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Abstract

Offline multi-objective optimization aims to identify Pareto-optimal solutions
given a dataset of designs and their objective values. In this work, we propose
a preference-guided diffusion model that generates Pareto-optimal designs by
leveraging a classifier-based guidance mechanism. Our guidance classifier is a
preference model trained to predict the probability that one design dominates
another, directing the diffusion model toward optimal regions of the design space.
Crucially, this preference model generalizes beyond the training distribution,
enabling the discovery of Pareto-optimal solutions outside the observed dataset.
We introduce a novel diversity-aware preference guidance, augmenting Pareto
dominance preference with diversity criteria. This ensures that generated solutions
are optimal and well-distributed across the objective space, a capability absent in
prior generative methods for offline multi-objective optimization. We evaluate our
approach on various continuous offline multi-objective optimization tasks and find
that it consistently outperforms other inverse/generative approaches while remain-
ing competitive with forward/ surrogate-based optimization methods. Our results
highlight the effectiveness of classifier-guided diffusion models in generating
diverse and high-quality solutions that approximate the Pareto front well.

1 Introduction

Several design problems in science and engineering require optimizing a black-box, expensive-to-
evaluate function. For example, in antibiotic drug discovery, the goal is to identify novel molecules
with high antibacterial activity [39]. This can be formulated as a single-objective optimization
problem. However, in practice, most real-world design challenges involve balancing multiple
conflicting objectives. For example, in drug discovery, in addition to maximizing antibacterial
activity, we also want to minimize toxicity and production costs [38]]. This constitutes a multi-
objective experimental design problem.

Prior work in both single and multi-objective optimization (MOQO) has largely focused on adaptive
experimental design using online methods such as Bayesian optimization [33]]. These approaches
rely on training surrogate models for each objective function and designing acquisition functions that
are typically optimized via gradient-based techniques [3]] or evolutionary algorithms to determine the
next candidate for evaluation. This process is iteratively repeated to optimize the objectives. However,
in many real-world applications, sequential evaluations—where inputs are tested one at a time or in
small batches—are impractical. In some cases, we have only a single opportunity to evaluate the
function, and we must allocate the entire evaluation budget efficiently.
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For example, in drug design, scientists cannot test molecules one by one in wet lab experiments
due to the high cost, slow turnaround, and the inherently parallelizable nature of the process [38].
Instead, it is common to evaluate all candidate molecules in a single batch. This setting is referred
to as offline black-box optimization [41]. While recent work has explored offline optimization in
the single-objective setting [23 46|, where extensive prior data is leveraged to model the objective
function and identify potential optima, the MO case remains relatively underexplored.

Offline black-box optimization presents distinct challenges compared to traditional online optimiza-
tion. Since the algorithm cannot iteratively refine the learned model using newly acquired data, it must
effectively leverage the available dataset to generalize beyond observed data points. This is particularly
challenging because the true optima are often expected to lie outside the existing dataset, requiring
robust extrapolation. Additionally, the goal is not merely to identify data points with high function val-
ues but to find solutions that satisfy a well-defined notion of optimality, such as the Pareto optimality.

Prior work in single-objective offline optimization can generally be categorized into two main
approaches: forward and inverse methods. Forward approaches attempt to mimic strategies used
in online optimization while leveraging offline data [41]]. These methods train a surrogate model of
the objective function and optimize it using gradient-based techniques to propose a set of promising
inputs for evaluation. They are effective when the search space is well-defined. In contrast, inverse
approaches use generative models to learn an inverse mapping from function values to inputs,
enabling the generation of new candidates with potentially high objective values [6} [16, 24} 25]]. This
distinction is critical when optimal inputs are not known in advance. For example, in chemistry,
if the goal is to evaluate a known molecule, surrogate models are effective in predicting its properties.
However, if the goal is to discover entirely new molecules with desired properties, inverse methods
are essential, as they directly generate novel candidates rather than selecting from a predefined space.
Some generative modeling approaches also draw inspiration from online methods by constructing
synthetic optimization trajectories from offline data, aiming to generate new optimal points by
extrapolating from the learned trajectories [23]].

Multi-objective offline optimization introduces additional challenges beyond those encountered in
the single-objective setting. In single-objective optimization, the goal is simply to maximize (or
minimize) a function value. However, in the multi-objective case, we seek to achieve best trade-
offs among competing objectives, which is formalized by Pareto optimality. Beyond identifying
Pareto-optimal solutions, another critical challenge is ensuring diversity on the Pareto front. A
well-structured Pareto front should provide solutions spread across different regions of the objective
space, representing a broad range of Pareto-optimal designs. Although the problem of ensuring
diversity of solutions is addressed in online MOO [1], ensuring both optimality and diversity is
challenging in the offline setting as the algorithm must infer these solutions solely from existing data.

Xue et al. [45] has recently explored benchmarking offline multi-objective optimization (MOO) by
building offline datasets for a variety of MOO benchmarks and proposing several potential algorithms.
Their work extends some offline single-objective optimization (SOO) approaches to the MOO
setting, such as fitting surrogate models to the offline data and optimizing over the surrogates using
evolutionary algorithms. However, this work has not explored the possibility of using generative
models for offline MOO.

Our contributions are:

* We formulate offline MOO as an inverse problem, and propose a novel algorithm based
on diffusion models with preference-based classifier guidance. This classifier is trained
to compare two candidate designs and determine which is more likely to dominate the other
in the objective space.

* We address the diversity challenge in the offline MOO setting. Rather than just identifying
high-value designs, we train the preference model to favor solutions that are not only
optimal but also well-distributed across the objective space.

* We demonstrate through extensive experiments on both synthetic and real-world settings
that our approach performs better than other inverse methods in terms of convergence to
the Pareto front and the diversity of obtained solutions.

* Among inverse techniques, our approach consistently achieves the strongest results; making
it a competitive choice in cases where forward methods are not feasible. Even when forward
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Figure 1: A schematic representation of the proposed preference guided diffusion approach for offline multi-
objective optimization.

methods are applicable, our algorithm remains competitive while maintaining the benefits
of generative exploration.

2 Background

2.1 Offline Multi-Objective Optimization

Multi-objective optimization (MOO) seeks to find the design 2 € X'? that minimizes (or maximizes)
a set of m different objectives:
min f(z) = {fi(z),..., fm(®)}, M
reXxd
where f; : X% — R is an unknown and expensive-to-evaluate objective. For most practical problems,

the objectives are not simultaneously optimizable by a single design. Hence, the goal instead is to
find the set of designs that are Pareto optimal.

Definition 2.1 (Pareto Dominance). A design « Pareto dominates another design z € X' (denoted
by x < 2)if fi(x) < fi(z) Viand 35 : f;(x) < f;(2).
Definition 2.2 (Pareto Optimality and Pareto Front). A design z* is Pareto optimal if fx € X¢

such that x < x*. The set of all Pareto optimal designs is called a Pareto set. Correspondingly, the
objective values of the Pareto set { f(x*) | ©*} is called the Pareto front (PF).

The Pareto front provides an optimal set of trade-offs that can be achieved from the objectives when
they are not simultaneously optimizable.

Sequential methods that collect data by selecting designs and evaluating their function values are the
most common approach for MOO, making use of surrogate models with uncertainty quantification to
learn the unknown objectives. However, for many practical problems, these sequential methods are
not feasible due to prohibitive cost or time constraints (or both). Instead of iteratively allocating an
evaluation budget to refine the design choices, offline optimization uses the entire budget in a single
round of function evaluations. In offline optimization, we have access to a dataset of N non-optimal
design-objective values pairs D := {(x, f(x(?)},. The goal of offline MOO is to find the
Pareto-optimal set by relying only on the existing dataset D.

2.2 Diffusion Models

Diffusion models [[17} 134} 135]] are a class of generative models defined by a Markov chain that
sequentially adds noise to data samples and then learns to denoise from white noise (i.e., generate a
sample) by reversing the Markov chain. In this work, we follow the Denoising Diffusion Probabilistic
Models (DDPM) [17] approach, which we summarize here. Given a sample &g ~ ¢(x), a time-
dependent forward noising process is defined as:

gl | p1) = N(2e5 /1 = Bree—1, Billa), 2
where (3; is the variance of the noising schedule at timestep ¢ such that 51 < 83 < -+ < fBr,and T
is the total number of timesteps. Let oy = 1 — 3; and &y = H;l a; then the noised sample x; can



be obtained in closed form:

T, =y + 1 — e, € ~N(0,1y). 3)

The reverse process conditional g(x;—1 | ;) is not tractable. Therefore, a denoising model defined
as pg(wi—1 | @) = N(@s—1; po(xt), Lo(xr)) is learned by optimizing parameters 6. Instead of
parameterizing the reverse process to estimate fig(x;), it is common to reparameterize this reverse
process to predict the noise that was added to produce x; (equation . If €g(xy, t) is the denoising
model to predict the added noise, reparameterization yields the mean pg () as:

1 1-—
po(xe) = e (l‘t - \/%69(331‘4”) . @

The reverse process variance is set to be the same as the forward process variance at time ¢, i.e.,
Yo (x¢) == Bily. The denoising model can be trained with mean squared error (MSE) loss:

(0=, E,[le el ®)

s€ty

A new sample can be generated by first sampling 7 ~ N (0, ) and then autoregressively sampling
from N (xy_1; o (€), Bilg) to get .

2.3 Classifier Guidance

If label o corresponding to each sample x is available, then classifier guidance allows one to
generate new samples from a trained diffusion model specific to a desired label. To do this, classifier
guidance [13]] trains an additional time-dependent classifier of the input py (o | x¢,t). Along with
the trained denoising model €y (¢, t), a new conditional sample can be generated by first sampling
&7 ~ N(0,1;) and then, from ¢ = T to ¢ = 1, autoregressively sampling:

Ty \ 0,L; ~ N(%—UM@(@) +wpiV, 10gp¢(0 | fﬁti%ﬁtﬂd), (6)
where w is the guidance strength. In this work, we use classifier guidance to generate samples

that approximate the optimal Pareto sets where the classifier is a preference model that predicts the
dominance of one input over the other.

3 Related Work

Online Multi-Objective Black-Box Optimization: Adaptive experimental design has primarily
explored multi-objective optimization (MOO) in an online or sequential fashion, where solutions are
iteratively refined as new data arrives [, 4]]. Although less studied than single-objective optimization,
several sequential approaches have proven effective. The most established is Bayesian optimization
(BO) [IL8,133], which typically uses Gaussian processes [44] to model objectives, especially in data-
scarce regimes. Multi-objective extensions of BO often reduce the problem via scalarization [21]]
or employ acquisition functions such as expected hypervolume improvement (EHVI) [15] and
information gain [4]] to balance trade-offs across objectives. Recent work also introduced batch
selection strategies [11], though most methods emphasize Pareto dominance over diversity. A
few exceptions, such as Konakovic Lukovic et al. [22]] and Ahmadianshalchi et al. [1]], explicitly
promote Pareto front diversity. Beyond traditional BO, neural approaches extend online MOO using
generative models like variational autoencoders (VAEs) combined with Gaussian processes over
the latent space [36]. However, these methods inherit VAE limitations—posterior collapse and
non-identifiability—that restrict their robustness in practical optimization tasks.

Offline Single-Objective Black-Box Optimization: Offline single-objective optimization focuses
on leveraging existing datasets without additional data collection. Forward methods [41} 40] train
surrogate models to approximate the objective function and then optimize these surrogates for
high-performing inputs. Inverse methods instead employ conditional GANs [6} 16, [25] to learn
mappings from function outputs back to inputs. To bridge forward and inverse strategies, Chemingui
et al. [[7], Krishnamoorthy et al. [23]] proposed hybrid methods that synthesize pseudo-optimization
trajectories from offline data, mimicking online behavior. Diffusion-based frameworks [24] adjust
diffusion losses with weighted importance terms, while classifier-guided models [8] bias generation
toward globally optimal designs. Kim et al. [19] provides a comprehensive review of model-based
offline optimization methods, summarizing progress across forward, inverse, and hybrid approaches.
Additionally, Trabucco et al. [42] established a standardized benchmarking suite for consistent
evaluation of offline optimization algorithms.
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Figure 2: Generalization of the preference model on regions unseen in the training data on the ZDT2 task [53|].
The preference model gives good prediction of Pareto dominance between the reference design (in black) with
other designs (in pink and green). Pink indicates that the preference model predicts these designs to be dominated
by the reference design and green indicates that these designs are predicted as dominating the reference design.
The figure on the right is a zoomed-in version of the left, excluding the training data (in blue).

Offline Multi-Objective Black-Box Optimization: Research on offline multi-objective optimiza-
tion (MOO) remains limited. Xue et al. [45] recently proposed a benchmarking framework with
offline datasets and baseline algorithms across MOO benchmarks. Their work mainly extends
forward-style single-objective methods by fitting surrogate models to offline data and optimizing
them via evolutionary algorithms but does not explore generative or inverse techniques. Concurrently,
Yuan et al. [48]] introduced ParetoFlow, a flow-based generative model for offline MOO that embeds
objective weighting directly into the loss function, effectively scalarizing multiple objectives. While
this inverse approach is promising, it does not explicitly address Pareto front diversity—an essential
factor for capturing representative trade-offs in MOO.

4 Preference-Guided Diffusion for Offline Multi-Objective Optimization

We present a new effective approach for offline MOO by using classifier guidance to generate samples
from Pareto optimal sets with a diffusion model trained on offline data. Our approach does not
require training individual surrogate models for each objective. It relies on an inverse strategy while
ensuring the ability to generate diverse samples from the Pareto optimal set. We refer to our method
as preference-guided diffusion for multi-objective offline optimization (PGD-MOO).

Let z € X% C R? be any d-dimensional design with corresponding objective values y; = f;(x)
defined by unknown and expensive-to-evaluate functions f; : X¢ + R. Lety = [y1, ..., %m]T be
the vector of objective values for an m-objective problem. In offline MOO, we have access to a
dataset D := {x(®), 3y M| of N previously evaluated design-objective pairs. Given D, the goal is
to generate designs * from the unknown optimal Pareto set.

While diffusion models capture the distribution over data p(z), in offline MOO, we are often interested
in samples that lie outside the training data, closer to the Pareto front. This motivates the use of
classifier guidance. Directly using classifier guidance in diffusion models involves training surrogate
models for each objective, which often requires scalarization and hence can be suboptimal. We
propose to use preference-based guidance to capture Pareto dominance relations between data points.

4.1 Preference Guided Diffusion

In this work, we explore an alternate guidance strategy that does not involve training surrogate models
for every objective. Instead, we model the space of multiple-objectives through preference pairs, as
defined by a Bradley-Terry model [5] of designs.

In this regard, we train a preference model that predicts the (log)- probability of whether a design
Pareto dominates (Definition [2.T)) another design. During sampling of the designs, Given two designs
x and &, we train a (time-conditioned) binary classifier that predicts log ps(x < @ | =, Z,t). We
parameterize this distribution with a multi-layer perceptron (MLP) that takes in two inputs (designs)
of size 2 X d and outputs the logit of the Bernoulli distribution predicting whether the first input
Pareto dominates the second input.



Algorithm 1 Sampling from Preference Guided Diffusion

Require: Trained ey(x;,t), preference model py(x < & | x, &, t), guidance weight w and the most

dominant design in the dataset 227 (>¢s!
1: 7 ¢ gDPlbest)
2: iT ~ N(O7Hd)
3: fort=T1to1do
4 pg(xy) = ﬁi (:i*t - \}%ea(int))
5:  Compute preference score s, = Vg, pg (& < 1 | &4, 7, 1)
6:  Sample &;_1 ~ N (@i_1; po(Zs) + wPisp, Billa)
7: T4 it
8: end for
9: return I

Training the Preference Classifier. To train the preference classifier, we first sort the points in the
training data by their Pareto dominance. This divides the data into multiple fronts in increasing order
of dominance, with points in the same front considered equally dominant. Next, we select (x, )
pairs randomly from the dataset. If one design strictly dominates the other, it is labeled as preferred.
If both  and & are equally dominant, we assign the label © < @ if « has more diversity contribution
than & wrt other points that belong to the front. The diversity contribution of each point is calculated
using the crowding distance [[12] of a selected design w.r.t all other points that belong to the same
front in the dataset. Crowding distance for any point x is computed as follows:

m y_l’_ _ y_
dep(x) = 2 W7 D

where yf and y, are the i objective values of neighboring designs of x in the corresponding front
sorted according to ith objective value. y™* and y™" are the maximum and minimum values of the
objective 7 in the current front. Crowding distance has been used as a secondary selection criterion in
evolutionary algorithms such as NSGA-2 [12] to maintain the diversity of solutions. Using crowding
distance to create a binary label encourages the preference model to not only guide the diffusion
model towards more Pareto-dominant regions, but also ensure that the designs that make up the Pareto
front are diverse. For the denoising model, we train an unconditional diffusion model ey (x;, t) (§
on the designs x in the dataset, similar to DDPM [17]].

Sampling Designs. With a trained denoising model e (2, ) and preference model py(x < & |
@, &,t), we sample a new design by using classifier guidance (§. We input both the denoised
variable at the current timestep @, as well as from the previous realization of denoising, i.e., ;1 for
the preference model to estimate Vz, pg (&4 < &y41 | T4, B41,t). At the beginning of the denoising
procedure when ;1 is not defined, we input the most dominant design in the dataset for preference
comparison. The most dominant design in the dataset is chosen based on non-dominated sorting. The
sampling procedure is summarized in Algorithm|[I] Intuitively, a preference model that generalizes
well beyond its training data should guide the denoising process such that, at each step of denoising,
the resulting sample &; is in a more Pareto-dominant region.

With enough timesteps, the resulting denoised sample o will be close to the Pareto front. Moreover,
the connection to Bradley-Terry model of preference is apparent: the gradient of the logit which
indicates the probability of the first input dominating the second, carries information about the reward
[32]. Here, we use this to guide the diffusion model such that it can sample from regions closer to the
Pareto front through the denoising process.

This approach does not require training surrogate models, thus providing a simple alternative approach
to offline MOO. We find that the preference model generalizes well outside of the training data (see
Fig.2), therefore providing guidance to the diffusion model to generate designs outside of the training
data close to the Pareto front, while maintaining diversity in the samples.



5 Experiments

We perform several experiments on standard benchmarks for offline MOO. Through these experiments,
we would like to understand how close the generated samples are to the Pareto front, as well as the
diversity of the solutions.

Benchmark Tasks:  Our evaluation closely follows the benchmarking effort provided in prior
work [45]. We evaluate our approach on two sets of tasks: synthetic and real-world applications-
based RE engineering suite [40]. Each task consists of a dataset of 60k offline datapoints. As in [43]],
we use 54k randomly chosen data points for training and the remaining for validation.

1. Synthetic set of tasks consist of 12 distinct tasks each with their own dataset. The objectives
are analytic functions with tractable Pareto-fronts. This set of tasks has been widely used in MOO
problems. Every task consists of 2-3 objectives with d ranging from 10 to 30.

2. RE engineering suite of problems are set of 12 distinct tasks, each with their own dataset. These
tasks are based on real-world applications in engineering, for instance, rocket injector design and
disc brake design. d ranges from 3-7 variables and the number of objectives m varies from 2 to 6.

3. MO-NAS are set of tasks are based on neural architecture search benchmarks from [[14} 27, 30]
which consists of multiple objectives like prediction error and hardware constraints like GPU latency.
In particular, we use the datasets corresponding to C10/MOP(1-9) and IN1K/MOP(1-9) tasks provided
by Lu et al. [30]. As the design space is discrete, we operate on the continuous space of corresponding
logits, as in prior work [45] 48]].

Details of individual tasks and their corresponding datasets are given in Appendix [B]

Baselines: We compare our ap-
proach with two categories of base- Taple 1: Average ranking of hypervolume obtained by differ-

lines: ent methods across synthetic, RE and MO-NAS tasks.
1. We compare with ParetoFlow [48], Method Synthetic ‘ RE ‘ MO-NAS
a classifier guided generative model ~Multidead 75 5.73 10.11
based on flow-matching [28§]]. Classi-  MultiHead - PcGrad 6.08 6.06 8.00
fiers for guidance are trained surrogate ~ MultiHead - GradNorm 975 114 8.50
.. MultipleModels 6.5 3.67 9.39
models for each objective, followed  ypyjipieModels - COM 783 727 a7
by scalarization. ParetoFlow is our  MultipleModels - IOM 5.58 4.6 5.44
primary baseline since our work is ~ MultipleModels - ICT 6.67 4.67 6.61
: : ; S MultipleModels - RoOMA 6.58 7.67 7.44
mainly concerned with studying in- 50 T entoring 833 43 811
verse approaches for offline MOO. ParcioFlow 7353 517 757
. _ PGD-MOQO + Data Pruning (Ours) 5.08 9.06 2.14
2. Forward approaches using evolu PGD-MOO (Ours) a2 g 186

tionary algorithms: As suggested in
prior work [45]], a standard approach
to offline MOO is to train a surrogate
model for each objective and then use evolutionary algorithms such as NSGA-2 [12] to search
over the design space. Although there are various ways to learn surrogate models, we compare
with deep neural network (DNN)-based approaches, which are shown to perform best according
to benchmarks [45]. The DNN approaches we compare with are: i) A Multi-Head Model: Uses
multi-task learning [50] to train a joint surrogate for all objectives. Training techniques for this
approach such as GradNorm [[10] and PcGrad [47]] are also compared. ii) Multiple Models: Maintain
m independent surrogate models, each making use of a single optimization technique, including
COMs [41], ROMA [46], IOM [31]], ICT [49], and Tri-mentoring [9].

Other forward approaches like multi-objective Bayesian optimization algorithms are shown to perform
worse than evolutionary algorithms on both synthetic and RE set of tasks [45], hence we exclude
them from comparisons in this work.

Evaluation Metrics:  For each algorithm, we evaluate the convergence of solutions using the
hypervolume metric [52], a standard metric in MOO for measuring the closeness of the proposed
designs to the Pareto front. Hypervolume measures the volume of the objective space between a



Figure 3: Plot of the samples from our preference-guided diffusion model (in green) on the ZDT2 task [53] at
different timesteps of denoising. Convergence of samples close to the Pareto front (in red) outside of the training
data (blue) highlights the importance of preference guidance.

Table 2: Hypervolume results of DTLZ subtasks (part of the synthetic task). Each method is run for
five random seeds and evaluated on 256 designs.

Method DTLZ1 | DTLZ2 | DTLZ3 | DTLZ4 | DTLZ5S | DTLZ6 | DTLZ7
D (best) 10.60 9.91 10.00 10.76 9.35 8.88 8.56
MultiHead 1051 +£023 9.03+056 10484+023 673114 841+0.15 872+1.07 10.66 £ 0.09
MultiHead - PcGrad 10.64 £0.01 9.64+033 10554012 995+193 9.02+£024 990£0.25 10.61+0.03
MultiHead - GradNorm 10.64 £ .01 8.86+127 1026+028 745+0.75 787+1.06 8.16+2.21 10.31£022
MultipleModels 10.64 £0.01 9.03£0.80 10.58+0.03  7.66+ 1.3 7.65+£139 958+£0.31 10.61%£0.16
MultipleModels - COM 10.64 £0.01 899 £0.97 1027+037 9.72+039 9.44+041 9.37+£0.35 10.09 +0.36
MultipleModels - IOM 10.64 £0.01 10.10+027 10244+0.13 10.034+0.53 9.77+£0.18 9.30£0.31 10.60 & 0.05
MultipleModels - ICT 10.64 £0.01 8.68+0.88 10254042 1033+0.24 925+028 9.10+1.16 10.29+0.05
MultipleModels - RoOMA 10.64 £0.01 10.04 £0.05 10.61+£0.03 9.25+£0.11 8.71+£047 9.84+025 10.53 £0.04
MultipleModels - TriMentoring 10.64 +£0.01 939+035 1048+0.12 1021+£0.06 7.69+1.03 9.00+048 10.12 +0.09
ParetoFlow 10.60 £0.02 10.13£0.16 1041+£0.09 1029+0.17 9.65+023 925+043 894£0.18
PGD-MOO + Data Pruning (Ours) | 10.64 +0.01 10.55+0.01 10.63 + 0.01 10.63 £ 0.01 10.07 £0.02 10.15+0.03 9.57 £0.07
PGD-MOO (Ours) 10.65+0.01 10.55+0.01 10.63 +0.01 10.64 +0.01 10.06 = 0.02 10.14 £0.01 9.70 £0.18

reference point and the objective vectors of the solution set, and does not require access to the true
Pareto front. The reference point used for evaluation of hypervolume is taken from [43](Appendix [B).

In addition to the hypervolume, we also measure the diversity of the obtained solutions using the
A-spread metric [12] [51]]. The A-spread measures the extent of the spread achieved in a computed
Pareto front approximation [2]]. It is important to consider the diversity of the obtained solutions,
especially in the case of MOO wherein there is no single “best” design, but rather an entire set of
solutions based on the Pareto front. In addition, in the case of offline optimization, the acquisition is
single-shot. Therefore, solutions that are diverse and hence provide more coverage over the objective
space are preferable. In this work, we provide the first effort to evaluate and benchmark the diversity
of solutions obtained by different approaches in offline MOO. Further details of the evaluation metrics
and their computation is provided in Appendix [A-T]

We evaluate all methods on 5 random seeds, and compute the metrics using a budget of 256 designs.

5.1 Training Details

We parameterize the unconditional denoising model to be a multi-layer perceptron (MLP) with two
512-dimensional hidden layers, followed by a ReLU nonlinearity and layer normalization [26]. We
also incorporate sinusoidal time embedding [43]] for conditioning. We parameterize the preference
model to be an MLP with three hidden layers, with first two hidden layers having the same number
of units as the input, while the last hidden layer is having 512 units. Similar to denoising model, we
also use ReLU nonlinearity followed by layer normalization and sinusoidal time embedding.

The denoising model is trained with AdamW optimizer [29] with learning rate of e — 4 for up to
200 epochs. Following Ho et al. [17], we employ a linear noise schedule such that the noise 3; grows
linearly from 1e — 4 to 0.02. The preference model is trained with Adam optimizer [20] with learning
rate of 1le — 5 for up to 500 epochs. During sampling, we set the guidance weight w to 10. For the
preference model, we also experiment with pruning the training data to only contain the top 30% of
points, sorted according to their dominance. We refer to this method as PGD-MOQO + Data Pruning
in the results.



Table 3: Hypervolume results of ZDT subtasks (part of the synthetic task). Each method is run for
five random seeds and evaluated on 256 designs.

Method ZDT1 | ZDT2 | ZDT3 | ZDT4 | ZDT6

D (best) 417 467 515 545 461
MultiHead 48£003 557007 558£02 459£026 478=001
MultiHead - PcGrad 484001 555011 551£003 3.68+070 4.67=+0.1
MultiHead - GradNorm 463+£0.15 537+£017 554£02 328+09 3.81+12
MultipleModels 4814£0.02 557007 548+021 503+0.19 478001
MultipleModels - COM 4524002 499+012 549+0.07 510+0.08 4.41+021
MultipleModels - IOM 468+0.12 545011 561+£006 4.99+021 475001
MultipleModels - ICT 4824001 558001 559+006 4.63+043 475001
MultipleModels - RoOMA 4844001 543035 589+£0.04 413£011 1.71+0.10
MultipleModels - TriMentoring 4644010 522+0.11 516+0.04 512+0.12 2.61 +0.01
ParetoFlow 423£0.04 5.65E£ 011 529=0.14 5.00£022 448 £0.11
PGD-MOO + Data Pruning (Ours) | 4.54 £0.08 521 £0.06 5.61 £0.06 506+ 007 456 0.14
PGD-MOO (Ours) 4414008 533005 554+010 502+003 4.82+0.01

Table 4: Selected results of hypervolume on RE task. Results are evaluated on 256 designs with five
different random seeds.

Method RE2l | RE22 | RE25 | RE32 | RE35 | RE3] | RE4L | RE6L

D(best) 41 478 479 10.56 10.08 557 1827 97.49

MultiHcad-GradNorm 428039 47044 45205 1054015 976+13 567 %141 17.06£382 10801 £1.0
MultiHead-PcGrad 459001 4734036 478+0.14 1063001 10.51+£005 668=006 20.66+0.1 108.54+0.23
MultiHead 46+£00 484L£00 47402 10.6+005 1049£007 667005 20.62+0.11 10892 %022
MultipleModels-COM 438+£009 48400 483+001 1064001 1055002 635+£01 2037+£0.06 107.99 + 048
MultipleModels-ICT 46400 484+00 48400 10.64+00 105+£001 673+0.0 20.58+0.04 108.68 +0.27
MultipleModels-TOM 4581002 484+£00 483+001 106500 1057001 671+£002 20.66+0.05 107.71+0.5
MultipleModels-RoMA 457+£00 4.61+051 483+£001 1064+00 1053+003 6.67+002 2039+009 108.47+028
MultipleModels-TriMentoring 46400 484+00 484:+£00 1062+001 1059+0.0 673+£0.01 20.68+0.04 108.61+0.29
MultipleModels 46400 484400 463025 1062002 10.55+0.01 673003 20.77+0.08 108.96 + 0.06
ParctoFlow 42£0.17 486 £0.01 - 1061 £00 [1.12£002 655£0.59 [941£092 107.1 £696
PGD-MOO + Data Pruning (Ours) | 442 £ 0.04 483 £001 484£00 1064£00 1043E£004 599£0.18 1937E£0.05 103.04% .71
PGD-MOO (Ours) 446003 48400 48400 106500 1032+0.0 613012 1931+£046 10502+ 1.14

5.2 Results

Evaluation of Convergence. We provide detailed results of hypervolume for various baselines and
our approach on the synthetic task (Tables[2]and[3). We find that our approach performs competitively
with respect to baselines. Preference-guided diffusion performs on average better than ParetoFlow,
another generative model-based approach using guidance. This shows the benefits of having a
preference model as a classifier for guidance. Vizualization of the final sampled designs from our
approach is provided in Appendix Overall, our method performs better than other baselines,
which learn surrogate models and use evolutionary algorithms in the synthetic task setting (Fig.[3). In
addition, we also find that our method performs competitively in the RE engineering suite (Tables 4]
and[22)) and the MO-NAS tasks (Table[I). In problems with higher number of objectives, we find that
our approach is slightly worse compared to the baselines in terms of hypervolume. However, we note
that our approach is much simpler to train in these settings, while still achieving diverse solutions
(discussed further below).

Evaluation of Diversity. Average ranking in terms of performance of the A-spread metric for all
algorithms (Table[5) shows that our approach gives more diverse solutions than all the other baselines
including in the RE setting. These results highlight the importance of having a diversity constraint in
the training procedure for the classifier through the data selection procedure (Appendix [E.3).

Across experiments, we find that our approach has competitive performance in terms of hypervolume
(convergence) while being better in terms of the A-spread metric (diversity) than the baselines.

5.3 Ablation Studies

We also study the impact of choice of two important aspects: the guidance-weight hyperaprameter w,
and the role of diversity criteria in training the preference classifier.

Results for various choices of w for ZDT subtask are provided in Fig.fal With w = 0 (no preference
guidance), the results are lower, as expected. Increasing the guidance weight generally results in
better hypervolume at the slight cost of diversity. This indicates that if diversity is more important in
the resulting designs, extreme values of w are less preferable.
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Figure 4: Ablation study of (a) different guidance weights w on both hypervolume and A-spread metrics (b)
various diversity criteria (Crowding, SubCrowding, No Diversity and Hypervolume) on the A-spread metric. All
evaluation done with ZDT subtask on 256 sampled designs across 5 random seeds.

We also perform ablation studies on the Table 5: Average ranking of the A-spread metric ob-
role of diversity criteria that is used to pick  tained by different algorithms on both synthetic and RE

preference pairs for training the preference  tasks. Detailed results are provided in Appendix [E}
classifier. For an effective comparison, we

also compare with hypervolume improve- _ Method Synthetic | RE
ment, in addition to Crowding, SubCrowd- ~ MultiHead-GradNorm 7.12 8.27
ing and having no diversity criteria. In the =~ MultiHead-PcGrad 5.92 7.0
hypervolume improvement diversity met- ~MultiHead 8.83 7.2
ric (indicated as just Hypervolume), we  MultipleModels-COM 0.5 5.47
measure diversity of a point based on the ~ MultipleModels-ICT 6.5 5.87
change in hypervolume it brings when itis ~ MultipleModels-IOM 6.42 6.8
added to the sampled set of designs. Re- ~ MultipleModels-RoMA 5.92 6.4
sults for A-spread metric for the ZDT sub- ~ MultipleModels-TriMentoring 6.0 4.6
task is given in Fig. @b] We find that in- _MultipleModels 9.25 7.53
corporating diversity criteria for preference _ ParetoFlow 10.0 9.0
generally results in better diversity of the ~ PGD-MOO + Pruning (Ours) 2.67 4.0
resulting solutions. In addition, Crowd- PGD-MOO (Ours) 2.33 4.28

ing and SubCrowding gives better diversity
than using hypervolume improvement.
Detailed results for all tasks are provided in Appendix [ET}

6 Conclusion

In this work, we presented a novel classifier-guided diffusion approach for offline multi-objective
optimization (MOQO). Our method leverages a preference model that predicts Pareto dominance
between pairs of inputs, incorporating diversity considerations to ensure that designs on the same
Pareto front are well-distributed. Empirical results show that our technique performs competitively in
terms of convergence to the true Pareto front, while also generating a diverse set of solutions.

Limitations. A key limitation of our current approach is that it relies solely on dominance information
rather than the individual function values of the objectives. Consequently, it does not allow fine-
grained control over trade-offs among different objectives, which can be important if a practitioner
needs to emphasize or de-emphasize specific objective values.

Future Directions. One promising extension would be to integrate additional guidance signals, such
as the actual function values, enabling a more preference-based form of MOO. This would allow users
to explicitly prioritize certain objectives over others or specify desired performance ranges. Another
avenue for future work is combining forward (surrogate-based) and inverse (generative) approaches,
where candidates proposed by the generative model are iteratively refined using surrogate models.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s contributions are using a preference based guidance for diffusion
models in an offline MOO setting. This is laid out in the abstract.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are laid out in §[6}

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:

Justification: The paper does not provide any formal theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The required details for reproducibility is provided in §]

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The reproducible code is included as part of the submission in the supplemen-
tary material.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and testing details are laid out in §3]
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
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are provided.
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Appendix: Preference-Guided Diffusion for Multi-Objective Offline
Optimization

A Experimental Setting

Al Metrics
We provide computational details regarding the metrics used in the work - hypervolume and A-spread.

* Hypervolume: Hypervolume is a common metric which is used in Multi-Objective Optimiza-
tion to measure the quality of the solutions. It does not require access to the Pareto-Front.
It instead relies on a reference point, which is any point in the input space that is worse
than all points in the solution set across every objective. Given this reference point &,
hypervolume is computed as the area enclosed by hyperrectangle from every point in the
solution set .S t0 X pef:

HV(S) = / U [xlvwrefl] X [$27$ref2] X X [:L'mvwrefm] X ()
xcS
where ) is the Lebesgue measure and [-, -] corresponds to a hyperrectangle between the two

points. While relatively easier for 2 or 3 objective problems, computing hypervolume is
more involved for solutions with higher number of objectives.

* A-Spread: A-Spread [12, 51]] measures the uniformity of solutions which belong to the
same front. In this work, we take into account the extreme points of the predicted front to
calculate the A-spread of a solution set S as follows:

ags) o Sremin b =l + S (@, /45D — ] o
| S ming [ly — gl + (1]~ 1)de

where min, ||y** — y|| is the distance between the extreme points of the set S and the
corresponding extreme points in the Pareto front. If the Pareto front is not known, this
quantity is evaluated to be zero. d°(y*,S/{y*}) corresponds to the distance between
consecutive points of set .S, sorted according to objective values of one of the objectives,
and d° is the mean of d° across all elements of set S.

B Dataset Details

We provide further details of the datasets used in our experiments for both Synthetic and RE set of
tasks in Tables [|and [7} All the datasets are directly taken from [45] as well as the evaluation of
hypervolume computation and the needed reference points.

Table 6: Dataset information and reference point for hypervolume computation Synthetic set of tasks.

Name d m  Pareto Front Shape Reference Point
DTLZ1 7 3 Linear (558.21, 552.30, 568.36)
DTLZ2 10 3 Concave (2.77,2.78, 2.93)
DTLZ3 10 3  Concave (1703.72, 1605.54, 1670.48)
DTLZ4 10 3  Concave (3.03, 2.83, 2.78)
DTLZ5 10 3  Concave (2d) (2.65,2.61,2.70)
DTLZ6 10 3  Concave (2d) (9.80,9.78, 9.78)
DTLZ7 10 3 Disconnected (1.10, 1.10, 33.43)
ZDT1 30 2  Convex (1.10, 8.58)
ZDT2 30 2  Concave (1.10, 9.59)
ZDT3 30 2  Disconnected (1.10, 8.74)
ZDT4 10 2  Convex (1.10, 300.42)
ZDT6 10 2  Concave (1.07, 10.27)
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Table 7: Dataset information and reference point for hypervolume computation for RE set of tasks.

Name d m Pareto Front Shape Reference Point
RE21 (Four bar truss design) 4 2 Convex (3144.44, 0.05)
RE22 (Reinforced concrete beam design) 3 2 Mixed (829.08, 2407217.25)
RE23 (Pressure vessel design) 4 2 Mixed, Disconnected (713710.88, 1288669.78)
RE24 (Hatch cover design) 2 2 Convex (5997.83, 43.67)
RE25 (Coil compression spring design) 3 2 Mixed, Disconnected (124.79, 10038735.00)
RE31 (Two bar truss design) 3 3 Unknown (808.85, 6893375.82, 6793450.00)
RE32 (Welded beam design) 4 3 Unknown (290.66, 16552.46, 388265024.00)
RE33 (Disc brake design) 4 3 Unknown (8.01, 8.84, 2343.30)
RE34 (Vehicle crashworthiness design) 5 3 Unknown (1702.52, 11.68, 0.26)
RE35 (Speed reducer design) 7 3 Unknown (7050.79, 1696.67, 397.83)
RE36 (Gear train design) 4 3  Concave, Disconnected (10.21, 60.00, 0.97)
RE37 (Rocket injector design) 4 3 Unknown (0.99, 0.96, 0.99)
RE41 (Car side impact design) 7 4 Unknown (42.65, 4.43,13.08, 13.45)
RE42 (Conceptual marine design) 6 4 Unknown (-26.39, 19904.90, 28546.79, 14.98)
RE61 (Water resource planning) 3 6 Unknown (83060.03, 1350.00, 2853469.06,

16027067.60, 357719.74, 99660.36)

Table 8: Dataset information and reference point for MO-NAS set of tasks.

Name Search space d m Reference Point
C-10/MOP1  NAS-Bench-101 26 2 (3.49 x 1071,3.14 x 107)
C-10/MOP2  NAS-Bench-101 26 3 (9.05 x 1071,3.05 x 107,8.97 x 10°)
C-10/MOP3  NATS 5 3 (2.31 x 10',7.14 x 1071, 2.74 x 10?)
C-10/MOP4  NATS 5 4 (2.31 x 101, 7.14 x 1071, 2.74 x 102,2.12 x 1072)
C-10/MOP5  NAS-Bench-201 6 5 (9.03 x 10, 1.53 x 10°,2.20 x 10%,1.17 x 10%,4.88 x 10%)
C-10/MOP6  NAS-Bench-201 6 6  (9.03 x 10%,1.53 x 10°,2.20 x 102,1.05 x 10%,2.23 x 10°,2.76 x 10%)
C-10/MOP7  NAS-Bench-201 6 8 (9.03 x 10, 1.53 x 10°,2.20 x 102,1.17 x 10},

4.88 x 101, 1.05 x 10',2.23 x 10°,2.76 x 10%)
C-10/MOP8  DARTS 32 2 (2.61 x 1071, 1.55 x 10)
C-10/MOP9  DARTS 32 3 (4.85 x 1072,3.92 x 10°)
IN-1K/MOP1  ResNet50 25 2 (2.81 x 1071,3.95 x 107)
IN-1K/MOP2  ResNet50 25 2 (2.80 x 1071, 1.15 x 1019)
IN-1K/MOP3  ResNet50 25 3 (2.81 x 1071,3.87 x 107,1.26 x 10'°)
IN-1K/MOP4  Transformer 34 2 (1.83 x 10%,7.25 x 107)
IN-1K/MOP5  Transformer 34 3 (1.83 x 10',1.49 x 10'9)
IN-1K/MOP6  Transformer 34 3 (1.83 x 10',7.10 x 107, 1.48 x 10%0)
IN-1K/MOP7 MNV3 21 2 (2.64 x 1071,9.98 x 10)
IN-1K/MOP8 MNV3 21 3 (2.65 x 1071,1.00 x 107,1.34 x 10%)
IN-1K/MOP9  MNV3 21 4 (2.65 x 1071,1.03 x 107, 1.31 x 10,6.30 x 10')

C Computational Resources

All the experiments are run on an NVIDIA A100 GPU. Our proposed approach takes on average of
1300 seconds for a 2 objective task of 30 dimensions. Approaches like MultipleModels’ walltime is
directly proportional to the number of objectives. Consequently, Paretoflow [48]], which relies on
MultipleModels also scales poorly wrt number of objectives. Overall, our approach takes roughly 56
GPU hours to train and test on all the datasets for 5 seeds. A representative runtime of our approach
as well as the baselines is given in Table[9]

D Broader Impact Statement

This paper addresses the problem of offline optimization with multiple objectives. Advances in the
problem being addressed are impactful for discovering new drugs for curing diseases, discovering
new materials with certain physical properties, to name a few. The authors do not forsee any negative
societal impacts of this work beyond what might be enabled due to general advancements in machine
learning.
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Table 9: Runtime (in seconds, for training) of different approaches on two representative tasks. Both
tasks have 60k samples in total. The runtime of PGD mainly depends on the dimensionality of the
problem (for RE 61 it is 3 and ZDT1 is 30) while for approaches like MultiHead and ParetoFlow
it is proportional to the number of objectives (for RE 61 it is 6 and for ZDT1 it is 2), since they
require training a surrogate model for each objective. We expect these runtimes to be the same if the
dimensionality (or correspondingly the number of objectives) for other tasks are the same. Sampling
times for all these approaches are fairly fast (at most 30 sec for 256 samples).

Method ZDT1 | RE61
MultiHead 450 470
MultipleModels 920 2820
ParetoFlow 1200 3100
PGD-MOO (Ours) | 1300 930

E Additional Results

E.1 Ablation Study Full Results

In addition to the main results, we perform evaluation of the impact of guidance weight w on the
resulting designs. Tables[I0] [I2]and [I4] presents results of hypervolume evaluated on 256 sampled
designs. Tables and 13| presents the corresponding diversity evaluation with A-spread metric.

In addition to the above evaluation, we also evaluate the impact of the incporated diversity criteria for
selecting the preference pairs for training the classifer. In addition to Crowding and SubCrowding,
we also consider not incorporating any diversity (mentioned as No diversity), as well as computing
the improvement in hypervolume due to specific design in the sampled designs (mentioend as just
Hypervolume). Hypervolume improvement due to a specific sample can be computed as the difference
between hypervolume due to the entire set and the hypervolume due to the entire set except for this
specific sample.

Results for different evaluation criteria are provided in Tables [16] [T8] and [20] for hypervolume, as well
as in Tables [['7] [I9]and 21| for diversity.

Table 10: Hypervolume results with 256 sampled designs of different guidance weights w for DTLZ
subtasks (part of synthetic task).

Guidance Weight (w) | DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZS DTLZ6 DTLZ7

w=0 10.64£0.00 10.53+0.02 10.61+0.02 10.66+0.01 10.07£0.02 10.15+0.05 9.48+0.14
w=>5 10.65+0.00 10.54+0.02 10.63£0.00 10.64+0.01 10.08+0.01 10.17£0.02 9.6440.14
w =10 10.65+£0.00 10.56+0.00 10.63+0.00 10.65+0.01 10.05+£0.01 10.1740.04 9.76+0.14
w = 20 10.64£0.00 10.55+0.01 10.624+0.01 10.64+£0.01 10.09£0.02 10.16+0.04 9.8140.23
w = 50 10.62+0.01  10.55+0.01 10.63£0.00 10.63£0.01 10.0940.02 10.164+0.09 9.80=£0.36

Table 11: Diversity evaluation results with 256 sampled designs of different guidance weights w for
DTLZ subtasks (part of synthetic task).

Guidance Weight (w) | DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZS DTLZ6 DTLZ7

w=0 0.54£0.02 0.544+0.02 0.48+0.01 1.66+0.03 0.50£0.02 0.64+0.01 0.524+0.02
w=>5 0.59+0.04 0.544+0.03 0.48+0.03 1.62+0.04 0.52+0.04 0.62+0.02 0.65+0.04
w = 10 0.61+0.04 0.564+0.02 0.474+0.02 1.62+0.03 0.54+0.02 0.62+0.02 0.70+0.05
w =20 0.61£0.05 0.544+0.03 0.47+0.01 1.53£0.02 0.50+0.03 0.60+£0.03 0.73+0.07
w = 50 0.60+£0.01 0.564+0.02 0.49£0.03 1.49+0.05 0.53£0.03 0.60£0.02 0.6640.06
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Table 12: Hypervolume results with 256 sampled designs of different guidance weights w for ZDT
subtasks (part of synthetic task).

Guidance Weight (w) | ZDTI1 ZDT2 ZDT3 ZDT4 ZDT6

w= 4.53£0.04 5.20£0.03 5.57£0.09 5.08+0.04 4.60+0.12
w=25 4.53£0.04 5.31£0.03 5.55+0.03 5.06+0.07 4.814+0.02
w =10 4.55£0.04 5.39£0.05 5.55+0.06 4.97+0.07 4.824+0.00
w = 20 4.53£0.13 5.524£0.02 5.60£0.10 5.00£0.07 4.82+0.01
w = 50 4.51£0.18 5.62£0.04 5.554+0.04 5.04+0.04 4.63+0.33

Table 13: Diversity evaluation results with 256 sampled designs of different guidance weights w in
ZDT subtasks (part of synthetic task).

Guidance Weight (w) | ZDT1 ZDT2 7ZDT3 7ZDT4 7ZDTé6

w=0 0.64£0.04 0.62£0.01 0.62+0.04 0.61£0.02 0.77£0.05
w=5 0.63£0.03 0.66£0.03 0.62+0.02 0.61+0.01 0.81+0.03
w =10 0.63£0.09 0.58+£0.01 0.60+0.02 0.60+0.02 0.8340.04
w = 20 0.63£0.02 0.58£0.02 0.60£0.02 0.58+0.02 0.90+0.06
w = 50 0.60£0.03  0.60£0.02 0.62+0.03 0.62+0.01 0.914+0.04

Table 14: Hypervolume results with 256 sampled designs of different guidance weights w for various
RE tasks.

Guidance Weight (w) | RE21 RE24 RE25 RE35 RE41

w = 4.38+0.07 4.84+0.00 4.84+0.00 10.42+0.06 18.98+0.25
w = 4.43+0.05 4.84+0.00 4.84+0.00 10.37+0.06 19.00£0.26
w =10 4.46+£0.04 4.83+0.00 4.84+0.00 10.27+0.11 19.17£0.30
w = 20 4.45+0.05 4.84+0.00 4.844+0.00 10.16+0.15 18.40+0.84
w = 50 4.44£0.05 4.83£0.00 4.84+0.00 9.55+£0.54 17.67£0.96

Table 15: Diversity evaluation results with 256 sampled designs of different guidance weights w for
various RE tasks.

Guidance Weight (w) | RE21 RE24 RE25 RE35 RE41

w=20 0.60+0.03 1.15+£0.07 1.05£0.05 0.70+0.03 0.42+0.02
w=5 0.61£0.04 1.20£0.09 1.08+0.05 0.81+0.12 0.454+0.02
w =10 0.61£0.02 1.20£0.05 1.194£0.08 1.00£0.12 0.4740.04
w = 20 0.61£0.03 1.18+0.03 1.21+0.06 0.83+0.11 0.49+0.04
w = 50 0.63£0.02 1.17£0.08 1.21+0.06 0.82+0.09 0.62+0.19

Table 16: Hypervolume results with 256 sampled designs when specific diversity criterion is used for
training the preference classifier. Results evaluated with w = 10 on DTLZ subtasks (part of synthetic
tasks).

Diversity Criteria | DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZS DTLZe6 DTLZ7

Crowding 10.65£0.00 10.56£0.00 10.63+£0.00 10.65+0.01 10.05+0.01 10.174+0.04 9.7640.14
Hypervolume 10.64+0.00 10.55+0.01 10.63+£0.00 10.64+0.00 10.06+0.02 10.13+0.01  9.724+0.09
SubCrowding 10.64+£0.00 10.56£0.01 10.62+0.01 10.65+0.02 10.08+0.01 10.104+0.07 9.4940.05
No diversity 10.64£0.00 10.56£0.00 10.63+£0.00 10.64+0.01 10.06+0.00 10.13+0.00 9.664-0.00

E.2 Visualization of the Sampled Designs

We provide visualization of the sampled designs from our model on 2-objective problems in Fig. [5]
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Table 17: Diversity evaluation results with 256 sampled designs when specific diversity criterion is
used for training the preference classifier. Results evaluated with w = 10 on DTLZ subtasks (part of
synthetic tasks).

Diversity Criteria | DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZS5 DTLZ6 DTLZ7

Crowding 0.61+0.04 0.56+0.02 04740.02 1.62+0.03 0.54+0.02 0.62+£0.02 0.70+0.05
Hypervolume 0.58+0.00 0.54+0.03 0.49+0.01 1.63+£0.04 0.53+0.02 0.63£0.02 0.76+0.07
SubCrowding 0.55+0.03 0.54+0.02 0.48+0.03 1.68+0.04 0.51+0.02 0.65+£0.02 0.58+0.02
No diversity 0.58+0.00 0.55+0.00 0.48+0.00 1.56+0.03 0.53+0.00 0.63£0.00 0.68+0.00

Table 18: Hypervolume results with 256 sampled designs when specific diversity criterion is used for
training the preference classifier. Results evaluated with w = 10 on ZDT subtasks (part of synthetic
tasks).

Diversity Criteria | ZDT1 ZDT2 ZDT3 7ZDT4 ZDT6

Crowding 4.55+£0.04 5.39£0.05 5.55£0.06 4.97+0.07 4.82+0.00
Hypervolume 4.49£0.12 5.40£0.05 5.59£0.09 5.01+0.11 4.82+0.01
SubCrowding 4.54£0.07 5.24£0.04 5.60£0.03 5.08+£0.08 4.59+0.07
No diversity 4.59£0.08 5.46£0.03 5.58+£0.00 5.21+0.00 4.74+0.00

Table 19: Diversity evaluation results with 256 sampled designs when specific diversity criterion is
used for training the preference classifier. Results evaluated with w = 10 on ZDT subtasks (part of
synthetic tasks).

Diversity Criteria | ZDT1 7ZDT2 ZDT3 7ZDT4 ZDT6

Crowding 0.63+0.09 0.584+0.01 0.60+0.02 0.60£0.02 0.83£0.04
Hypervolume 0.64+0.06 0.61+0.03 0.60+0.04 0.60£0.02 0.86=£0.05
SubCrowding 0.70+0.02  0.90+0.04 0.66+0.03 0.60£0.04 0.77£0.06
No diversity 0.72+0.04 0.60+0.03 0.66+0.03 0.65+0.00 0.84£0.01

Table 20: Hypervolume results with 256 sampled designs when specific diversity criterion is used for
training the preference classifier. Results evaluated with w = 10 on RE tasks.

Diversity Criteria | RE21 RE24 RE25 RE35 RE41

Crowding 4.46£0.04 4.83£0.00 4.84+0.00 10.27+0.11 19.17+£0.30
Hypervolume 4.41£0.03 4.83£0.00 4.84+0.00 10.36+0.04 19.09+0.00
SubCrowding 4.39£0.05 4.83£0.00 4.84+0.00 10.41+0.05 19.02£0.18
No diversity 4.42+0.00 4.83+£0.00 4.84+0.00 10.35£0.00 19.09+0.00

Table 21: Diversity evaluation results with 256 sampled designs when specific diversity criterion is
used for training the preference classifier. Results evaluated with w = 10 on RE tasks.

Diversity Criteria | RE21 RE24 RE25 RE35 RE41

Crowding 0.61£0.02 1.20£0.05 1.19£0.08 1.00£0.12 0.47+0.04
Hypervolume 0.62+£0.02 1.16£0.09 1.14+0.09 0.994+0.08 0.4740.03
SubCrowding 0.60£0.01 1.17£0.05 1.12£0.06 0.70£0.03  0.43+0.02
No diversity 0.62£0.01 1.16£0.06 1.39£0.06 0.90£0.02 0.50+0.04

21



ZDT 3 ZDT 4 ZDT 6
.

7
6
8 . -
5 . R A
a a 61 . -, . : H
s s s watue s a8
3 af fendi ERI e
: 2 i
2
1 R S5t I,
X o ——
00 02 04 06 08 10 00 02 04 06 08 1.0 03 0.4 05 0.6 0.7 0.8 0.9 1.0
RE 23 ™ RE 24 ” RE 25
.
3.0
4000 1.2 25
2.5
1.0 . 2.0
3000 08 2.0
~ ~ w1l.5]{ee
0.4 1.0 R
10001 . o2 os osfye
o] S 00] bevecvevimm e 0.0 0.0 &b .
0 50 100 150 260 250 300 350 6 1000 2000 3000 4000 5000 6000 0 100 200 360 400 500 6 10 20 30 40 50 60

Figure 5: Plot of the samples from diffusion model (in green) on different 2-objective tasks. Top row shows
results for synthetic set of benchmarks, while the bottom row shows results for RE engineering suite. Blue dots
correspond to training data and red dot corresponds to the true Pareto front. The blue dots are omitted for the
bottom row for clarity. Results for ZDT?2 is available in Fig. @

Table 22: Evaluation of hypervolume with 256 sampled designs on subsets of the RE task. Results
are averaged over 5 different random seeds.

Method REZI | RE22Z | RE23 | RE2 | REZ5 | RE3I | REZ | RE3

D(best) 4.1 478 475 4.6 479 10.6 10.56 10.56

MultiHead-GradNorm 428+039 47+£044 377112 3.65+082 452+£05 10.6 £0.1 10.54+£0.15 1003 £1.5
MultiHead-PcGrad 459+001 473+036 484+00 4.15+0.66 478+0.14 10.64+0.01 10.63+0.01 10.59 % 0.03
MultiHead 4.6 +0.0 4.84+00 484+£001 473+£02 474+02 10.65 £ 0.0 10.6 £ 0.05 10.62 + 0.0
MultipleModels-COM 438+0.09 484+00 484+00 473+£02 483+£0.01 10.64+001 10644001 10.61 £0.0
MultipleModels-ICT 4.6 +0.0 4.84+00 445+£0.02 483+£0.01 4.84+00 10.65 £ 0.0 10.64 + 0.0 10.62 + 0.0
MultipleModels-IOM 458+002 484+00 483+£001 472+0.11 483+£0.01 1065+00 10.65+0.0 10.62+0.0
MultipleModels-RoMA 457+00 461+£051 483+£0.01 396+12 483+001 10.64+0.01 10.64+00 10.58+0.03
MultipleModels-TriMentoring 4.6 +£0.0 484+00 484+£00 484+00 4844+00 1065+0.0 10.62+£0.01 10.6+0.01
MultipleModels 4.6 +0.0 4.84+00 484+00 483+£0.01 463+025 10.65+00 10.62+0.02 10.62+0.0
ParetoFlow 42+0.17 486+0.01 - - - 10.66 £ 0.12 1061 £0.0 10.75£0.2
PGD-MOO + Data Pruning (Ours) | 442 +0.04 483+0.01 484+00 484+00 484+00 1057+0.05 10.64+0.0 10.09 £ 0.6
PGD-MOO (Ours) 446+003 484+00 484+00 484+00 484+00 10.6+0.01 10.65+ 0.0 10.51 +0.04

E.3 Detailed Results

Table 27: Evaluation of the A-spread metric with 256 sampled designs on ZDT subtask, part of the
synthetic set of tasks. Results are averaged over 5 different random seeds. Lower values are better.

Method ZDT1 | 7ZDT2 | 7ZDT3 | 7ZDT4 | 17DT6

MultiHead-GradNorm 096 £0.19 094+£0.16 093£0.17 0.79=£0.15 0.77£0.16
MultiHead-PcGrad 0.83£0.1 098013 0.79+003 0.67+0.04 0.82=0.11
MultiHead 113008 1.04£005 083£0.06 0.68=£0.03 122007
MultipleModels-COM 0.89+0.04 0794011 083+005 0.64+003 1.0=+0.09
MultipleModels-ICT 1.1+£002 1.01+£007 0.86+006 0.69=+0.07 098+ 0.06
MultipleModels-IOM 094+0.1 09+005 081+007 073£0.04 0.46=0.1
MultipleModels-RoMA 0.64£0.06 09201 079+0.07 0.69=0.02 0.78 = 0.06
MultipleModels-TriMentoring 0.86+0.03 0.86+0.06 09+004 073+0.02 0.78=0.06
MultipleModels 107 £0.06 1.01+0.03 0.84+003 07+005 1.19+0.04
ParetoFlow 146 £0.03 1.19£0.0 146£0.14 131£0.1 0.1 %005
PGD-MOO + DataPruning (Ours) | 0.66 £0.08 0.61 £0.03 0.6X0.03 0.6=0.04 08 =005
PGD-MOO (Ours) 0.68 £0.07 0.78+0.09 0.65+003 0.6+0.03 0.76=0.03

The detailed results are given in Tables 22} [23]and 26| to 29}
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Table 23: Evaluation of hypervolume with 256 sampled designs on subsets of the RE task. Results

are averaged over 5 different random seeds.

Method RE34 | RE3 | RE3 | RE3 | REAL | RE42 |  RE6l

D(best) 93 10.08 761 5.57 18.27 14.52 97.49

MultiHead-GradNorm 847187 O76=13 967043 567+141 [7.06£382 1877£299 108.01%1.0
MultiHead-PcGrad 10.11+£0.0 1051 £005 10.17+008 668+006 20.66+0.1 22.57+026 108.54 =023
MultiHead 10.1+001 1049007 10234003 6.67+005 20.62+0.11 2238+035 108.92+0.22
MultipleModels-COM 9.96+009 10.55+0.02 9824035 635+0.0 2037+006 17.44+071 107.99 +0.48
MultipleModels-ICT 101400  105+001 10294003 67300 20.58+0.04 2227+0.15 108.68=027
MultipleModels-IOM 1011 +£0.01  10.57£001 1029 +0.04 671+002 20.66+005 2243+0.1  107.71+0.5
MultipleModels-RoMA 9.91+001 10.53+003 9724028 667+002 2039+009 2141+037 10847 +0.28
MultipleModels-TriMentoring 10084002 10.59+00 9.64+142 673+001 20.68+004 21.6+0.19 108.61+029
MultipleModels 1011£00 10554001 1024+0.03 673003 20774008 2259+0.11 10896 = 0.06
ParctoFlow 1124035 I[LI2£002 842£035 655+059 1941 £092 2035531 107.1%696
PGD-MOO + Data Pruning (Ours) | 9.15£0.11 1043 £004 048£033 599£0.18 1937£0.05 [74£063 10304 % .71
PGD-MOO (Ours) 9394016 1032401 937407 613+0.12 1931046 1901 +068 10502+ 1.14

Table 24: Evaluation of hypervolume with 256 sampled designs on subsets of the CIOMOP tasks.
Results are averaged over 5 different random seeds.

Approach CIOMOPT

CI0OMOP2 |

CI0MOP3 |

C 10MOP4
21

CI0MOP5S

C10MOP6

CIOMOP7

| CI0MOPS

[_CioMor

MultipleModels T3858 £ 0.0112
MultipleModels-COM * +0.0000%
MultipleModels-ICT 1.3526 + 0.0150
MultipleModels-IOM 1.3746 4 0.1341
MultipleModels-RoMA 1.3660 = 0.0669
MultipleModels-TriMentoring 1.4042 + 0.0336
MultiHead 1.4559 + 0.0227
MultiHead-GradNorm 1.4309 £ 0.0155
MultiHead-PeGrad 1.4601 £ 0.0102

T.3206 £ 0.0300
1+ 0.0054
4+ 0.0446
2 4 0.0603
3355 + 0.0251
2416 + 0.0652
2746 + 0.0588
2636 = 0.0572
3+ 0.0787

T0.0132 £ 0
11,0189 % 0

9.9906 + 0.

10.5681 + 0.15¢

9.8492 -+ 0.3837

10.0904 + 0.2997
10.2391 4+ 0.2114
10.0193 % 0.2474
10.2801 + 0.2455

+0.3673
+0.4962
+1.0433
2549
0982
= 0.6093

368507 £ 2.7523

71409712
55 AST2 4 3.4435

95,0310 £ 75757

#107.0121 £ 0.7802+

95.8324 % 6.6621
99.9001 + 3.1050
93.0900 so«J 38

3628160  18.0855

3! 8

408.3003 + 28.605¢
340.8008 + 60.0207
306.7220 + 39.5221
360.9641 + 30,9561

5 52001 £0.1013
5.2402 % 0.0257
4.9339 £ 0.0759
5.1168 + 0.0708
5.0832 + 0.0801
9 4.9647 + 0.0968
7 50691 +0.1096
6 +0.1007
0 +0.0631

T1.6350 = 0.1101

u‘)mtn 3804

ParctoFlow TA456 £ 0.0171

71 0.0161

106091 & 0.2478

£0.6013

2
+19.8578 £ 0.0260%

T01.8361 & 1.9998

1632916 & 21.611

3 £ 0.0921

PGD-MOO + Data Pruning (Ours) | 1.4817 £ 0.0021
PGD-MOO (Ours) 14511 +0.0141

#1.3598 £ 0.0105+

13817 £0.0138 +11.1521 £ 0.0165+
11.1826 +0.0148

Z0.1086%
23 9233 + 0.0821

49.8683 = 0.0658

T06.6607 £ 0.9115

107.2650 £ 0.6335

5004782 £ 1.7625
#499.1712 + 1.3745+

55659 £ 0.0156
#5.4807 £0.0363+ 140768 £ 0.2056

TZA528 £0.1726

Table 25: Evaluation of hypervolume with 256 sampled designs on the IN1K tasks. Results are
averaged over 5 different random seeds.

Approach INIKMOPT

INTKMOP: |

INIKMOP3

INIKMOP4

INIKMOPG

INIKMOP7

[ INTKMOPS

[ INIKMOP9

MultipleModels 56231 £ 0.0610
MultipleModels-COM 5.4126 % 0.0963
MultipleModels-ICT
MultipleModels-IOM
MultipleModels-RoMA
MultipleModels-TriMentoring
MultiHead
MultiHead-GradNorm
MultiHead-PeGrad

6.0828 £ 0.2008
6.1518 £ 0.0568
6.0640 £ 0.2808
6.0892  0.2250

62062 £ 00950
6.0273 £ 0.3497

T4.3020 £ 0.0576
14.6918 £ 0.1703
14.3255 £ 0.1601

143641 + 0.2001
19

11980 £ 0.0303
4.3015 £ 0.0448
1.2440 £ 0.0171
4.1076 + 0.4522

12014+ 00729

INIKMOP:
4.4503 )2

4.6096 £ 0.0408
30911 0.0412

10.6306 £ 0.3082
11.3625 + 0.2449
10.9187 £ 0.0799
10.6794 + 1.0307
8.0256 -+ 0.3621
10.9430 + 0.0669
10.3601 £ 0.0467
8.1613 + 0.7969
10.8542 + 0.1305

16675 £ 0.1023
5.1201 £ 0.1738
1.9460

5.1611 +0.1263
4.7364 +0.1182
5.0492 + 0.0850
1.8340 £ 0.0840
1.6107 £ 0.2090
4.8260 = 0.3493

91011 £ 0.1883
11.3815 + 0.0824
9.6489 + 0.2599
#11.1559 + 0.2388+
9.0267 + 0.1139
10.1604 + 0.3933
9.2124 £ 0.1680
10.1800 + 0.6765
8.7804 + 0.2875

11.2394 £ 0.3227
14.9066 = 0.1649
11.6043 £ 0.6310
#14.6504 £ 0.6083«
10.6159 + 0.3216
11,0185 + 0.4408
10.2314 £ 0.9201
11,4468 £ 1.1444
10.2910 + 0.0455

ParetoFlow

5.966 + 0.1658

13161 £ 0.0511

T1.6062 & 0.0935

L8707 = 0.0123

TT.1389 £ 0.1251

TI.4811 £ 0.1001

PGD-MOO + Data Pruning (Ours)
PGD-MOO (Ours)

5 7638 +0.0489

6.4504 £ 0.0201
#6.4305 £ 0.0232+

117568 £ 0.1310%
14.8635 + 0.1562

+1.3028 £ 0.0206+
4.4924 +0.0105

*11.7936 £ 0.1010%
11.9365 + 0.0626

5.3022 £ 0.0705
#5.1797 % 0.0780%

10.6270 £ 0.1071
10.7654 + 0.1653

13.9399 £ 0.2251
13.6189 + 0.3393

Table 26: Evaluation of the A-spread metric with 256 sampled designs on DTLZ subtask, part of the
synthetic set of tasks. Results are averaged over 5 different random seeds. Lower values are better.

Method DTLZI | DILZ2 | DTLZ3 | DILZ4 | DILZ5 | DILZ6 | DILZ]

MultiHead-GradNorm 061 £0.03 089L024 088029 096+014 075501 0951028 12+0.18
MultiHead-PcGrad 0.65+004 073+£005 076+0.11 108402 0774006 087+006 1.15+02
MultiHead 0.86+008 093+0.I5 093+0.16 098+0.12 092+0.14 088+02 093+0.11
MultipleModels-COM 069+0.02 085+0.15 073+006 1.09+0.12 089+008 1.15+0.15 0.78=0.03
MultipleModels-ICT 07+002 079+002 0.63+0.1 092+0.03 08005 091006 0.77+0.05
MultipleModels-IOM 0.66+0.02 096+0.18 0.67+004 123+£024 091+£007 111£009 0.75=0.03
MultipleModels-RoMA 062+003 1.06+008 0.89+0.11 128+008 093+0.13 076+0.1 0.69+0.03
MultipleModels-TriMentoring 072+£0.03 091+£0.1 0.66+009 095+007 07+006 08+0.09 0.81*0.05
MultipleModels 088007 1114£026 1.0+022 093+0.3 092+0.17 10£024 085+0.12
ParctoFlow 082£002 1.07£007 0.68£0.09 163£015 [.04£006 [.I6£0.09 0.84 £ 0.09
PGD-MOO + Data Pruning (Ours) | 0.58 £ 0.04 052£003 046 £0.02 1.66 =004 051E£002 063£002 0.53%0.04
PGD-MOO (Ours) 0.62+£002 05003 046002 16+004 051+£002 0.61+0.03 0.63+0.02

Table 28: Evaluation of the A-spread metric with 256 sampled designs on subsets of the RE task.
Results are averaged over 5 different random seeds. Lower values are better.

Method RE2I | RE22 | RE23 RE24 RE25 | RE31 | RE32 | RE33

MultiHead-GradNorm 077+0.15 1.61+£037 17+035 098+04 154+£05 091+0.17 126+028 092+0.14
MultiHead-PcGrad 047 £0.04 18+£022 1.14£021 125+04 16£028 105025 1.09+0.13 0.91£0.19
MultiHead 042+0.04 143+£022 1.03+£023 1L13+019 186+0.04 094+0.14 084+0.14 1.16=+0.05
MultipleModels-COM 056 £0.12 1.224+042 1.2+£049 1.08+023 1.63+£0.1 124+£0.17 123+£0.19 0.87+0.07
MultipleModels-ICT 038+0.02 1.78+£0.12 0.84 £0.07 0.67+£0.12 154+£0.04 128+0.19 091+0.09 1.0+£0.24
MultipleModels-IOM 098 £04 1844+0.08 1264+023 1584024 1.54+£025 1.07£027 1.09+£0.19 0.99+0.06
MultipleModels-RoMA 1.19£0.09 1.57+£056 133+£049 1224+024 1444+043 1394+027 1.15+£0.18 0.89£0.06
MultipleModels-TriMentoring 037+0.01 1.73£0.12 091£0.15 056+£0.03 135+£0.04 1.17+0.14 0.99+0.09 0.85+0.03
MultipleModels 037+002 1.85+0.12 082+046 099+022 1.72+036 165+022 09+026 116402
ParetoFlow 1.5+£0.12 137+£0.11 - - - 1.66 £0.03 134+00 1.07+£0.11
PGD-MOO + Data Pruning (Ours) | 0.61 £0.03 129+0.08 142+0.11 113+0.01 1.12£0.08 134+028 1.62+0.1 0.83+£0.17
PGD-MOO (Ours) 0.61 £0.03 1.28+£0.07 1.08£006 1.14+£002 1.17+£0.07 1324£0.15 15940.04 0.8940.06
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Table 29: Evaluation of the A-spread metric with 256 sampled designs on subsets of the RE task.
Results are averaged over 5 different random seeds. Lower values are better.

Method RE34 | RE35 | RE36 | RE3 | RE4l | RE42 | RE6I

MultiHead-GradNorm 096£023 I1.17£014 119019 [19£051 TI13£05 T1.12£051 0.72%005
MultiHead-PcGrad LI1£0.08 099+0.13 091+0.17 076+004 062+£001 09+008 0.72+0.03
MultiHead 1.18£0.02 1.03£0.06 L15+0.16 076+0.03 0.64+002 0.86+0.05 0.74=0.06
MultipleModels-COM 1.16£0.02 0.89£0.03 094=0.13 073+0.02 056=+002 0.68+0.07 0.66=0.03
MultipleModels-ICT 1.06£0.06 1.09+0.04 1.05+004 075+004 0.61+£004 075+004 0.65=*0.05
MultipleModels-IOM 109005 1.03£006 115+0.05 067004 057+002 073£0.06 0.62=0.08
MultipleModels-RoMA 1.02£003 1.22£0.07 093+0.13 071+002 059+001 0.66+0.05 0.59%0.05
MultipleModels-TriMentoring 1.0S£0.14 082011 12+024 074+002 058001 0.78+0.07 0.63%0.05
MultipleModels 1224003 1.07£0.12 1.03+0.07 082+003 0.62+0.04 083008 0.7=0.06
ParctoFlow 088£005 I1.13£002 1.05£002 [12£01 TLIT1£007 09£0.1 0.68£0.02
PGD-MOO + Data Pruning (Ours) | 0.58 £ 0.05 0.67 £0.04 0.7 £0.05 044003 04200 049£0.03 0.52%0.03
PGD-MOO (Ours) 056+£002 09+0.12 0.64+004 05+001 043+£002 049+004 0.58+0.04
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