
InsNeXt: Training Scalable Insertion-Based Language
Models From Scratch

Anonymous Author(s)
Affiliation
Address
email

Abstract

Insertion-based language models like Insertion Transformer and InsNet have shown1

promises as strong alternatives to autoregressive models with better inference-time2

efficiency and controllablility. However, their training-time scalability has been3

limited by computational inefficiency and obsolete model designs. We aim to4

tackle this problem with InsNeXt, an insertion-based language model architecture5

integrating recent advancements of language model systems to achieve improved6

scalability. We scale InsNeXt from 154M up to as large as 0.6B parameters with7

context window of 4096 by combining sentence-level training and document-level8

training to better encode the context and bring out the benefits of insertion-based9

models to encode bi-directional contexts. In addition, we propose a novel context10

encoding mechanism specialized for insertion-based decoding. The inference-11

time mechanism sparsely introduces bidirectional re-encoding of context, thus12

effectively leverages the models’ bidirectional context reception while preserving13

the same level of computational efficiency as conventional autoregressive decoding.14

We evaluate the pretrained InsNeXt models from the perspective of representation15

learning, commonsense reasoning and controllable generation. InsNeXt models16

achieve similar or better performance in comparison to the state-of-the-art similar-17

sized autoregressive models, making them a class of solid representation learners18

and powerful controllable insertion-based generators.19

1 Introduction20

Large-scale pretrained autoregressive language models have dominated the paradigm of natural21

language generation over the past few years. These models, including the GPTs (Radford et al.,22

2018, 2019; Brown et al., 2020; OpenAI, 2022; Achiam et al., 2023), LLaMAs (Touvron et al.,23

2023a,b; Dubey et al., 2024; Meta, 2025), Phis (Li et al., 2023a,b; Javaheripi et al., 2023; Abdin24

et al., 2024), Qwen LLMs (Bai et al., 2023; Yang et al., 2024a,b) and Deepseek LLMs (Bi et al.,25

2024; DeepSeek-AI et al., 2024; Liu et al., 2024; Guo et al., 2025), have demonstrated impressive26

training-time scalability and versatile performance across a wide range of tasks. However, their27

inference-time efficiency and lack of controllability motivate people to explore alternative methods28

for pretrained language models.29

One potential alternative is the insertion-based language model (Stern et al., 2019; Gu et al., 2019; Lu30

et al., 2022). Unlike autoregressive models, which generate text strictly from left to right, insertion-31

based models allow tokens to be generated at arbitrary positions in arbitrary order, making them32

inherently more flexible and better aligned with the compositional nature of human language. More-33

over, their potential for improved controllability and fine-grained editing offers unique advantages34

in tasks requiring structured or context-sensitive generation (Zhang et al., 2020). Despite these35

benefits, attempts to scale up insertion-based models remain limited, mainly due to their training-time36

inefficiency especially compared to modern large language models (LLMs).37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

The advent of efficient training techniques and architectural improvements in modern LLMs offers38

a pathway to overcoming these limitations. Practices such as FlashAttention/Memory Efficient39

Attention (Dao et al., 2022; Dao, 2023; Shah et al., 2024; Rabe and Staats, 2022; Dong et al., 2024)40

significantly reduce the memory overhead of attention mechanisms while accelerating computation.41

Advances in layer normalization (Xiong et al., 2020), optimization techniques (Loshchilov and Hutter,42

2017; Rasley et al., 2020a), and data scaling strategies (Hoffmann et al., 2022) have revolutionized43

the training of large-scale models in other dimensions. These innovations have allowed models with44

billions of parameters to be trained efficiently (Achiam et al., 2023; Dubey et al., 2024), unlocking45

new levels of performance in NLP tasks. However, these advancements are mostly specialized for46

autoregressive LLMs, with little exploration of their applicability to insertion-based models.47

In this work, we address these challenges by integrating state-of-the-art practices to forge the insertion-48

based language model InsNeXt, a modern architecture capable of training-time scaling on par with49

traditional autoregressive models. By incorporating techniques such as FlexAttention (Dong et al.,50

2024), improved positional encodings, and optimized training pipelines, we achieve substantial51

improvements in computational efficiency and scalability.52

We pretrain InsNeXt with two major configurations and a few ablative ones, ranging from 154M53

to 587M parameters, supporting a maximum context window of 4096 tokens. The training is54

performed under a two-stage fashion: sentence-level pretraining on a BERT (Devlin et al., 2019)-55

style Wikipedia+books dataset and document-level pretraining on the SlimPajama (Soboleva et al.,56

2023) dataset. As one of the foundation works, we study on a huge variety of alternative designs in57

different aspects insertion-based models, revealing arguably the best practices of which. We also58

propose an improved re-contextualization mechanism for the insertion-based decoding to better59

utilize the models’ bidirectional context reception. The resulting models are evaluated on a broad60

range of tasks, demonstrating their effectiveness both as bidirectional BERT-style representation61

learners for natural language understanding (NLU) and as insertion-based decoders for generative and62

likelihood prediction tasks. We believe these qualities distinguish InsNeXt models from autoregressive63

counterparts and highlighting their potential to redefine the landscape of language modeling.64

2 Methodology65

2.1 Revisiting InsNet with a Contrastive Study against the (Large-Scale) Autoregressive66

Models67

InsNet (Lu et al., 2022) is one of the first works that focus on tackling the training-efficiency issue68

of insertion-based language models. It addresses the efficiency issues in a practical training of69

insertion-based models in two folds: during the context encoding phase and the action prediction70

phase.71

pos 0
B

pos 1
D

pos 2
F

pos 0
pos 1

B

pos 1
pos 3

D

pos 4
E

pos 0
A

pos 2
C

pos 2
pos 5

F

Step t

Step t+1

Figure 1: Illustration of the volatile position problem by Lu et al. (2022).
Context Encoding: the Volatile Position Problem and the Solution The high parallelizability and72

efficiency of context encoding in autoregressive transformer-based decoder-only LLMs (Vaswani73

et al., 2017; Radford et al., 2019) are widely considered some of the most important factors towards74

their success. Compared to these models, the vanilla insertion-based model Insertion Transformer75

(InsT) (Stern et al., 2019) falls short. Lu et al. (2022) argues that the biggest training-time performance76

issue for InsT comes from the position encoding inefficiency, namely the volatile position problem.77

We include their original illustration of the problem as in Figure 1. InsT relies on absolute position78

embeddings1 that bind each token’s representation to its index in the partial sequence. When a79

new token is inserted, the indices of the existing tokens shift, so their previously cached position80

embeddings become invalid. To restore consistent key/query vectors for attention, the compute-heavy81

1Alternatively, relative position encodings with static distance, like in XLNet (Yang et al., 2019) and
Roformer (Su et al., 2024)

2

Transformer models need to be run over the entire updated context at every step, incurring a full82

re-encoding pass per insertion and pushing training complexity to at most O(n) per sequence. InsNet83

improves insertion-based text generation by introducing an insertion-oriented, relative positional84

encoding called the offset matrix. Offset matrices only concern the relative spatial interactions85

between tokens that are already inserted at each step. When a new token is inserted, all previously86

computed position encodings remain unchanged, and the incoming token reports its pairwise distance87

to the existing tokens into the new offset matrix; this lets the model reuse a single context encoding for88

an entire sequence, cutting training-time re-encoding from O(n) to O(1) and preserving full distance89

information. In addition, the authors develop a fast offset-compression algorithm that builds the90

offset matrix from permutation indices with simple masking and in-row ranking operations, avoiding91

the naive O(n2) construction cost in the sequential execution. Each transformer layer then uses92

sinusoidal embeddings to concern the offset values in the attention score, yielding insertion-oriented93

distance-aware representations without extra passes.94

Action Prediction: Next-Token Prediction (NTP) vs. Next-Insertion Prediction (NiTP In95

autoregressive decoding, the prediction task is simple: predict the single next token (NTP) that will be96

appended to the current prefix. However, in insertion-based generation, the model must decide at least97

both where to insert and what to insert. The position choice is scalable and intuitive, because it can98

be cast as a single-head attention over the sequence, thus benefiting from efficient attention kernels99

with block-wise reduction (Rabe and Staats, 2022; Dao et al., 2022; Dao, 2023; Shah et al., 2024)100

for scalability. However, predicting the next-inserted token (NiTP) is harder. In an autoregressive101

decoder-only Transformer, given a training sequence, the mapping from a partial prefix to its next102

token is deterministic, so no extra aggregation is needed beyond the final layer. By contrast, in103

insertion-based generation, the representation for NiTP changes with every candidate slot, even under104

the same prefix. InsNet follows InsT and formalizes each candidate position as an insertion slot. It105

then builds the slot representation embeddings with a lightweight sparse attention over last-layer106

hidden vectors: the left and right neighbors, and the most recently inserted token.107

2.2 InsNeXt: Scalable Insertion-based Language Model with Advanced Transformer Designs108

InsNet inherits a lot of elements from XLNet (Yang et al., 2019), a BERT-era model with legacy de-109

signs, many of which are later proven to be suboptimal in larger scale pretraining (Brown et al., 2020;110

Touvron et al., 2023a). We hereby discuss both the recent advances for decoder-only transformers111

that we adopt to scale up the proposed model InsNeXt, and new model designs that we craft with112

originality to facilitate the scalability of InsNeXt.113

General Design: the Major Model and the Ablated Variants Since the scaling law and best114

practice of such scalable insertion-based language models remains hugely underexplored, we conduct115

a fairly broad range of model design ablation in each of the aforementioned aspects. However, it is116

too computationally expensive to exhaust all of the possible combinations of designs. Thus, we first117

select a basic, safe combination of model designs to build a basic model for the ablation study, then118

combine all best practices we found in the model design study to build the final major models we119

deliver. The basic model is a 12-layer, 12-headed transformer with InsNet-style sinusoidal relative120

position encoding. It has a dimensionality of 768, and GeLU pre-LN FFN layers with intermediate121

size of 3072. It uses untied input and output embeddings. The total parameter count is 171M. It uses122

shallow aggregation for NiTP.123

Provided our computation limitations, we present the two major setups in scaling up insertion-based124

models: the base-sized 154M model and the advanced-sized 573M model. InsNeXt-base is a 16-layer,125

12-headed transformer model with insertion-oriented ALiBi as the position encoding. It has a hidden126

size of 768 and SwiGLU FFN layers with intermediate size of 2048. It uses tied input and output127

embeddings. InsNeXt-advanced shares most architectural designs with the base-sized model with128

only size expansion. It has 32 layers of 18-headed attention, and a hidden size of 1152. It uses129

SwiGLU FFN layers with intermediate size of 3072. Both models use deep aggregation for NiTP.130

Residual Connection and Layer Normalization In contrast to InsNet’s legacy PostLN block, we131

conduct an ablation study over a few more recently proposed normalization alternatives, including pre-132

normalization (pre-LN) (Xiong et al., 2020), two-hop pre-LN proposed in MEGALODON (Ma et al.,133

2024) and Deepnorm (Wang et al., 2024). Results show that most recently published normalization134

blocks yield observably better stability and scalability than the legacy post-LN block, which is135

consistent with their reported performance in autoregressive models and encoder models. For an136

3

ablative and contrastive study on the effect of warmup iteration numbers under each normalization137

choice, please refer to the appendix A.4.138

Position Encoding Scalable Insertion-based language models are inherently incompatible with139

absolute position encoding and relative position encoding with static distance assumptions. This is a140

direct result of the volatile position problem in insertion-based generation. Thus, common relative141

position encodings, e.g. the Rotary Position Encoding (RoPE) (Su et al., 2024) and T5-bias (Raffel142

et al., 2020), are not directly applicable without modification. We explore other alternatives, including143

the original InsNet sinusoidal relative position encoding and ALiBi (Press et al., 2021), as they144

both directly model the interaction of different positions and thus can be altered to reflect the145

insertion-oriented position layout. For more information on the attempts at modifying and efficiently146

implementing the two position encodings, please refer to the appendix A.2.147

Slot Aggregation: Deep Aggregation using Two-stream Attention In our early attempt to scale148

up the model, we find that while the shallow aggregation proposed in InsNet is efficient and capable149

enough for smaller models on small datasets, it is no longer the best practice when both the training150

data and model sizes increase. A notable observation is that during large-scale pretraining, the151

model should be aware of the location of insertion after permutation. To better utilize the potential152

of increasing data and model capability during scaling-up, we follow the practice in XLNet and153

adopt the two-stream attention mechanism to deep aggregate the slot representation from layers of154

the context encoding. A detailed illustration of the insertion-oriented two-stream attention in both155

training and decoding can be found in the appendix Figure 3.156

Position Prediction: Soft-capped Position Logits In actual language usage, when humans157

recursively refine or expand a sentence, it is possible that there are multiple correct slots for the158

next step of expansion. The original position-predicting attention in InsNet does not reflect this. In159

InsNeXt, we introduce a soft-cap mechanism to the position logits to encourage the model to learn a160

uniform distribution over all feasible next-insertion slots. Given the soft-caps K > 0, the modified161

position logit −K < aKpos < K is computed by aKpos = K · tanh(apos

K).162

2.3 Training Details163

2.3.1 Dataset Preparation164

Due to the intractable nature of exhaustive enumeration of all permutations for longer sequences,165

we conduct the training of InsNeXt models in a two-stage fashion: sentence-level training on a166

BERT-style dataset and document-level training on the first 60B of the SlimPajama dataset. A study167

in the earlier stage of our attempt shows that this is beneficial for the model to converge faster,168

compared to directly training on the document-level data.169

Sentence-level Data The sentence-level data is crafted from a mixture of Wikipedia-English-2023,170

the Gutenberg Project dataset (PGLAF, 1971) and the BookCorpus dataset (Zhu et al., 2015). Only171

natural sentences that start with alphabetical characters and end with terminating punctuation are172

selected. Two consecutive sentences that appear in the same document are concatenated into a single173

training sequence for the model to learn the basic concept of moving on to the next sentence when174

one sentence is finished. The maximum sequence length is set to be 128, and models are trained175

to predict the likelihood of at most only the first 96 insertion operations to avoid overfitting to only176

complete sentence pairs.177

Document-level Data The document-level data is crafted from the SlimPajama dataset (Soboleva178

et al., 2023). The original SlimPajama dataset consists of 627B tokens, of which we take the first179

60B tokens to facilitate our training process. Due to the limit of computational resources, in the first180

95% batches of training, each sequence has a token limit of 1024, and we use only the last 5% for181

context length expansion to at most 4096.182

2.3.2 Tokenization and Permutation of Insertion Operations183

Tokenizer Following the setup of prior autoregressive LMs like Pythia (Biderman et al., 2023),184

OlMo (Groeneveld et al., 2024; OLMo et al., 2024) and ModernBERT (Warner et al., 2024), we use185

the GPTNeoXTokenizer with a vocabulary size of 50254. The only notable modification is that we186

force the tokenizer to split each digit in numbers.187

4

Permutation of Insertion Operations To ensure the integrity of each natural word, the tokens188

within the same natural word are always grouped together and generated/predicted autoregressively189

in the permutation. We argue that it is mostly only reasonable to assume the recursive structure and190

compositionality in the same natural sentence. Thus, for inter-word permutations, all permutations191

are limited to within natural sentences chunked by the SpaCy (Honnibal et al., 2017) sentencizer. We192

acknowledge that this is an potentially problematic implementation, especially for those non-text,193

Markdown/HTML script data in SlimPajama dataset. We leave the study of a more principled,194

domain-agnostic permutation algorithm for future work.195

Interleaved PrefixLM Masking We adopt a partially prefix-LM (Raffel et al., 2020) paradigm of196

training to encourage the model to learn a representation that captures bidirectional information and197

can be obtained even with attention mask removed. In sentence-level training, we have a 50% chance198

to remove part of the attention mask for a uniformly random proportion of the first few insertion199

operations. In document-level training, the proportion of training sequences with this prefix-LM200

masking is reduced to 10% to avoid sparsity in token prediction and computation utilization. In201

practice, this helps improving InsNeXt robustness as a representation learner, and even brings us the202

possibility to resolve the distribution shift issue during decoding of insertion-based models. We will203

discuss the this special masking with more details and illustrations in the appendix A.3.204

2.3.3 Optimization Setup205

Batch Size and Distributed Training In both stages of training, we use a global batch size of 1M206

tokens for all configurations of the model unless otherwise stated. For more information, please refer207

to our appendix in A.3.208

Optimizer and Learning Rate Schedule We use the AdamW (Loshchilov and Hutter, 2017)209

optimizer with gradient norm clipping of 1.0 and beta values of (0.9, 0.9). During sentence-level210

training, following the practice of ModernBERT (Warner et al., 2024), we use a trapezoidal learning211

rate scheduler with 10000 warmup steps and a peak learning rate of 4e-4. After 110000 further212

iteration steps of constant LR training, we cooldown the model in 60000 iteration steps by cosine-213

decaying the learning rate to 1e-4. For document-level training, we linearly warmup the model within214

the first 1000 steps and then fine-pretrain the model with a constant learning rate of 1e-4.215

Initialization and Other Important Details For all experiments, we choose the soft position logit216

cap K = 3. Following the practice of many recently published LLMs, we initialize all parameters217

from a normal distribution with stddev =
√

2
5D (D is the hidden size), unless otherwise stated.218

2.4 Decoding219

We hereby briefly explain the details on how to decode from a pretrained InsNeXt model.220

Position Selection Unlike autoregressive models that only need to perform next-token prediction,221

the proposed scalable insertion-based model needs to first determine the decoding position and then222

aggregate the slot representations in each step of the decoding. The selection of the position can223

be performed deterministically by taking the argmax among all position logits, or stochastically by224

sampling from the softmax-ed distribution ppos ∝ exp(aKpos) over all positions. Note that one can225

always choose multiple ones of the top-N (N > 1) positions distribution simultaneously and attempt226

to decode in parallel as in InsNet (Lu et al., 2022). We leave the application of this feature for future227

work and only focus on sequential (one token at a time) decoding in this paper.228

Slot Aggregation for NiTP After the next position prediction, we generate the offset matrix and229

apply the two-stream attention to compute the representation for NiTP. Note that in actual deployment230

environment, this step can be significantly accelerated by caching KVs of the previous context231

encoding steps as in decoder transformers. We then take the deep-aggregated slot representation and232

project it using the transposed word embedding matrix to generate a distribution over the vocabulary.233

Any decoding algorithms or logit modifiers that work for autoregressive models can then be applied234

here without much adaptation.235

Efficient Bidirectional Re-contextualization The original way of using the insertion-oriented236

position encoding and upper-triangular masking to efficiently model the spatial relation in insertion-237

based generation has caused two major issues. The first one is a performance issue similar to the238

exposure bias in autoregressive models. In a uni-directionally encoded insertion-based generation239

process, the spatial relation depicted by the interaction of the first few tokens can be inaccurate240

5

especially if we consider longer bidirectional context. This causes the model’s internal error to241

accumulate over time, and eventually lead to degenerated performance on the long run.242

read think

User-input Prompt

"read think"

read think and

"read and think"

Step 1

bookread think and

"read book and think"

Step 2 Re-encode triggered

thinkread book and

"read book and think"

Step 3 Context

Figure 2: Illustration of when the bidirectional re-encoding happens in the proposed Efficient
Bidirectional Re-contextualization. Solid line token blocks are ones encoded with a bidirectional
attention; dashed line ones are encoded using the unidirectional efficient offset matrix that does not
concern future insertions.

The second issue is about a proper permutation assumption for a user-input prompt. The permutation243

of insertion operations has an underlying effect on how the model understands the structuring of244

the generated contents. For model-generated contents, we always first predict the position and245

then the token, so the permutation is naturally present. However, this is not the case for user-246

input prompts. In previous insertion-based models without bidirectional encoders like InDIGO (Gu247

et al., 2019) and InsNet (Lu et al., 2022), a common practice is to simply assume an autoregressive248

permutation or randomly generate the permutation. However, this either causes train/test discrepancies249

or injects additional stochasticity to the context encoding, which eventually harms the reliability and250

controllability of the model. One essential solution is to switch to fully bidirectional context encoding251

as in InsT (Stern et al., 2019) and some recently published diffusion language models . However, this252

is inefficient, as fully re-encoding upon any context update triggered by new insertions is extremely253

compute-expensive.254

Inspired by C++ STL’s implementation of the vector container (see analysis in Cormen et al. (2022)),255

which allows dynamic reallocation of memory for a growing array that supports random access256

and appending, we propose an efficient bidirectional re-contextualization mechanism that solves257

the two issues of the uni-directional context encoding at once. The idea is surprisingly simple - for258

user-assigned input or the initial empty string context, we simply encode the sequence bidirectionally259

by removing the lower-triangular attention mask. We continue to generate the next few tokens with260

unidirectionally encoded context updates while retaining the bidirectionally encoded part in the261

prefixLM paradigm (Raffel et al., 2020), until the generated tokens since last re-contextualization262

surpass the length of the bidirectionally encoded section. Then, we discard all KV cache so far (if263

any) and an expensive yet spatially unbiased fully bidirectional context re-encoding will be triggered.264

It is expected that: 1) at least half of the context is bidirectionally encoded, so that the spatial265

relation won’t be significantly and irreversibly corrupted by insertion operations, 2) the expensive266

fully-bidirectional re-encoding is not triggered very frequently. In fact, one can easily prove that the267

expected computational overhead of a decoding process with the proposed re-contextualization is at268

the same scale of the vanilla uni-directional one with only a marginal extra cost.269

3 Experiments270

We conduct our experiments in three major parts:271

• Natural Language Understanding Tasks experiments aim to test the basic generalizability272

and quality of the learned representation. We also reuse this experimental setup in our273

ablative model design exploration to find the model design best practices.274

• Commonsense Reasoning Tasks experiments aim to test whether the pretrained model275

is able to capture the world model knowledge in its parameters, and induce a stronger276

preference on the commonsensical continuation over the other ones;277

• Controllable Generation Tasks experiments are conducted to show the unique controllabil-278

ity hegemony of insertion-based language models over traditional autoregressive models.279

6

3.1 Experiment 1 - Representation Learning Study using Discriminative Natural Language280

Understanding Tasks281

Following previous works on representation learning, we focus on two subtasks SST-2 (Socher et al.,282

2013) and MNLI (Williams et al., 2018) from the GLUE (Wang et al., 2018) leaderboard. We argue283

that these two tasks reflect the pretrained model’s learned representation’s generalizability for single284

sentence (represented by SST-2) and multi-sentence (represented by MNLI) scenarios well.285

We first explore the best scalable designs for insertion-based language models. We start from a basic286

model that reproduces most architectural designs as InsNet, then replace different components of287

the model and train the altered variants. Due to the limit of computational resources, we only train288

the basic model and the altered variants on the sentence-level data for 120000 iterations without the289

trapezoidal cooldown. For more details, please refer to the appendix.290

We report the evaluation on the development split of SST-2 and matched version of MNLI. We291

compose the best practices of each module and train the major models evaluated in all following ex-292

periments. A more comprehensive study of the major models’ performance on the GLUE leaderboard,293

and a detailed ablation of different model designs can be found in the appendix.294

Table 1: Representation learning study in comparison with the baseline models. The best performance
of each category/group is marked with bold font and the notable second place winner is marked
with underline. We consider both the accuracy on the downstream tasks and training efficiency for
architecture selection. All results are reported as the average of models with 3 different random seeds.

Model Variant #Params SST-2 MNLI-m

Baselines - Generative

GPT-2-base 124M 91.85% 81.23%
GPT-2-medium 355M 92.09% 85.23%

Pythia-160m 123M 89.30% 78.96%
Pythia-410m 354M 91.55% 83.03%
Pythia-1b 908M 91.66% 83.85%

T5-Small 61M 90.44% 82.07%
T5-Base 223M 92.54% 85.30%

Qwen2.5-0.5b 494M 94.26% 84.65%

Baselines - Discriminative

BERT-base 108M 92.27% 84.14%
BERT-large 334M 93.73% 85.66%

RoBERTa-base 125M 94.26% 87.43%
RoBERTa-large 355M 95.94% 90.26%
InsNet (reproduced) 171M 91.85% 82.20%

InsNeXt-base (Ours) 154M 93.00% 83.23%
InsNeXt-advanced (Ours) 573M 94.15% 85.94%

Discussion Results show that the proposed InsNeXt models are solid representation learners,295

especially compared to peer generative models, while all of which still fall short against SOTA296

encoding-oriented models like RoBERTa, even with doubled size like TinyLLaMa (Zhang et al.,297

2024).298

3.2 Experiment 2 - Zero-shot Commonsense Reasoning Tasks299

Following the practice of TinyLLaMa (Zhang et al., 2024), we conduct a commonsense reasoning300

study of our model against a fair range of popular small-to-medium-sized language models in the301

community. We choose the HellaSwag (Zellers et al., 2019), Obqa (Mihaylov et al., 2018) and302

WinoGrande (Sakaguchi et al., 2019) datasets as our testbed. The models’ choice are selected using303

length-normalized likelihood scores, following prior practices. Note that the commonsense reasoning304

tasks here are likelihood-predictive ones rather than generative ones. We will discuss the generative305

commonsense reasoning task CommonGen in the next section.306

7

Table 2: Commonsense Reasoning Evaluation.

Model #Params HellaSwag Obqa WinoGrande

Random Selection - 25.00% 25.00% 50.00%

GPT-2-base 124M 31.14% 27.20% 51.62%
GPT-2-medium 355M 39.38% 30.20% 53.20%

Pythia-160m 123M 30.17% 27.00% 51.30%
Pythia-410m 354M 40.52% 29.40% 53.04%
Pythia-1b 908M 47.10% 31.40% 53.43%

Qwen2.5-0.5b 494M 52.17% 35.20% 56.59%

InsNet (reproduced) 171M 27.39% 24.40% 50.71%

InsNeXt-base (Ours) 154M 33.47% 30.20% 52.37%
InsNeXt-advanced (Ours) 573M 53.63% 34.80% 55.87%

Discussion Results show that the proposed InsNeXt models are trained well enough to compress the307

world knowledge in the training data into its parameters, as a result having similar commonsense308

reasoning capabilities to similar-sized autoregressive models.309

3.3 Experiment 3 - Controllable Generation Tasks310

We experiment with the lexically-controlled generation tasks following the setup of InsNet to measure311

the performance of the proposed InsNeXt model. We examine the evaluated models on the Yelp 160K,312

WMT News and CommonGen datasets. Note that insertion-based models are not directly able to313

handle fuzzy lexical constraints that allow reflections. InsNet reports performance using the original314

form of the concept words without considering reflections. In this work, we train the models as315

insertion-based decoders that take in full keyword sequences as input, first fulfill the lexical constraints316

with correct reflections and then generate the rest of the context. This significantly improves their317

coverage of keywords, at the cost of slightly imperfect keyword coverage rates compared to some318

recent search-based and HMM-based methods like GeLaTo (Zhang et al., 2023).319

Table 3: Controllable Generation Evaluation. Both BLEU-4 and lexical constraint coverage (shown
with BLEU-4↑/Coverage↑) are reported. Note that the Yelp and News are high-variance datasets, so
it’s natural that all models have rather lower BLEU-4 score compared to that in CommonGen.

Model #Params Yelp 160K News CommonGen-dev

GPT-2-base 124M 5.83/77.50% 6.54/63.30% 22.90/65.4%
GPT-2-medium 355M 6.99/87.70% 7.56/80.60% 24.65/83.2%

Pythia-160m 123M 5.83/52.80% 5.50/47.00% 20.97/67.4%
Pythia-410m 354M 7.29/85.10% 6.64/72.00% 22.29/86.2%

Qwen2.5-0.5b 494M 7.46/90.30% 7.42/92.40% 23.37/92.0%

Insertion Transformer (BERT init+POINTER) 357M 3.79/100% 3.04/100% 16.70/97.9%

InsNet (Original Report) 171M 5.78/100% 4.96/100% 18.71/100%
InsNet (reproduced, w/ keyword-first perm.) 171M 5.63/100% 4.87/100% 21.36/98.3%
InsNeXt-base 154M 6.73/100% 6.60/100% 23.46/97.9%
InsNeXt-advanced 573M 8.13/100% 8.01/100% 25.73/98.7%

Discussion Results show that the proposed InsNeXt models are more controllable and capable320

language generators than its autoregressive counterparts and prior insertion-based models, in term of321

both constraint coverage (near-perfect to perfect) and overall generation quality.322

4 Related Works323

Insertion-based Language Models Insertion-based language models offer a flexible alternative324

by constructing sequences through token insertions, in contrast to the conventional left-to-right325

continuation in traditional autoregressive LMs. The Insertion Transformer (Stern et al., 2019) is326

an iterative, partially autoregressive model that generates sequences based on insertion operations.327

8

Building upon this, POINTER (Zhang et al., 2020) was developed for hard-constrained text generation,328

progressively inserting tokens in a parallel manner to complete sequences efficiently. To enhance329

training efficiency and decoding flexibility, InsNet (Lu et al., 2022) introduced an insertion-oriented330

position encoding and a lightweight slot representation strategy, enabling both parallel and sequential331

decoding. Further advancements include the design of Fractional Positional Encoding (FPE) for332

Insertion Transformers (Zhang et al., 2021), allowing the reuse of representations from previous steps,333

yet introducing extra discrepancy between training and decoding.334

Relative Position Encodings Recent advancements in transformer models have led to various335

methods for encoding positional information. Transformer-XL (Dai et al., 2019) and XLNet (Yang336

et al., 2019) introduced relative positional embeddings to better capture dependencies across long se-337

quences. T5 (Raffel et al., 2020) employs learnable relative position biases, enhancing its adaptability338

to different sequence lengths. ALiBi (Attention with Linear Biases) (Press et al., 2021) adds linear339

biases directly to attention scores, facilitating the processing of longer sequences. Rotary Position340

Embedding (RoPE) (Su et al., 2024) integrates positional information through rotation matrices341

applied to token embeddings. Most of these techniques are tailored for fixed-order sequence modeling342

and may not be directly applicable to insertion-based generation. Notably, ALiBi and T5’s relative343

position biases are exceptions; their designs involve rectifiers as a function of only the offset between344

positions, making them potential for insertion-oriented scenarios. However, T5 bias faces scalability345

issues as no mainstream efficient kernels support training with it yet.346

Efficient Scaled Dot Product Attention In recent years, the development of memory and compute-347

efficient attention mechanisms has seen notable advancements. Initially, Rabe and Staats (2022)348

proposed a method to reduce memory requirements from quadratic to linear scale by partitioning atten-349

tion computations into smaller blocks, fitting within a GPU’s on-chip memory. Building upon this, the350

FlashAttention algorithm (Dao et al., 2022) further optimized efficiency by managing data movement351

and computation to minimize memory usage and increase computational speed. FlashAttention-352

2/3 (Dao, 2023; Shah et al., 2024) continue to incorporate hardware-related optimizations. More353

recently, FlexAttention (Dong et al., 2024) has been developed to combine the flexibility of repro-354

grammable attention score modifiers with the performance benefits of FlashAttention, allowing355

researchers to experiment with various attention variants efficiently.356

5 Conclusion and Future Work357

We present InsNeXt, a modern-level scalable insertion-based language model integrating recent358

advances in LLMs. We explore and discuss model design alternatives of each component for359

insertion-based generation, the basic scaling pattern of the model, as well as the best training360

strategies from scratch for them. We then follow the best practices from the architecture study to361

train two major specifications of the model, one (InsNeXt-base) with 154M parameters and another362

(InsNeXt-advanced) with 573M parameters. We evaluate the fully renovated insertion-based models363

under three major scenarios: 1) representation learning capabilities using NLU tasks; 2) commonsense364

reasoning capabilities using HellaSwag, WinoGrande and Obqa; and 3) controllable generation on365

Yelp, news and CommonGen datasets. Results show that the InsNeXt models are of competitive366

performance with state-of-the-art autoregressive language models, while preserving their unique367

advantages especially in terms of controllability.368

We are aware of the recent progress in discrete-space diffusion language models with autoregressive369

LLM warmups. These models have the potential to provide parallelizability of generation as well as370

heterogeneous allocation and assignment of computational power for tokens with different level of371

predictability. Existing Diffusion LLMs are mostly based on the MLM objective, meaning it has to372

pre-determine the number of placeholder tokens and then learn to fulfill them. We argue that this373

is a flawed solution, and InsNeXt can be viewed as the prototype model towards a more flexible,374

powerful family of diffusion language models as the foundation for the next generation of artificial375

intelligence.376

9

References377

Marah Abdin, Mojan Javaheripi, Sébastien Bubeck, Allie Del Giorno, Ronen Eldan, Suriya Gunasekar,378

Yin Tat Lee, et al. 2024. Phi-3 technical report: A highly capable language model locally on your379

phone. arXiv preprint arXiv:2404.14219.380

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,381

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical382

report. arXiv preprint arXiv:2303.08774.383

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,384

Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,385

Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi386

Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng387

Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi388

Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou,389

Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. Qwen technical report. arXiv preprint390

arXiv:2309.16609.391

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,392

Kai Dong, Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scaling open-source language models393

with longtermism. arXiv preprint arXiv:2401.02954.394

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,395

Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,396

et al. 2023. Pythia: A suite for analyzing large language models across training and scaling. In397

International Conference on Machine Learning, pages 2397–2430. PMLR.398

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,399

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models400

are few-shot learners. Advances in neural information processing systems, 33:1877–1901.401

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2022. Dynamic402

tables, 4 edition, chapter 17. MIT Press, Cambridge, MA. Section 17.4.403

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.404

2019. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint405

arXiv:1901.02860.406

Tri Dao. 2023. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv407

preprint arXiv:2307.08691.408

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashattention: Fast and409

memory-efficient exact attention with io-awareness. arXiv preprint arXiv:2205.14135. Spotlight410

paper at ICLR 2023.411

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, and Bingxuan Wang. 2024. Deepseek-v2: A strong,412

economical, and efficient mixture-of-experts language model. arXiv preprint arXiv:2406.12345.413

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of414

deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference415

of the North American chapter of the association for computational linguistics: human language416

technologies, volume 1 (long and short papers), pages 4171–4186.417

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. 2024. Flex attention: A418

programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496.419

A. Dubey, A. Goyal, A. Dey, A. Khandelwal, A. Narang, A. Rodriguez, A. Fan, B. Fuller, C. Gao,420

D. Bikel, D. Esiobu, E. Hambro, E. Smith, F. Azhar, G. Izacard, G. Lample, H. Inan, H. Touvron,421

I. Kloumann, J. Kuan, J. Lee, J. Reizenstein, K. Saladi, K. Stone, L. Martin, M. Kambadur,422

M. Lachaux, M. Khabsa, N. Goyal, N. Bashlykov, O. Molybog, P. Albert, P. Xu, P. Mishra,423

R. Silva, R. Stojnic, R. Hou, R. Rungta, S. Batra, S. Hosseini, S. Edunov, S. Bhosale, T. Lavril,424

T. Scialom, T. Mihaylov, V. Goswami, W. Fu, X. Martinet, X. Tan, Y. Babaei, Y. Lu, Y. Mao,425

Y. Nie, Y. Zhang, and Z. Yan. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783.426

10

https://arxiv.org/abs/2309.16609
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.48550/arXiv.2205.14135
https://doi.org/10.48550/arXiv.2205.14135
https://doi.org/10.48550/arXiv.2205.14135
https://arxiv.org/abs/2406.12345
https://arxiv.org/abs/2406.12345
https://arxiv.org/abs/2406.12345
https://doi.org/10.48550/arXiv.2407.21783

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,427

Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. 2024. Olmo: Ac-428

celerating the science of language models. arXiv preprint arXiv:2402.00838.429

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019. Insertion-based decoding with automatically inferred430

generation order. Transactions of the Association for Computational Linguistics, 7:661–676.431

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,432

Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: Incentivizing reasoning capability in433

llms via reinforcement learning. arXiv preprint arXiv:2501.12948.434

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus). arXiv preprint435

arXiv:1606.08415.436

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza437

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. 2022.438

Training compute-optimal large language models. arXiv preprint arXiv:2203.15556.439

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. 2017. spacy – industrial-440

strength natural language processing in python.441

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Caio César Teodoro Mendes, Weizhu442

Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al. 2023. Phi-2: The surprising power of443

small language models. Microsoft Research Blog.444

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.445

2023a. Textbooks are all you need. arXiv preprint arXiv:2306.11644.446

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.447

2023b. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463.448

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,449

Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024. Deepseek-v3 technical report. arXiv450

preprint arXiv:2412.19437.451

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint452

arXiv:1711.05101. Poster presentation at ICLR 2019.453

Sidi Lu, Tao Meng, and Nanyun Peng. 2022. Insnet: An efficient, flexible, and performant insertion-454

based text generation model. Advances in Neural Information Processing Systems, 35:7011–7023.455

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke456

Zettlemoyer, Omer Levy, and Chunting Zhou. 2024. Megalodon: Efficient llm pretraining and457

inference with unlimited context length. Advances in Neural Information Processing Systems,458

37:71831–71854.459

Meta. 2025. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.460

https://ai.meta.com/blog/llama-4-multimodal-intelligence/. Accessed: 2025-05-461

10.462

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a suit of armor conduct463

electricity? A new dataset for open book question answering. CoRR, abs/1809.02789.464

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-465

gia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2024. 2 olmo 2 furious. arXiv preprint466

arXiv:2501.00656.467

OpenAI. 2022. Chatgpt: Optimizing language models for dialogue. https://openai.com/blog/468

chatgpt. Initial release of ChatGPT based on GPT-3.5, November 2022.469

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor470

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-471

ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit472

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An imperative style,473

high-performance deep learning library. In Advances in Neural Information Processing Sys-474

tems 32 (NeurIPS 2019), pages 8024–8035.475

11

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.48550/arXiv.1711.05101
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

PGLAF. 1971. Project gutenberg. https://www.gutenberg.org/. Accessed: 2025-05-14.476

Ofir Press, Noah A Smith, and Mike Lewis. 2021. Train short, test long: Attention with linear biases477

enables input length extrapolation. arXiv preprint arXiv:2108.12409.478

Markus N. Rabe and Charles Staats. 2022. Self-attention does not need o(n2) memory. arXiv preprint479

arXiv:2112.05682.480

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language481

understanding by generative pre-training.482

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019.483

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.484

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi485

Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified486

text-to-text transformer. Journal of machine learning research, 21(140):1–67.487

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020a. Deepspeed: System op-488

timizations enable training deep learning models with over 100 billion parameters. In Proceedings489

of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pages490

3505–3506.491

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020b. Deepspeed: System492

optimizations enable training deep learning models with over 100 billion parameters. In Proceed-493

ings of the 26th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD ’20),494

pages 3505–3506. ACM.495

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2019. WINOGRANDE:496

an adversarial winograd schema challenge at scale. CoRR, abs/1907.10641.497

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. 2024.498

Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint499

arXiv:2407.08608.500

Noam Shazeer. 2020. Glu variants improve transformer. arXiv preprint arXiv:2002.05202.501

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel502

Hestness, and Nolan Dey. 2023. SlimPajama: A 627B token cleaned503

and deduplicated version of RedPajama. https://cerebras.ai/blog/504

slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama.505

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and506

Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment507

treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-508

cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.509

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. 2019. Insertion transformer:510

Flexible sequence generation via insertion operations. In International Conference on Machine511

Learning, pages 5976–5985. PMLR.512

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer:513

Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063.514

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée515

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand516

Joulin, Edouard Grave, and Guillaume Lample. 2023a. Llama: Open and efficient foundation517

language models. arXiv preprint arXiv:2302.13971.518

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay519

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian520

Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin521

Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar522

Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,523

12

https://www.gutenberg.org/
https://doi.org/10.48550/arXiv.2112.05682
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
https://doi.org/10.48550/arXiv.2407.08608
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971

Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana524

Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor525

Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan526

Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,527

Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,528

Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey529

Edunov, and Thomas Scialom. 2023b. Llama 2: Open foundation and fine-tuned chat models.530

arXiv preprint arXiv:2307.09288.531

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz532

Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information533

processing systems, 30.534

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018.535

GLUE: A multi-task benchmark and analysis platform for natural language understanding. In536

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural537

Networks for NLP, pages 353–355, Brussels, Belgium. Association for Computational Linguistics.538

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. 2024.539

Deepnet: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis and540

Machine Intelligence.541

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said542

Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. 2024. Smarter,543

better, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context544

finetuning and inference. arXiv preprint arXiv:2412.13663.545

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus546

for sentence understanding through inference. In Proceedings of the 2018 Conference of the547

North American Chapter of the Association for Computational Linguistics: Human Language548

Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana. Association549

for Computational Linguistics.550

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,551

Yanyan Lan, Liwei Wang, and Tieyan Liu. 2020. On layer normalization in the transformer552

architecture. In International conference on machine learning, pages 10524–10533. PMLR.553

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,554

Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,555

Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren556

Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,557

Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,558

Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong559

Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,560

Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,561

Zhifang Guo, and Zhihao Fan. 2024a. Qwen2 technical report. arXiv preprint arXiv:2407.10671.562

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,563

Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin564

Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,565

Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi566

Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,567

Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. 2024b. Qwen2.5 technical report. arXiv568

preprint arXiv:2412.15115.569

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.570

2019. Xlnet: Generalized autoregressive pretraining for language understanding. Advances in571

neural information processing systems, 32.572

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a573

machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association574

for Computational Linguistics, pages 4791–4800, Florence, Italy. Association for Computational575

Linguistics.576

13

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. 2023. Tractable control577

for autoregressive language generation. In International Conference on Machine Learning, pages578

40932–40945. PMLR.579

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. 2024. Tinyllama: An open-source small580

language model. arXiv preprint arXiv:2401.02385.581

Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe Gan, Chris Brockett, and Bill Dolan. 2020. Pointer:582

Constrained progressive text generation via insertion-based generative pre-training. arXiv preprint583

arXiv:2005.00558.584

Zhisong Zhang, Yizhe Zhang, and Bill Dolan. 2021. Towards more efficient insertion transformer585

with fractional positional encoding. arXiv preprint arXiv:2112.06295.586

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,587

and Sanja Fidler. 2015. Aligning books and movies: Towards story-like visual explanations by588

watching movies and reading books. In Proceedings of the IEEE International Conference on589

Computer Vision (ICCV), pages 19–27. IEEE Computer Society.590

14

https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11

A Supplementary Details of Model and Algorithm Designs591

A.1 Additional Model Design Information592

Activation In addition to the legacy GeLU (Hendrycks and Gimpel, 2016) feed-forward layers, we593

also consider SwiGLU, which is a variant of the Gated-Linear Units (Shazeer, 2020) that reportedly594

provides better parameter efficiency in more recently published LLMs. Note that, to facilitate training595

efficiency and provide a fair comparison, we intentionally choose model dimensionality divisible by 3.596

This way, all matrix/vector multiplication operations can be performed on tensors with dimensionality597

of multiples of 128/64 for best TensorCore practices, without altering the total number of parameters598

compared to its GeLU counterparts.599

A.2 Implementing Position Encoding with Efficient Attention Kernels600

We hereby discuss the related attempts we make to implement the mentioned position encodings601

efficiently.602

InsNet-style Sinusoidal Relative Position Encoding For the original InsNet sinusoidal relative603

position, no off-the-shelf efficient attention kernel is available at the moment when this paper is604

submitted, so we build our own memory-efficient PyTorch attention kernel with eager-mode code, and605

then transform it to the Triton implementation of the attention mechanism to include the block-wise606

reduction tricks that other efficient attention kernels provide. See code snippet 1.607

Insertion-oriented ALiBi For insertion-oriented position encoding with ALiBi, we make a minor608

modification of it on the denominator of the bias rescaling factor αi = 1
2ki

. Instead of using609

uniformly interpolated exponentials from 1.0 to 8.0 in each attention head, as suggested by the610

original ALiBi paper, we simply choose ki to be the 1-based attention head index. For example,611

an attention layer with 12 attention heads will have α to be
[

1
21 ,

1
22 ,

1
23 , ...,

1
211 ,

1
212

]
, instead of612 [

1
2(2/3)

, 1
2(4/3)

, 1
22 , ...,

1
2(22/3)

, 1
28

]
as in vanilla ALiBi. For larger models with more dimensions, this613

simply adds in extra attention heads that have slower bias-term decay when relative distance increases.614

This helps the larger model to utilize the additional capacity to handle longer-range dependencies615

or generate less position-sensitive perceptions without significantly changing its behavior in short-616

range dependencies. In short-range dependencies with attention heads that have larger bias decay617

denominators, it is approximately equivalent to omitting position information in some of the model618

dimensions, which is reportedly a common practice in recent position encodings like RoPE. During619

training, InsNeXt with insertion-oriented ALiBi is implemented with the FlexAttention (Dong et al.,620

2024) kernel, which is a Triton-implemented FlashAttention-2/3 alternative that facilitates scalable621

training of flexible attention modifier. However, up to the time of this submission, the inference-622

friendly version of FlexAttention is still under-optimized. During inference, we simply fall back to623

Memory Efficient Attention as our attention kernel choice.624

A.3 Pretraining625

Batch Size and Distributed Computation We train our model on a single NVIDIA H100x8626

SXM node. Unfortunately, we encountered a hardware failure in the early stage of this project that627

the NVSwitch bridge between the first to the rest of the GPUs was compromised. As a result, we628

are only able to deploy a 7-way distributed training for the major experiments instead of an 8-way629

one. In sentence-level training, we use an equivalent batch size of 1536 per GPU along with the630

gradient accumulation trick, resulting in a global batch size of 10752 sequences and approximately631

1M tokens. In the major part of document-level training, we use an equivalent batch size of 144 per632

GPU, resulting in a global batch size of 1008 sequences and approximately 1M tokens too. We reduce633

the batch size and learning rate accordingly for the context extension phase to keep the per-batch634

token number to be around 1M. We build our distributed training script using a composition of the635

DeepSpeed (Rasley et al., 2020b) and PyTorch (Paszke et al., 2019) libraries, adopting the ZeRO636

offload stage of 1 for the base-sized model and 2 for the advanced-sized model. We also use a mixed637

precision training, with the BFloat16 datatype for in-layer gradients, and TensorFloat32 for gradient638

reduction, accumulation and parameter storage.639

Interleaved PrefixLM Masking We adopt a partially prefix-LM (Raffel et al., 2020) paradigm of640

training to encourage the model to learn a representation that captures bidirectional information and641

15

can be obtained even with attention mask removed. Specifically, we remove part of the attention642

mask for a uniformly random proportion of the first few insertion operations, so that each token can643

attend to these unmasked tokens from both directions. See Figure 4.644

A.4 Extensive Ablation Study and Model Design Exploration645

In this section we report the experiments we conduct that are intended for ablation study and model646

design exploration purposes. We start from a reproduced InsNet architecture, replace some of the647

components, pretrain the resulting model on the aforementioned sentence-level data then test it on648

the representation learning capabilities as a reflection of model design soundness.649

Position Encoding We first explore the trade-off between model capability and training scalability650

of different insertion-oriented position encoding. We additionally report the training throughput at a651

context length of 1024 tokens per sequence. See the results in 4. All available designs yield similar652

performance, with T5 Bias slightly outperforming the counterparts. However, as training with T5 bias653

is not yet supported by any efficient attention kernels, we choose insertion-oriented ALiBi as our654

major position encoding. We leave the implementation of a potentially more capable insertion-based655

model with T5 bias for future work.

Table 4: Position encoding study results.

Model Variant #Params SST-2 MNLI-m #Tokens/s/Chip @1K Cxt.

InsNet (reproduced, @Iter. #120K)

- Sinusoidal Position Embedding 171M 91.85% 82.20% 17384
- T5 Bias 165M 92.01% 82.73% 32331
- Insertion-oriented ALiBi 164M 91.74% 82.15% 116144

656

Residual Connection and Layer Normalization We hereby explore the stability and model capa-657

bility differences impacted by the choice of different layer normalization and/or residual connection658

choices. We consider four major variants: the original post-LN, pre-LN, two-hop MEGALODON659

pre-LN and DeepNorm. For DeepNorm, we follow their guidance to change the initialization of each660

layer accordingly. In addition to the final performance report with 10K warmup steps, we also report661

the performance with less warmup steps, at 0, 100, 1000 respectively. Results are shown in Table 5.662

Table 5: Residual connection and layer normalization study results.

Model Variant SST-2 MNLI-m

InsNet (reproduced, @Iter. #120K)

- post-LN
w/ 0 Warmup Divergence Divergence
w/ 100 Warmup 89.33% 79.83%
w/ 1000 Warmup 90.14% 80.36%
w/ 10K Warmup 91.85% 82.20%

- pre-LN
w/ 0 Warmup 90.36% 81.37%
w/ 100 Warmup 90.59% 82.25%
w/ 1000 Warmup 91.28% 81.99%
w/ 10K Warmup 91.74% 81.93%

- two-hop pre-LN
w/ 0 Warmup 91.28% 81.76%
w/ 100 Warmup 91.51% 81.79%
w/ 1000 Warmup 91.63% 81.72%
w/ 10K Warmup 91.63% 81.88%

- DeepNorm
w/ 0 Warmup 90.71% 80.62%
w/ 100 Warmup 90.48% 81.20%
w/ 1000 Warmup 91.51% 81.47%
w/ 10K Warmup 91.63% 81.39%

16

With 10K warmup steps, all variants yields similar performance, with the legacy post-LN slightly663

winning by a margin. However, if we adopt fewer warmup steps, the stability of post-LN is signifi-664

cantly compromised, while others are not very sensitive. Notably, we observe faster convergence665

with two-hop pre-LN with slightly degenerated final performance, and don’t observe any advantages666

of DeepNorm against other alternatives. We acknowledge the possibility that these two layer normal-667

ization implementations are more specialized for even larger models, thus still worth trying if we668

further scale up the training. For our major configurations of the pretraining, we choose pre-LN as669

our layer normalization block choice.670

Slot Aggregation: Deep Aggregation vs. Shallow Aggregation We concern both the representation671

learning and generative capabilities impacted by different slot aggregation methods. We train two672

variants of the major model InsNeXt-base under the same setup but with different aggregation method,673

and test their respective performances on both groups of our experiments. Results are shown as674

follows:

Table 6: Slot aggregation ablation study results

Model SST-2 MNLI-m Yelp 160K News CommonGen-dev

InsNet (Original Report) - - 5.78/100% 4.96/100% 18.71/100%
InsNet (reproduced) 91.85% 82.20% 5.63/100% 4.87/100% 21.36/98.3%

InsNeXt-base

w/ shallow agg. 92.66% 83.07% 5.86/100% 5.13/100% 22.70/98.1%
w/ deep agg. 93.00% 83.23% 6.73/100% 6.60/100% 23.46/97.9%

675

In general, deep aggregation helps the model to better utilize model capability which consequently676

helps both representation learning and NiTP. We modestly argue that this will be more signficant for677

even larger models, but we don’t have sufficient empirical results to support this claim. The only678

clear observation from the current results is that the usage of deep aggregation has a slightly more679

remarkable impact on generation/NiTP than representation learning.680

A.5 Illustration of the Insertion-oriented Two-stream Attention and PrefixLM Masking681

Derived from XLNet’s illustration of the two-stream attention, we hereby illustrate how insertion-682

oriented two-stream attention works in InsNeXt. Assume we’ve generated a permutation πi of all683

tokens xi, the two streams of attention can be performed as shown in the following figures:684

Mask
token

Mask
token

Mask
token

Mask
token

(a) Content Stream Attention

Mask
token

Mask
token

Mask
token

Mask
token

(b) Query Stream Attention

Figure 3: Illustration of the two-stream attention. The content-stream attention aims to model the
interaction of context tokens while the query-stream attention aims to aggregate information for NiTP.

17

Here, g(j)πi means the deep-aggregated representation for the i-th inserted token in the sampled685

permutation π from the j-th layer of the InsNeXt model.686

We also illustrate the prefixLM masking adopted in our pretraining. Given a sequence of N tokens,687

we uniformly sample M ∼ Uniform(0, N) and remove this part of the lower-triangular attention688

mask, as illustrated in the following figure:689

Mask
token

Mask
token

Mask
token

Mask
token

Mask
token

Mask
token

... ...

... ...

Bidirectional Prefix Initial Context

Figure 4: Illustration of the prefixLM style attention masking given a sequence with N tokens and a
sampled bidirectional portion M = 3. Note that we stop using the notion prefix as in insertion-based
generation, the bidirectional part is not necessarily the natural prefix, but simply the bidirectionally
perceived partial context.

B Code Snippet of the Eager-mode Implementation of Sinusoidal690

Insertion-oriented Position Encoding691

We hereby include a few of the important code snippets as more concrete description of the pro-692

posed algorithm. To facilitate the readability of code, we report the eager-mode version of the693

implementation. It can be transformed into an equivalent Triton implementation fairly easily.694

Code 1: The eager mode implementation for the memory efficient attention with sinusoidal insertion-
oriented position encoding.

695
def attn_core_logsumexp(query_chunk , key_chunk , value_chunk ,696

mask_chunk=None , offset_chunk=None ,697
query_r=None , key_r=None , offset_clip_range =128):698

attn_scores = torch.einsum(’bnqd ,bnkd ->bnqk’, query_chunk , key_chunk)699
attn_scores = attn_scores / math.sqrt(value_chunk.shape [-1])700

701
if mask_chunk is not None:702

attn_scores = attn_scores + mask_chunk.unsqueeze (1)703
if offset_chunk is not None:704

offset_chunk = offset_chunk.clamp(min=-offset_clip_range , max=offset_clip_range)705
indexed_offset = offset_chunk + offset_clip_range706
attn_scores_qbias = torch.einsum(’ind ,bnkd ->bnik’, query_r , key_chunk)707
attn_scores_kbias = torch.einsum(’bnqd ,jnd ->bnqj’, query_chunk , key_r)708

709
Use the offset to index into the attn_scores_qbias710
Expand indexed_offset dimensions to match attn_scores_qbias711
indexed_offset = indexed_offset.unsqueeze (1).expand(-1, query_r.size (1), -1, -1)712

713
Gather the values using the computed offset index714
attn_scores_qbias = torch.gather(attn_scores_qbias , dim=2, index=indexed_offset) / math.sqrt(715

value_chunk.shape [-1])716
attn_scores_kbias = torch.gather(attn_scores_kbias , dim=3, index=indexed_offset) / math.sqrt(717

value_chunk.shape [-1])718
attn_scores = attn_scores + attn_scores_qbias + attn_scores_kbias719

720
Compute logsumexp for numerical stability721
attn_scores = attn_scores.to(torch.float32)722
attn_weight = attn_scores.logsumexp(dim=-1) # bnq723
attn_distro = attn_scores.softmax(dim=-1)724

725
Compute softmaxed attention weights without storing attn_scores726
Compute weighted sum of values727
chunk_reduced_value = torch.einsum(’bnkd ,bnqk ->bnqd’, value_chunk , attn_distro.to(value_chunk.dtype728

))729
730

return attn_weight , attn_distro , chunk_reduced_value731
732

def forward_core(query , key , value , query_chunk_size , key_chunk_size ,733
mask=None , offset_matrix=None , query_r=None , key_r=None ,734

18

offset_clip_range =128):735
reduced_values = []736
all_attn_weights = []737
mask_value = torch.finfo(query.dtype).min738
with (torch.no_grad ()):739

for i in range(0, query.size (2), query_chunk_size):740
cumu_reduced_chunk = None741
cumu_attn_weight = None742
query_chunk = query[:, :, i:i + query_chunk_size , :]743
attn_weights_ = []744
if mask is not None:745

mask_qchunk = mask[:, i:i + query_chunk_size , :].to(query_chunk.device)746
else:747

mask_qchunk = None748
if offset_matrix is not None:749

offset_qchunk = offset_matrix [:, i:i + query_chunk_size , :].to(query_chunk.device)750
else:751

offset_qchunk = None752
753

for j in range(0, key.size (2), key_chunk_size):754
key_chunk = key[:, :, j:j + key_chunk_size , :]755
value_chunk = value[:, :, j:j + key_chunk_size , :]756
if mask is not None:757

mask_chunk = mask_qchunk [:, :, j:j + key_chunk_size]758
else:759

mask_chunk = None760
if offset_matrix is not None:761

offset_chunk = offset_qchunk [:, :, j:j + key_chunk_size]762
else:763

offset_chunk = None764
attn_weight , _, reduced_chunk = \765
attn_core_logsumexp(query_chunk , key_chunk , value_chunk ,766

mask_chunk=mask_chunk , offset_chunk=offset_chunk ,767
query_r=query_r , key_r=key_r ,768
offset_clip_range=offset_clip_range769
)770

771
if cumu_reduced_chunk is None:772

cumu_reduced_chunk = reduced_chunk.to(torch.float32)773
cumu_attn_weight = attn_weight774

else:775
cumu_attn_weight = torch.stack([cumu_attn_weight , attn_weight])776
cumu_reduced_chunk = torch.stack([cumu_reduced_chunk , reduced_chunk])777
cumu_reduced_chunk = torch.einsum(778

"tbnqd ,tbnq ->bnqd",779
cumu_reduced_chunk.to(torch.float32),780
cumu_attn_weight.softmax(dim =0)781

).to(torch.float32)782
cumu_attn_weight = cumu_attn_weight.logsumexp(dim=0)783

attn_weights_.append(attn_weight)784
reduced_values.append(cumu_reduced_chunk.to(query_chunk.dtype))785
all_attn_weights.append(cumu_attn_weight)786

reduced_values = torch.cat(reduced_values , dim=2)787
788

all_attn_weights = torch.cat(all_attn_weights , dim=2)789
790

return reduced_values , all_attn_weights791
792

def backward_core(grad_output , query , key , value , all_attn_weights , chunk_size ,793
mask=None , offset_matrix=None , query_r=None , key_r=None ,794
offset_clip_range =128):795

grad_query = torch.zeros_like(query , dtype=torch.float32)796
grad_key = torch.zeros_like(key , dtype=torch.float32)797
grad_value = torch.zeros_like(value , dtype=torch.float32)798
grad_query_r = torch.zeros_like(query_r , dtype=torch.float32) if query_r is not None else None799
grad_key_r = torch.zeros_like(key_r , dtype=torch.float32) if key_r is not None else None800
scale = 1.0 / math.sqrt(value.shape [-1])801

802
with torch.no_grad ():803

for i in range(0, query.size (2), chunk_size):804
query_chunk = query[:, :, i:i + chunk_size , :]. contiguous ()805
attn_weights_chunk = all_attn_weights [:, :, i:i + chunk_size]. contiguous ()806
grad_output_chunk = grad_output [:, :, i:i + chunk_size , :]. contiguous ()807

808
if mask is not None:809

mask_qchunk = mask[:, i:i + chunk_size , :].to(query.device)810
else:811

mask_qchunk = None812
if offset_matrix is not None:813

offset_qchunk = offset_matrix [:, i:i + chunk_size , :].to(query.device)814
else:815

offset_qchunk = None816
817

accumu_modifier = 0.818
819

for j in range(0, key.size (2), chunk_size):820
key_chunk = key[:, :, j:j + chunk_size , :]821
value_chunk = value[:, :, j:j + chunk_size , :]822

823
if mask is not None:824

mask_chunk = mask_qchunk [:, :, j:j + chunk_size]825
else:826

19

mask_chunk = None827
if offset_matrix is not None:828

offset_chunk = offset_qchunk [:, :, j:j + chunk_size]829
else:830

offset_chunk = None831
832

Forward pass to recompute intermediates833
attn_weight , attn_distro , reduced_chunk = attn_core_logsumexp(834

query_chunk , key_chunk , value_chunk ,835
mask_chunk=mask_chunk , offset_chunk=offset_chunk ,836
query_r=query_r , key_r=key_r ,837
offset_clip_range=offset_clip_range838

)839
840

adjustment = (attn_weight - attn_weights_chunk).exp().unsqueeze(dim=-1)841
attn_global = attn_distro * adjustment842

843
grad_attn_global = torch.einsum(844

"bnqd ,bnkd ->bnqk", grad_output_chunk , value_chunk845
)846
grad_value_chunk = torch.einsum(’bnqk ,bnqd ->bnkd’,847

attn_global.to(grad_output_chunk.dtype),848
grad_output_chunk)849

grad_value [:, :, j:j + chunk_size , :] += grad_value_chunk.to(torch.float32)850
851

accumu_modifier -= torch.einsum("bnqk ,bnqk ->bnq",852
grad_attn_global.to(torch.float32),853
attn_global).unsqueeze(dim=-1)854

855
for j in range(0, key.size (2), chunk_size):856

key_chunk = key[:, :, j:j + chunk_size , :]857
value_chunk = value[:, :, j:j + chunk_size , :]858

859
if mask is not None:860

mask_chunk = mask_qchunk [:, :, j:j + chunk_size]861
else:862

mask_chunk = None863
if offset_matrix is not None:864

offset_chunk = offset_qchunk [:, :, j:j + chunk_size]865
else:866

offset_chunk = None867
868

Forward pass to recompute intermediates869
attn_weight , attn_distro , reduced_chunk = attn_core_logsumexp(870

query_chunk , key_chunk , value_chunk ,871
mask_chunk=mask_chunk , offset_chunk=offset_chunk ,872
query_r=query_r , key_r=key_r ,873
offset_clip_range=offset_clip_range874

)875
876

adjustment = (attn_weight - attn_weights_chunk).exp().unsqueeze(dim=-1)877
attn_global = attn_distro * adjustment878

879
grad_attn_global = torch.einsum(880

"bnqd ,bnkd ->bnqk", grad_output_chunk , value_chunk881
)882

883
grad_attn_scores = attn_global * (884

grad_attn_global + accumu_modifier885
)886

887
Compute gradients w.r.t. query and key888
grad_attn_scores_qk = (grad_attn_scores * scale).to(query_chunk.dtype)889

890
grad_query_chunk = torch.einsum(’bnqk ,bnkd ->bnqd’, grad_attn_scores_qk , key_chunk)891
grad_key_chunk = torch.einsum(’bnqk ,bnqd ->bnkd’, grad_attn_scores_qk , query_chunk)892

893
894

If query_r and key_r are used , compute their gradients895
if offset_chunk is not None and query_r is not None and key_r is not None:896

offset_chunk = offset_chunk.clamp(min=-offset_clip_range , max=offset_clip_range)897
indexed_offset = offset_chunk + offset_clip_range898
indexed_offset = indexed_offset.unsqueeze (1).expand(-1, query_r.size (1), -1, -1)899

900
Gradients w.r.t. attn_scores_qbias and attn_scores_kbias901
grad_attn_scores_qbias = grad_attn_scores_qk.to(torch.float32)902
grad_attn_scores_kbias = grad_attn_scores_qk.to(torch.float32)903

904
Ungather gradients905
grad_attn_scores_qbias_full = torch.zeros(906

grad_attn_scores_qbias.size (0),907
grad_attn_scores_qbias.size (1),908
query_r.size (0),909
grad_attn_scores_qbias.size (3),910
device=grad_attn_scores_qbias.device ,911
dtype=torch.float32912

).scatter_add_ (2, indexed_offset , grad_attn_scores_qbias)913
914

grad_attn_scores_kbias_full = torch.zeros(915
grad_attn_scores_kbias.size (0),916
grad_attn_scores_kbias.size (1),917
grad_attn_scores_kbias.size (2),918

20

key_r.size (0),919
device=grad_attn_scores_kbias.device ,920
dtype=torch.float32921

).scatter_add_ (3, indexed_offset , grad_attn_scores_kbias)922
923

Compute gradients w.r.t. query_r and key_r924
grad_query_r += torch.einsum(’bnik ,bnkd ->ind’, grad_attn_scores_qbias_full ,925

key_chunk.to(torch.float32))926
grad_key_chunk += torch.einsum(’bnik ,ind ->bnkd’, grad_attn_scores_qbias_full ,927

query_r.to(torch.float32))928
929

grad_key_r += torch.einsum(’bnqj ,bnqd ->jnd’, grad_attn_scores_kbias_full ,930
query_chunk.to(torch.float32))931

grad_query_chunk += torch.einsum(’bnqj ,jnd ->bnqd’, grad_attn_scores_kbias_full ,932
key_r.to(torch.float32))933

934
grad_query [:, :, i:i + chunk_size , :] += grad_query_chunk.to(torch.float32)935
grad_key[:, :, j:j + chunk_size , :] += grad_key_chunk.to(torch.float32)936

937
return grad_query , grad_key , grad_value , grad_query_r , grad_key_r938

939
940
941
942

class MemoryEfficientAttention(torch.autograd.Function):943
@staticmethod944
def forward(ctx , query , key , value , mask=None , offset_matrix=None , query_r=None , key_r=None ,945

chunk_size =1024):946
dtype = value.dtype947
query , key , value = query , key , value948
key_chunk_size = min(chunk_size * 2, key.size (2))949
query_chunk_size = min(chunk_size , query.size (2))950

951
with torch.no_grad ():952

reduced_values , all_attn_weights = forward_core(query , key , value ,953
query_chunk_size , key_chunk_size ,954
mask , offset_matrix ,955
query_r , key_r956

)957
958

Save full query , key , and value tensors , but not the intermediates959
ctx.save_for_backward(query , key , value , mask , offset_matrix , all_attn_weights , query_r , key_r)960
ctx.chunk_size = chunk_size961

962
return reduced_values.to(value.dtype)963

964
@staticmethod965
def backward(ctx , grad_output):966

967
dtype = grad_output.dtype968
query , key , value , mask , offset_matrix , all_attn_weights , query_r , key_r = ctx.saved_tensors969
chunk_size = ctx.chunk_size970

971
Initialize gradients972
with (torch.no_grad ()):973

grad_query , grad_key , grad_value , grad_query_r , grad_key_r = \974
backward_core(grad_output , query , key , value ,975

all_attn_weights , chunk_size ,976
mask=mask , offset_matrix=offset_matrix ,977
query_r=query_r , key_r=key_r)978

979
return grad_query.to(dtype), grad_key.to(dtype), grad_value.to(dtype), None , None , grad_query_r980

, grad_key_r , None981
982

def memory_efficient_attention(query , key , value , mask=None ,983
offset_matrix=None , query_r=None , key_r=None ,984
chunk_size =2048):985

return MemoryEfficientAttention.apply(query , key , value , mask ,986
offset_matrix , query_r , key_r ,987
chunk_size)988989

21

C Limitations990

C.1 Data Processing and Language991

As is briefly admitted in the main text of the paper, the permutation of insertion operations described992

in the paper assumes the major proportion of the data is natural language, and mostly implemented to993

adapt to natural languages with latin-alphabet writing system like English, French and German. For994

languages with multi-byte-multi-token characters like Japanese and Chinese, current preprocessing995

pipeline fall back to autoregressive/identical permutation. This allows the toleration of moderately996

mixed-in multiligual data, but is definitely far from being the optimal solution. We leave this for997

future work.998

C.2 Broader Impact999

As a generative model with better controllability than current autoregressive models, due to the1000

inevitable data bias, pretrained InsNeXts are at risk of producing harmful contents that may offend1001

people of different self-identification and/or play a negative role in misinformation spreading. We1002

have only scaled the model to be limited sizes as large as the maximum of 0.6B parameters, so this is1003

currently still safely contained. However, we definitely call for regarding a broader societal impact1004

when further scaling this proposed architecture in the future.1005

C.3 Suboptimal Hardware-oriented Optimization1006

We acknowledge our limitation of ability in pushing the hardware-related optimization to the best1007

practice like in FlashAttention-2/3. According to our statistics, given the same model scale, our1008

training efficiency is still inferior compared to LLMs with mature architectures like LLaMA. We look1009

forward to broader collaboration to solve this issue in the future.1010

22

NeurIPS Paper Checklist1011

1. Claims1012

Question: Do the main claims made in the abstract and introduction accurately reflect the1013

paper’s contributions and scope?1014

Answer: [Yes]1015

Justification: The abstract and introduction thoroughly include major details on the basic1016

pretraining setup, evaluation experiments and ablation study experiments, as well as the1017

major highlights of the proposed model1018

Guidelines:1019

• The answer NA means that the abstract and introduction do not include the claims1020

made in the paper.1021

• The abstract and/or introduction should clearly state the claims made, including the1022

contributions made in the paper and important assumptions and limitations. A No or1023

NA answer to this question will not be perceived well by the reviewers.1024

• The claims made should match theoretical and experimental results, and reflect how1025

much the results can be expected to generalize to other settings.1026

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1027

are not attained by the paper.1028

2. Limitations1029

Question: Does the paper discuss the limitations of the work performed by the authors?1030

Answer: [Yes]1031

Justification: See the limitation section of the appendix.1032

Guidelines:1033

• The answer NA means that the paper has no limitation while the answer No means that1034

the paper has limitations, but those are not discussed in the paper.1035

• The authors are encouraged to create a separate "Limitations" section in their paper.1036

• The paper should point out any strong assumptions and how robust the results are to1037

violations of these assumptions (e.g., independence assumptions, noiseless settings,1038

model well-specification, asymptotic approximations only holding locally). The authors1039

should reflect on how these assumptions might be violated in practice and what the1040

implications would be.1041

• The authors should reflect on the scope of the claims made, e.g., if the approach was1042

only tested on a few datasets or with a few runs. In general, empirical results often1043

depend on implicit assumptions, which should be articulated.1044

• The authors should reflect on the factors that influence the performance of the approach.1045

For example, a facial recognition algorithm may perform poorly when image resolution1046

is low or images are taken in low lighting. Or a speech-to-text system might not be1047

used reliably to provide closed captions for online lectures because it fails to handle1048

technical jargon.1049

• The authors should discuss the computational efficiency of the proposed algorithms1050

and how they scale with dataset size.1051

• If applicable, the authors should discuss possible limitations of their approach to1052

address problems of privacy and fairness.1053

• While the authors might fear that complete honesty about limitations might be used by1054

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1055

limitations that aren’t acknowledged in the paper. The authors should use their best1056

judgment and recognize that individual actions in favor of transparency play an impor-1057

tant role in developing norms that preserve the integrity of the community. Reviewers1058

will be specifically instructed to not penalize honesty concerning limitations.1059

3. Theory assumptions and proofs1060

Question: For each theoretical result, does the paper provide the full set of assumptions and1061

a complete (and correct) proof?1062

23

Answer: [Yes]1063

Justification: The paper contains mostly empirical and minor theoretical results that simply1064

transplant existing algorithms in novel use cases. We’ve properly cited the source or the1065

original paper.1066

Guidelines:1067

• The answer NA means that the paper does not include theoretical results.1068

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1069

referenced.1070

• All assumptions should be clearly stated or referenced in the statement of any theorems.1071

• The proofs can either appear in the main paper or the supplemental material, but if1072

they appear in the supplemental material, the authors are encouraged to provide a short1073

proof sketch to provide intuition.1074

• Inversely, any informal proof provided in the core of the paper should be complemented1075

by formal proofs provided in appendix or supplemental material.1076

• Theorems and Lemmas that the proof relies upon should be properly referenced.1077

4. Experimental result reproducibility1078

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1079

perimental results of the paper to the extent that it affects the main claims and/or conclusions1080

of the paper (regardless of whether the code and data are provided or not)?1081

Answer: [Yes]1082

Justification: We inherit most experimental setups from peer-reviewed prior works and have1083

tried our best to report necessary details for reproducing our results.1084

Guidelines:1085

• The answer NA means that the paper does not include experiments.1086

• If the paper includes experiments, a No answer to this question will not be perceived1087

well by the reviewers: Making the paper reproducible is important, regardless of1088

whether the code and data are provided or not.1089

• If the contribution is a dataset and/or model, the authors should describe the steps taken1090

to make their results reproducible or verifiable.1091

• Depending on the contribution, reproducibility can be accomplished in various ways.1092

For example, if the contribution is a novel architecture, describing the architecture fully1093

might suffice, or if the contribution is a specific model and empirical evaluation, it may1094

be necessary to either make it possible for others to replicate the model with the same1095

dataset, or provide access to the model. In general. releasing code and data is often1096

one good way to accomplish this, but reproducibility can also be provided via detailed1097

instructions for how to replicate the results, access to a hosted model (e.g., in the case1098

of a large language model), releasing of a model checkpoint, or other means that are1099

appropriate to the research performed.1100

• While NeurIPS does not require releasing code, the conference does require all submis-1101

sions to provide some reasonable avenue for reproducibility, which may depend on the1102

nature of the contribution. For example1103

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1104

to reproduce that algorithm.1105

(b) If the contribution is primarily a new model architecture, the paper should describe1106

the architecture clearly and fully.1107

(c) If the contribution is a new model (e.g., a large language model), then there should1108

either be a way to access this model for reproducing the results or a way to reproduce1109

the model (e.g., with an open-source dataset or instructions for how to construct1110

the dataset).1111

(d) We recognize that reproducibility may be tricky in some cases, in which case1112

authors are welcome to describe the particular way they provide for reproducibility.1113

In the case of closed-source models, it may be that access to the model is limited in1114

some way (e.g., to registered users), but it should be possible for other researchers1115

to have some path to reproducing or verifying the results.1116

24

5. Open access to data and code1117

Question: Does the paper provide open access to the data and code, with sufficient instruc-1118

tions to faithfully reproduce the main experimental results, as described in supplemental1119

material?1120

Answer: [Yes]1121

Justification: The code is partially available as we’ve included the major code in the1122

supplementary materials. We will open-source the full code after the anonymity period of1123

the review process ends.1124

Guidelines:1125

• The answer NA means that paper does not include experiments requiring code.1126

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1127

public/guides/CodeSubmissionPolicy) for more details.1128

• While we encourage the release of code and data, we understand that this might not be1129

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1130

including code, unless this is central to the contribution (e.g., for a new open-source1131

benchmark).1132

• The instructions should contain the exact command and environment needed to run to1133

reproduce the results. See the NeurIPS code and data submission guidelines (https:1134

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1135

• The authors should provide instructions on data access and preparation, including how1136

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1137

• The authors should provide scripts to reproduce all experimental results for the new1138

proposed method and baselines. If only a subset of experiments are reproducible, they1139

should state which ones are omitted from the script and why.1140

• At submission time, to preserve anonymity, the authors should release anonymized1141

versions (if applicable).1142

• Providing as much information as possible in supplemental material (appended to the1143

paper) is recommended, but including URLs to data and code is permitted.1144

6. Experimental setting/details1145

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1146

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1147

results?1148

Answer: [Yes]1149

Justification: We confirm we’ve include the necessary details at the best level of our ability.1150

Guidelines:1151

• The answer NA means that the paper does not include experiments.1152

• The experimental setting should be presented in the core of the paper to a level of detail1153

that is necessary to appreciate the results and make sense of them.1154

• The full details can be provided either with the code, in appendix, or as supplemental1155

material.1156

7. Experiment statistical significance1157

Question: Does the paper report error bars suitably and correctly defined or other appropriate1158

information about the statistical significance of the experiments?1159

Answer: [Yes]1160

Justification: We’ve tried our best to use different random seeds and multiple statistically1161

independent runs of the downstream evaluations to make sure the stochasticity is not a major1162

negative factor in reproducibility. We’ve stated this point in our experiment section.1163

Guidelines:1164

• The answer NA means that the paper does not include experiments.1165

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1166

dence intervals, or statistical significance tests, at least for the experiments that support1167

the main claims of the paper.1168

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for1169

example, train/test split, initialization, random drawing of some parameter, or overall1170

run with given experimental conditions).1171

• The method for calculating the error bars should be explained (closed form formula,1172

call to a library function, bootstrap, etc.)1173

• The assumptions made should be given (e.g., Normally distributed errors).1174

• It should be clear whether the error bar is the standard deviation or the standard error1175

of the mean.1176

• It is OK to report 1-sigma error bars, but one should state it. The authors should1177

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1178

of Normality of errors is not verified.1179

• For asymmetric distributions, the authors should be careful not to show in tables or1180

figures symmetric error bars that would yield results that are out of range (e.g. negative1181

error rates).1182

• If error bars are reported in tables or plots, The authors should explain in the text how1183

they were calculated and reference the corresponding figures or tables in the text.1184

8. Experiments compute resources1185

Question: For each experiment, does the paper provide sufficient information on the com-1186

puter resources (type of compute workers, memory, time of execution) needed to reproduce1187

the experiments?1188

Answer: [Yes]1189

Justification: We’ve included some brief details in the main part of the paper and more in1190

the appendix, including the incidents and how that affect our training setup.1191

Guidelines:1192

• The answer NA means that the paper does not include experiments.1193

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1194

or cloud provider, including relevant memory and storage.1195

• The paper should provide the amount of compute required for each of the individual1196

experimental runs as well as estimate the total compute.1197

• The paper should disclose whether the full research project required more compute1198

than the experiments reported in the paper (e.g., preliminary or failed experiments that1199

didn’t make it into the paper).1200

9. Code of ethics1201

Question: Does the research conducted in the paper conform, in every respect, with the1202

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1203

Answer: [Yes]1204

Justification: We confirm there are no intentional introduction of any factors violating1205

the NeurIPS Code of Ethics, and any inevitable factors introduced by large-scale data is1206

acknowledged in the limitation.1207

Guidelines:1208

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1209

• If the authors answer No, they should explain the special circumstances that require a1210

deviation from the Code of Ethics.1211

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1212

eration due to laws or regulations in their jurisdiction).1213

10. Broader impacts1214

Question: Does the paper discuss both potential positive societal impacts and negative1215

societal impacts of the work performed?1216

Answer: [Yes]1217

Justification: See the Limitation section of the appendix.1218

Guidelines:1219

26

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.1220

• If the authors answer NA or No, they should explain why their work has no societal1221

impact or why the paper does not address societal impact.1222

• Examples of negative societal impacts include potential malicious or unintended uses1223

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1224

(e.g., deployment of technologies that could make decisions that unfairly impact specific1225

groups), privacy considerations, and security considerations.1226

• The conference expects that many papers will be foundational research and not tied1227

to particular applications, let alone deployments. However, if there is a direct path to1228

any negative applications, the authors should point it out. For example, it is legitimate1229

to point out that an improvement in the quality of generative models could be used to1230

generate deepfakes for disinformation. On the other hand, it is not needed to point out1231

that a generic algorithm for optimizing neural networks could enable people to train1232

models that generate Deepfakes faster.1233

• The authors should consider possible harms that could arise when the technology is1234

being used as intended and functioning correctly, harms that could arise when the1235

technology is being used as intended but gives incorrect results, and harms following1236

from (intentional or unintentional) misuse of the technology.1237

• If there are negative societal impacts, the authors could also discuss possible mitigation1238

strategies (e.g., gated release of models, providing defenses in addition to attacks,1239

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1240

feedback over time, improving the efficiency and accessibility of ML).1241

11. Safeguards1242

Question: Does the paper describe safeguards that have been put in place for responsible1243

release of data or models that have a high risk for misuse (e.g., pretrained language models,1244

image generators, or scraped datasets)?1245

Answer: [No]1246

Justification: As a foundation work of this new class of language models, we only have scaled1247

the model to a very limited size without instruction-following capability. It is unlikely, as of1248

now, for us to build safeguard mechanism with the commmon practices in autoregressive1249

LLMs. We leave this for future work.1250

Guidelines:1251

• The answer NA means that the paper poses no such risks.1252

• Released models that have a high risk for misuse or dual-use should be released with1253

necessary safeguards to allow for controlled use of the model, for example by requiring1254

that users adhere to usage guidelines or restrictions to access the model or implementing1255

safety filters.1256

• Datasets that have been scraped from the Internet could pose safety risks. The authors1257

should describe how they avoided releasing unsafe images.1258

• We recognize that providing effective safeguards is challenging, and many papers do1259

not require this, but we encourage authors to take this into account and make a best1260

faith effort.1261

12. Licenses for existing assets1262

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1263

the paper, properly credited and are the license and terms of use explicitly mentioned and1264

properly respected?1265

Answer: [Yes]1266

Justification: We confirm we’ve properly cited all related works and resources to the best of1267

our knowledge.1268

Guidelines:1269

• The answer NA means that the paper does not use existing assets.1270

• The authors should cite the original paper that produced the code package or dataset.1271

• The authors should state which version of the asset is used and, if possible, include a1272

URL.1273

27

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1274

• For scraped data from a particular source (e.g., website), the copyright and terms of1275

service of that source should be provided.1276

• If assets are released, the license, copyright information, and terms of use in the1277

package should be provided. For popular datasets, paperswithcode.com/datasets1278

has curated licenses for some datasets. Their licensing guide can help determine the1279

license of a dataset.1280

• For existing datasets that are re-packaged, both the original license and the license of1281

the derived asset (if it has changed) should be provided.1282

• If this information is not available online, the authors are encouraged to reach out to1283

the asset’s creators.1284

13. New assets1285

Question: Are new assets introduced in the paper well documented and is the documentation1286

provided alongside the assets?1287

Answer: [Yes]1288

Justification: The whole repository will be documented at a basic level upon submission,1289

but we will continue to improve it after the anonymity period.1290

Guidelines:1291

• The answer NA means that the paper does not release new assets.1292

• Researchers should communicate the details of the dataset/code/model as part of their1293

submissions via structured templates. This includes details about training, license,1294

limitations, etc.1295

• The paper should discuss whether and how consent was obtained from people whose1296

asset is used.1297

• At submission time, remember to anonymize your assets (if applicable). You can either1298

create an anonymized URL or include an anonymized zip file.1299

14. Crowdsourcing and research with human subjects1300

Question: For crowdsourcing experiments and research with human subjects, does the paper1301

include the full text of instructions given to participants and screenshots, if applicable, as1302

well as details about compensation (if any)?1303

Answer: [NA]1304

Justification: [NA]1305

Guidelines:1306

• The answer NA means that the paper does not involve crowdsourcing nor research with1307

human subjects.1308

• Including this information in the supplemental material is fine, but if the main contribu-1309

tion of the paper involves human subjects, then as much detail as possible should be1310

included in the main paper.1311

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1312

or other labor should be paid at least the minimum wage in the country of the data1313

collector.1314

15. Institutional review board (IRB) approvals or equivalent for research with human1315

subjects1316

Question: Does the paper describe potential risks incurred by study participants, whether1317

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1318

approvals (or an equivalent approval/review based on the requirements of your country or1319

institution) were obtained?1320

Answer: [NA]1321

Justification: [NA]1322

Guidelines:1323

• The answer NA means that the paper does not involve crowdsourcing nor research with1324

human subjects.1325

28

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)1326

may be required for any human subjects research. If you obtained IRB approval, you1327

should clearly state this in the paper.1328

• We recognize that the procedures for this may vary significantly between institutions1329

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1330

guidelines for their institution.1331

• For initial submissions, do not include any information that would break anonymity (if1332

applicable), such as the institution conducting the review.1333

16. Declaration of LLM usage1334

Question: Does the paper describe the usage of LLMs if it is an important, original, or1335

non-standard component of the core methods in this research? Note that if the LLM is used1336

only for writing, editing, or formatting purposes and does not impact the core methodology,1337

scientific rigorousness, or originality of the research, declaration is not required.1338

Answer: [Yes]1339

Justification: We’ve cited the involved medium-to-large sized language models properly.1340

Guidelines:1341

• The answer NA means that the core method development in this research does not1342

involve LLMs as any important, original, or non-standard components.1343

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1344

for what should or should not be described.1345

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodology
	Revisiting InsNet with a Contrastive Study against the (Large-Scale) Autoregressive Models
	InsNeXt: Scalable Insertion-based Language Model with Advanced Transformer Designs
	Training Details
	Dataset Preparation
	Tokenization and Permutation of Insertion Operations
	Optimization Setup

	Decoding

	Experiments
	Experiment 1 - Representation Learning Study using Discriminative Natural Language Understanding Tasks
	Experiment 2 - Zero-shot Commonsense Reasoning Tasks
	Experiment 3 - Controllable Generation Tasks

	Related Works
	Conclusion and Future Work
	Supplementary Details of Model and Algorithm Designs
	Additional Model Design Information
	Implementing Position Encoding with Efficient Attention Kernels
	Pretraining
	Extensive Ablation Study and Model Design Exploration
	Illustration of the Insertion-oriented Two-stream Attention and PrefixLM Masking

	Code Snippet of the Eager-mode Implementation of Sinusoidal Insertion-oriented Position Encoding
	Limitations
	Data Processing and Language
	Broader Impact
	Suboptimal Hardware-oriented Optimization

