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ABSTRACT

We consider the problem of evaluating representations of data for use in solving
a downstream task. We propose to measure the quality of a representation by
the complexity of learning a predictor on top of the representation that achieves
low loss on a task of interest. To this end, we introduce two measures: surplus
description length (SDL) and ε sample complexity (εSC). To compare our methods
to prior work, we also present a framework based on plotting the validation loss
versus evaluation dataset size (the “loss-data” curve). Existing measures, such
as mutual information and minimum description length, correspond to slices and
integrals along the data axis of the loss-data curve, while ours correspond to slices
and integrals along the loss axis. This analysis shows that prior methods measure
properties of an evaluation dataset of a specified size, whereas our methods measure
properties of a predictor with a specified loss. We conclude with experiments on
real data to compare the behavior of these methods over datasets of varying size.

1 INTRODUCTION

One of the first steps in building a machine learning system is selecting a representation of data. Huge
strides in unsupervised learning (Hénaff et al., 2020; Chen et al., 2020; He et al., 2019; van den Oord
et al., 2018; Bachman et al., 2019; Devlin et al., 2019; Liu et al., 2019; Raffel et al., 2019; Brown et al.,
2020) have led to common wisdom now recommending that the design of most systems start from a
pretrained representation rather than learning representations from scratch in an end-to-end manner.
With this boom in representation learning techniques, practitioners and representation researchers
alike have the question: Which representation is best for my task?

We take the position that the best representation is the one which allows for learning a predictor to
solve the task using the least label information. This quality is measured on an evaluation dataset
which may be distinct from the set of downstream applications. This position is motivated by practical
concerns; the more labels that are needed to solve a new task, the more expensive to use and the less
widely applicable a representation will be.

Recent works (Voita & Titov, 2020) have proposed to use an estimate of the minimum description
length (MDL) of a dataset’s labels given a representation as a measure of representation quality.
However, this code length perspective conflates the information required for learning a model with
the irreducible uncertainty in the data. We show that this leads MDL-based measures to choose
different representations when given evaluation datasets of different sizes, potentially leading to a
premature decision about which representation to use.

We propose a new measure of representation quality called surplus description length (SDL), which
modifies the MDL to measure the complexity of learning an ε-loss predictor rather than computing
the complexity of the labels in the evaluation dataset. SDL, along with a second measure called
ε-sample complexity (εSC), provide tools for researchers and practitioners to evaluate the extent to
which a learned representation can improve data efficiency. Furthermore, they formalize existing
research challenges for learning representations which allow state of the art performance while using
as few labels as possible (e.g. Hénaff et al. (2020)). To facilitate our analysis, we also propose a
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Figure 1: Each measure for evaluating representation quality is a simple function of the “loss-data”
curve shown here, which plots validation loss of a probe against evaluation dataset size. Left:
Validation accuracy (VA), mutual information (MI), and minimum description length (MDL) measure
properties of a given evaluation dataset, with VA measuring the loss at a finite amount of evaluation
data, MI measuring it at infinity, and MDL integrating it from zero to n. This dependence on
evaluation dataset size can lead to misleading conclusions as the amount of available data changes.
Middle: Our proposed methods instead measure the complexity of learning a predictor with a
particular loss tolerance. ε sample complexity (εSC) measures the number of samples required to
reach that loss tolerance, while surplus description length (SDL) integrates the surplus loss incurred
above that tolerance. Neither depends on the evaluation dataset size. Right: A simple example task
which illustrates the issue. One representation, which consists of noisy labels, allows quick learning,
while the other supports low loss in the limit of data. Evaluating either representation at a particular
evaluation dataset size risks drawing the wrong conclusion.

framework called the loss-data framework, illustrated in Figure 1, that plots the validation loss against
the evaluation dataset size (Talmor et al., 2019; Yogatama et al., 2019; Voita & Titov, 2020).

2 THE LOSS-DATA FRAMEWORK FOR REPRESENTATION EVALUATION

Notation. We use bold letters to denote random variables. A supervised learning problem is defined
by a joint distribution D over observations and labels (X,Y) in the sample space X × Y with
density denoted by p. Let the random variable Dn be a sample of n i.i.d. (X,Y) pairs, realized by
Dn = (Xn, Y n) = {(xi, yi)}ni=1. This is the evaluation dataset. LetR denote a representation space
and φ : X → R a representation function. The methods we consider all use parametric probes, which
are neural networks p̂θ : R → P (Y) parameterized by θ ∈ Rd that are trained on Dn to estimate the
conditional distribution p(y | x). We often abstract away the details of learning the probe by simply
referring to an algorithm A which returns a predictor: p̂ = A(φ(Dn)). Abusing notation, we denote
the composition of A with φ by Aφ. Define the population loss and the expected population loss for
p̂ = Aφ(Dn), respectively as

L(Aφ, Dn) = E
(X,Y)

− log p̂(Y | X) L(Aφ, n) = E
Dn

L(Aφ,Dn). (1)

The representation evaluation problem. The representation evaluation problem asks us to define
a real-valued measurement of the quality of a representation φ for solving solving the task defined by
(X,Y). Explicitly, each method defines a real-valued function m(φ,D,A,Ψ) of a representation φ,
data distribution D, probing algorithm A, and some method-specific set of hyperparameters Ψ. By
convention, smaller values of the measure m correspond to better representations. Defining such a
measurement allows us to compare different representations.

2.1 DEFINING THE LOSS-DATA FRAMEWORK

The loss-data framework is a lens through which we contrast different measures of representation
quality. The key idea, demonstrated in Figure 1, is to plot the loss L(Aφ, n) against the evaluation

2



Published as a conference paper at ICLR 2021

dataset size n. Explicitly, at each n, we train a probing algorithm A using a representation φ to
produce a predictor p̂, and then plot the loss of p̂ against n. We can represent prior measures as points
on the curve at fixed x (validation accuracy with a small dataset, VA) or integrals of the curve along
the x-axis (MDL). Our measures correspond to evaluating points or integrals on the y-axis (SDL and
εSC).

2.2 EXISTING METHODS IN THE LOSS-DATA FRAMEWORK

Validation accuracy and mutual information Two popular methods for evaluating representation
quality are the validation accuracy of a model trained on limited data and the mutual information
between the labels and a representation. As we describe in Appendix D, these measures are intimately
linked. In the loss-data framework, we formally define the validation accuracy and mutual information
measures respectively as

mVA(φ,D,A, n) = L(Aφ, n) mMI(φ,D,A) = lim
n→∞

L(Aφ, n). (2)

Minimum description length. Recent studies (Yogatama et al., 2019; Voita & Titov, 2020) propose
using the Minimum Description Length (MDL) principle (Rissanen, 1978; Grünwald, 2004) to
evaluate representations. These works use an online or prequential code (Blier & Ollivier, 2018) to
encode the labels given the representations. The codelength ` of Y n given φ(Xn) is then defined as

`(Y n | φ(Xn)) = −
n∑
i=1

log p̂i(yi | φ(xi)), (3)

where p̂i is the output of running a pre-specified algorithmA on the evaluation dataset up to element i:
p̂i = Aφ(Xn

1:i, Y
n
1:i). This measure can exhibit large variance on small evaluation datasets, especially

since it is sensitive to the (random) order in which the examples are presented. We remove this
variance by taking an expectation over the sampled evaluation datasets for each i and define a
population variant of the MDL measure (Voita & Titov, 2020) as

mMDL(φ,D,A, n) = E
[
`(Yn | φ(Xn))

]
=

n∑
i=1

L(A, i). (4)

Thus, mMDL measures the area under the loss-data curve on the interval x ∈ [0, n].

3 SURPLUS DESCRIPTION LENGTH (SDL)

The prequential code for estimating MDL computes the description length of the labels given
observations in an evaluation dataset by iteratively creating tighter approximations p̂1 . . . p̂n and
integrating the area under the curve. Examining Equation (4), we see that mMDL(φ,D,A, n) ≥∑n
i=1H(Y | φ(X)). If H(Y | φ(X)) > 0, MDL grows without bound as the size of the evaluation

dataset n increases. This poses a problem for representation evaluation, since simply evaluating the
same representations on the same task, but using an evaluation dataset of a different size, may change
the verdict about which representation is better. We call this issue, which VA shares, sensitivity to
evaluation dataset size.

To derive an improved measure we look to information theory. Imagine trying to efficiently encode a
large number of samples of a random variable e which takes values in {1 . . .K} with probability p(e).
An optimal code for these events has expected length1 E[`(e)] = Ee[− log p(e)] = H(e). If this data
is instead encoded using a probability distribution p̂, the expected length becomesH(e)+DKL

(
p || p̂

)
.

We call DKL

(
p || p̂

)
the surplus description length (SDL) from encoding according to p̂ instead of p:

DKL

(
p || p̂

)
= E

e∼p
[log p(e)− log p̂(e)] . (5)

We propose to measure the complexity of a learned predictor p(Y | φ(X)) by computing the surplus
description length of encoding an infinite stream of data according to the online code instead of the
true conditional distribution; when A converges to the true predictor, this measure is bounded.

1in nats
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Definition 1 (Surplus description length of online codes). Given random variables X,Y ∼ D, a
representation function φ, and a learning algorithm A, define

mSDL(φ,D,A) =

∞∑
i=1

[
L(Aφ, i)−H(Y | X)

]
. (6)

We generalize this definition to measure the complexity of learning an approximating conditional
distribution with loss ε. This corresponds to the additional description length incurred by encoding
data with the learning algorithm A rather than using a fixed predictor with loss ε.
Definition 2 (Surplus description length of online codes with a specified baseline). Take random
variables X,Y ∼ D, a representation function φ, a learning algorithm A, and a loss tolerance
ε ≥ H(Y | X). Let [c]+ denote max(0, c) and then we define

mSDL(φ,D,A, ε) =

∞∑
i=1

[
L(Aφ, i)− ε

]
+
. (7)

One interpretation of this measure is that it gives the cost (in terms of information) for re-creating an
ε-loss predictor when using the representation φ. In our framework, the surplus description length
corresponds to computing the area between the loss-data curve and a baseline set by y = ε. Whereas
MDL measures the complexity of a sample of n points, SDL measures the complexity of a function
which solves the task to ε tolerance. For guidance about setting ε and computing SDL, please see
Appendix B.

3.1 ε SAMPLE COMPLEXITY (εSC)

We also introduce a second measure called ε sample complexity (εSC), which consists of the number
of samples needed to reach an expected population loss of ε. We discuss this measure in Appendix A.

4 EXPERIMENTS

We empirically show the behavior of VA, MDL, SDL, and εSC with experiments on MNIST. The
results, shown in Figure 2, demonstrate that the issue of sensitivity to evaluation dataset size in
fact occurs in practice: VA and MDL choose different representations when given evaluation sets
of different sizes. Because these measures are a function of the evaluation dataset size, making a
decision about which representation to use with a small evaluation dataset would be premature. By
contrast, SDL and εSC are functions only of the data distribution, not a finite sample. Once they
measure the complexity of learning an ε-loss function, that measure is invariant to the size of the
evaluation dataset.

We also performed experiments on part of speech classification with representations from ELMo
(Peters et al., 2018). The results on this large-scale task, which are largely the same as those
shown here, are in Appendix C. Details of the experiments, including representation training, probe
architectures, and hyperparameters, are available in Appendix H.
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Representation CIFAR Pixels VAE
n

60 VA 0.88 1.54 0.70
MDL 122.75 147.34 93.8
SDL, ε=0.1 > 116.75 > 141.34 > 87.8
εSC, ε=0.1 > 60.0 > 60.0 > 60.0

31936 VA 0.05 0.10 0.13
MDL 2165.1 5001.57 4898.37
SDL, ε=0.1 260.6 1837.08 > 1704.77
εSC, ε=0.1 3395 31936 > 31936.0
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Figure 2: Estimated measures of representation quality on MNIST. At small evaluation dataset sizes,
VA and MDL state that the VAE representation is the best, even though every representation yields
poor predictions with that amount of data. Since SDL and εSC have a target for prediction quality,
they are able to report when the evaluation dataset is insufficient to achieve the desired performance.
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APPENDIX A ε SAMPLE COMPLEXITY (εSC)

In addition to surplus description length we introduce a second, conceptually simpler measure of
representation quality: ε sample complexity.
Definition 3 (Sample complexity of an ε-loss predictor). Given random variables X,Y ∼ D, a
representation function φ, a learning algorithm A, and a loss tolerance ε ≥ H(Y | φ(X)), define

mεSC(φ,D,A, ε) = min
{
n ∈ N : L(Aφ, n) ≤ ε

}
. (8)

The ε sample complexity measures the complexity of learning an ε-loss predictor by the number of
samples it takes to find it. This measure allows the comparison of two representations by first picking
a target function to learn (via a setting of ε), then measuring which representation enables learning
that function with less data.

In our framework, sample complexity corresponds to taking a horizontal slice of the loss-data curve
at y = ε, analogous to VA’s slice at y = n. VA makes a statement about the data (by setting n) and
reports the accuracy of some function given that data. In contrast, ε sample complexity specifies the
desired function and determines its complexity by how many samples are needed to learn it.

Estimating the εSC. Given an assumption that algorithms are monotonically improving such
that L(A, n + 1) ≤ L(A, n), εSC can be estimated efficiently. With n finite samples in the
evaluation dataset, an algorithm may estimate εSC by splitting the data into k uniform-sized bins and
estimating L(A, ik/n) for i ∈ {1 . . . k}. By recursively performing this search on the interval which
contains the transition from L > ε to L < ε, we can rapidly reach a precise estimate or report that
mεSC(φ,D,A, ε) > n. A more detailed examination of the algorithmic considerations of estimating
εSC is in Appendix G, and an implementation is available in the supplement.

Using objectives other than negative log-likelihood. Our exposition of εSC uses negative log-
likelihood for consistency with other methods, such as MDL, which require it. However, it is
straightforward to extend εSC to work with whatever objective function is desired under the assump-
tion that said objective is monotone with increasing data when using algorithm A. A natural choice
in many cases would be prediction accuracy, where a practitioner might target e.g. a 95% accurate
predictor.

APPENDIX B SETTING ε AND ESTIMATING SDL

B.1 SETTING ε

A value for the threshold ε corresponds to the set of ε-loss predictors that a representation should
make easy to learn. Choices of ε ≥ H(Y | X) represent attainable functions, while selecting
ε < H(Y | X) leads to unbounded SDL and εSC for any choice of the algorithm A.

For evaluating representation learning methods in the research community, we recommend using
SDL and establishing benchmarks which specify (1) a downstream task, in the form of an evaluation
dataset; (2) a criterion for success, in the form of a setting of ε; (3) a standard probing algorithm A.
The setting of ε can be done by training a large model on the raw representation of the full evaluation
dataset and using its validation loss as ε when evaluating other representations. This guarantees that
ε ≥ H(Y | X) and the task is feasible with any representation at least as good as the raw data. In
turn, this ensures that SDL is bounded.

In practical applications, ε should be a part of the design specification for a system. As an example, a
practitioner might know that an object detection system with 80% per-frame accuracy is sufficient
and labels are expensive. For this task, the best representation would be one which enables the most
sample efficient learning of a predictor with error ε = 0.2 using a 0 – 1 loss.

B.2 ESTIMATING SDL

Naively computing SDL would require unbounded data and the estimation of L(Aφ, i) for every
i. However, any reasonable learning algorithm obtains a better-generalizing predictor when given
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more i.i.d. data from the target distribution (Kaplan et al., 2020). If we assume that algorithms are
monotonically improving so that L(A, i+ 1) ≤ L(A, i), SDL only depends on i up to the first point
where L(A, n) ≤ ε. Approximating this integral can be done efficiently by taking a log-uniform
partition of the evaluation dataset size and computing the Riemann sum as in Voita & Titov (2020).
Note that evaluating a representation only requires training probes, not the large representation
functions themselves, and thus has modest computational requirements. Crucially, if the tolerance ε
is set unrealizeably low or the amount of available data is insufficient, an implementation is able to
report that the given complexity estimate is only a lower bound. In Appendix F we provide a detailed
algorithm for estimating SDL and a theorem proving its data requirements, and the supplement
includes an implementation.

APPENDIX C EXPERIMENT ON PART OF SPEECH CLASSIFICATION

For a second experiment, shown in Figure 3, we compare the representations given by different layers
of a pretrained ELMo model (Peters et al., 2018). We use the part-of-speech task introduced by
Hewitt & Liang (2019) and implemented by Voita & Titov (2020) with the same probe architecture
and other hyperparameters as those works. This leads to a large-scale representation evaluation task,
with 4096-dimensional representation vectors and an output space of size 48k for a sentence of k
words.

The results demonstrate that SDL and εSC can scale to tasks of a practically relevant size. This
experiment is of a similar size to the widespread use of BERT (Devlin et al., 2019) or SimCLR (Chen
et al., 2020), and evaluating our measures to high precision took about an hour on one GPU.

ELMo layer 0 1 2
n

461 VA 0.75 0.74 0.87
MDL 884.54 1009.26 1017.72
SDL, ε=0.1 > 478.67 > 528.51 > 561.7
εSC, ε=0.1 > 461 > 461 > 461

474838 VA 0.17 0.08 0.09
MDL 92403.41 52648.50 65468.54
SDL, ε=0.1 > 40882.72 2765.11 7069.56
εSC, ε=0.1 > 474838 237967 474838

100 1,000 10,000 100,000
Evaluation set size

0.1

0.2

1

2

Te
st

 lo
ss

ELMo layer 0
ELMo layer 1
ELMo layer 2

Representation

Figure 3: Estimated measures of representation quality on the part of speech classification task. With
small evaluation datasets, MDL finds that the lowest ELMo layer gives the best results, but when the
evaluation dataset grows the outcome changes.

APPENDIX D DERIVING VA AND MI MEASURES

Nonlinear probes with limited data. A simple strategy for evaluating representations is to choose
a probe architecture and train it on a limited amount of data from the task and representation of
interest (Hénaff et al., 2020; Zhang & Bowman, 2018); we call this the validation accuracy (VA)
measure. This method can be interpreted in our framework by replacing the validation accuracy with
the validation loss and taking an expectation over draws of evaluation datasets of size n. On the
loss-data curve, this measure corresponds to evaluation at x = n:

mVA(φ,D,A, n) = L(Aφ, n) (9)

Mutual information Mutual information (MI) between a representation φ(X) and targets Y is an
often-proposed metric for learning and evaluating representations (Pimentel et al., 2020; Bachman
et al., 2019). In terms of entropy, mutual information is equivalent to the information gain about Y
from knowing φ(X):

I(φ(X);Y) = H(Y)−H(Y | φ(X)). (10)
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In general mutual information is intractable to estimate for high-dimensional or continuous-valued
variables (McAllester & Stratos, 2020), and a common approach is to use a very expressive model for
p̂ and maximize a variational lower bound:

I(φ(X);Y) ≥ H(Y) + E
(X,Y)

log p̂(Y | φ(X)). (11)

Since H(Y) is not a function of the parameters, maximizing the lower bound is equivalent to
minimizing the negative log-likelihood. Moreover, if we assume that p̂ is expressive enough to
represent p and take n→∞, this inequality becomes tight. As such, MI estimation can be seen a
special case of nonlinear probes as described above, where instead of choosing some particular setting
of n we push it to infinity. We formally define the mutual information measure of a representation as

mMI(φ,D,A) = lim
n→∞

L(Aφ, n). (12)

A decrease in this measure reflects an increase in the mutual information. On the loss-data curve, this
corresponds to evaluation at x =∞.

APPENDIX E RELATED WORK

Representation evaluation methods. Until recently, the standard technique for evaluating repre-
sentation quality was the use of linear probes (Kiros et al., 2015; Hill et al., 2016; van den Oord et al.,
2018; Chen et al., 2020). However, Hénaff et al. (2020) find that evaluation with linear probes is
largely uncorrelated with the more practically relevant objective of low-data accuracy, and Resnick
et al. (2019) show that linear probe performance does not predict performance for transfer across
tasks. Beyond linear probes, Zhang & Bowman (2018) and Hewitt & Liang (2019) show that re-
strictions on model capacity or evaluation dataset size are necessary to separate the performance of
randomly- and linguistically-pretrained representations. Voita & Titov (2020) propose using the MDL
framework, which measures the description length of the labels given the observations. An earlier
work by Yogatama et al. (2019) also uses prequential codes to evaluate representations for linguistic
tasks. Talmor et al. (2019) look at the loss-data curve (called “learning curve” in their work) and use
a weighted average of the validation loss at various training set sizes to evaluate representations.

Foundational work. A fundamental paper by Blier & Ollivier (2018) introduces prequential codes
as a measure of the complexity of a deep learning model. Xu et al. (2020) introduce predictive
V-information, a theoretical generalization of mutual information which takes into account computa-
tional constraints, and is essentially the mutual information lower bound often reported in practice.
Work by Dubois et al. (2020) describe representations which, in combination with a specified family
of predictive functions, have guarantees on their generalization performance.

APPENDIX F ALGORITHMIC DETAILS FOR ESTIMATING SURPLUS
DESCRIPTION LENGTH

Recall that the SDL is defined as

mSDL(φ,D,A, ε) =

∞∑
n=1

[
L(Aφ, n)− ε

]
+

(13)

For simplicity, we assume that L is bounded in [0, 1]. Note that this can be achieved by truncating the
cross-entropy loss.

In our experiments we replace Dk
M [1 : n] of Algorithm 1 with sampled subsets of size n from a

single evaluation dataset. Additionally, we use between 10 and 20 values of n instead of evaluating
L(Aφ, n) at every integer between 1 and M . This strategy, also used by Blier & Ollivier (2018)
and Voita & Titov (2020), corresponds to the description length under a code which updates only
periodically during transmission of the data instead of after every single point.
Theorem 4. Let the loss function L be bounded in [0, 1] and assume that it is decreasing in n. With
(M + 1)K datapoints, if the sample complexity is less than M , the above algorithm returns an
estimate m̂ such that with probability at least 1− δ

|m̂−m(φ,D, ε,A)| ≤M
√

log(2M/δ)

2K
. (14)

9
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Algorithm 1: Estimate surplus error
Input: tolerance ε, max iterations M , number of datasets K, representation φ, data distribution

D, algorithm A
Output: Estimate m̂ of m(φ,D, ε,A) and indicator I of whether this estimate is tight or lower

bound
Sample K datasets Dk

M ∼ D of size M + 1
for n = 1 to M do

For each k ∈ [K], run A on Dk
M [1 : n] to produce a predictor p̂kn

Take K test samples (xk, yk) = Dk
M [M + 1]

Evaluate L̂n = 1
K

∑K
k=1 `(p̂

k
n, xk, yk)

Set m̂ =
∑M
n=1[L̂n − ε]+

if L̂M ≤ ε/2 then Set I = tight else Set I = lower bound;
return m̂, I

If K ≥ log(1/δ)
2ε2 and the algorithm returns tight then with probability at least 1 − δ the sample

complexity is less than M and the above bound holds.

Proof. First we apply a Hoeffding bound to show that each L̂n is estimated well. For any n, we have

P

(∣∣L̂n − L(Aφ, n)
∣∣ >√ log(2M/δ)

2K

)
≤ 2 exp

(
− 2K

log(2M/δ)

2K

)
= 2

δ

2M
=

δ

M
(15)

since each `(p̂kn, xk, yk) is an independent variable, bounded in [0,1] with expectation L(Aφ, n).

Now when sample complexity is less than M , we use a union bound to translate this to a high
probability bound on error of m̂, so that with probability at least 1− δ:

|m̂−m(φ,D, ε,A)| =
∣∣∣∣ M∑
n=1

[L̂n − ε]+ − [L(Aφ, n)− ε]+
∣∣∣∣ (16)

≤
M∑
n=1

∣∣∣∣[L̂n − ε]+ − [L(Aφ, n)− ε]+
∣∣∣∣ (17)

≤
M∑
n=1

∣∣∣∣L̂n − L(Aφ, n)

∣∣∣∣ (18)

≤M
√

log(2M/δ)

2K
(19)

This gives us the first part of the claim.

We want to know that when the algorithm returns tight, the estimate can be trusted (i.e. that we set
M large enough). Under the assumption of large enough K, and by an application of Hoeffding, we
have that

P

(
L(Aφ,M)− L̂M > ε/2

)
≤ exp

(
− 2Kε2

)
≤ exp

(
− 2

log(1/δ)

2ε2
ε2
)

= δ (20)

If L̂M ≤ ε/2, this means that L(Aφ,M) ≤ ε with probability at least 1− δ. By the assumption of
decreasing loss, this means the sample complexity is less than M , so the bound on the error of m̂
holds.

APPENDIX G ALGORITHMIC DETAILS FOR ESTIMATING SAMPLE
COMPLEXITY

Recall that ε sample complexity (εSC) is defined as

mεSC(φ,D,A, ε) = min
{
n ∈ N : L(Aφ, n) ≤ ε

}
. (21)

10



Published as a conference paper at ICLR 2021

We estimate mεSC via recursive grid search. To be more precise, we first define a search interval
[1, N ], where N is a large enough number such that L(Aφ, N)� ε. Then, we partition the search
interval in to 10 sub-intervals and estimate risk of hypothesis learned from Dn ∼ Dn with high
confidence for each sub-interval. We then find the leftmost sub-interval that potentially contains
mεSC and proceed recursively. This procedure is formalized in Algorithm 2 and its guarantee is given
by Theorem 5.

Algorithm 2: Estimate sample complexity via recursive grid search
Input: Search upper limit N , parameters ε, confidence parameter δ, data distribution D, and

learning algorithm A.
Output: Estimate m̂ such that mεSC(φ,D,A, ε) ≤ m̂ with probability 1− δ.

let S = 2 log(20k/δ)/ε2, and let [`, u] be the search interval initialized at ` = 1, u = N .
for r = 1 to k do

Partition [`, u] into 10 equispaced bins and let ∆ be the length of each bin.
for j = 1 to 10 do

Set n = `+ j∆.
Compute L̂n = 1

S

∑S
i=1 `(A(Dn

i ), xi, yi) for S independent draws of Dn and test
sample (x, y).

if L̂n ≤ ε/2 then
Set u = n and ` = n−∆.
break

return m̂ = u, which satisfies mεSC(φ,D,A, ε) ≤ m̂ with probability 1− δ, where the
randomness is over independent draws of Dn and test samples (x, y).

Theorem 5. Let the loss function L be bounded in [0, 1] and assume that it is decreasing in n. Then,
Algorithm 2 returns an estimate m̂ that satisfies mεSC(φ,D,A, ε) ≤ m̂ with probability at least
1− δ.

Proof. By Hoeffding, the probability that |L̂n − L(Aφ, n)| ≥ ε/2, where L̂ is computed with
S = 2 log(20k/δ)/ε2 independent draws of Dn ∼ Dn and (x, y) ∼ D, is less than δ/(10k). The
algorithm terminates after evaluating L̂ on at most 10k different n’s. By a union bound, the probability
that |L̂n − L(Aφ, n)| ≤ ε/2 for all n used by the algorithm is at least 1 − δ. Hence, L̂n ≤ ε/2
implies L(Aφ, n) ≤ ε with probability at least 1− δ.

APPENDIX H EXPERIMENTAL DETAILS

In each experiment we first estimate the loss-data curve using a fixed number of dataset sizes n
and multiple random seeds, then compute each measure from that curve. Reported values of SDL
correspond to the estimated area between the loss-data curve and the line y = ε using Riemann sums
with the values taken from the left edge of the interval. This is the same as the chunking procedure of
Voita & Titov (2020) and is equivalent to the code length of transmitting each chunk of data using a
fixed model and switching models between intervals. Reported values of εSC correspond to the first
measured n at which the loss is less than ε.

All of the experiments were performed on a single server with 4 NVidia Titan X GPUs, and on this
hardware no experiment took longer than an hour. All of the code for our experiments, as well as that
used to generate our plots and tables, is included in the supplement.

H.1 MNIST EXPERIMENTS

For our experiments on MNIST, we implement a highly-performant vectorized library in JAX to
construct loss-data curves. With this implementation it takes about one minute to estimate the
loss-data curve with one sample at each of 20 settings of n. We approximate the loss-data curves at
20 settings of n log-uniformly spaced on the interval [10, 50000] and evaluate loss on the test set to
approximate the population loss. At each dataset size n we perform the same number of updates to

11
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the model; we experimented with early stopping for smaller n but found that it made no difference
on this dataset. In order to obtain lower-variance estimates of the expected risk at each n, we run 8
random seeds for each representation at each dataset size, where each random seed corresponds to a
random initialization of the probe network and a random subsample of the evaluation dataset.

Probes consist of two-hidden-layer MLPs with hidden dimension 512 and ReLU activations. All
probes and representations are trained with the Adam optimizer (Kingma & Ba, 2015) with learning
rate 10−4.

Each representation is normalized to have zero mean and unit variance before probing to ensure
that differences in scaling and centering do not disrupt learning. The representations of the data we
evaluate are implemented as follows.

Raw pixels. The raw MNIST pixels are provided by the Pytorch datasets library (Paszke et al.,
2019). It has dimension 28× 28 = 784.

CIFAR. The CIFAR representation is given by the last hidden layer of a convolutional neural
network trained on the CIFAR-10 dataset. This representation has dimension 784 to match the size of
the raw pixels. The network architecture is as follows:

nn.Conv2d(1, 32, 3, 1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, 1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1600, 784)
nn.ReLU()
nn.Linear(784, 10)
nn.LogSoftmax()

VAE. The VAE (variational autoencoder; Kingma & Welling (2014); Rezende et al. (2014)) repre-
sentation is given by a variational autoencoder trained to generate the MNIST digits. This VAE’s
latent variable has dimension 8. We use the mean output of the encoder as the representation of the
data. The network architecture is as follows:

self.encoder_layers = nn.Sequential(
nn.Linear(784, 400),
nn.ReLU(),
nn.Linear(400, 400),
nn.ReLU(),
nn.Linear(400, 400),
nn.ReLU(),

)
self.mean = nn.Linear(400, 8)
self.variance = nn.Linear(400, 8)

self.decoder_layers = nn.Sequential(
nn.Linear(8, 400),
nn.ReLU(),
nn.Linear(400, 400),
nn.ReLU(),
nn.Linear(400, 784),

)

12
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H.2 PART OF SPEECH EXPERIMENTS

We follow the methodology and use the official code2 of Voita & Titov (2020) for our part of speech
experiments using ELMo (Peters et al., 2018) pretrained representations. In order to obtain lower-
variance estimates of the expected risk at each n, we run 4 random seeds for each representation
at each dataset size, where each random seed corresponds to a random initialization of the probe
network and a random subsample of the evaluation dataset. We approximate the loss-data curves
at 10 settings of n log-uniformly spaced on the range of the available data n ∈ [10, 106]. To more
precisely estimate εSC, we perform one recursive grid search step: we space 10 settings over the
range which in the first round saw L(Aφ, n) transition from above to below ε.

Probes consist of the MLP-2 model of Hewitt & Liang (2019); Voita & Titov (2020) and all training
parameters are the same as in those works.

2https://github.com/lena-voita/description-length-probing
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