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Abstract

Insertion-based language models like Insertion Transformer and InsNet have shown
promises as strong alternatives to autoregressive models with better inference-time
efficiency and controllablility. However, their training-time scalability has been
limited by computational inefficiency and obsolete model designs. We aim to
tackle this problem with InsNeXt, an insertion-based language model architecture
integrating recent advancements of language model systems to achieve improved
scalability. We scale InsNeXt from 154M up to as large as 0.6B parameters with
context window of 4096 by combining sentence-level training and document-level
training to better encode the context and bring out the benefits of insertion-based
models to encode bi-directional contexts. In addition, we propose a novel context
encoding mechanism specialized for insertion-based decoding. The inference-
time mechanism sparsely introduces bidirectional re-encoding of context, thus
effectively leverages the models’ bidirectional context reception while preserving
the same level of computational efficiency as conventional autoregressive decoding.
We evaluate the pretrained InsNeXt models from the perspective of representation
learning, commonsense reasoning and controllable generation. InsNeXt models
achieve similar or better performance in comparison to the state-of-the-art similar-
sized autoregressive models, making them a class of solid representation learners
and powerful controllable insertion-based generators.

1 Introduction

Large-scale pretrained autoregressive language models have dominated the paradigm of natural
language generation over the past few years. These models, including the GPTs (Radford et al.|
2018l 2019; [Brown et al., [2020} (OpenAl, 2022; |Achiam et al., 2023), LLaMAs (Touvron et al.|
2023alb; Dubey et al., 2024; Metal, [2025), Phis (Li et al., [2023alb; |Javaheripi et al., 2023 |Abdin
et al., [2024), Qwen LLMs (Bai et al.| 2023 [Yang et al., [2024ab) and Deepseek LLMs (Bi et al.
2024; |DeepSeek-Al et al., [2024; |Liu et al.,|2024; |Guo et al., |2025)), have demonstrated impressive
training-time scalability and versatile performance across a wide range of tasks. However, their
inference-time efficiency and lack of controllability motivate people to explore alternative methods
for pretrained language models.

One potential alternative is the insertion-based language model (Stern et al.|[2019} |Gu et al.,[2019;Lu
et al.l 2022)). Unlike autoregressive models, which generate text strictly from left to right, insertion-
based models allow tokens to be generated at arbitrary positions in arbitrary order, making them
inherently more flexible and better aligned with the compositional nature of human language. More-
over, their potential for improved controllability and fine-grained editing offers unique advantages
in tasks requiring structured or context-sensitive generation (Zhang et al.l 2020). Despite these
benefits, attempts to scale up insertion-based models remain limited, mainly due to their training-time
inefficiency especially compared to modern large language models (LLMs).
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The advent of efficient training techniques and architectural improvements in modern LLMs offers
a pathway to overcoming these limitations. Practices such as FlashAttention/Memory Efficient
Attention (Dao et al.}[2022; |Daol [2023};|Shah et al.,|2024; |Rabe and Staats| 2022; Dong et al., 2024
significantly reduce the memory overhead of attention mechanisms while accelerating computation.
Advances in layer normalization (Xiong et al.|[2020), optimization techniques (Loshchilov and Hutter}
2017; Rasley et al.| 2020a)), and data scaling strategies (Hoffmann et al., 2022) have revolutionized
the training of large-scale models in other dimensions. These innovations have allowed models with
billions of parameters to be trained efficiently (Achiam et al., | 2023; Dubey et al.,|2024), unlocking
new levels of performance in NLP tasks. However, these advancements are mostly specialized for
autoregressive LLMs, with little exploration of their applicability to insertion-based models.

In this work, we address these challenges by integrating state-of-the-art practices to forge the insertion-
based language model InsNeXt, a modern architecture capable of training-time scaling on par with
traditional autoregressive models. By incorporating techniques such as FlexAttention (Dong et al.|
2024), improved positional encodings, and optimized training pipelines, we achieve substantial
improvements in computational efficiency and scalability.

We pretrain InsNeXt with two major configurations and a few ablative ones, ranging from 154M
to 587M parameters, supporting a maximum context window of 4096 tokens. The training is
performed under a two-stage fashion: sentence-level pretraining on a BERT (Devlin et al., |2019)-
style Wikipedia+books dataset and document-level pretraining on the SlimPajama (Soboleva et al.}
2023) dataset. As one of the foundation works, we study on a huge variety of alternative designs in
different aspects insertion-based models, revealing arguably the best practices of which. We also
propose an improved re-contextualization mechanism for the insertion-based decoding to better
utilize the models’ bidirectional context reception. The resulting models are evaluated on a broad
range of tasks, demonstrating their effectiveness both as bidirectional BERT-style representation
learners for natural language understanding (NLU) and as insertion-based decoders for generative and
likelihood prediction tasks. We believe these qualities distinguish InsNeXt models from autoregressive
counterparts and highlighting their potential to redefine the landscape of language modeling.

2 Methodology

2.1 Revisiting InsNet with a Contrastive Study against the (Large-Scale) Autoregressive
Models

InsNet (Lu et al.,|2022)) is one of the first works that focus on tackling the training-efficiency issue
of insertion-based language models. It addresses the efficiency issues in a practical training of
insertion-based models in two folds: during the context encoding phase and the action prediction
phase.

pos 0 pos 1 pos 2
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A B C D E F

Figure 1: Illustration of the volatile position problem by Lu et al.[(2022]).
Context Encoding: the Volatile Position Problem and the Solution The high parallelizability and
efficiency of context encoding in autoregressive transformer-based decoder-only LLMs (Vaswani
et al.,[2017;Radford et al., 2019) are widely considered some of the most important factors towards
their success. Compared to these models, the vanilla insertion-based model Insertion Transformer
(InsT) (Stern et al., 2019) falls short. |Lu et al.|(2022)) argues that the biggest training-time performance
issue for InsT comes from the position encoding inefficiency, namely the volatile position problem.
We include their original illustration of the problem as in Figure[I] InsT relies on absolute position
embeddingsﬂ that bind each token’s representation to its index in the partial sequence. When a
new token is inserted, the indices of the existing tokens shift, so their previously cached position
embeddings become invalid. To restore consistent key/query vectors for attention, the compute-heavy

! Alternatively, relative position encodings with static distance, like in XLNet (Yang et al., 2019) and
Roformer (Su et al., [2024)
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Transformer models need to be run over the entire updated context at every step, incurring a full
re-encoding pass per insertion and pushing training complexity to at most O(n) per sequence. InsNet
improves insertion-based text generation by introducing an insertion-oriented, relative positional
encoding called the offset matrix. Offset matrices only concern the relative spatial interactions
between tokens that are already inserted at each step. When a new token is inserted, all previously
computed position encodings remain unchanged, and the incoming token reports its pairwise distance
to the existing tokens into the new offset matrix; this lets the model reuse a single context encoding for
an entire sequence, cutting training-time re-encoding from O(n) to O(1) and preserving full distance
information. In addition, the authors develop a fast offset-compression algorithm that builds the
offset matrix from permutation indices with simple masking and in-row ranking operations, avoiding
the naive O(n?) construction cost in the sequential execution. Each transformer layer then uses
sinusoidal embeddings to concern the offset values in the attention score, yielding insertion-oriented
distance-aware representations without extra passes.

Action Prediction: Next-Token Prediction (NTP) vs. Next-Insertion Prediction (NiTP In
autoregressive decoding, the prediction task is simple: predict the single next token (NTP) that will be
appended to the current prefix. However, in insertion-based generation, the model must decide at least
both where to insert and what to insert. The position choice is scalable and intuitive, because it can
be cast as a single-head attention over the sequence, thus benefiting from efficient attention kernels
with block-wise reduction (Rabe and Staats, 2022} [Dao et al., [2022; |Dao, 2023} |Shah et al ., [2024)
for scalability. However, predicting the next-inserted token (NiTP) is harder. In an autoregressive
decoder-only Transformer, given a training sequence, the mapping from a partial prefix to its next
token is deterministic, so no extra aggregation is needed beyond the final layer. By contrast, in
insertion-based generation, the representation for NiTP changes with every candidate slot, even under
the same prefix. InsNet follows InsT and formalizes each candidate position as an insertion slot. It
then builds the slot representation embeddings with a lightweight sparse attention over last-layer
hidden vectors: the left and right neighbors, and the most recently inserted token.

2.2 InsNeXt: Scalable Insertion-based Language Model with Advanced Transformer Designs

InsNet inherits a lot of elements from XLNet (Yang et al.,|2019), a BERT-era model with legacy de-
signs, many of which are later proven to be suboptimal in larger scale pretraining (Brown et al., 2020
Touvron et al., 2023a). We hereby discuss both the recent advances for decoder-only transformers
that we adopt to scale up the proposed model InsNeXt, and new model designs that we craft with
originality to facilitate the scalability of InsNeXct.

General Design: the Major Model and the Ablated Variants Since the scaling law and best
practice of such scalable insertion-based language models remains hugely underexplored, we conduct
a fairly broad range of model design ablation in each of the aforementioned aspects. However, it is
too computationally expensive to exhaust all of the possible combinations of designs. Thus, we first
select a basic, safe combination of model designs to build a basic model for the ablation study, then
combine all best practices we found in the model design study to build the final major models we
deliver. The basic model is a 12-layer, 12-headed transformer with InsNet-style sinusoidal relative
position encoding. It has a dimensionality of 768, and GeLU pre-LN FFN layers with intermediate
size of 3072. It uses untied input and output embeddings. The total parameter count is 171M. It uses
shallow aggregation for NiTP.

Provided our computation limitations, we present the two major setups in scaling up insertion-based
models: the base-sized 154M model and the advanced-sized 573M model. InsNeXt-base is a 16-layer,
12-headed transformer model with insertion-oriented ALiBi as the position encoding. It has a hidden
size of 768 and SwiGLU FFN layers with intermediate size of 2048. It uses tied input and output
embeddings. InsNeXt-advanced shares most architectural designs with the base-sized model with
only size expansion. It has 32 layers of 18-headed attention, and a hidden size of 1152. It uses
SwiGLU FFN layers with intermediate size of 3072. Both models use deep aggregation for NiTP.

Residual Connection and Layer Normalization In contrast to InsNet’s legacy PostLN block, we
conduct an ablation study over a few more recently proposed normalization alternatives, including pre-
normalization (pre-LN) (Xiong et al.; 2020), two-hop pre-LN proposed in MEGALODON (Ma et al.|
2024)) and Deepnorm (Wang et al.,|2024). Results show that most recently published normalization
blocks yield observably better stability and scalability than the legacy post-LN block, which is
consistent with their reported performance in autoregressive models and encoder models. For an
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ablative and contrastive study on the effect of warmup iteration numbers under each normalization
choice, please refer to the appendix [A.4]

Position Encoding Scalable Insertion-based language models are inherently incompatible with
absolute position encoding and relative position encoding with static distance assumptions. This is a
direct result of the volatile position problem in insertion-based generation. Thus, common relative
position encodings, e.g. the Rotary Position Encoding (RoPE) (Su et al.,|2024) and T5-bias (Raffel
et al.,|2020), are not directly applicable without modification. We explore other alternatives, including
the original InsNet sinusoidal relative position encoding and ALiBi (Press et al., [2021)), as they
both directly model the interaction of different positions and thus can be altered to reflect the
insertion-oriented position layout. For more information on the attempts at modifying and efficiently
implementing the two position encodings, please refer to the appendix [A.2]

Slot Aggregation: Deep Aggregation using Two-stream Attention In our early attempt to scale
up the model, we find that while the shallow aggregation proposed in InsNet is efficient and capable
enough for smaller models on small datasets, it is no longer the best practice when both the training
data and model sizes increase. A notable observation is that during large-scale pretraining, the
model should be aware of the location of insertion after permutation. To better utilize the potential
of increasing data and model capability during scaling-up, we follow the practice in XLNet and
adopt the two-stream attention mechanism to deep aggregate the slot representation from layers of
the context encoding. A detailed illustration of the insertion-oriented two-stream attention in both
training and decoding can be found in the appendix Figure 3]

Position Prediction: Soft-capped Position Logits In actual language usage, when humans
recursively refine or expand a sentence, it is possible that there are multiple correct slots for the
next step of expansion. The original position-predicting attention in InsNet does not reflect this. In
InsNeXt, we introduce a soft-cap mechanism to the position logits to encourage the model to learn a
uniform distribution over all feasible next-insertion slots. Given the soft-caps K > 0, the modified
position logit —K < alf - < K is computed by a5, = K - tanh(“2¢*).

pos pos

2.3 Training Details

2.3.1 Dataset Preparation

Due to the intractable nature of exhaustive enumeration of all permutations for longer sequences,
we conduct the training of InsNeXt models in a two-stage fashion: sentence-level training on a
BERT-style dataset and document-level training on the first 60B of the SlimPajama dataset. A study
in the earlier stage of our attempt shows that this is beneficial for the model to converge faster,
compared to directly training on the document-level data.

Sentence-level Data The sentence-level data is crafted from a mixture of Wikipedia-English-2023,
the Gutenberg Project dataset (PGLAF,[1971) and the BookCorpus dataset (Zhu et al2015). Only
natural sentences that start with alphabetical characters and end with terminating punctuation are
selected. Two consecutive sentences that appear in the same document are concatenated into a single
training sequence for the model to learn the basic concept of moving on to the next sentence when
one sentence is finished. The maximum sequence length is set to be 128, and models are trained
to predict the likelihood of at most only the first 96 insertion operations to avoid overfitting to only
complete sentence pairs.

Document-level Data The document-level data is crafted from the SlimPajama dataset (Soboleva
et al.} [2023)). The original SlimPajama dataset consists of 627B tokens, of which we take the first
60B tokens to facilitate our training process. Due to the limit of computational resources, in the first
95% batches of training, each sequence has a token limit of 1024, and we use only the last 5% for
context length expansion to at most 4096.

2.3.2 Tokenization and Permutation of Insertion Operations

Tokenizer Following the setup of prior autoregressive LMs like Pythia (Biderman et al., [2023)),
OIlMo (Groeneveld et al.,|[2024;|OLMo et al., [2024) and ModernBERT (Warner et al., 2024)), we use
the GPTNeoXTokenizer with a vocabulary size of 50254. The only notable modification is that we
force the tokenizer to split each digit in numbers.
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Permutation of Insertion Operations To ensure the integrity of each natural word, the tokens
within the same natural word are always grouped together and generated/predicted autoregressively
in the permutation. We argue that it is mostly only reasonable to assume the recursive structure and
compositionality in the same natural sentence. Thus, for inter-word permutations, all permutations
are limited to within natural sentences chunked by the SpaCy (Honnibal et al., 2017) sentencizer. We
acknowledge that this is an potentially problematic implementation, especially for those non-text,
Markdown/HTML script data in SlimPajama dataset. We leave the study of a more principled,
domain-agnostic permutation algorithm for future work.

Interleaved PrefixLM Masking We adopt a partially prefix-LM (Raffel et al.| |2020) paradigm of
training to encourage the model to learn a representation that captures bidirectional information and
can be obtained even with attention mask removed. In sentence-level training, we have a 50% chance
to remove part of the attention mask for a uniformly random proportion of the first few insertion
operations. In document-level training, the proportion of training sequences with this prefix-LM
masking is reduced to 10% to avoid sparsity in token prediction and computation utilization. In
practice, this helps improving InsNeXt robustness as a representation learner, and even brings us the
possibility to resolve the distribution shift issue during decoding of insertion-based models. We will
discuss the this special masking with more details and illustrations in the appendix [A.3]

2.3.3 Optimization Setup

Batch Size and Distributed Training In both stages of training, we use a global batch size of 1M
tokens for all configurations of the model unless otherwise stated. For more information, please refer
to our appendix in[A.3]

Optimizer and Learning Rate Schedule We use the AdamW (Loshchilov and Hutter, 2017)
optimizer with gradient norm clipping of 1.0 and beta values of (0.9, 0.9). During sentence-level
training, following the practice of ModernBERT (Warner et al., 2024)), we use a trapezoidal learning
rate scheduler with 10000 warmup steps and a peak learning rate of 4e-4. After 110000 further
iteration steps of constant LR training, we cooldown the model in 60000 iteration steps by cosine-
decaying the learning rate to le-4. For document-level training, we linearly warmup the model within
the first 1000 steps and then fine-pretrain the model with a constant learning rate of 1e-4.

Initialization and Other Important Details For all experiments, we choose the soft position logit
cap K = 3. Following the practice of many recently published LLMs, we initialize all parameters

from a normal distribution with stddev = 4/ 5% (D is the hidden size), unless otherwise stated.
2.4 Decoding

We hereby briefly explain the details on how to decode from a pretrained InsNeXt model.

Position Selection Unlike autoregressive models that only need to perform next-token prediction,
the proposed scalable insertion-based model needs to first determine the decoding position and then
aggregate the slot representations in each step of the decoding. The selection of the position can
be performed deterministically by taking the argmax among all position logits, or stochastically by
sampling from the softmax-ed distribution ps exp(a{)gs) over all positions. Note that one can
always choose multiple ones of the top-N (/N > 1) positions distribution simultaneously and attempt
to decode in parallel as in InsNet (Lu et al.| 2022). We leave the application of this feature for future

work and only focus on sequential (one token at a time) decoding in this paper.

Slot Aggregation for NiTP After the next position prediction, we generate the offset matrix and
apply the two-stream attention to compute the representation for NiTP. Note that in actual deployment
environment, this step can be significantly accelerated by caching KVs of the previous context
encoding steps as in decoder transformers. We then take the deep-aggregated slot representation and
project it using the transposed word embedding matrix to generate a distribution over the vocabulary.
Any decoding algorithms or logit modifiers that work for autoregressive models can then be applied
here without much adaptation.

Efficient Bidirectional Re-contextualization The original way of using the insertion-oriented
position encoding and upper-triangular masking to efficiently model the spatial relation in insertion-
based generation has caused two major issues. The first one is a performance issue similar to the
exposure bias in autoregressive models. In a uni-directionally encoded insertion-based generation
process, the spatial relation depicted by the interaction of the first few tokens can be inaccurate
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especially if we consider longer bidirectional context. This causes the model’s internal error to
accumulate over time, and eventually lead to degenerated performance on the long run.

User-input Prompt Step 1 Step 2 Re-encode triggered  Step 3 Context
ea | [k | [reaa] [ink i and (] (o0 e} Ff"_’?ﬁ' b (o] o] () o
A _ ,--:-:-J
"read think" "read and think" "read book and think" "read book and think"

Figure 2: Illustration of when the bidirectional re-encoding happens in the proposed Efficient
Bidirectional Re-contextualization. Solid line token blocks are ones encoded with a bidirectional
attention; dashed line ones are encoded using the unidirectional efficient offset matrix that does not
concern future insertions.

The second issue is about a proper permutation assumption for a user-input prompt. The permutation
of insertion operations has an underlying effect on how the model understands the structuring of
the generated contents. For model-generated contents, we always first predict the position and
then the token, so the permutation is naturally present. However, this is not the case for user-
input prompts. In previous insertion-based models without bidirectional encoders like InDIGO (Gu
et al.l2019) and InsNet (Lu et al., [2022), a common practice is to simply assume an autoregressive
permutation or randomly generate the permutation. However, this either causes train/test discrepancies
or injects additional stochasticity to the context encoding, which eventually harms the reliability and
controllability of the model. One essential solution is to switch to fully bidirectional context encoding
as in InsT (Stern et al.|[2019) and some recently published diffusion language models . However, this
is inefficient, as fully re-encoding upon any context update triggered by new insertions is extremely
compute-expensive.

Inspired by C++ STL’s implementation of the vector container (see analysis in|Cormen et al.| (2022)),
which allows dynamic reallocation of memory for a growing array that supports random access
and appending, we propose an efficient bidirectional re-contextualization mechanism that solves
the two issues of the uni-directional context encoding at once. The idea is surprisingly simple - for
user-assigned input or the initial empty string context, we simply encode the sequence bidirectionally
by removing the lower-triangular attention mask. We continue to generate the next few tokens with
unidirectionally encoded context updates while retaining the bidirectionally encoded part in the
prefixLM paradigm (Raffel et al.,|2020), until the generated tokens since last re-contextualization
surpass the length of the bidirectionally encoded section. Then, we discard all KV cache so far (if
any) and an expensive yet spatially unbiased fully bidirectional context re-encoding will be triggered.
It is expected that: 1) at least half of the context is bidirectionally encoded, so that the spatial
relation won’t be significantly and irreversibly corrupted by insertion operations, 2) the expensive
fully-bidirectional re-encoding is not triggered very frequently. In fact, one can easily prove that the
expected computational overhead of a decoding process with the proposed re-contextualization is at
the same scale of the vanilla uni-directional one with only a marginal extra cost.

3 Experiments

We conduct our experiments in three major parts:

* Natural Language Understanding Tasks experiments aim to test the basic generalizability
and quality of the learned representation. We also reuse this experimental setup in our
ablative model design exploration to find the model design best practices.

* Commonsense Reasoning Tasks experiments aim to test whether the pretrained model
is able to capture the world model knowledge in its parameters, and induce a stronger
preference on the commonsensical continuation over the other ones;

* Controllable Generation Tasks experiments are conducted to show the unique controllabil-
ity hegemony of insertion-based language models over traditional autoregressive models.
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3.1 Experiment 1 - Representation Learning Study using Discriminative Natural Language
Understanding Tasks

Following previous works on representation learning, we focus on two subtasks SST-2 (Socher et al.|
2013)) and MNLI (Williams et al.,|2018) from the GLUE (Wang et al.||2018)) leaderboard. We argue
that these two tasks reflect the pretrained model’s learned representation’s generalizability for single
sentence (represented by SST-2) and multi-sentence (represented by MNLI) scenarios well.

We first explore the best scalable designs for insertion-based language models. We start from a basic
model that reproduces most architectural designs as InsNet, then replace different components of
the model and train the altered variants. Due to the limit of computational resources, we only train
the basic model and the altered variants on the sentence-level data for 120000 iterations without the
trapezoidal cooldown. For more details, please refer to the appendix.

We report the evaluation on the development split of SST-2 and matched version of MNLI. We
compose the best practices of each module and train the major models evaluated in all following ex-
periments. A more comprehensive study of the major models’ performance on the GLUE leaderboard,
and a detailed ablation of different model designs can be found in the appendix.

Table 1: Representation learning study in comparison with the baseline models. The best performance
of each category/group is marked with bold font and the notable second place winner is marked
with underline. We consider both the accuracy on the downstream tasks and training efficiency for
architecture selection. All results are reported as the average of models with 3 different random seeds.

Model Variant #Params SST-2 MNLI-m
Baselines - Generative

GPT-2-base 124M 91.85% 81.23%
GPT-2-medium 355M 92.09% 85.23%
Pythia-160m 123M 89.30% 78.96%
Pythia-410m 354M 91.55% 83.03%
Pythia-1b 908M 91.66% 83.85%
T5-Small 6IM 90.44% 82.07%
T5-Base 223M 92.54% 85.30%
Qwen2.5-0.5b 494M 94.26% 84.65%
Baselines - Discriminative

BERT-base 108M 92.27% 84.14%
BERT-large 334M 93.73% 85.66%
RoBERTa-base 125M 94.26% 87.43%
RoBERTa-large 355M 95.94% 90.26 %
InsNet (reproduced) 171M 91.85% 82.20%
InsNeXt-base (Ours) 154M 93.00% 83.23%

InsNeXt-advanced (Ours) 573M 94.15% 85.94%

Discussion Results show that the proposed InsNeXt models are solid representation learners,
especially compared to peer generative models, while all of which still fall short against SOTA
encoding-oriented models like RoOBERTa, even with doubled size like TinyLLaMa (Zhang et al.|
2024).

3.2 Experiment 2 - Zero-shot Commonsense Reasoning Tasks

Following the practice of TinyLLaMa (Zhang et al.l[2024)), we conduct a commonsense reasoning
study of our model against a fair range of popular small-to-medium-sized language models in the
community. We choose the HellaSwag (Zellers et al., [2019), Obqga (Mihaylov et al., 2018} and
WinoGrande (Sakaguchi et al.,|2019) datasets as our testbed. The models’ choice are selected using
length-normalized likelihood scores, following prior practices. Note that the commonsense reasoning
tasks here are likelihood-predictive ones rather than generative ones. We will discuss the generative
commonsense reasoning task CommonGen in the next section.
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Table 2: Commonsense Reasoning Evaluation.

Model #Params HellaSwag Obqa WinoGrande
Random Selection - 25.00%  25.00% 50.00%
GPT-2-base 124M 31.14% 27.20% 51.62%
GPT-2-medium 355M 39.38%  30.20% 53.20%
Pythia-160m 123M 30.17%  27.00% 51.30%
Pythia-410m 354M 40.52%  29.40% 53.04%
Pythia-1b 908M 47.10%  31.40% 53.43%
Qwen2.5-0.5b 494M  5217% 3520%  56.59%
InsNet (reproduced) 171M 27.39%  24.40% 50.71%
InsNeXt-base (Ours) 154M 33.47%  30.20% 52.37%

InsNeXt-advanced (Ours) 573M 53.63% 34.80% 55.87%

Discussion Results show that the proposed InsNeXt models are trained well enough to compress the
world knowledge in the training data into its parameters, as a result having similar commonsense
reasoning capabilities to similar-sized autoregressive models.

3.3 Experiment 3 - Controllable Generation Tasks

We experiment with the lexically-controlled generation tasks following the setup of InsNet to measure
the performance of the proposed InsNeXt model. We examine the evaluated models on the Yelp 160K,
WMT News and CommonGen datasets. Note that insertion-based models are not directly able to
handle fuzzy lexical constraints that allow reflections. InsNet reports performance using the original
form of the concept words without considering reflections. In this work, we train the models as
insertion-based decoders that take in full keyword sequences as input, first fulfill the lexical constraints
with correct reflections and then generate the rest of the context. This significantly improves their
coverage of keywords, at the cost of slightly imperfect keyword coverage rates compared to some
recent search-based and HMM-based methods like GeLaTo (Zhang et al., 2023)).

Table 3: Controllable Generation Evaluation. Both BLEU-4 and lexical constraint coverage (shown
with BLEU-41/Coverage?) are reported. Note that the Yelp and News are high-variance datasets, so
it’s natural that all models have rather lower BLEU-4 score compared to that in CommonGen.

Model #Params Yelp 160K News CommonGen-dev
GPT-2-base 124M  5.83/77.50% 6.54/63.30%  22.90/65.4%
GPT-2-medium 355M  6.99/87.70% 7.56/80.60%  24.65/83.2%
Pythia-160m 123M 5.83/52.80% 5.50/47.00%  20.97/67.4%
Pythia-410m 354M  7.29/85.10% 6.64/72.00%  22.29/86.2%
Qwen2.5-0.5b 494M  7.46/90.30% 7.42/92.40%  23.37/92.0%
Insertion Transformer (BERT init+POINTER) 357M  3.79/100%  3.04/100% 16.70/97.9%
InsNet (Original Report) 171IM  5.78/100%  4.96/100% 18.71/100%
InsNet (reproduced, w/ keyword-first perm.) 17IM  5.63/100%  4.87/100% 21.36/98.3%
InsNeXt-base 154M  6.73/100%  6.60/100% 23.46/97.9%
InsNeXt-advanced 573M  8.13/100% 8.01/100% 25.73/98.7 %

Discussion Results show that the proposed InsNeXt models are more controllable and capable
language generators than its autoregressive counterparts and prior insertion-based models, in term of
both constraint coverage (near-perfect to perfect) and overall generation quality.

4 Related Works

Insertion-based Language Models Insertion-based language models offer a flexible alternative
by constructing sequences through token insertions, in contrast to the conventional left-to-right
continuation in traditional autoregressive LMs. The Insertion Transformer (Stern et al.| 2019) is
an iterative, partially autoregressive model that generates sequences based on insertion operations.
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Building upon this, POINTER (Zhang et al., 2020) was developed for hard-constrained text generation,
progressively inserting tokens in a parallel manner to complete sequences efficiently. To enhance
training efficiency and decoding flexibility, InsNet (Lu et al.| [2022) introduced an insertion-oriented
position encoding and a lightweight slot representation strategy, enabling both parallel and sequential
decoding. Further advancements include the design of Fractional Positional Encoding (FPE) for
Insertion Transformers (Zhang et al.|[2021), allowing the reuse of representations from previous steps,
yet introducing extra discrepancy between training and decoding.

Relative Position Encodings Recent advancements in transformer models have led to various
methods for encoding positional information. Transformer-XL (Dai et al.,|2019) and XLNet (Yang
et al., [2019) introduced relative positional embeddings to better capture dependencies across long se-
quences. T5 (Raffel et al.,2020) employs learnable relative position biases, enhancing its adaptability
to different sequence lengths. ALiBi (Attention with Linear Biases) (Press et al.,[2021) adds linear
biases directly to attention scores, facilitating the processing of longer sequences. Rotary Position
Embedding (RoPE) (Su et al.l 2024} integrates positional information through rotation matrices
applied to token embeddings. Most of these techniques are tailored for fixed-order sequence modeling
and may not be directly applicable to insertion-based generation. Notably, ALiBi and T5’s relative
position biases are exceptions; their designs involve rectifiers as a function of only the offset between
positions, making them potential for insertion-oriented scenarios. However, TS5 bias faces scalability
issues as no mainstream efficient kernels support training with it yet.

Efficient Scaled Dot Product Attention In recent years, the development of memory and compute-
efficient attention mechanisms has seen notable advancements. Initially, Rabe and Staats| (2022)
proposed a method to reduce memory requirements from quadratic to linear scale by partitioning atten-
tion computations into smaller blocks, fitting within a GPU’s on-chip memory. Building upon this, the
FlashAttention algorithm (Dao et al.| 2022) further optimized efficiency by managing data movement
and computation to minimize memory usage and increase computational speed. FlashAttention-
2/3 (Daol [2023} |Shah et al., [2024)) continue to incorporate hardware-related optimizations. More
recently, FlexAttention (Dong et al.,|2024) has been developed to combine the flexibility of repro-
grammable attention score modifiers with the performance benefits of FlashAttention, allowing
researchers to experiment with various attention variants efficiently.

5 Conclusion and Future Work

We present InsNeXt, a modern-level scalable insertion-based language model integrating recent
advances in LLMs. We explore and discuss model design alternatives of each component for
insertion-based generation, the basic scaling pattern of the model, as well as the best training
strategies from scratch for them. We then follow the best practices from the architecture study to
train two major specifications of the model, one (InsNeXt-base) with 154M parameters and another
(InsNeXt-advanced) with 573M parameters. We evaluate the fully renovated insertion-based models
under three major scenarios: 1) representation learning capabilities using NLU tasks; 2) commonsense
reasoning capabilities using HellaSwag, WinoGrande and Obqa; and 3) controllable generation on
Yelp, news and CommonGen datasets. Results show that the InsNeXt models are of competitive
performance with state-of-the-art autoregressive language models, while preserving their unique
advantages especially in terms of controllability.

We are aware of the recent progress in discrete-space diffusion language models with autoregressive
LLM warmups. These models have the potential to provide parallelizability of generation as well as
heterogeneous allocation and assignment of computational power for tokens with different level of
predictability. Existing Diffusion LLMs are mostly based on the MLM objective, meaning it has to
pre-determine the number of placeholder tokens and then learn to fulfill them. We argue that this
is a flawed solution, and InsNeXt can be viewed as the prototype model towards a more flexible,
powerful family of diffusion language models as the foundation for the next generation of artificial
intelligence.
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A Supplementary Details of Model and Algorithm Designs

A.1 Additional Model Design Information

Activation In addition to the legacy GeLU (Hendrycks and Gimpel, 2016) feed-forward layers, we
also consider SwiGLU, which is a variant of the Gated-Linear Units (Shazeer, 2020) that reportedly
provides better parameter efficiency in more recently published LLMs. Note that, to facilitate training
efficiency and provide a fair comparison, we intentionally choose model dimensionality divisible by 3.
This way, all matrix/vector multiplication operations can be performed on tensors with dimensionality
of multiples of 128/64 for best TensorCore practices, without altering the total number of parameters
compared to its GeLU counterparts.

A.2 Implementing Position Encoding with Efficient Attention Kernels

We hereby discuss the related attempts we make to implement the mentioned position encodings
efficiently.

InsNet-style Sinusoidal Relative Position Encoding For the original InsNet sinusoidal relative
position, no off-the-shelf efficient attention kernel is available at the moment when this paper is
submitted, so we build our own memory-efficient PyTorch attention kernel with eager-mode code, and
then transform it to the Triton implementation of the attention mechanism to include the block-wise
reduction tricks that other efficient attention kernels provide. See code snippet|[I}

Insertion-oriented ALiBi For insertion-oriented position encoding with ALiBi, we make a minor
modification of it on the denominator of the bias rescaling factor o; = 2% Instead of using
uniformly interpolated exponentials from 1.0 to 8.0 in each attention head, as suggested by the
original ALiBi paper, we simply choose k; to be the 1-based attention head index. For example,

an attention layer with 12 attention heads will have o to be [5r, 55, 95, ..., 517 31z | » instead of
(50757 57757+ 3%+ > 373> 35| as in vanilla ALiBi. For larger models with more dimensions, this

simply adds in extra attention heads that have slower bias-term decay when relative distance increases.
This helps the larger model to utilize the additional capacity to handle longer-range dependencies
or generate less position-sensitive perceptions without significantly changing its behavior in short-
range dependencies. In short-range dependencies with attention heads that have larger bias decay
denominators, it is approximately equivalent to omitting position information in some of the model
dimensions, which is reportedly a common practice in recent position encodings like RoPE. During
training, InsNeXt with insertion-oriented ALiBi is implemented with the FlexAttention (Dong et al.,
2024) kernel, which is a Triton-implemented FlashAttention-2/3 alternative that facilitates scalable
training of flexible attention modifier. However, up to the time of this submission, the inference-
friendly version of FlexAttention is still under-optimized. During inference, we simply fall back to
Memory Efficient Attention as our attention kernel choice.

A.3 Pretraining

Batch Size and Distributed Computation We train our model on a single NVIDIA H100x8
SXM node. Unfortunately, we encountered a hardware failure in the early stage of this project that
the NVSwitch bridge between the first to the rest of the GPUs was compromised. As a result, we
are only able to deploy a 7-way distributed training for the major experiments instead of an 8-way
one. In sentence-level training, we use an equivalent batch size of 1536 per GPU along with the
gradient accumulation trick, resulting in a global batch size of 10752 sequences and approximately
IM tokens. In the major part of document-level training, we use an equivalent batch size of 144 per
GPU, resulting in a global batch size of 1008 sequences and approximately 1M tokens too. We reduce
the batch size and learning rate accordingly for the context extension phase to keep the per-batch
token number to be around 1M. We build our distributed training script using a composition of the
DeepSpeed (Rasley et al.,[2020b) and PyTorch (Paszke et al., [2019) libraries, adopting the ZeRO
offload stage of 1 for the base-sized model and 2 for the advanced-sized model. We also use a mixed
precision training, with the BFloat16 datatype for in-layer gradients, and TensorFloat32 for gradient
reduction, accumulation and parameter storage.

Interleaved PrefixLM Masking We adopt a partially prefix-LM (Raffel et al., 2020) paradigm of
training to encourage the model to learn a representation that captures bidirectional information and
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can be obtained even with attention mask removed. Specifically, we remove part of the attention
mask for a uniformly random proportion of the first few insertion operations, so that each token can
attend to these unmasked tokens from both directions. See Figure

A.4 Extensive Ablation Study and Model Design Exploration

In this section we report the experiments we conduct that are intended for ablation study and model
design exploration purposes. We start from a reproduced InsNet architecture, replace some of the
components, pretrain the resulting model on the aforementioned sentence-level data then test it on
the representation learning capabilities as a reflection of model design soundness.

Position Encoding We first explore the trade-off between model capability and training scalability
of different insertion-oriented position encoding. We additionally report the training throughput at a
context length of 1024 tokens per sequence. See the results in[d} All available designs yield similar
performance, with TS Bias slightly outperforming the counterparts. However, as training with T5 bias
is not yet supported by any efficient attention kernels, we choose insertion-oriented ALiBi as our
major position encoding. We leave the implementation of a potentially more capable insertion-based
model with TS bias for future work.

Table 4: Position encoding study results.

Model Variant #Params SST-2 MNLI-m #Tokens/s/Chip @1K Cxt.
InsNet (reproduced, @Iter. #120K)

- Sinusoidal Position Embedding 171IM 91.85% 82.20% 17384

- T5 Bias 165M 92.01% 82.73% 32331

- Insertion-oriented ALiBi 164M 91.74% 82.15% 116144

Residual Connection and Layer Normalization We hereby explore the stability and model capa-
bility differences impacted by the choice of different layer normalization and/or residual connection
choices. We consider four major variants: the original post-LN, pre-LN, two-hop MEGALODON
pre-LN and DeepNorm. For DeepNorm, we follow their guidance to change the initialization of each
layer accordingly. In addition to the final performance report with 10K warmup steps, we also report
the performance with less warmup steps, at 0, 100, 1000 respectively. Results are shown in Table [5]

Table 5: Residual connection and layer normalization study results.

Model Variant SST-2 MNLI-m
InsNet (reproduced, @Iter. #120K)

- post-LN

w/ 0 Warmup Divergence Divergence
w/ 100 Warmup 89.33% 79.83%
w/ 1000 Warmup 90.14% 80.36%
w/ 10K Warmup 91.85% 82.20%
- pre-LN

w/ 0 Warmup 90.36% 81.37%
w/ 100 Warmup 90.59% 82.25%
w/ 1000 Warmup 91.28% 81.99%
w/ 10K Warmup 91.74% 81.93%
- two-hop pre-LN

w/ 0 Warmup 91.28% 81.76%
w/ 100 Warmup 91.51% 81.79%
w/ 1000 Warmup 91.63% 81.72%
w/ 10K Warmup 91.63% 81.88%
- DeepNorm

w/ 0 Warmup 90.71% 80.62%
w/ 100 Warmup 90.48% 81.20%
w/ 1000 Warmup 91.51% 81.47%
w/ 10K Warmup 91.63% 81.39%
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With 10K warmup steps, all variants yields similar performance, with the legacy post-LN slightly
winning by a margin. However, if we adopt fewer warmup steps, the stability of post-LN is signifi-
cantly compromised, while others are not very sensitive. Notably, we observe faster convergence
with two-hop pre-LN with slightly degenerated final performance, and don’t observe any advantages
of DeepNorm against other alternatives. We acknowledge the possibility that these two layer normal-
ization implementations are more specialized for even larger models, thus still worth trying if we
further scale up the training. For our major configurations of the pretraining, we choose pre-LN as
our layer normalization block choice.

Slot Aggregation: Deep Aggregation vs. Shallow Aggregation We concern both the representation
learning and generative capabilities impacted by different slot aggregation methods. We train two
variants of the major model InsNeXt-base under the same setup but with different aggregation method,
and test their respective performances on both groups of our experiments. Results are shown as
follows:

Table 6: Slot aggregation ablation study results

Model SST-2 MNLI-m Yelp 160K News CommonGen-dev

InsNet (Original Report) - - 5.78/100% 4.96/100% 18.71/100%
InsNet (reproduced) 91.85% 82.20% 5.63/100% 4.87/100%  21.36/98.3%

InsNeXt-base

w/ shallow agg. 92.66% 83.07% 5.86/100% 5.13/100%  22.70/98.1%
w/ deep agg. 93.00% 83.23% 6.73/100% 6.60/100%  23.46/97.9 %

In general, deep aggregation helps the model to better utilize model capability which consequently
helps both representation learning and NiTP. We modestly argue that this will be more signficant for
even larger models, but we don’t have sufficient empirical results to support this claim. The only
clear observation from the current results is that the usage of deep aggregation has a slightly more
remarkable impact on generation/NiTP than representation learning.

A.5 Illustration of the Insertion-oriented Two-stream Attention and PrefixLM Masking

Derived from XLNet’s illustration of the two-stream attention, we hereby illustrate how insertion-
oriented two-stream attention works in InsNeXt. Assume we’ve generated a permutation 7; of all
tokens x;, the two streams of attention can be performed as shown in the following figures:

2 1 2 2 2
e & g% g P
1 1 1 1 1
h) g g g% g%
:

(a) Content Stream Attention (b) Query Stream Attention

Figure 3: Illustration of the two-stream attention. The content-stream attention aims to model the
interaction of context tokens while the query-stream attention aims to aggregate information for NiTP.
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Here, gg) means the deep-aggregated representation for the i-th inserted token in the sampled

permutation 7 from the j-th layer of the InsNeXt model.

We also illustrate the prefixLM masking adopted in our pretraining. Given a sequence of N tokens,
we uniformly sample M ~ Uniform(0, N) and remove this part of the lower-triangular attention
mask, as illustrated in the following figure:

‘Bidirectional Prefix Initial Context

1 1 1
KD g | ) — X gﬂ

J‘”l X Mask

Figure 4: Illustration of the prefixLM style attention masking given a sequence with /N tokens and a
sampled bidirectional portion M = 3. Note that we stop using the notion prefix as in insertion-based
generation, the bidirectional part is not necessarily the natural prefix, but simply the bidirectionally
perceived partial context.

B Code Snippet of the Eager-mode Implementation of Sinusoidal
Insertion-oriented Position Encoding

We hereby include a few of the important code snippets as more concrete description of the pro-
posed algorithm. To facilitate the readability of code, we report the eager-mode version of the
implementation. It can be transformed into an equivalent Triton implementation fairly easily.

Code 1: The eager mode implementation for the memory efficient attention with sinusoidal insertion-
oriented position encoding.

def attn_core_logsumexp(query_chunk, key_chunk, value_chunk,
mask_chunk=None, offset_chunk=None,
query_r=None, key_r=None, offset_clip_range=128):
torch.einsum(’bngd,bnkd->bngk’, query_chunk, key_chunk)
attn_scores / math.sqrt(value_chunk.shapel[-1])

attn_scores
attn_scores

if mask_chunk is not None:

attn_scores = attn_scores + mask_chunk.unsqueeze(l)

if offset_chunk is not None:
offset_chunk = offset_chunk.clamp(min=—offset_c1ip_range, max=offset_clip_range)
indexed_offset = offset_chunk + offset_clip_range
attn_scores_qgbias = torch.einsum(’ind,bnkd->bnik’, query_r, key_chunk)
attn_scores_kbias = torch.einsum(’bnqd, jnd->bngj’, query_chunk, key_r)

# Use the offset to index into the attn_scores_qgbias
# Expand indexed_offset dimensions to match attn_scores_qgbias
indexed_offset = indexed_offset.unsqueeze(1).expand(-1, query_r.size(1), -1, -1)

# Gather the values using the computed offset index

attn_scores_gbias = torch.gather(attn_scores_gbias, dim=2, index=indexed_offset) / math.sqrt(
value_chunk.shape[-1])

attn_scores_kbias = torch.gather(attn_scores_kbias, dim=3, index=indexed_offset) / math.sqrt(
value_chunk.shape[-1])

attn_scores = attn_scores + attn_scores_gbias + attn_scores_kbias

# Compute logsumexp for numerical stability
attn_scores = attn_scores.to(torch.float32)
attn_weight = attn_scores.logsumexp(dim=-1) # bng
attn_distro = attn_scores.softmax(dim=-1)

# Compute softmaxed attention weights without storing attn_scores
# Compute weighted sum of values
chunk_reduced_value = torch.einsum(’bnkd, bngk->bnqd’, value_chunk, attn_distro.to(value_chunk.dtype

return attn_weight, attn_distro, chunk_reduced_value

def forward_core(query, key, value, query_chunk_size, key_chunk_size,
mask=None, offset_matrix=None, query_r=None, key_r=None,
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735 offset_clip_range=128):

736 reduced_values = []

737 all_attn_weights = []

738 mask_value = torch.finfo(query.dtype).min

739 with (torch.no_grad()):

740 for i in range(0, query.size(2), query_chunk_size):

741 cumu_reduced_chunk = None

742 cumu_attn_weight = None

743 query_chunk = query[:, :, i:i + query_chunk_size, :]

744 attn_weights_ = []

745 if mask is not None:

746 mask_qchunk = mask[:, i:i + query_chunk_size, :].to(query_chunk.device)
747 else:

748 mask_qchunk = None

749 if offset_matrix is not None:

750 offset_qchunk = offset_matrix[:, i:i + query_chunk_size, :].to(query_chunk.device)
751 else:

752 offset_qchunk = None

753

754 for j in range(0, key.size(2), key_chunk_size):

755 key_chunk = keyl[:, :, j:j + key_chunk_size, :]

756 value_chunk = valuel[:, :, j:j + key_chunk_size, :]

757 if mask is not None:

758 mask_chunk = mask_qchunk([:, :, j:j + key_chunk_size]

759 else:

760 mask_chunk = None

761 if offset_matrix is not None:

762 offset_chunk = offset_qchunk[:, :, j:j + key_chunk_size]
763 else:

764 offset_chunk = None

765 attn_weight, _, reduced_chunk = \

766 attn_core_logsumexp (query_chunk, key_chunk, value_chunk,

767 mask_chunk=mask_chunk, offset_chunk=offset_chunk,

768 query_r=query_r, key_r=key_r,

769 offset_clip_range=offset_clip_range

770 )

771

772 if cumu_reduced_chunk is None:

773 cumu_reduced_chunk = reduced_chunk.to(torch.float32)

774 cumu_attn_weight = attn_weight

775 else:

776 cumu_attn_weight = torch.stack([cumu_attn_weight, attn_weight])
777 cumu_reduced_chunk = torch.stack([cumu_reduced_chunk, reduced_chunk])
778 cumu_reduced_chunk = torch.einsum(

779 s

780 cumu_reduced_chunk.to(torch.float32),

781 cumu_attn_weight.softmax (dim=0)

782 ).to(torch.float32)

783 cumu_attn_weight = cumu_attn_weight.logsumexp(dim=0)

784 attn_weights_.append(attn_weight)

785 reduced_values.append (cumu_reduced_chunk.to(query_chunk.dtype))

786 all_attn_weights.append(cumu_attn_weight)

787 reduced_values = torch.cat(reduced_values, dim=2)

788

789 all_attn_weights = torch.cat(all_attn_weights, dim=2)

790

791 return reduced_values, all_attn_weights

792

793 def backward_core(grad_output, query, key, value, all_attn_weights, chunk_size,
794 mask=None, offset_matrix=None, query_r=None, key_r=None,

795 offset_clip_range=128):

796 grad_query = torch.zeros_like(query, dtype=torch.float32)

797 grad_key = torch.zeros_like(key, dtype=torch.float32)

798 grad_value = torch.zeros_like(value, dtype=torch.float32)

799 grad_query_r = torch.zeros_like(query_r, dtype=torch.float32) if query_r is not None else None
800 grad_key_r = torch.zeros_like(key_r, dtype=torch.float32) if key_r is not None else None
801 scale = 1.0 / math.sqrt(value.shapel[-1])

802

803 with torch.no_grad():

804 for i in range(0, query.size(2), chunk_size):

805 query_chunk = queryl[:, :, i:i + chunk_size, :].contiguous()

806 attn_weights_chunk = all_attn_weights([:, :, i:i + chunk_size].contiguous ()
807 grad_output_chunk = grad_outputl[:, :, i:i + chunk_size, :].contiguous()
808

809 if mask is not None:

810 mask_qchunk = mask[:, i:i + chunk_size, :].to(query.device)

811 else:

812 mask_qchunk = None

813 if offset_matrix is not None:

814 offset_qchunk = offset_matrix[:, i:i + chunk_size, :].to(query.device)
815 else:

816 offset_qchunk = None

817

818 accumu_modifier = 0.

819

820 for j in range (0, key.size(2), chunk_size):

821 key_chunk = keyl[:, :, j:j + chunk_size, :]

822 value_chunk = valuel[:, :, j:j + chunk_size, :]

823

824 if mask is not None:

825 mask_chunk = mask_qchunk([:, :, j:j + chunk_size]

826 else:
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mask_chunk = None
if offset_matrix is not None:

offset_chunk = offset_qchunkl[:, :, j:j + chunk_sizel]
else:

offset_chunk = None

# Forward pass to recompute intermediates

attn_weight, attn_distro, reduced_chunk = attn_core_logsumexp(
query_chunk, key_chunk, value_chunk,
mask_chunk=mask_chunk, offset_chunk=offset_chunk,
query_r=query_r, key_r=key_r,
offset_clip_range=offset_clip_range

adjustment = (attn_weight - attn_weights_chunk).exp().unsqueeze (dim=-1)
attn_global = attn_distro * adjustment

grad_attn_global = torch.einsum(
, grad_output_chunk, value_chunk
)
grad_value_chunk = torch.einsum( N
attn_global.to(grad_output_chunk.dtype),
grad_output_chunk)
grad_value[:, :, j:j + chunk_size, :] += grad_value_chunk.to(torch.float32)
accumu_modifier -= torch.einsum(

grad_attn_global.to(torch.float32),
attn_global) .unsqueeze (dim=-1)

j in range (0, key.size(2), chunk_size):
key_chunk = keyl[:, :, j:j + chunk_size, :]
value_chunk = valuel[:, :, j:j + chunk_size, :]

if mask is not None:

mask_chunk = mask_qchunk([:, :, j:j + chunk_size]
else:

mask_chunk = None
if offset_matrix is not None:

offset_chunk = offset_qchunkl[:, :, j:j + chunk_sizel]
else:

offset_chunk = None

# Forward pass to recompute intermediates

attn_weight, attn_distro, reduced_chunk = attn_core_logsumexp (
query_chunk, key_chunk, value_chunk,
mask_chunk=mask_chunk, offset_chunk=offset_chunk,
query_r=query_r, key_r=key_r,
offset_clip_range=offset_clip_range

adjustment = (attn_weight - attn_weights_chunk).exp().unsqueeze (dim=-1)
attn_global = attn_distro * adjustment

grad_attn_global = torch.einsum(
, grad_output_chunk, value_chunk

)

grad_attn_scores = attn_global * (
grad_attn_global + accumu_modifier

)

# Compute gradients w.r.t. query and key
grad_attn_scores_gk = (grad_attn_scores * scale).to(query_chunk.dtype)

grad_query_chunk = torch.einsum( , grad_attn_scores_qk, key_chunk)

grad_key_chunk = torch.einsum( , grad_attn_scores_qk, query_chunk)

# If query_r and key_r are used, compute their gradients
if offset_chunk is not None and query_r is not None and key_r is not None:

offset_chunk = offset_chunk.clamp(min=-offset_clip_range, max=offset_clip_range)
indexed_offset = offset_chunk + offset_clip_range
indexed_offset = indexed_offset.unsqueeze(1).expand(-1, query_r.size(1), -1, -1)

# Gradients w.r.t. attn_scores_gbias and attn_scores_kbias
grad_attn_scores_gbias = grad_attn_scores_gk.to(torch.float32)
grad_attn_scores_kbias = grad_attn_scores_gk.to(torch.float32)

# Ungather gradients

grad_attn_scores_gbias_full = torch.zeros (
grad_attn_scores_qbias.size(O),
grad_attn_scores_qbias.size(l),
query_r.size(0),
grad_attn_scores_gbias.size(3),
device=grad_attn_scores_qbias.device,
dtype=torch.float32

).scatter_add_(2, indexed_offset, grad_attn_scores_gbias)

grad_attn_scores_kbias_full = torch.zeros(
grad_attn_scores_kbias.size(0),
grad_attn_scores_kbias.size (1),
grad_attn_scores_kbias.size(2),
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key_r.size (0),
device=grad_attn_scores_kbias.device,
dtype=torch.float32

).scatter_add_(3, indexed_offset, grad_attn_scores_kbias)

# Compute gradients w.r.t. query_r and key_r

grad_query_r += torch.einsum( , grad_attn_scores_gbias_full,
key_chunk.to(torch.float32))
grad_key_chunk += torch.einsum( , grad_attn_scores_gbias_full,

query_r.to(torch.float32))

grad_key_r += torch.einsum( , grad_attn_scores_kbias_full,
query_chunk.to(torch.float32))
grad_query_chunk += torch.einsum( , grad_attn_scores_kbias_full,

key_r.to(torch.float32))

grad_query[:, :, i:i + chunk_size, :] += grad_query_chunk.to(torch.float32)
grad_keyl[:, :, j:j + chunk_size, :] += grad_key_chunk.to(torch.float32)

return grad_query, grad_key, grad_value, grad_query_r, grad_key_r

class MemoryEfficientAttention(torch.autograd.Function):
@staticmethod
def forward(ctx, query, key, value, mask=None, offset_matrix=None, query_r=None, key_r=None,
chunk_size=1024):
dtype = value.dtype

# query, key, value = query, key, value
key_chunk_size = min(chunk_size * 2, key.size(2))
query_chunk_size = min(chunk_size, query.size(2))

with torch.no_grad():
reduced_values, all_attn_weights = forward_core(query, key, value,
query_chunk_size, key_chunk_size,
mask, offset_matrix,
query_r, key_r

)

# Save full query, key, and value tensors, but not the intermediates
ctx.save_for_backward (query, key, value, mask, offset_matrix, all_attn_weights, query_r, key_r)
ctx.chunk_size = chunk_size

return reduced_values.to(value.dtype)

@staticmethod
def backward(ctx, grad_output):

dtype = grad_output.dtype
query, key, value, mask, offset_matrix, all_attn_weights, query_r, key_r = ctx.saved_tensors
chunk_size = ctx.chunk_size

# Initialize gradients
with (torch.no_grad()):
grad_query, grad_key, grad_value, grad_query_r, grad_key_r = \
backward_core (grad_output, query, key, value,
all_attn_weights, chunk_size,
mask=mask, offset_matrix=offset_matrix,
query_r=query_r, key_r=key_r)

return grad_query.to(dtype), grad_key.to(dtype), grad_value.to(dtype), None, None, grad_query_r
, grad_key_r, None

def memory_efficient_attention(query, key, value, mask=None,
offset_matrix=None, query_r=None, key_r=None,
chunk_size=2048) :
return MemoryEfficientAttention.apply(query, key, value, mask,
offset_matrix, query_r, key_r,
chunk_size)
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C Limitations

C.1 Data Processing and Language

As is briefly admitted in the main text of the paper, the permutation of insertion operations described
in the paper assumes the major proportion of the data is natural language, and mostly implemented to
adapt to natural languages with latin-alphabet writing system like English, French and German. For
languages with multi-byte-multi-token characters like Japanese and Chinese, current preprocessing
pipeline fall back to autoregressive/identical permutation. This allows the toleration of moderately
mixed-in multiligual data, but is definitely far from being the optimal solution. We leave this for
future work.

C.2 Broader Impact

As a generative model with better controllability than current autoregressive models, due to the
inevitable data bias, pretrained InsNeXts are at risk of producing harmful contents that may offend
people of different self-identification and/or play a negative role in misinformation spreading. We
have only scaled the model to be limited sizes as large as the maximum of 0.6B parameters, so this is
currently still safely contained. However, we definitely call for regarding a broader societal impact
when further scaling this proposed architecture in the future.

C.3 Suboptimal Hardware-oriented Optimization

We acknowledge our limitation of ability in pushing the hardware-related optimization to the best
practice like in FlashAttention-2/3. According to our statistics, given the same model scale, our
training efficiency is still inferior compared to LLMs with mature architectures like LLaMA. We look
forward to broader collaboration to solve this issue in the future.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction thoroughly include major details on the basic
pretraining setup, evaluation experiments and ablation study experiments, as well as the
major highlights of the proposed model

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See the limitation section of the appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper contains mostly empirical and minor theoretical results that simply
transplant existing algorithms in novel use cases. We’ve properly cited the source or the
original paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We inherit most experimental setups from peer-reviewed prior works and have
tried our best to report necessary details for reproducing our results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is partially available as we’ve included the major code in the
supplementary materials. We will open-source the full code after the anonymity period of
the review process ends.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We confirm we’ve include the necessary details at the best level of our ability.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We’ve tried our best to use different random seeds and multiple statistically
independent runs of the downstream evaluations to make sure the stochasticity is not a major
negative factor in reproducibility. We’ve stated this point in our experiment section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We’ve included some brief details in the main part of the paper and more in
the appendix, including the incidents and how that affect our training setup.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm there are no intentional introduction of any factors violating
the NeurIPS Code of Ethics, and any inevitable factors introduced by large-scale data is
acknowledged in the limitation.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See the Limitation section of the appendix.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: As a foundation work of this new class of language models, we only have scaled
the model to a very limited size without instruction-following capability. It is unlikely, as of
now, for us to build safeguard mechanism with the commmon practices in autoregressive
LLMs. We leave this for future work.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We confirm we’ve properly cited all related works and resources to the best of
our knowledge.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The whole repository will be documented at a basic level upon submission,
but we will continue to improve it after the anonymity period.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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1326 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1327 may be required for any human subjects research. If you obtained IRB approval, you
1328 should clearly state this in the paper.

1329 * We recognize that the procedures for this may vary significantly between institutions
1330 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1331 guidelines for their institution.

1332 * For initial submissions, do not include any information that would break anonymity (if
1333 applicable), such as the institution conducting the review.

1334 16. Declaration of LLLM usage

1335 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1336 non-standard component of the core methods in this research? Note that if the LLM is used
1337 only for writing, editing, or formatting purposes and does not impact the core methodology,
1338 scientific rigorousness, or originality of the research, declaration is not required.

1339 Answer: [Yes]

1340 Justification: We’ve cited the involved medium-to-large sized language models properly.
1341 Guidelines:

1342 * The answer NA means that the core method development in this research does not
1343 involve LLMs as any important, original, or non-standard components.

1344 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1345 for what should or should not be described.
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