypervolume computation and the needed reference points.

Table 6: Dataset information and reference point for hypervolume computation Synthetic set of tasks.
Name d m Pareto Front Shape Reference Point

DTLZ1 7 3 Linear (558.21, 552.30, 568.36)
DTLZ2 10 3 Concave (2.77, 2.78, 2.93)
DTLZ3 10 3 Concave (1703.72, 1605.54, 1670.48)
DTLZ4 10 3 Concave (3.03, 2.83, 2.78)
DTLZ5 10 3 Concave (2d) (2.65, 2.61, 2.70)
DTLZ6 10 3 Concave (2d) (9.80, 9.78, 9.78)
DTLZ7 10 3 Disconnected (1.10, 1.10, 33.43)
ZDT1 30 2 Convex (1.10, 8.58)
ZDT2 30 2 Concave (1.10, 9.59)
ZDT3 30 2 Disconnected (1.10, 8.74)
ZDT4 10 2 Convex (1.10, 300.42)
ZDT6 10 2 Concave (1.07, 10.27)
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Table 7: Dataset information and reference point for hypervolume computation for RE set of tasks.

Name d m Pareto Front Shape Reference Point

RE21 (Four bar truss design) 4 2 Convex (3144.44, 0.05)
RE22 (Reinforced concrete beam design) 3 2 Mixed (829.08, 2407217.25)
RE23 (Pressure vessel design) 4 2 Mixed, Disconnected (713710.88, 1288669.78)
RE24 (Hatch cover design) 2 2 Convex (5997.83, 43.67)
RE25 (Coil compression spring design) 3 2 Mixed, Disconnected (124.79, 10038735.00)
RE31 (Two bar truss design) 3 3 Unknown (808.85, 6893375.82, 6793450.00)
RE32 (Welded beam design) 4 3 Unknown (290.66, 16552.46, 388265024.00)
RE33 (Disc brake design) 4 3 Unknown (8.01, 8.84, 2343.30)
RE34 (Vehicle crashworthiness design) 5 3 Unknown (1702.52, 11.68, 0.26)
RE35 (Speed reducer design) 7 3 Unknown (7050.79, 1696.67, 397.83)
RE36 (Gear train design) 4 3 Concave, Disconnected (10.21, 60.00, 0.97)
RE37 (Rocket injector design) 4 3 Unknown (0.99, 0.96, 0.99)
RE41 (Car side impact design) 7 4 Unknown (42.65, 4.43, 13.08, 13.45)
RE42 (Conceptual marine design) 6 4 Unknown (-26.39, 19904.90, 28546.79, 14.98)
RE61 (Water resource planning) 3 6 Unknown (83060.03, 1350.00, 2853469.06,

16027067.60, 357719.74, 99660.36)

Table 8: Dataset information and reference point for MO-NAS set of tasks.
Name Search space d m Reference Point

C-10/MOP1 NAS-Bench-101 26 2 (3.49× 10−1, 3.14× 107)
C-10/MOP2 NAS-Bench-101 26 3 (9.05× 10−1, 3.05× 107, 8.97× 100)
C-10/MOP3 NATS 5 3 (2.31× 101, 7.14× 10−1, 2.74× 102)
C-10/MOP4 NATS 5 4 (2.31× 101, 7.14× 10−1, 2.74× 102, 2.12× 10−2)
C-10/MOP5 NAS-Bench-201 6 5 (9.03× 101, 1.53× 100, 2.20× 102, 1.17× 101, 4.88× 101)
C-10/MOP6 NAS-Bench-201 6 6 (9.03× 101, 1.53× 100, 2.20× 102, 1.05× 101, 2.23× 100, 2.76× 101)
C-10/MOP7 NAS-Bench-201 6 8 (9.03× 101, 1.53× 100, 2.20× 102, 1.17× 101,

4.88× 101, 1.05× 101, 2.23× 100, 2.76× 101)
C-10/MOP8 DARTS 32 2 (2.61× 10−1, 1.55× 106)
C-10/MOP9 DARTS 32 3 (4.85× 10−2, 3.92× 105)

IN-1K/MOP1 ResNet50 25 2 (2.81× 10−1, 3.95× 107)
IN-1K/MOP2 ResNet50 25 2 (2.80× 10−1, 1.15× 1010)
IN-1K/MOP3 ResNet50 25 3 (2.81× 10−1, 3.87× 107, 1.26× 1010)
IN-1K/MOP4 Transformer 34 2 (1.83× 101, 7.25× 107)
IN-1K/MOP5 Transformer 34 3 (1.83× 101, 1.49× 1010)
IN-1K/MOP6 Transformer 34 3 (1.83× 101, 7.10× 107, 1.48× 1010)
IN-1K/MOP7 MNV3 21 2 (2.64× 10−1, 9.98× 106)
IN-1K/MOP8 MNV3 21 3 (2.65× 10−1, 1.00× 107, 1.34× 109)
IN-1K/MOP9 MNV3 21 4 (2.65× 10−1, 1.03× 107, 1.31× 109, 6.30× 101)

C Computational Resources

All the experiments are run on an NVIDIA A100 GPU. Our proposed approach takes on average of
1300 seconds for a 2 objective task of 30 dimensions. Approaches like MultipleModels’ walltime is
directly proportional to the number of objectives. Consequently, Paretoflow [48], which relies on
MultipleModels also scales poorly wrt number of objectives. Overall, our approach takes roughly 56
GPU hours to train and test on all the datasets for 5 seeds. A representative runtime of our approach
as well as the baselines is given in Table 9.

D Broader Impact Statement

This paper addresses the problem of offline optimization with multiple objectives. Advances in the
problem being addressed are impactful for discovering new drugs for curing diseases, discovering
new materials with certain physical properties, to name a few. The authors do not forsee any negative
societal impacts of this work beyond what might be enabled due to general advancements in machine
learning.
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Table 9: Runtime (in seconds, for training) of different approaches on two representative tasks. Both
tasks have 60k samples in total. The runtime of PGD mainly depends on the dimensionality of the
problem (for RE 61 it is 3 and ZDT1 is 30) while for approaches like MultiHead and ParetoFlow
it is proportional to the number of objectives (for RE 61 it is 6 and for ZDT1 it is 2), since they
require training a surrogate model for each objective. We expect these runtimes to be the same if the
dimensionality (or correspondingly the number of objectives) for other tasks are the same. Sampling
times for all these approaches are fairly fast (at most 30 sec for 256 samples).

Method ZDT1 RE61
MultiHead 450 470
MultipleModels 920 2820
ParetoFlow 1200 3100
PGD-MOO (Ours) 1300 930

E Additional Results

E.1 Ablation Study Full Results

In addition to the main results, we perform evaluation of the impact of guidance weight w on the
resulting designs. Tables 10, 12 and 14 presents results of hypervolume evaluated on 256 sampled
designs. Tables 11, 13 and 15 presents the corresponding diversity evaluation with ∆-spread metric.

In addition to the above evaluation, we also evaluate the impact of the incporated diversity criteria for
selecting the preference pairs for training the classifer. In addition to Crowding and SubCrowding,
we also consider not incorporating any diversity (mentioned as No diversity), as well as computing
the improvement in hypervolume due to specific design in the sampled designs (mentioend as just
Hypervolume). Hypervolume improvement due to a specific sample can be computed as the difference
between hypervolume due to the entire set and the hypervolume due to the entire set except for this
specific sample.

Results for different evaluation criteria are provided in Tables 16, 18 and 20 for hypervolume, as well
as in Tables 17, 19 and 21 for diversity.

Table 10: Hypervolume results with 256 sampled designs of different guidance weights w for DTLZ
subtasks (part of synthetic task).

Guidance Weight (w) DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
w = 0 10.64±0.00 10.53±0.02 10.61±0.02 10.66±0.01 10.07±0.02 10.15±0.05 9.48±0.14
w = 5 10.65±0.00 10.54±0.02 10.63±0.00 10.64±0.01 10.08±0.01 10.17±0.02 9.64±0.14
w = 10 10.65±0.00 10.56±0.00 10.63±0.00 10.65±0.01 10.05±0.01 10.17±0.04 9.76±0.14
w = 20 10.64±0.00 10.55±0.01 10.62±0.01 10.64±0.01 10.09±0.02 10.16±0.04 9.81±0.23
w = 50 10.62±0.01 10.55±0.01 10.63±0.00 10.63±0.01 10.09±0.02 10.16±0.09 9.80±0.36

Table 11: Diversity evaluation results with 256 sampled designs of different guidance weights w for
DTLZ subtasks (part of synthetic task).

Guidance Weight (w) DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
w = 0 0.54±0.02 0.54±0.02 0.48±0.01 1.66±0.03 0.50±0.02 0.64±0.01 0.52±0.02
w = 5 0.59±0.04 0.54±0.03 0.48±0.03 1.62±0.04 0.52±0.04 0.62±0.02 0.65±0.04
w = 10 0.61±0.04 0.56±0.02 0.47±0.02 1.62±0.03 0.54±0.02 0.62±0.02 0.70±0.05
w = 20 0.61±0.05 0.54±0.03 0.47±0.01 1.53±0.02 0.50±0.03 0.60±0.03 0.73±0.07
w = 50 0.60±0.01 0.56±0.02 0.49±0.03 1.49±0.05 0.53±0.03 0.60±0.02 0.66±0.06
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Table 12: Hypervolume results with 256 sampled designs of different guidance weights w for ZDT
subtasks (part of synthetic task).

Guidance Weight (w) ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
w = 0 4.53±0.04 5.20±0.03 5.57±0.09 5.08±0.04 4.60±0.12
w = 5 4.53±0.04 5.31±0.03 5.55±0.03 5.06±0.07 4.81±0.02
w = 10 4.55±0.04 5.39±0.05 5.55±0.06 4.97±0.07 4.82±0.00
w = 20 4.53±0.13 5.52±0.02 5.60±0.10 5.00±0.07 4.82±0.01
w = 50 4.51±0.18 5.62±0.04 5.55±0.04 5.04±0.04 4.63±0.33

Table 13: Diversity evaluation results with 256 sampled designs of different guidance weights w in
ZDT subtasks (part of synthetic task).

Guidance Weight (w) ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
w = 0 0.64±0.04 0.62±0.01 0.62±0.04 0.61±0.02 0.77±0.05
w = 5 0.63±0.03 0.66±0.03 0.62±0.02 0.61±0.01 0.81±0.03
w = 10 0.63±0.09 0.58±0.01 0.60±0.02 0.60±0.02 0.83±0.04
w = 20 0.63±0.02 0.58±0.02 0.60±0.02 0.58±0.02 0.90±0.06
w = 50 0.60±0.03 0.60±0.02 0.62±0.03 0.62±0.01 0.91±0.04

Table 14: Hypervolume results with 256 sampled designs of different guidance weights w for various
RE tasks.

Guidance Weight (w) RE21 RE24 RE25 RE35 RE41
w = 0 4.38±0.07 4.84±0.00 4.84±0.00 10.42±0.06 18.98±0.25
w = 5 4.43±0.05 4.84±0.00 4.84±0.00 10.37±0.06 19.00±0.26
w = 10 4.46±0.04 4.83±0.00 4.84±0.00 10.27±0.11 19.17±0.30
w = 20 4.45±0.05 4.84±0.00 4.84±0.00 10.16±0.15 18.40±0.84
w = 50 4.44±0.05 4.83±0.00 4.84±0.00 9.55±0.54 17.67±0.96

Table 15: Diversity evaluation results with 256 sampled designs of different guidance weights w for
various RE tasks.

Guidance Weight (w) RE21 RE24 RE25 RE35 RE41
w = 0 0.60±0.03 1.15±0.07 1.05±0.05 0.70±0.03 0.42±0.02
w = 5 0.61±0.04 1.20±0.09 1.08±0.05 0.81±0.12 0.45±0.02
w = 10 0.61±0.02 1.20±0.05 1.19±0.08 1.00±0.12 0.47±0.04
w = 20 0.61±0.03 1.18±0.03 1.21±0.06 0.83±0.11 0.49±0.04
w = 50 0.63±0.02 1.17±0.08 1.21±0.06 0.82±0.09 0.62±0.19

Table 16: Hypervolume results with 256 sampled designs when specific diversity criterion is used for
training the preference classifier. Results evaluated with w = 10 on DTLZ subtasks (part of synthetic
tasks).

Diversity Criteria DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
Crowding 10.65±0.00 10.56±0.00 10.63±0.00 10.65±0.01 10.05±0.01 10.17±0.04 9.76±0.14
Hypervolume 10.64±0.00 10.55±0.01 10.63±0.00 10.64±0.00 10.06±0.02 10.13±0.01 9.72±0.09
SubCrowding 10.64±0.00 10.56±0.01 10.62±0.01 10.65±0.02 10.08±0.01 10.10±0.07 9.49±0.05
No diversity 10.64±0.00 10.56±0.00 10.63±0.00 10.64±0.01 10.06±0.00 10.13±0.00 9.66±0.00

E.2 Visualization of the Sampled Designs

We provide visualization of the sampled designs from our model on 2-objective problems in Fig. 5.
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Table 17: Diversity evaluation results with 256 sampled designs when specific diversity criterion is
used for training the preference classifier. Results evaluated with w = 10 on DTLZ subtasks (part of
synthetic tasks).

Diversity Criteria DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
Crowding 0.61±0.04 0.56±0.02 0.47±0.02 1.62±0.03 0.54±0.02 0.62±0.02 0.70±0.05
Hypervolume 0.58±0.00 0.54±0.03 0.49±0.01 1.63±0.04 0.53±0.02 0.63±0.02 0.76±0.07
SubCrowding 0.55±0.03 0.54±0.02 0.48±0.03 1.68±0.04 0.51±0.02 0.65±0.02 0.58±0.02
No diversity 0.58±0.00 0.55±0.00 0.48±0.00 1.56±0.03 0.53±0.00 0.63±0.00 0.68±0.00

Table 18: Hypervolume results with 256 sampled designs when specific diversity criterion is used for
training the preference classifier. Results evaluated with w = 10 on ZDT subtasks (part of synthetic
tasks).

Diversity Criteria ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
Crowding 4.55±0.04 5.39±0.05 5.55±0.06 4.97±0.07 4.82±0.00
Hypervolume 4.49±0.12 5.40±0.05 5.59±0.09 5.01±0.11 4.82±0.01
SubCrowding 4.54±0.07 5.24±0.04 5.60±0.03 5.08±0.08 4.59±0.07
No diversity 4.59±0.08 5.46±0.03 5.58±0.00 5.21±0.00 4.74±0.00

Table 19: Diversity evaluation results with 256 sampled designs when specific diversity criterion is
used for training the preference classifier. Results evaluated with w = 10 on ZDT subtasks (part of
synthetic tasks).

Diversity Criteria ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
Crowding 0.63±0.09 0.58±0.01 0.60±0.02 0.60±0.02 0.83±0.04
Hypervolume 0.64±0.06 0.61±0.03 0.60±0.04 0.60±0.02 0.86±0.05
SubCrowding 0.70±0.02 0.90±0.04 0.66±0.03 0.60±0.04 0.77±0.06
No diversity 0.72±0.04 0.60±0.03 0.66±0.03 0.65±0.00 0.84±0.01

Table 20: Hypervolume results with 256 sampled designs when specific diversity criterion is used for
training the preference classifier. Results evaluated with w = 10 on RE tasks.

Diversity Criteria RE21 RE24 RE25 RE35 RE41
Crowding 4.46±0.04 4.83±0.00 4.84±0.00 10.27±0.11 19.17±0.30
Hypervolume 4.41±0.03 4.83±0.00 4.84±0.00 10.36±0.04 19.09±0.00
SubCrowding 4.39±0.05 4.83±0.00 4.84±0.00 10.41±0.05 19.02±0.18
No diversity 4.42±0.00 4.83±0.00 4.84±0.00 10.35±0.00 19.09±0.00

Table 21: Diversity evaluation results with 256 sampled designs when specific diversity criterion is
used for training the preference classifier. Results evaluated with w = 10 on RE tasks.

Diversity Criteria RE21 RE24 RE25 RE35 RE41
Crowding 0.61±0.02 1.20±0.05 1.19±0.08 1.00±0.12 0.47±0.04
Hypervolume 0.62±0.02 1.16±0.09 1.14±0.09 0.99±0.08 0.47±0.03
SubCrowding 0.60±0.01 1.17±0.05 1.12±0.06 0.70±0.03 0.43±0.02
No diversity 0.62±0.01 1.16±0.06 1.39±0.06 0.90±0.02 0.50±0.04
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Figure 5: Plot of the samples from diffusion model (in green) on different 2-objective tasks. Top row shows
results for synthetic set of benchmarks, while the bottom row shows results for RE engineering suite. Blue dots
correspond to training data and red dot corresponds to the true Pareto front. The blue dots are omitted for the
bottom row for clarity. Results for ZDT2 is available in Fig. 3.

Table 22: Evaluation of hypervolume with 256 sampled designs on subsets of the RE task. Results
are averaged over 5 different random seeds.

Method RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33
D(best) 4.1 4.78 4.75 4.6 4.79 10.6 10.56 10.56
MultiHead-GradNorm 4.28 ± 0.39 4.7 ± 0.44 3.77 ± 1.12 3.65 ± 0.82 4.52 ± 0.5 10.6 ± 0.1 10.54 ± 0.15 10.03 ± 1.5
MultiHead-PcGrad 4.59 ± 0.01 4.73 ± 0.36 4.84 ± 0.0 4.15 ± 0.66 4.78 ± 0.14 10.64 ± 0.01 10.63 ± 0.01 10.59 ± 0.03
MultiHead 4.6 ± 0.0 4.84 ± 0.0 4.84 ± 0.01 4.73 ± 0.2 4.74 ± 0.2 10.65 ± 0.0 10.6 ± 0.05 10.62 ± 0.0
MultipleModels-COM 4.38 ± 0.09 4.84 ± 0.0 4.84 ± 0.0 4.73 ± 0.2 4.83 ± 0.01 10.64 ± 0.01 10.64 ± 0.01 10.61 ± 0.0
MultipleModels-ICT 4.6 ± 0.0 4.84 ± 0.0 4.45 ± 0.02 4.83 ± 0.01 4.84 ± 0.0 10.65 ± 0.0 10.64 ± 0.0 10.62 ± 0.0
MultipleModels-IOM 4.58 ± 0.02 4.84 ± 0.0 4.83 ± 0.01 4.72 ± 0.11 4.83 ± 0.01 10.65 ± 0.0 10.65 ± 0.0 10.62 ± 0.0
MultipleModels-RoMA 4.57 ± 0.0 4.61 ± 0.51 4.83 ± 0.01 3.96 ± 1.2 4.83 ± 0.01 10.64 ± 0.01 10.64 ± 0.0 10.58 ± 0.03
MultipleModels-TriMentoring 4.6 ± 0.0 4.84 ± 0.0 4.84 ± 0.0 4.84 ± 0.0 4.84 ± 0.0 10.65 ± 0.0 10.62 ± 0.01 10.6 ± 0.01
MultipleModels 4.6 ± 0.0 4.84 ± 0.0 4.84 ± 0.0 4.83 ± 0.01 4.63 ± 0.25 10.65 ± 0.0 10.62 ± 0.02 10.62 ± 0.0
ParetoFlow 4.2 ± 0.17 4.86 ± 0.01 - - - 10.66 ± 0.12 10.61 ± 0.0 10.75 ± 0.2
PGD-MOO + Data Pruning (Ours) 4.42 ± 0.04 4.83 ± 0.01 4.84 ± 0.0 4.84 ± 0.0 4.84 ± 0.0 10.57 ± 0.05 10.64 ± 0.0 10.09 ± 0.6
PGD-MOO (Ours) 4.46 ± 0.03 4.84 ± 0.0 4.84 ± 0.0 4.84 ± 0.0 4.84 ± 0.0 10.6 ± 0.01 10.65 ± 0.0 10.51 ± 0.04

E.3 Detailed Results

Table 27: Evaluation of the ∆-spread metric with 256 sampled designs on ZDT subtask, part of the
synthetic set of tasks. Results are averaged over 5 different random seeds. Lower values are better.

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
MultiHead-GradNorm 0.96 ± 0.19 0.94 ± 0.16 0.93 ± 0.17 0.79 ± 0.15 0.77 ± 0.16
MultiHead-PcGrad 0.83 ± 0.1 0.98 ± 0.13 0.79 ± 0.03 0.67 ± 0.04 0.82 ± 0.11
MultiHead 1.13 ± 0.08 1.04 ± 0.05 0.83 ± 0.06 0.68 ± 0.03 1.22 ± 0.07
MultipleModels-COM 0.89 ± 0.04 0.79 ± 0.11 0.83 ± 0.05 0.64 ± 0.03 1.0 ± 0.09
MultipleModels-ICT 1.1 ± 0.02 1.01 ± 0.07 0.86 ± 0.06 0.69 ± 0.07 0.98 ± 0.06
MultipleModels-IOM 0.94 ± 0.1 0.9 ± 0.05 0.81 ± 0.07 0.73 ± 0.04 0.46 ± 0.1
MultipleModels-RoMA 0.64 ± 0.06 0.92 ± 0.1 0.79 ± 0.07 0.69 ± 0.02 0.78 ± 0.06
MultipleModels-TriMentoring 0.86 ± 0.03 0.86 ± 0.06 0.9 ± 0.04 0.73 ± 0.02 0.78 ± 0.06
MultipleModels 1.07 ± 0.06 1.01 ± 0.03 0.84 ± 0.03 0.7 ± 0.05 1.19 ± 0.04
ParetoFlow 1.46 ± 0.03 1.19 ± 0.1 1.46 ± 0.14 1.31 ± 0.1 0.71 ± 0.05
PGD-MOO + DataPruning (Ours) 0.66 ± 0.08 0.61 ± 0.03 0.6 ± 0.03 0.6 ± 0.04 0.8 ± 0.05
PGD-MOO (Ours) 0.68 ± 0.07 0.78 ± 0.09 0.65 ± 0.03 0.6 ± 0.03 0.76 ± 0.03

The detailed results are given in Tables 22, 23 and 26 to 29.
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Table 23: Evaluation of hypervolume with 256 sampled designs on subsets of the RE task. Results
are averaged over 5 different random seeds.

Method RE34 RE35 RE36 RE37 RE41 RE42 RE61
D(best) 9.3 10.08 7.61 5.57 18.27 14.52 97.49
MultiHead-GradNorm 8.47 ± 1.87 9.76 ± 1.3 9.67 ± 0.43 5.67 ± 1.41 17.06 ± 3.82 18.77 ± 2.99 108.01 ± 1.0
MultiHead-PcGrad 10.11 ± 0.0 10.51 ± 0.05 10.17 ± 0.08 6.68 ± 0.06 20.66 ± 0.1 22.57 ± 0.26 108.54 ± 0.23
MultiHead 10.1 ± 0.01 10.49 ± 0.07 10.23 ± 0.03 6.67 ± 0.05 20.62 ± 0.11 22.38 ± 0.35 108.92 ± 0.22
MultipleModels-COM 9.96 ± 0.09 10.55 ± 0.02 9.82 ± 0.35 6.35 ± 0.1 20.37 ± 0.06 17.44 ± 0.71 107.99 ± 0.48
MultipleModels-ICT 10.1 ± 0.0 10.5 ± 0.01 10.29 ± 0.03 6.73 ± 0.0 20.58 ± 0.04 22.27 ± 0.15 108.68 ± 0.27
MultipleModels-IOM 10.11 ± 0.01 10.57 ± 0.01 10.29 ± 0.04 6.71 ± 0.02 20.66 ± 0.05 22.43 ± 0.1 107.71 ± 0.5
MultipleModels-RoMA 9.91 ± 0.01 10.53 ± 0.03 9.72 ± 0.28 6.67 ± 0.02 20.39 ± 0.09 21.41 ± 0.37 108.47 ± 0.28
MultipleModels-TriMentoring 10.08 ± 0.02 10.59 ± 0.0 9.64 ± 1.42 6.73 ± 0.01 20.68 ± 0.04 21.6 ± 0.19 108.61 ± 0.29
MultipleModels 10.11 ± 0.0 10.55 ± 0.01 10.24 ± 0.03 6.73 ± 0.03 20.77 ± 0.08 22.59 ± 0.11 108.96 ± 0.06
ParetoFlow 11.2 ± 0.35 11.12 ± 0.02 8.42 ± 0.35 6.55 ± 0.59 19.41 ± 0.92 20.35 ± 5.31 107.1 ± 6.96
PGD-MOO + Data Pruning (Ours) 9.15 ± 0.11 10.43 ± 0.04 9.48 ± 0.33 5.99 ± 0.18 19.37 ± 0.15 17.4 ± 0.63 103.04 ± 1.71
PGD-MOO (Ours) 9.39 ± 0.16 10.32 ± 0.1 9.37 ± 0.17 6.13 ± 0.12 19.31 ± 0.46 19.01 ± 0.68 105.02 ± 1.14

Table 24: Evaluation of hypervolume with 256 sampled designs on subsets of the C10MOP tasks.
Results are averaged over 5 different random seeds.

Approach C10MOP1 C10MOP2 C10MOP3 C10MOP4 C10MOP5 C10MOP6 C10MOP7 C10MOP8 C10MOP9
MultipleModels 1.3858± 0.0442 1.3296± 0.0300 10.0132± 0.2535 21.8476± 0.2264 36.8597± 2.7523 95.0340± 7.5757 362.8160± 18.0855 5.2041± 0.1013 11.6359± 0.4404
MultipleModels-COM ∗1.4702± 0.0000∗ 1.3321± 0.0054 11.0189± 0.0365 23.0747± 0.0868 49.7248± 0.1496 ∗107.0121± 0.7802∗ 480.4704± 14.0997 5.2402± 0.0257 13.9464± 0.3804
MultipleModels-ICT 1.3526± 0.0150 1.3234± 0.0446 9.9906± 0.3720 20.2256± 0.7048 38.9028± 0.4978 95.8324± 6.6621 334.2373± 41.4124 4.9339± 0.0759 12.4803± 0.2973
MultipleModels-IOM 1.3746± 0.1341 1.2992± 0.0603 10.5681± 0.1584 21.9670± 0.3673 47.6971± 0.9712 99.9001± 3.1050 436.2843± 27.0213 5.1168± 0.0708 13.7110± 0.4607
MultipleModels-RoMA 1.3660± 0.0669 1.3355± 0.0251 9.8492± 0.3837 21.4023± 0.4962 38.4872± 3.4435 93.0900± 3.6038 357.7016± 41.3808 5.0832± 0.0801 13.5530± 0.2167
MultipleModels-TriMentoring 1.4042± 0.0336 1.2416± 0.0652 10.0904± 0.2997 21.3896± 1.0433 40.7722± 3.5499 96.7069± 4.5694 408.3003± 28.6059 4.9647± 0.0968 12.7916± 0.2853
MultiHead 1.4559± 0.0227 1.2746± 0.0588 10.2391± 0.2114 21.2637± 1.2549 36.0405± 3.3757 98.8094± 0.6955 340.8008± 60.0297 5.0691± 0.1096 11.4813± 0.5663
MultiHead-GradNorm 1.4309± 0.0155 1.2636± 0.0572 10.0193± 0.2474 20.7159± 1.0982 30.5653± 5.2836 77.9574± 11.9034 306.7220± 39.5226 5.3211± 0.1007 12.9097± 0.5352
MultiHead-PcGrad 1.4601± 0.0102 1.3023± 0.0787 10.2801± 0.2455 21.4537± 0.6093 38.9828± 5.0494 88.2995± 9.7358 360.9641± 30.9560 4.9822± 0.0631 12.6775± 0.3565
ParetoFlow 1.4456± 0.0171 1.3437± 0.0164 10.6091± 0.2478 21.6532± 0.6013 48.6245± 0.8522 104.8361± 1.9998 463.2916± 21.6113 5.2958± 0.0921 ∗14.3905± 0.2319∗
PGD-MOO + Data Pruning (Ours) 1.4817± 0.0021 1.3817± 0.0138 ∗11.1524± 0.0165∗ ∗23.8769± 0.1086∗ ∗49.8578± 0.0266∗ 106.6697± 0.9115 500.4782± 1.7625 5.5659± 0.0156 14.4528± 0.1726
PGD-MOO (Ours) 1.4511± 0.0141 ∗1.3598± 0.0105∗ 11.1826± 0.0148 23.9233± 0.0821 49.8683± 0.0658 107.2650± 0.6335 ∗499.1712± 1.3745∗ ∗5.4807± 0.0363∗ 14.0768± 0.2056

Table 25: Evaluation of hypervolume with 256 sampled designs on the IN1K tasks. Results are
averaged over 5 different random seeds.

Approach IN1KMOP1 IN1KMOP2 IN1KMOP3 IN1KMOP4 IN1KMOP5 IN1KMOP6 IN1KMOP7 IN1KMOP8 IN1KMOP9
MultipleModels 5.6231± 0.0610 6.0828± 0.2008 14.3020± 0.0576 4.1980± 0.0303 4.4503± 0.0281 10.6306± 0.3082 4.6675± 0.1023 9.1011± 0.1883 11.2394± 0.3227
MultipleModels-COM 5.4126± 0.0963 6.1518± 0.0568 14.6918± 0.1703 4.3015± 0.0448 4.5755± 0.0157 11.3625± 0.2449 5.1201± 0.1738 11.3815± 0.0824 14.9066± 0.1649
MultipleModels-ICT 5.6369± 0.0287 6.0640± 0.2808 14.3255± 0.1601 4.2440± 0.0171 4.3804± 0.0231 10.9187± 0.0799 4.9460± 0.0873 9.6489± 0.2599 11.6043± 0.6310
MultipleModels-IOM 5.5938± 0.0890 6.0892± 0.2250 14.7332± 0.0914 4.1076± 0.4522 4.6096± 0.0408 10.6794± 1.0307 5.1611± 0.1263 ∗11.1559± 0.2388∗ ∗14.6504± 0.6083∗
MultipleModels-RoMA 5.5776± 0.0557 6.1352± 0.1875 14.3641± 0.2001 4.1302± 0.0364 3.6911± 0.0412 8.0256± 0.3621 4.7364± 0.1182 9.0267± 0.1139 10.6159± 0.3216
MultipleModels-TriMentoring 5.4462± 0.0192 5.3899± 0.0119 14.2874± 0.1749 4.3775± 0.0281 4.4060± 0.0317 10.9430± 0.0669 5.0492± 0.0850 10.1604± 0.3933 11.0185± 0.4408
MultiHead 5.6206± 0.0161 5.8983± 0.1535 14.2471± 0.1133 4.1108± 0.1259 4.2844± 0.0877 10.3601± 0.0467 4.8340± 0.0840 9.2124± 0.1680 10.2314± 0.9201
MultiHead-GradNorm 5.1362± 0.5426 6.2062± 0.0950 14.0209± 0.1754 3.1755± 0.0474 4.2984± 0.6297 8.1613± 0.7969 4.6107± 0.2090 10.1800± 0.6765 11.4468± 1.1444
MultiHead-PcGrad 5.5797± 0.0810 6.0273± 0.3497 14.2122± 0.0955 4.2014± 0.0729 4.2996± 0.0449 10.8542± 0.1305 4.8260± 0.3493 8.7804± 0.2875 10.2910± 0.0455
ParetoFlow 5.3459± 0.1106 5.9646± 0.1658 14.3332± 0.2594 4.3161± 0.0514 4.6240± 0.0506 11.6062± 0.0935 4.8707± 0.0423 11.1389± 0.1251 14.4814± 0.1094
PGD-MOO + Data Pruning (Ours) ∗5.7570± 0.0664∗ 6.4504± 0.0201 ∗14.7568± 0.1310∗ ∗4.3928± 0.0296∗ ∗4.6531± 0.0426∗ ∗11.7936± 0.1010∗ 5.3022± 0.0705 10.6270± 0.1074 13.9399± 0.2251
PGD-MOO (Ours) 5.7638± 0.0489 ∗6.4305± 0.0232∗ 14.8635± 0.1562 4.4924± 0.0105 4.7465± 0.0146 11.9365± 0.0626 ∗5.1797± 0.0780∗ 10.7654± 0.1653 13.6189± 0.3393

Table 26: Evaluation of the ∆-spread metric with 256 sampled designs on DTLZ subtask, part of the
synthetic set of tasks. Results are averaged over 5 different random seeds. Lower values are better.

Method DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
MultiHead-GradNorm 0.61 ± 0.03 0.89 ± 0.24 0.88 ± 0.29 0.96 ± 0.14 0.75 ± 0.1 0.95 ± 0.28 1.2 ± 0.18
MultiHead-PcGrad 0.65 ± 0.04 0.73 ± 0.05 0.76 ± 0.11 1.08 ± 0.2 0.77 ± 0.06 0.87 ± 0.06 1.15 ± 0.2
MultiHead 0.86 ± 0.08 0.93 ± 0.15 0.93 ± 0.16 0.98 ± 0.12 0.92 ± 0.14 0.88 ± 0.2 0.93 ± 0.11
MultipleModels-COM 0.69 ± 0.02 0.85 ± 0.15 0.73 ± 0.06 1.09 ± 0.12 0.89 ± 0.08 1.15 ± 0.15 0.78 ± 0.03
MultipleModels-ICT 0.7 ± 0.02 0.79 ± 0.02 0.63 ± 0.1 0.92 ± 0.03 0.8 ± 0.05 0.91 ± 0.06 0.77 ± 0.05
MultipleModels-IOM 0.66 ± 0.02 0.96 ± 0.18 0.67 ± 0.04 1.23 ± 0.24 0.91 ± 0.07 1.11 ± 0.09 0.75 ± 0.03
MultipleModels-RoMA 0.62 ± 0.03 1.06 ± 0.08 0.89 ± 0.11 1.28 ± 0.08 0.93 ± 0.13 0.76 ± 0.1 0.69 ± 0.03
MultipleModels-TriMentoring 0.72 ± 0.03 0.91 ± 0.1 0.66 ± 0.09 0.95 ± 0.07 0.7 ± 0.06 0.8 ± 0.09 0.81 ± 0.05
MultipleModels 0.88 ± 0.07 1.11 ± 0.26 1.0 ± 0.22 0.93 ± 0.13 0.92 ± 0.17 1.0 ± 0.24 0.85 ± 0.12
ParetoFlow 0.82 ± 0.02 1.07 ± 0.07 0.68 ± 0.09 1.63 ± 0.15 1.04 ± 0.06 1.16 ± 0.09 0.84 ± 0.09
PGD-MOO + Data Pruning (Ours) 0.58 ± 0.04 0.52 ± 0.03 0.46 ± 0.02 1.66 ± 0.04 0.51 ± 0.02 0.63 ± 0.02 0.53 ± 0.04
PGD-MOO (Ours) 0.62 ± 0.02 0.5 ± 0.03 0.46 ± 0.02 1.6 ± 0.04 0.51 ± 0.02 0.61 ± 0.03 0.63 ± 0.02

Table 28: Evaluation of the ∆-spread metric with 256 sampled designs on subsets of the RE task.
Results are averaged over 5 different random seeds. Lower values are better.

Method RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33
MultiHead-GradNorm 0.77 ± 0.15 1.61 ± 0.37 1.7 ± 0.35 0.98 ± 0.4 1.54 ± 0.5 0.91 ± 0.17 1.26 ± 0.28 0.92 ± 0.14
MultiHead-PcGrad 0.47 ± 0.04 1.8 ± 0.22 1.14 ± 0.21 1.25 ± 0.4 1.6 ± 0.28 1.05 ± 0.25 1.09 ± 0.13 0.91 ± 0.19
MultiHead 0.42 ± 0.04 1.43 ± 0.22 1.03 ± 0.23 1.13 ± 0.19 1.86 ± 0.04 0.94 ± 0.14 0.84 ± 0.14 1.16 ± 0.05
MultipleModels-COM 0.56 ± 0.12 1.22 ± 0.42 1.2 ± 0.49 1.08 ± 0.23 1.63 ± 0.1 1.24 ± 0.17 1.23 ± 0.19 0.87 ± 0.07
MultipleModels-ICT 0.38 ± 0.02 1.78 ± 0.12 0.84 ± 0.07 0.67 ± 0.12 1.54 ± 0.04 1.28 ± 0.19 0.91 ± 0.09 1.0 ± 0.24
MultipleModels-IOM 0.98 ± 0.4 1.84 ± 0.08 1.26 ± 0.23 1.58 ± 0.24 1.54 ± 0.25 1.07 ± 0.27 1.09 ± 0.19 0.99 ± 0.06
MultipleModels-RoMA 1.19 ± 0.09 1.57 ± 0.56 1.33 ± 0.49 1.22 ± 0.24 1.44 ± 0.43 1.39 ± 0.27 1.15 ± 0.18 0.89 ± 0.06
MultipleModels-TriMentoring 0.37 ± 0.01 1.73 ± 0.12 0.91 ± 0.15 0.56 ± 0.03 1.35 ± 0.04 1.17 ± 0.14 0.99 ± 0.09 0.85 ± 0.03
MultipleModels 0.37 ± 0.02 1.85 ± 0.12 0.82 ± 0.46 0.99 ± 0.22 1.72 ± 0.36 1.65 ± 0.22 0.9 ± 0.26 1.16 ± 0.2
ParetoFlow 1.5 ± 0.12 1.37 ± 0.11 - - - 1.66 ± 0.03 1.34 ± 0.0 1.07 ± 0.11
PGD-MOO + Data Pruning (Ours) 0.61 ± 0.03 1.29 ± 0.08 1.42 ± 0.11 1.13 ± 0.01 1.12 ± 0.08 1.34 ± 0.28 1.62 ± 0.1 0.83 ± 0.17
PGD-MOO (Ours) 0.61 ± 0.03 1.28 ± 0.07 1.08 ± 0.06 1.14 ± 0.02 1.17 ± 0.07 1.32 ± 0.15 1.59 ± 0.04 0.89 ± 0.06

23



Table 29: Evaluation of the ∆-spread metric with 256 sampled designs on subsets of the RE task.
Results are averaged over 5 different random seeds. Lower values are better.

Method RE34 RE35 RE36 RE37 RE41 RE42 RE61
MultiHead-GradNorm 0.96 ± 0.23 1.17 ± 0.14 1.19 ± 0.19 1.19 ± 0.51 1.13 ± 0.5 1.12 ± 0.51 0.72 ± 0.05
MultiHead-PcGrad 1.11 ± 0.08 0.99 ± 0.13 0.91 ± 0.17 0.76 ± 0.04 0.62 ± 0.01 0.9 ± 0.08 0.72 ± 0.03
MultiHead 1.18 ± 0.02 1.03 ± 0.06 1.15 ± 0.16 0.76 ± 0.03 0.64 ± 0.02 0.86 ± 0.05 0.74 ± 0.06
MultipleModels-COM 1.16 ± 0.02 0.89 ± 0.03 0.94 ± 0.13 0.73 ± 0.02 0.56 ± 0.02 0.68 ± 0.07 0.66 ± 0.03
MultipleModels-ICT 1.06 ± 0.06 1.09 ± 0.04 1.05 ± 0.04 0.75 ± 0.04 0.61 ± 0.04 0.75 ± 0.04 0.65 ± 0.05
MultipleModels-IOM 1.09 ± 0.05 1.03 ± 0.06 1.15 ± 0.05 0.67 ± 0.04 0.57 ± 0.02 0.73 ± 0.06 0.62 ± 0.08
MultipleModels-RoMA 1.02 ± 0.03 1.22 ± 0.07 0.93 ± 0.13 0.71 ± 0.02 0.59 ± 0.01 0.66 ± 0.05 0.59 ± 0.05
MultipleModels-TriMentoring 1.05 ± 0.14 0.82 ± 0.11 1.2 ± 0.24 0.74 ± 0.02 0.58 ± 0.01 0.78 ± 0.07 0.63 ± 0.05
MultipleModels 1.22 ± 0.03 1.07 ± 0.12 1.03 ± 0.07 0.82 ± 0.03 0.62 ± 0.04 0.83 ± 0.08 0.7 ± 0.06
ParetoFlow 0.88 ± 0.05 1.13 ± 0.02 1.05 ± 0.02 1.12 ± 0.1 1.11 ± 0.07 0.9 ± 0.1 0.68 ± 0.02
PGD-MOO + Data Pruning (Ours) 0.58 ± 0.05 0.67 ± 0.04 0.7 ± 0.05 0.44 ± 0.03 0.42 ± 0.0 0.49 ± 0.03 0.52 ± 0.03
PGD-MOO (Ours) 0.56 ± 0.02 0.9 ± 0.12 0.64 ± 0.04 0.5 ± 0.01 0.43 ± 0.02 0.49 ± 0.04 0.58 ± 0.04
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