
Under review as a conference paper at ICLR 2022

AUTOOED: AUTOMATED OPTIMAL EXPERIMEN-
TAL DESIGN PLATFORM WITH DATA- AND TIME-
EFFICIENT MULTI-OBJECTIVE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present AutoOED, an Automated Optimal Experimental Design platform
powered by machine learning to accelerate discovering solutions with optimal ob-
jective trade-offs. To solve expensive multi-objective problems in a data-efficient
manner, we implement popular multi-objective Bayesian optimization (MOBO)
algorithms with state-of-the-art performance in a modular framework. To further
accelerate the optimization in a time-efficient manner, we propose a novel strategy
called Believer-Penalizer (BP), which allows batch experiments to be accelerated
asynchronously without affecting performance. AutoOED serves as a testbed for
machine learning researchers to quickly develop and evaluate their own MOBO
algorithms. We also provide a graphical user interface (GUI) for users with little
or no experience with coding, machine learning, or optimization to visualize and
guide the experiment design intuitively. Finally, we demonstrate that AutoOED
can control and guide real-world hardware experiments in a fully automated way
without human intervention.

1 INTRODUCTION

Optimal Experimental Design (OED) problems in science and engineering often require satisfying
several conflicting objectives simultaneously. These problems aim to solve a multi-objective opti-
mization system and discover a set of optimal solutions, called Pareto optimal. Furthermore, the
objectives are typically black-box functions whose evaluations are time-consuming and costly (e.g.,
measuring real experiments or running expensive numerical simulations). Thus, the budget that de-
termines the number of experiments can be heavily constrained. Hence, an efficient strategy for
guiding the experimental design towards Pareto optimal solutions is necessary. Recent advances
in machine learning have facilitated optimization of various design problems, including chemical
design (Griffiths & Hernández-Lobato, 2017), material design (Zhang et al., 2020), resource al-
location (Wu et al., 2013), environmental monitoring (Marchant & Ramos, 2012), recommender
systems (Chapelle & Li, 2011) and robotics (Martinez-Cantin et al., 2009). A machine learning
concept that enables automatic guidance of the design process is Bayesian optimization (Shahriari
et al., 2016). This concept is extensively studied in the machine learning community from a theo-
retical aspect and in the single-objective case. However, its practical applications in multi-objective
problems are still not widely explored due to the lack of easy-to-use and open-source software.

In this paper, we present AutoOED1, an open-source platform for efficiently optimizing multi-
objective problems with a restricted budget of experiments. The key features of AutoOED include:

• Data-efficient experimentation: AutoOED employs state-of-the-art MOBO strategies that
rapidly advances the Pareto front with a small set of evaluated experiments.

• Time-efficient experimentation: AutoOED supports both synchronous and asynchronous
batch optimization to accelerate the optimization. We propose a novel and robust asyn-
chronous optimization strategy named Believer-Penalizer (BP), which is instrumental when
multiple workers run experiments in parallel, but their evaluations drastically vary in time.

1Code, screenshots, detailed documentation and tutorials can be found at https://sites.google.
com/view/autooed.
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• Intuitive GUI: An easy-to-use graphical user interface (GUI) is provided to directly visu-
alize and guide the optimization progress and facilitate the operation for users with little or
no experience with coding, optimization, or machine learning.

• Modular structure: A highly modular Python codebase enables easy extensions and re-
placements of MOBO algorithm components. AutoOED can serve as a testbed for machine
learning researchers to easily develop and evaluate their own MOBO algorithms.

• Automation of experimental design: The platform is designed for straightforward in-
tegration into a fully automated experimental design pipeline as long as the experiment
evaluations (either in simulation or physical) can be controlled via computer programs.

2 RELATED WORK

Bayesian optimal experimental design Optimal experimental design (OED) is the process of de-
signing the sequence of experiments to maximize specific objectives in a data- or time-efficient man-
ner. Therefore, Bayesian optimization (BO) (Shahriari et al., 2016) is usually applied to find optimal
solutions with a minimal number of evaluations. Essentially, BO relies on surrogate models like the
Gaussian process (GP) to accurately model the experimental process and proposes new experimental
designs based on defined acquisition functions that trade-off between exploration and exploitation.
Popular choices of the acquisition functions include Expected Improvement (EI) (Močkus, 1975),
Upper Confidence Bound (UCB) (Srinivas et al., 2010), Thompson Sampling (TS) (Thompson,
1933). Bayesian OED has found success in a wide range of applications (Greenhill et al., 2020) and
is the main methodology of AutoOED. To further speed up when evaluations can be carried out in
parallel, asynchronous BO approaches have been developed (Ginsbourger et al., 2010; Kandasamy
et al., 2018; Alvi et al., 2019). However, all of the previous literature focuses on single-objective
BO rather than the multi-objective scenario. In this paper, we extend several single-objective asyn-
chronous BO methods to multi-objective versions and propose a novel asynchronous method named
Believer-Penalizer (BP) with the stablest performance on multi-objective benchmark problems.

Multi-objective Bayesian optimization MOBO is developed to optimize for a set of Pareto
optimal solutions while minimizing the number of experimental evaluations. Early approaches
solve multi-objective problems by scalarizing them into single-objective ones using random
weights (Knowles, 2006). Instead of scalarization, some acquisition functions are proposed to com-
pute a single objective, e.g., entropy-based or hypervolume-based (Russo & Van Roy, 2014; Be-
lakaria et al., 2019; Emmerich & Klinkenberg, 2008; Daulton et al., 2020a). Alternatively, MOBO
can be solved by defining a separate acquisition function per objective, optimizing using cheap
multi-objective solvers (usually evolutionary algorithms like NSGA-II (Deb et al., 2002)) and finally
selecting one or a batch of designs to evaluate next (Bradford et al., 2018; Belakaria & Deshwal,
2020; Konakovic Lukovic et al., 2020). AutoOED implements many of them in a modular way and
allows easily changing modules in an unified MOBO framework (see Section 3.2).

Open-source Bayesian optimization platform There are many existing Python libraries for
Bayesian optimization including Spearmint (Snoek et al., 2012), HyperOpt (Bergstra et al., 2013),
GPyOpt (authors, 2016), GPflowOpt (Knudde et al., 2017), Dragonfly (Kandasamy et al., 2020),
AX (Bakshy et al., 2018), Optuna (Akiba et al., 2019), HyperMapper (Nardi et al., 2019),
BoTorch (Balandat et al., 2020a), SMAC3 (Lindauer et al., 2021) and OpenBox (Li et al., 2021).
These Python libraries are designed for general applications and have different algorithmic features
supported. The feature comparison between AutoOED and these libraries is shown in Table 1 and
is further discussed in Section 5.2. However, they are all targeted for experts in coding without an
intuitive GUI. In contrast, there are also software platforms that provide intuitive user interface and
visualization to specific domain experts but the platforms cannot be used for other general applica-
tions, for example, Auto-QChem (Shields et al., 2021) for chemical synthesis and GeoBO (Haan,
2021) for geoscience. Combining powerful Bayesian optimization algorithms and an intuitive GUI,
AutoOED is designed to be a general optimization platform that can be easily used by anyone for
applications in any field.

2The comparison is based on AutoOED’s core features. ”∼” means the package only supports a single multi-
objective algorithm rather than a modular multi-objective framework with several state-of-the-art algorithms.
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Table 1: Feature comparison between different Bayesian optimization platforms.2

Name GUI Multiple
objectives

Multiple
domains

Asynchronous
optimization

External
evaluation

Modular
framework

Built-in
visualization

Spearmint X
GPyOpt X X X X

GPflowOpt ∼ X
Dragonfly ∼ X X
BoTorch X X X

AutoOED X X X X X X X

3 DATA-EFFICIENT MULTI-OBJECTIVE OPTIMIZATION

3.1 PROBLEM FORMULATION
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Optimal experiment design problems involving mul-
tiple conflicting objectives can be formulated as a
multi-objective optimization on design parameters
as data- and time-efficient as possible. More for-
mally, we consider a optimization problem over a
set of design variables X ⊂ Rd, called design space.
The goal is to simultaneously minimize m ≥ 2 ob-
jective functions f1, ..., fm : X → R. Representing the vector of all objectives as f(x) =
(f1(x), ..., fm(x)), the performance space is then an m-dimensional image f(X ) ⊂ Rm. Conflict-
ing objectives result in a set of optimal solutions rather than a single best solution. These optimal
solutions are referred to as Pareto set Ps ⊆ X in the design space, and the corresponding images in
performance space are Pareto front Pf = f(Ps) ⊂ Rm.

To measure the quality of an approximated Pareto front, hypervolume (Zitzler & Thiele, 1999) is
the most commonly used metric in multi-objective optimization (Riquelme et al., 2015). Let Pf be
a Pareto front approximation in an m-dimensional performance space and given a reference point
r ∈ Rm, the hypervolumeH(Pf ) is defined asH(Pf ) =

∫
Rm 1H(Pf )(z)dz, where H(Pf ) = {z ∈

Z | ∃1 ≤ i ≤ |Pf | : r � z � Pf (i)}. � is the relation operator of objective dominance and 1H(Pf )

is a Dirac delta function that equals 1 if z ∈ H(Pf ) and 0 otherwise. The higher the hypervolume,
the better Pf approximates the true Pareto front.

3.2 MODULAR ALGORITHM FRAMEWORK
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Figure 1: Algorithmic pipeline and core modules of multi-objective Bayesian optimization.
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Multi-objective Bayesian optimization (MOBO) is a data-driven approach that attempts to learn the
black-box objective functions f(x) from available data and find Pareto optimal solutions in an iter-
ative and data-efficient manner. MOBO typically consists of four core modules: (i) an inexpensive
surrogate model for the black-box objective functions; (ii) an acquisition function that defines sam-
pling from the surrogate model and trade-off between exploration and exploitation of the design
space; (iii) a cheap multi-objective solver to approximate the Pareto set and front; (iv) a selection
strategy that proposes a single or a batch of experiments to evaluate next. These four modules (see
Figure 1) are implemented as core and independent building blocks of the AutoOEDs, making it
highly modularized and easy to develop new algorithms and modules. The whole pipeline starts
from a given small dataset or a set of random evaluated samples, then it works iteratively by propos-
ing new design samples and evaluating them until the stopping criterion is met.

For each module in this framework, AutoOED supports following choices:

• Surrogate model: Gaussian process, neural network (multi-layer perceptron), Bayesian
neural network (DNGO (Snoek et al., 2015))

• Acquisition function: Expected Improvement, Probability of Improvement, Upper Confi-
dence Bound, Thompson Sampling, identity function

• Multi-objective solver: NSGA-II, MOEA/D, ParetoFrontDiscovery (Schulz et al., 2018)
• Selection: Hypervolume improvement, uncertainty, random, etc.
• Stopping criterion: Time, number of evaluations, hypervolume convergence

class TSEMO(MOBO):
’’’
[Bradford et al. 2018]
’’’
spec = {

’surrogate’: ’gp’,
’acquisition’: ’ts’,
’solver’: ’nsga2’,
’selection’: ’hvi’,

}

class USEMO_EI(MOBO):
’’’
[Belakaria and Deshwal 2020]
’’’
spec = {

’surrogate’: ’gp’,
’acquisition’: ’ei’,
’solver’: ’nsga2’,
’selection’: ’uncertainty’,

}

class DGEMO(MOBO):
’’’
[Lukovic et al. 2020]
’’’
spec = {

’surrogate’: ’gp’,
’acquisition’: ’identity’,
’solver’: ’discovery’,
’selection’: ’direct’,

}

Code Example 1: Creating algorithms in AutoOED by simply specifying module combinations.

Based on this framework, we implement several popular and state-of-the-art MOBO methods, in-
cluding ParEGO (Knowles, 2006), MOEA/D-EGO (Zhang et al., 2009), TSEMO (Bradford et al.,
2018), USeMO (Belakaria & Deshwal, 2020), DGEMO (Konakovic Lukovic et al., 2020). DGEMO
exhibits state-of-the-art performance for data-efficient, multi-objective problems with batch evalua-
tions to the best of our knowledge. With necessary modules of the MOBO framework implemented,
the algorithms can be easily composed by specifying the choice of each module and inheriting the
base class MOBO, see Code Example 1. Supported choices of each module can be found in our
documentation. Users can select an algorithm from this library that best fits the characteristics of
their physical system or optimization goals, or they can easily create new algorithms by specifying
novel combinations of existing modules in just a few lines of code.

4 TIME-EFFICIENT MULTI-OBJECTIVE OPTIMIZATION

4.1 BATCH OPTIMIZATION

While standard MOBO optimizes for the Pareto front in a data-efficient manner, often, when mul-
tiple experiment setups are available, evaluations can be executed in batch by parallel workers to
further speed up the whole optimization process. To leverage this speed-up, all the algorithms in
AutoOED are implemented to support batch evaluation.

However, if parallel workers evaluate in different speeds, some workers are left idle when they
finish evaluations earlier than others. Therefore, asynchronous optimization is desired to maximize
the utilization of workers and is able to evaluate many more designs than synchronous optimization
in a fixed amount of time, as also illustrated by Kandasamy et al. (2018) and Alvi et al. (2019).
Nevertheless, while some designs are being evaluated (i.e., busy designs), how to propose the next
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design that (i) avoids being similar to the busy designs and (ii) incorporates knowledge from busy
designs to reach better regions in the performance space is the key question that we want to explore.

To develop efficient asynchronous strategy for multi-objective optimization, we borrow ideas from
previous literature in the single-objective setting.

Lower bound

Busy design
Evaluated design

Posterior mean
Posterior std

x

f

(a) The failure case of KB when believing
overestimated busy designs.

A

B

A

B

H1

H2

H1

H2

Penalizing Believing

Busy design
Proposed design

Current Pareto front
Hypervolume improvement

f2

f1 f1

f2

H1 > H2 H1 < H2

(b) The sub-optimality of LP in multi-objective scenario when be-
lieving busy designs affects the selection result.

Figure 2: Analysis of KB and LP strategies for asynchronous optimization.

4.2 FAILURES OF EXISTING STRATEGIES

Kriging Believer (KB) (Ginsbourger et al., 2010) is a simple yet effective approach that believes
the performance of busy designs is their posterior mean of the surrogate model when optimizing
for new designs. In other words, it treats the mean prediction of the busy designs as their real
performance and eliminates their posterior variance to prevent acquisition functions from preferring
those regions. However, failure case happens when it believes an overestimated design, it might
become difficult to find designs better than this overestimated one and make further improvement,
see Figure 2a. Especially, when the posterior mean of the busy design is extremely small and even
exceeds the lower bound of the objective, subsequent optimization can hardly find a better solution.
In other words, subsequent optimization will only propose more overestimated designs with even
lower predicted performance to ”make improvement”, even though they are even farther from the
ground truth and drive the optimization away from the real meaningful regions. This overestimation
issue has not been studied in the past literature to the best of our knowledge, though KB is still the
strategy used in popular BO packages (Kandasamy et al., 2020; Balandat et al., 2020b).

Local Penalization (LP) (González et al., 2016) is another widely used approach that directly
penalizes the nearby region of the busy designs to prevent similar designs from being evaluated next.
However, extending this approach to the multi-objective scenario sometimes leads to sub-optimal
selection of new designs, as explained in Figure 2b. Intuitively, this sub-optimality comes from the
failure of leveraging the accurate predictions from the surrogate model. Consider when selecting the
best design to evaluate from a set of candidate designs (A and B) proposed by the multi-objective
solver using hypervolume improvement criterion, while a busy design is in evaluation. LP penalizes
the nearby regions of the busy design in the design space but has no control over the performance
space, which means that designs with similar performance as the busy design could still be selected
(design A). Ideally, if the surrogate prediction of the busy design is certain, we can leverage this to
avoid proposing designs with little performance gain. For example, simply believing the prediction
of the busy design leads to selecting design B that has a higher hypervolume improvement.

4.3 BELIEVER-PENALIZER STRATEGY

In conclusion, we observe that the failure case of KB is due to the trust of uncertain predictions
while the sub-optimality of LP comes from not believing the certain prediction. Therefore, we
propose a novel strategy BP that naturally combines KB and LP by applying KB to designs with
certain predictions and LP to designs with uncertain predictions. Here, certainty of prediction is
simply defined as the posterior standard deviation from the surrogate model which can be Gaussian
processes, Bayesian neural networks or other type of model that computes standard deviation of
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predictions. Though the idea of BP is general and one can use any analytical expression to determine
the certainty threshold for applying KB or LP, in practice, we find a simple probabilistic form which
works well: Pi(x) = max(1 − 2σi(x), 0) where Pi is the probability of believing x for the i-th
objective and σi is the posterior std of x from the surrogate model of the i-th objective. Because
the objective data is normalized as zero with mean unit variance before fitting the surrogate models,
σi(x) is generally between 0 and 1. As a result, BP generalizes more robustly than both KB and LP
to most of the benchmark problems as empirically demonstrated in Section 6.1.

5 THE AUTOOED PLATFORM

5.1 OVERALL WORKFLOW

GUI

Optimization

Automatic 
EvaluationDatabase

Update visualization

Launch

Propose designs

Store results

Interact

User

Scheduler

Assign tasks

Update status

GUI Optimization Manual 
Evaluation Database

Launch Propose designs Store results

Update visualization

Interact

User

Perform experiments

Manual Mode

Auto Mode

Figure 3: The manual and automatic workflows of the platform design.

As a full-stack software, the overall workflows of AutoOED are presented in Figure 3. The manual
mode and auto mode are distinguished by whether the experimental evaluations need to be done
manually or can be done automatically through programs. Key components in this workflow include:

• GUI: An intuitive graphical interface between users and optimization, evaluation and
database, with many powerful functionalities supported as described in Section 5.2.

• Optimization: Once the user sends the optimization request, the MOBO algorithm will be
running in back-end and proposing next promising designs.

• Evaluation: AutoOED supports two different ways of performing evaluations: manually
by hand and automatically by evaluation programs. The evaluation module receives designs
proposed by the optimization algorithms and outputs the corresponding objective values.

• Database: The SQL database stores information of each design including design parame-
ters, predicted and real objective values in a transactional manner which can be distributed.

Next, we illustrate how the workflows of AutoOED combine these individual components.

Manual mode When the experimental evaluation must be performed by hand, the manual mode
has to be selected. In this case, users need to interface with both the GUI and evaluation. When
GUI receives the optimization request from the user, it launches the optimization worker to propose
designs for the user to evaluate. Users will see the new proposed designs from the database GUI, then
they can enter the evaluation results in the same interface. Once AutoOED receives the evaluation
results, visualizations and statistics will be updated to inform users the latest status.
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Auto mode If the evaluation program is available (in Python/C/C++/Matlab), AutoOED can au-
tomatically guide the experiments by alternating between optimization and evaluation through a
scheduler. In this case, upon receiving the optimization request and stopping criteria from the user,
the scheduler will automatically repeat the optimization-evaluation cycle until one of the stopping
criteria is met. The scheduler automatically launches evaluations after designs are proposed by
optimization workers, and restarts optimization after evaluations are done, thus the whole loop of
experimental design can be executed in an automated way without human intervention.

5.2 FEATURE COMPARISON WITH OTHER PLATFORMS

As shown in Table 1, we compare AutoOED with existing BO platforms according to the following
important criteria. For other features of AutoOED, please refer to Appendix A.

Graphical user interface and visualization The GUI guides the user through a set of simple steps
to configure the problem, such as the number of design and performance parameters, the parameter
bounds and constraints, parallelization settings, and selection of the optimization algorithm without
the need of coding. The GUI also includes a real-time display of the design and performance space
which allows users to easily understand the current status of optimization. We also support display-
ing and exporting the whole optimization history (including database and statistics). All previous
platforms do not offer such a convenient GUI and even the visualizations need to be written by the
user, except GPyOpt has a built-in tool for plotting the acquisition function and convergence.

Multiple objectives and multiple domains For multi-objectivity, GPflowOpt implements
HVPOI (Couckuyt et al., 2014) and Dragonfly implements MOORS (Paria et al., 2020) without
the flexibility of incorporating other algorithms or modules. BoTorch supports MESMO (Belakaria
et al., 2019), qEHVI (Daulton et al., 2020b) and qParEGO. Although algorithm implementations
differ across platforms, AutoOED covers a wider range of algorithms and incorporates them into a
more unified modular framework. Except continuous designs, AutoOED supports discrete, binary,
categorical designs and a mix of them by applying discrete or one-hot transformation in fitting and
evaluating the surrogate model, as suggested by Garrido-Merchán & Hernández-Lobato (2020).

Asynchronous optimization As demonstrated in Section 4, AutoOED supports different asyn-
chronous techniques including KB, LP and BP, while Dragonfly and BoTorch only implements KB
and all other platforms do not support asynchronous optimization.

External evaluation There are many real-world experimental design problems where the experi-
mental evaluation must be performed by hand or external lab equipment thus it is hard to write an
analytical objective function in code. Though simple to implement, surprisingly, among all of the
existing platforms surveyed in this paper, only GPyOpt supports evaluating externally and suggest-
ing designs to evaluate purely based on a given dataset. AutoOED allows users to see the suggested
designs and enter the evaluation results easily in the database interface, as described in Section 5.1.

6 EXPERIMENTS

We conduct experiments across 12 standard multi-objective benchmark problems: ZDT1-4 (Zitzler
et al., 2000), DTLZ1-4 (Deb et al., 2005), OKA1-2 (Okabe et al., 2004) and VLMOP2-3 (Van Veld-
huizen & Lamont, 1999). For each algorithm, we run experiments with 20 different random seeds
and a budget of 100 samples. The initial 20 samples of each run are generated by Latin hypercube
sampling (McKay et al., 1979). We measure as the performance criterion the log of the difference
between the hypervolume of the ground-truth Pareto front and hypervolume of the best Pareto front
approximation found by the algorithms (thus lower is better). The curves are averaged over 20
random seeds and the variance is shown as shaded regions. Detailed problem information and hy-
perparameters are described in Appendix B. Additional ablation studies are included in Appendix D.

6.1 ASYNCHRONOUS MOBO ALGORITHMS

To test whether Believer-Penalizer is effective, we compare four asynchronous MOBO algorithms on
all benchmark problems. Async simply ignores the busy designs while optimizing asynchronously
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Figure 4: Performance comparison between variants of asynchoronous MOBO algorithms.

and the remaining algorithms are described in Section 4. Figure 4 shows that Async BP consistently
outperforms other methods and follows the best of Async KB and Async LP.

6.2 PERFORMANCE COMPARISON ACROSS PLATFORMS
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Figure 5: Performance of AutoOED on the benchmark problems compared to other BO platforms.
The result of BoTorch on VLMOP3 is omitted as the algorithm fails to stop within 24 hours.

We compare AutoOED against other open-source BO platforms with multi-objective optimization
capabilities, including BoTorch, GPflowOpt, Dragonfly, HyperMapper and OpenBox on the afore-
mentioned benchmark problems. Our baseline implementation follows the default recommended
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settings in the original documentation and tutorials. For BoTorch, we use the qEHVI acquisition
function. In Figure 5, we demonstrate the competitive performance of AutoOED against other BO
platforms using our benchmark. AutoOED takes a major lead in several challenging problems such
as ZDT1, ZDT3, and VLMOP3, which shows that our platform handles high-dimensional MOBO
problems very well with the proposed asynchronous BP strategy. Besides, the performance of Au-
toOED is generally stable and ends up either the best or comparable on most benchmark problems.
We conduct additional ranked and paired comparisons between AutoOED and all the baseline plat-
forms in Appendix C to further demonstrate AutoOED’s robustness and competitive performance.

6.3 REAL-WORLD OPTIMAL EXPERIMENTAL DESIGN

(a) Experiment setup.
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Figure 6: Physical setup, optimization process and solutions of the PID heater control experiment.

We further demonstrate the real-world applicability of AutoOED through applying to optimize a
PID heater controller to have optimal response time and minimal overshoot in a fully automated
way. Details of the experimental setup can be found in Appendix B.3. To automate the experiment,
we simply link the Python evaluation program of this experiment setup to AutoOED through GUI
then start the iterative optimization. Finally, the results are exported as shown in Figure 6, where a
set of solutions are discovered with optimal trade-offs between minimal response time and minimal
overshoot. Using MOBO algorithms provided by AutoOED is able to discover better designs com-
pared to random sampling at the presence of evaluation noise (temperature measurement error, lack
of precise initial temperature control, fabrication differences between heater blocks). This example,
with all the components that people can easily buy off-the-shelf, serves as a simple proof of concept
that AutoOED is applicable to optimize real physical systems. More examples, including optimiz-
ing material structure based on FEM simulation and optimizing a physical motor’s rotation, can be
found in our documentation with detailed instructions on how to interact with GUI and compose the
evaluation program for fully automated OED.

7 CONCLUSION AND FUTURE WORK

We introduced an open-source platform for automated optimal experimental design of multi-
objective problems. The platform is of modular structure, facilitating the implementation of dif-
ferent multi-objective Bayesian optimization (MOBO) algorithms and enabling both data- and time-
efficient optimization. In addition, the platform includes a novel strategy for asynchronous batch
optimization for improved time efficiency. We performed extensive experiments on standard bench-
mark to demonstrate the robust performance against other relevant methods. Furthermore, we con-
ducted real-world physical experiments to showcase the automated usage of our platform.

From the research and engineering perspective, future work includes implementing additional fea-
tures, such as expensive constraint handling, advanced noise handling and extending AutoOED’s
framework to incorporate a even wider range of MOBO algorithms. From a practical standpoint,
we are also interested in applying AutoOED to automate more real-world experimental design prob-
lems in science and engineering. And we believe AutoOED will gradually lower the barrier between
MOBO research and practical applications.
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A PLATFORM DETAILS

A.1 ADDITIONAL FEATURES

Cross-platform AutoOED is a cross-platform software that can be installed as an executable on
computers with either Windows/MacOS/Linux system. Installing from source code is also supported
for extra flexibility.

Surrogate prediction Users may find AutoOED useful not only in optimization but also in predic-
tion. In addition to the set of optimal solutions, our platform’s final product is the learned prediction
models of the unknown objectives, which can be used easily from GUI to predict the objectives for
a given design from the user. The prediction provides the users with more insights into the poten-
tial outcomes of experiments. It helps them better understand the optimization problem to make
informed decisions and guide the optimization process towards their preference.

Constraints Besides, AutoOED supports inexpensive black-box constraints on the design space
in addition to the bounds. To handle expensive black-box design constraints or objective constraints,
it is possible to learn a constraint model similar to learning the objective function, as implemented
by Spearmint (Gelbart et al., 2014).

B EXPERIMENT SETUP

B.1 BENCHMARK PROBLEMS

In this section, we briefly introduce the properties of each benchmark problem, including the di-
mensions of the design space X ⊂ Rd and performance space f(X ) ⊂ Rm, and the reference
points we use for calculating the hypervolume indicator, which are shown in Table 2. We perform
20 independent test runs with 20 different random seeds for each problem on each algorithm. For
each test run of one problem, we use the same initial set of samples for every algorithm, which is
generated by Latin hypercube sampling (McKay et al., 1979) using a same random seed. To have
a fair comparison, we simply set the reference point r ∈ Rm as a vector containing the maximum
value of each objective over the initial set of samples {x1, ...,xk}:

r = ( max
1≤i≤k

f1(xi), ..., max
1≤i≤k

fm(xi)).

Table 2: Basic descriptions of all the benchmark problems.

Name d m r

ZDT1 30 2 (0.9699, 6.0445)
ZDT2 30 2 (0.9699, 6.9957)
ZDT3 30 2 (0.9699, 6.0236)
ZDT4 10 2 (0.9699, 199.6923)
DTLZ1 6 2 (360.7570, 343.4563)
DTLZ2 6 2 (1.7435, 1,6819)
DTLZ3 6 2 (706.5260, 746.2411)
DTLZ4 6 2 (1.8111, 0.7776)
OKA1 2 2 (7.4051, 4.3608)
OKA2 3 2 (3.1315, 4.6327)
VLMOP2 6 2 (1.0, 1.0)
VLMOP3 2 3 (8.1956, 53.2348, 0.1963)

B.2 HYPERPARAMETERS

Here we present all the common hyperparameters that AutoOED uses in the experiments.
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Surrogate model We use the same Gaussian process model as the surrogate for all experiments.
We use zero mean function and anisotropic Matern 1/2 kernel, which empirically is numerically
stable than popular Matern 5/2 kernel in our experiments. The corresponding hyperparameters are
specified in Table 3, which are suggested by TSEMO.

Table 3: GP hyperparameters.

parameter name value

initial l (1, ..., 1) ∈ Rd

l range (
√
10−3,

√
103)

initial σf 1

σf range (
√
10−3,

√
103)

initial σn 10−2

σn range (e−6, 1)

Multi-objective evolutionary algorithm The cheap NSGA-II solver employed in AutoOED’s
MOBO algorithms by default uses simulated binary crossover (Deb et al., 1995) and polynomial
mutation (Deb et al., 1996) for finding the Pareto front of acquisition functions. The initial popula-
tion is obtained from the best current samples determined by non-dominated sort (Deb et al., 2002).
The other hyperparameters are specified in Table 4.

Table 4: NSGA-II hyperparameters.

parameter name value

population size 100
number of generations 200
crossover ηc 15
mutation ηm 20

B.3 REAL-WORLD EXPERIMENT SETUP

In our real-world experiment setup, overall, a PID controller is employed to regulate the temperature
of the heater block with proportional, integral, and differential constants. To find the optimal set of
constants a number of heating cycles are done asynchronously with the controller using AutoOED.
The experiment is comprised of setting the PID constants, then heating the block up to a set temper-
ature, and keeping them at the set duration for 2 minutes. During this time the response time and
overshoot are measured. After the heating cycle, the heater is then cooled back down to a starting
temperature to prepare for another test with new PID constants.

Specifically, the experimental setup is comprised of 3 heaters with identical dimensions and charac-
teristics. Each heater is comprised of a heater block, heating element, temperature sensor, solid-state
relay, power supply, and a controller, shown in Figure 7. To run an experiment, AutoOED sends the
PID constants to a controller that is free. Next, the PID controller becomes active and starts regu-
lating the temperature of the heater. The temperature sensor measures the temperature of the heater
block. Depending on the constants of the PID controller and the temperautre of the heater block, the
controller turns the heating element on or off via the solid-state relay. After a period of 2 minutes
where the PID controller is active, the controller stops actively regulating the temperature of the
heater allowing the heater to cool. Next, the controller starts to monitor the cooling of the heater via
the temperature sensor. It monitors it until the heater block cools to a temperature below a threshold.
The amount of time it takes to cool the heater block depends on the temperature that the block was
heated to during the active period. Once it sufficiently cools, the controller sends the calculated
overshoot and response time to AutoOED and notifies that it is ready to run another experiment.
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Figure 7: A schematic of the setup used for the real-world experiment.

C ADDITIONAL COMPARISONS

BoTorch GPflowOpt Dragonfly Hypermapper OpenBox AutoOED
1

2

3

4

5

6

Figure 8: Performance rank of platforms on the 12 benchmark problems (lower is better). The box
extends from the lower to the upper quartile values, with a solid line at the median and a dashed line
at the mean. The whiskers that extend the box show the range of the data.

We conduct ranked and paired comparisons between AutoOED and all the baseline platforms based
on the 12 benchmark problems, as shown in Figure 8 and Figure 9. The performance rank compar-
ison in Figure 8 suggests that BoTorch, OpenBox and AutoOED outperform other platforms by a
great margin overall. While BoTorch and OpenBox share a better median rank, AutoOED appears
to be the stablest platform that consistently ranks between 1 and 3 on all problems and has a higher
lower-bound performance than BoTorch and OpenBox. Figure 9 also suggest that AutoOED has
a competitive performance to BoTorch and OpenBox, but outperforms other baselines on a wider
range of benchmarks.
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Figure 10: Performance comparison between synchronous and naive asynchronous MOBO algo-
rithms.
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D ABLATION STUDIES

D.1 SYNCHRONOUS AND ASYNCHRONOUS MOBO

Following the experiment settings in Section 6, we addtionally compare the performance of syn-
chornous and asynchronous MOBO. As shown in Figure 10, they achieve similar hypervolumes
whereas asynchronous MOBO spends less than half of the time of its synchronous counterpart.

D.2 BATCH SIZE
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Figure 11: Performance comparison between variants of asynchoronous MOBO algorithms with a
batch size of 4.

Ablation studies are also conducted on the batch size in asynchronous MOBO. For this category
of experiments, we repeat our practice in Section 6.1 while changing the batch size to 4 and 16,
respectively. The results are demonstrated in Figure 11 and 12. Our proposed BP strategy maintains
its relative lead in VLMOP3 and performs comparably with other variants on the rest of the test
problems.

D.3 ACQUISITION FUNCTION

Lastly, we evaluate the asynchronous MOBO variants using the EI acquisition function. Although
the change in acquisition function has a clear influence on hypervolume growth, the proposed BP
variant still performs favorably in problems such as ZDT2, DTLZ2, and VLMOP2. The performance
of BP on the other problems remain comparable to the alternative strategies.
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Figure 12: Performance comparison between variants of asynchoronous MOBO algorithms with a
batch size of 16.
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Figure 13: Performance comparison between variants of asynchoronous MOBO algorithms with EI
as acquisition function.

19


	Introduction
	Related work
	Data-efficient multi-objective optimization
	Problem formulation
	Modular algorithm framework

	Time-efficient multi-objective optimization
	Batch optimization
	Failures of existing strategies
	Believer-Penalizer strategy

	The AutoOED platform
	Overall workflow
	Feature comparison with other platforms

	Experiments
	Asynchronous MOBO algorithms
	Performance comparison across platforms
	Real-world optimal experimental design

	Conclusion and future work
	Platform details
	Additional features

	Experiment setup
	Benchmark problems
	Hyperparameters
	Real-world experiment setup

	Additional comparisons
	Ablation studies
	Synchronous and Asynchronous MOBO
	Batch size
	Acquisition function


